Copyright © 1974, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RELTABILITY AND INTEGRITY OF LARGE COMPUTER PROGRAMS

by

C. V. Ramamoorthy, R. C. Cheung and K. H. Kim

Memorandum No. ERL-M430

12 March 1974

RELIABILITY AND INTEGRITY OF LARGE COMPUTER PROGRAMS

by

C.V. Ramamoorthy, R.C. Cheung and K.H. Kim

Memorandum No. ERL-M430

12 March 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720 :

RELIABILITY AND INTEGRITY OF LARGE COMPUTER PROGRAMS

C.V. Ramamoorthy, R.C. Cheung and K.H. Kim

! University of California, Berkeley

! Department of Electrical_Engineering-and Computer Sciences
Computer Science Division

Electronics Research Laboratory

1. Introduction

1.1 Cost of software)
It was not too long ago that programming was generally considered as an art.

In these past few years, .the emergence of the term 'software engineering' indicated
-} & major change of public'opinion. Programming 1s not only considered as a science j
but also as é branth of engineerihg where disciplines can be enforced. This is due;
partly to more understandihg of the 'art' of programming and partly to the strong
pressure of economics. There was a time when hardware was king and every effort
possible was spent in improving the utilizatioﬁ of the hardware of the computer.
However, the rapidly decreasing cost of the computer itself and the continuously

rising salary of the human programmers have compelled us to focus our attention on ‘

improving the efficiency of software development. For example, gsoftware occupied
only about 257 of the United States Air Force budget for electronic data processing
in 1960 (75% for hardware) while in 1973 software occupies about 80% of the USAF
budget for EDP. The cost of software is still rising continuously in a linear
fashion. This trend is expected to continue and the lopsidedness of the software-
hardware cost ratio is probably characterigtic of other organizations too. :
Software has become big business in'the United States. For the United States :
Air Force, an annual expenditure of between $1 billion and $1.5 billion has been
; spent on software for the fiscal year of 1972, This amounted to about 4 or 5% of
" the total Air Force budget. [Boe 73] At present, overall software costs in the
. United States are probably over $10 billion every year, over 1% of the gross \

" nmational produét. [Boe 73]. '
1.2 Problems of software !

Our past experiénces with sof tware development have been depressing. Most of ,

the software development projects are unsuccessful in terms of specification, time
and cost. The final software product delivered is often unresponsive to the actual

needs of the organization it was developed for. The users are promised one thing

but end up with another. In many cases, a significant portion (up to 67%) has to
be rewritten, after the system is delivered, in order to meet the operational needs

' This research was sponsored by the Office of Naval Research Contract NOOOl4-69-A-
0200-1064.

of the users. Delay in delivery is commonplace while gross undereatimatiou of. the -
cost by a factor of four is not unusual. For example. the IBM 0S/360 was delivered
'one year behind schedule and was estimated to cost more than 200 million dollars.
[Ale 69]. .- . 5
Big as these direct costs of software may be; the indirect costs due to delays
and errors are even greater. Software is usually on the critical path in the over-
all system development so that any delay in software delivery will directly upset
the schedule of the whole system, which is extremely expensive. Moreover, the

management can do very little to speed up the software development. Adding more
programmers to a late project simply makes it later. To scrimp the testing,

‘

integration, or documentation procedures cost much more in the long run. Generally,

rthe simple solution adopted is to eliminate all expandable capabilities, making the
system unappealing to the user.. This is especially true for many real-time syatema.
' Not only is the software always late and expensive, the fipal delivered product
is also very unreliable. Much software are released with thousands of bugs still in
.3t Each new release of the 0S5/360 contains roughly 1000 new software errors.
[Boe 73]. Even after the .program is considered to be thoroughly tested, there were
18 discrepancics found in the software during the 10~day flight of Apollo 14,

[Boe 73]. This becomes more scary when we consider the complexity of the programs
i for pational defense and air traffic control.

1.3 Reduction of software cost

1.3.1 Software-oriented system design

From the discussion above we can see that cost and reliability are the two

,major causes of concern about software. In many projects, especlally real-time S

| 8ystems, the software effort has to wait until the hardware is procured, or at least
| until the selection is made. Then the prégrams are written under the hardware f
constraints. This procedure has several disadvanéages. The time spent on hardware

: procurement pushes software farthor out onto the critical path. Any delay in soft-
ware delivery will incur an unaccountable amount of indirect cost to the whole ‘
system. Besides, the sele;tion of hardware is made without much consideration to

. the software development. A typical study of the extent to which hardware
constraints affect software productivity is shown in Figure 1. ([Wil 70]. We can
see that as we épproach 85% utilization of hardware speed and memory capacity, the

.-software cost rises abruptly. The hardware constraints may drastically increase

' the cost and time fof software development. With the‘décreasing cost of hardware

- and rising cost of software we have to avoid this unnecessary -saturation point. We

- ghould make the hardware selection after we understand sufficiently well the

requirements of software. We would rather acquire a computer with 50% to 100% extra

capacity than to risk having a computer too "small" for our purpose. Whenever hard-

ware constraints affect software development, the cheaper hardware should be traded

off to save on the more expensive software. In order to get software off the

s

ae

eritical path, we have to initiate software development earlier in the gystem

development cycle. The software should be specified first and a simulator or micro=-
| programmed computer can be used to support the software development. Afte£ Qe have
; established a solid basis in software development and have.gnough knowledge about ‘
its requirements, we will then give the detailed design specification of the hard-
ware required to support the software. The hardware can then be built, or selected
from existing systems, in parallel with the software development and testing. In '

1

]
this way, the hardware is more responsive to the need of the software. It will use
i

& more up-to-date technology and will probably be cheaper. Besides, hardware
development requires less time than software and significant delays are rare.

st

'y ' I (KN
»

i 0 25 50 75 100

Percent Utilization of har&ware
Figure 1. Effect of hardware utilization on software productivity

Relative programming
cost per instruction

1.3.2 Increasing software productivity

Let us now look into methods to increase the software productivity of each
individual programmer. It is difficult to specify what is meant by software

productivity. A common measure is the number of source level instructions that a

i programmer produces per unit time, e.g., the numﬁer of Fortran statements per week.
f A study by Sackman [Sac 70] shows that the productivity of individuals may vary by
factors up to 26:1. The productivity of a programmer can be improved by many

. methods. On-line programming may cause an improvement of 20% over batch programming.
[Sac 70]. The selection of the right programming language, especially the use of
special purpose language, may cause a productivity improvement of several fold:.
There are also tradeoffs between the productivity of the programmer and the
efficiency of the program produced. Other important factors that affect the
productivity may include stability of program design, amount of mathematical ins-
tructions, number of subprograms, concurrent hardware development, -etc.

1.4 Improvement of'program reliability

T A careful reader may notice that all the factors discussed so far are involved
i in coding of the program only. Software development can bé roughly divided into
3 phases: design, coding and .testing. A study [Boe 71] has shown that for large-

i
' scale programs about 36% of software effort is spent in analysis and design, 19%

in coding arnd auditing, and 45% in checkout and testing! About half.ofifhe effort '

" The correction procedure is not as simple as replacing a faulty hardware component

is spent in removing errors made in design and coding of the progrbm. Any

! improvement in the reliability of the p;ogram and cost of debugging will therefore

significantly decrease the total software cost. The goals- of reducing cost and
increasing reliability can be achieved simultaneously by minimizing the software

‘bugs introduced during the design and coding stages of the program. In order to

investigate techniques for reliable programming we must first understand the meaning
of software reliability, the characteristics of large programs, and the nature and

.behavior of software bugs.

1.4.1 Meaning of software reliability
Software reliability is a term that every programmer understands while

nobody can give a formal definition. Although very meaningful work has been done
in hardware reliability, the theory cannot be immediately applied to software
because of the basic differences 1in behavior and characteristics. Im hardware,
the reliability of a system is usually defined as the probability that a specified
function will be adequately performed for a specified time by the system. In i

| general, it is assumed that the hardware system is perfect (100% reliable) to start

with and the components deteriorate with time, creating a probability of failure.
In contrast, the elementary components of software are instructions, whose behavior
does not change with time. Besides, these components cannot fail. Errors are not
caused by the failure of the elementéry components but rather by incorrect
combinations of them. The interactions between these components are much more
complicated than the interconnections of hardware components. The piece of soft-
ware is put into operation with many bugs still in it. There are no feasible
methods of measuring the number of bugs in a program. More complicated still, even
when we detect a "software bug" and correct it, we are still not sure that the total
number of bugs left in the system is decreased by one, since we cannot predict if
our correction procedure has any side effects on the other parts of the program.
with a good one. !
Serious effort has been attempted by many people in deriving a quantitative

measure of the 'reliability' of a program. Many reliability models have been

- proposed. Shooman [Sho 73] proposed a model using a "software reliability function"

R(t) as the probability that the system will not fail up to time t. This model is
apparently borrowed from hardware reliability theory. Other people, such as
Jelinski and Moranda [Jel 73] have formulated similar models. All these attempts
have been less than satisfactory because they completely ignore the differences in

. behavior between software and hardware. They failled to establish connections

. between the parameters of the models and actual software properties. The

applicability of such models is doubtful.
Here, .we will not attempt to give any formal definition of the reliability

¢y

- ememmmas eee s me e e i e - — ———e s m i mresene e Cas meas e
- - . s we s er .- - o -

"of a program. Instead, we will treat software reliability as a qualitative measure
apd discuss different factors which will affect the quality of a program from a
reliability point of view. We will say that an error is committed if, given the ,
1nput value and the specifications of the computation to be performed by the program.
the output value is either incorrect or indefinitely delayed. ‘
The reliability of a pilece of softvare may be evaluated from two points of
view. We can rate the reliability of a progtam by the "number" of software bugs
. dnherent in the program, i.e., the number of mistakes made during the design and

| implementation of the program. Reliability is therefore an inherent property of
I the piece of software product and is subject to assessment by an andlysis of the
" program. However, software bugs, like software reliability, is mnot easily subject

to quantitative evaluation. It is not clear what is meant by the "number of soft-

ware bugs" in a program or how to measure it. It has been suggested that the rate
. at which software errors are detected can be used as & projection of the number of
software bugs still resident in the program. The accuracy and validity of such a

projection is still questionable. Moreover, even if we were able to measure the

number of bugs in a program, there is still no convenient way for us to normalize
such a measure so that it can be used as a comparative parameter of the reliability
of different .programs.

We mdy also treat the reliability.of a program from the viewpoint of the A
quality of service it gives to a user. To a user, the reliability of a program is
evaluated by the correctness of the output that he receives. The reliability of a :
program can therefore be defined as the probability that a rum of the program will
give the desired output with a valid set of input data. Since it is the process
controlled by the program that performs the required computations, this definition
really measures the reliability of the process rather than the program. Since the

sequence of codes executed (the process created) is heavily dependent on the values

of the input parameters, the probability of obtaining the correct result will

. .depend on the input data selected. Therefore, the reliability of the program should
" be a weighted function according to the distribution of the input data (the process

created) of the given user emnviromment. It depends on the user enviromment. This

' geems to be a more reasonable evaluation of the reliability of the program because

) —

there may be a part of the program that is full of bugs but rarely used. These
software bugs will not affect the operation of most users and are therefore harmless.
This definition of reliability is related to the probability that a goftware bug is
activated by a set of inputs, As an extension, we should also take into account the
criticality and penalty-cost of the software error. A software bug in the missile
firing procedure of a defcnse missile system may make the whole program unacceptably
unreliable, even if the rest of the program is error-free. i
The user-viewpoint definition of software reliability has other drawbacks. 3
The reliability is not an inherent property of the program. The incorrect :

o meaprn

" functioning of a program may be due to some program independent erroré.“.ﬁvén 1£.
" the program were perfectly coded, there may be mistakes due to the key-punch

. operator, the compiler and assembler, and the operating system. Errors may be

caused by the incompatibility of the program and the computer hardware. More

. resources may be requested than the computer can supply. Bugs can occur due to

truncation or imprecision in the calculation by the hardware. These errors are
extremely difficult to detect since they only arise with the "right combination"
of the variables. Other hardware malfunctions, including transient errors and
data-sensitive faults, will also give us the wrong result. Input-output oriented
errors are not uncommon since many devices have different idiosyncrocieé. Errors ?
can also be causéd by parallel and asynchronous operations. In multiprocessing j
systems, typical errors may include resource deadlocks, storage encroachments, :
timing and scheduling anomalies. These program independent errors are particularly:
serious to real-time programs and should be checked before the program is put into :
operation. If we desire a reliable system, we have to take into account the
operating enviromment of the program besides the reliability.of the program it~
self. However, from now on, we will only restrict ourselves to program dependent
errors and discuss different ‘techniques to minimize these errors, leading to a more:
reliable program.

1.4.1 Characteristics of large programs

' Large programs (or progtammiﬂg»systeﬁg); as referred to here, are character;

4zed by complex structure and many instructions. Due to the size of the program,
4t is usually developed by a large mumber of programmers, sometimes in different
locations. There will be a large number of program components with complicated ‘
interactions. It is very difficult for a person to have a good understanding of

the whole system. A large program will contain a significant number of possible

flow paths so that exhaustive testing is unfeasible. For this reason, such programs

are not ‘expected to be completely error free. The number and critical nature of
errors or possible errors in the software product will determine its reliability.

' There are a number of differences between small and large programming systems, such

as the methods of implementation, phase structure, expansion of the system, and
tolerance to user abuse. These will affect the extent and effectiveness of
different validation techniques.

Since the small system has limited authorship, the implementation techniques
are homogeneous, i.e., similar methods are used to solve a given type of problem.
Consequently, if a given method is validated for one occurrence, it is also validated
for other occurrences. By contrast, large systems are developed by la;ge numbers of
programmers, each having his own way of thinking. Problems in communication may
prevent them from arriving at a common optimal solution for a problem. Instead,
various implementation techniques are used for the same purpose, requiring additional

validation procedures. : |

oy

The simple data structure of small systems is contrasted with the complex
structure of data bases employed by large systems. The former allows an intuitive

; understanding of the use of data while thé latter obscures the meaning and use of
. wariable names and provides more opportunities for misuse of data. It 18 also very
i d4fficult to provide an effective data structure for a data base used by different |,

programmers in a variety of ways.

The phase structure of a system 13 another important aspect in validation. i

| Small systems tend to have independent phases with limited interaction. Consequent-

1y it may be possible to exercise all possible paths and check interactions by i
examining the data dependencies of each phase. Large systems, however, will contain

! complex interactions among functional tasks which are coordinated by a supervisory

system. Dependencies are expressed in the supervisory calling sequence. For these
systems a thorough investigation of all paths is not feasible and more sophisticated
techniques are required to "validate interfaces. |

The expansion and modification of a stte@ will require re-evaluation and :
validation. For small systems this task is relatively simple since the effects of
changes are linited and easily traced. Modifications to large systems may have
more far reaching effects and their acceptance by all other parts of the system
must be cer&ified.- ‘

The detection and correction of operational errors depends on the system's

tolerance to user abuse. Small systems are employed in a limited user community.

" This implies adequate communication between developer and users to specify program

requirements and locate faults. On the other hand, large systems often have a
wide community of users and communication is hindered. The detection of faults 1s
more difficult and subtle faults may be propagated through the system. The
complexity of the system inhibits understanding by the user. l
The problems associated with large programming systems are largely the result

of faulty integration of system components, due to communication problems among

. programmers and lack of understanding of the whole program. The segmentation and

. interaction between components of large systems presents several types of problems,

! 1.4.2 Nature of software bugs in large programs

including data integrity, interface problems, and sequencing problems. In addition
to these considerations, there are also errors common to smaller programs such as
semantic errors, unreachable code, logic errors, etc. The nature of errors will be

investigated in the next section.

In order to gain some insight into the nature of software bugs, let us

) briefly review the typical steps of the development of a large software system:

1) Specifications of the requirements of the system.
2) Design of the overall structure and decomposition of the program in flow-
chart form and the descriptions of the different sof tware modules.

3) Coding of each software modules in some suitable programming language,

' arise from the'faulty integration of the software modules. This 1is due to-a i

usually a "high level"'lﬁnguage. :
§) Debugging of each software modules with testing sample data. -
5) Integration of the tested software modules and debugging of the whole syateﬁ.
.6) Check out of the whole system for deliverg. '

In all the above steps there are sources of error. The program specifications
may be incomplete, leading to ambiguities or software buga; The designer may.have .
failed to understand fully the problem or have conceived a faulty algorithm. He may
have overlooked special cases of the input data. During the coding of the program.‘
there are even more errors. Errors may arise from incorrect semantics and language
constructs, such as the misspelling of variables and labels, incorrect use of mixed;
mode operations, etc. Logic errors such as "off by 1" in indexing or shifting are ‘
not unusual. Array over-write and wrong iaitialization are other common errors. !

The use of certain statement constructs such as computed GO TO statements in

. Fortran are error-prone. This type of statement depends on the value of a variable
i for determination of transfer locations: A bug would cause the transfer to nowhere

or to an unexpected part of the program. Structural errors of the program are alsoj
common, such as incorrect flow of coﬁtrol, unreachable program segments, no exit
path from a segment, etc. An additional area of concern is that of loop termination.
A program loop may be executed an incorrect number of times or even indefinitely,
depending on combinations of variable values in conditional branches and limits of '
explicitly defined loops.-

Difficult as it may be, these errors can be pretty well controlled with a
1ittle bit of care and patience from the programmer. The real problems usually

development process in ﬁhich a large number of programmers are involved. An
individual working on a single system component may overlook certain obscure but
possible conditions. The lack of complete and rlgorous interface specifications,
coupled with the misunderstanding of the scope or intent of component operation,
may lead to improper use or unforeseen side effects. The flow of information from

one component to another is often the source of interface errors. For example,

consider the passing of parameters in calling a subroutine. If the number, format, -
and type of parameters are not consistent, the subroutine may make unéxpected

modificatiqns to the parameters or improper operation due to the passing of

: dncorrect parameters. In a large program errors can also arise from the improper

sequencing of operations, which is obscured by the complexity and number of flow
paths. . . '

The order of operations for a certain process may be changed when integrated
with other processes. For example, a routine which accesses and transforms data in
a certain sequence may be disrupted if a second routine alters the same data.

Improper interface and sequencing may lead to errors in data integrity. Data

' dntegrity refers to the maintenance of proper data in correct locations at the

_ prescribed time. Errors include overruning array bounds, so that adjacent data

- variable when the value of its equivalent is altered. g

. the design,development and debugging stages. The occurrence of errors in the

are destroyed, imd non-aligmnen; of common data blocks. Equivalences between
variables c;f different names may cause the unexpected change in the value of 'one
]
Therefore, we can see that the most ‘common errors in implementation can be de-
scribed in roughly 5 major categories according to the place where they are found:
1) Interfaces, (2) Sequencing, (3) Data integrity, (4) Semantics and .
language constructs, (5) Structure and well-formation.
These are not intended to be all-encompassing and there will be some interaction
and over.flapping.‘ but most errors are traceable to one (or more) of these problem

areas.

1.4.3 Behavior of software bugs in large programs

. In general, the complexity of a system will depend on the number and inter-
action of 'system components, while at the component level, complexity depends on the
number of branches and external references. For a large program, exhaustive testing
is unfeasible. Therefore such programs always contain residual errors which survive
development of the program méy be expected to follow a general pattern as in l
Figure 2.))

Initial use will uncover increasing numbers of errors as the system 1s used '
more frequently and to fuller capaciiy.' ‘I'hé co;rrection of major errors will then

result in a gradual decrease in error detection until only infrequent errors occur,

! The piece of software becomes "“operational” when the rate of errors found is less

than a certain number epsilon, which represents the level of tolerance of the user '
to software bugs. It may seem sr..range to note that the mmber of errors that are
detected and fixed .after the system is operational seems to be almost constant.

One may expett a_monotonically decreasing number of errors with our debugging

effort,' since bugs are constantly detected and removed from the program. However,

in the process of correcting a detected error, the programmer may unintentionally

" introduce some subtle errors in other parts of the program, especially if good

documentation is not available. A study by McGonagle [McG 71) shows that 19% of
the errors of a set of proprams resulred from unexpected side effects to changes.
Another reason for the constant error rate is that a large portion of the program
is not tested or exercised. Errors in this large portion of the code remain dormant
until much later. _ !
The behavior of systems with several releases may present a pattern similar to
that of Figure 3, since every release represents a major revisioa of the program
specifications and modification on the program code. If the residual type of
errors can be detected and corrected before a program is released for use, the

peaks of these turves will de effectively reduced, tims improvimg the confidence

' Jevel and reliability of the program. This is the objective of the evaluation and

K
o

10
validation process.)) o
A . l
! i ..
-
i
g0
36 Operational
“w a .
oo
@
]
S a
@ 8
o u
g M . Te
a9 1 .

Number of runs of the program
(Cumulative usage of the program)

"' Figure 2. Behavior of software errors

Release #2 Release #3

Release #1

- e e o -
= o W e ar e wm e e emw=

per program instruction

Number of corrected errors-

. Time since initial release

Figure 3. Errors in multiple release program

K 1.5 Conclusion

i
|
.

From our discussion above, we can see that the main fundamental reasons for the

: large number of errors are the complex system application, the loosg specifications,

together with the large number of programmers. The inefficiency of 'bug removal'

is due to the lack of software validation and evaluation tools and methodologies.
The reliability of a program can be improved by 2 approaches: the 'analytic'

approach and the 'constructive approach'. The latter includes methodologies for

developing more reliable software, such as structured programming and software
defense. The former approach is primarily concerned with testing and validating

the program after it is written, using techniques such as proving program correct- '
ness and automated tools. In large real-time programs like those in ballistic missle

defense and air-traffic control, errors are very disastrous. After the removal of

critical software errors, one still has to worry about the integrity of the program

at the moment it is being executed in order to ensure the reliable operation of the

11

U —— - [—— [, .- . eecmm—— . - e PR -

system. Security measures have to be implemented to protect the program against
unauthorized tampering of the program. _All of these will be discussed in the

following sections.
i

2. The analytic approach to improve software reliability

The analytic approach is primarily concerned with the validation of the

reliability of the program after it is written. It is done through an analysis
of the program after it is coded. Roughly speaking, two approaches can be taken.
The first approach involves the proof of correctness of the program by some formal

means. A proof of correctness can, of course, establish our confidence in the
reliability of the program. However, this approach becomes infeasible when the
size of the program is large. The largest program proved by this method has only

433 Algol statements. [Goo 68]. The second approach has the more humble goal of

detecting and removing errors from the program. This is the more conventional
method of debugging. Although this method can never show that a program is) i
| completely reliable, it is practical for a large program because a lot of the
teéhniques can be automated. The computerized assistance greatly facilitates the
debugging effort of the programmer. After the major errors are removed, the
program may be quite reliable.

2.1 Proving program correctness

The process of proving program correctness is an analytic method to show that

the program, with inputs satisfying some constraints, will terminate and will
produce outputs which are specified functions of the inputs, provided tbat the

rogram is correctly compiled and, exccuted in a 'perfect computer'. By a 'perfect
P P .

! computer', we mean the Utopia of every programmer, with such features as a memory

i large enough for any program, an arithmetic processor with no errors due to round-

. off, underflow, overflow, etc. Although proving program correctness does not

consider the compatibility of the program and the machine, it does prove the

correctness of the coding of an algorithm in a suitable programming language,

provided that syntactic erro;s are absent. Hence, it establishes our confidence

in the reliability of the program and reduces the testing cost of the program.

In fact, most of the software errofs are caused by the incorrect coding of the

program by the programmer. i

i Rigorously speaking, a proof of correctmess should include a proof of program
termiﬁation. In practice, we may separate the verification procedure into two

; steps. The first step is a proof of partial correctness, i.e., that the program

" ylelds the correct answer if it terminates; the second step will be a broof of

! termination of the program. (Some procedures can perform both steps gimultaneously.)

f Two approaches can be_taken in establishing the correctness of a program, namely,

by an informal proof, or by a formal proof utilizing a mechanical theorem prover.

12

— e eime e .- ca e e . o e e s ee cr ceetee cmem. o

0

2.1.1 Informal approaches to proving program correctness
The approach towards an informal pProof of program correctness dates back to
the days of Goldstine and Von Neumann [Gol 63), who noted that the program can be

lverified, at least in principle, if the programmer can describe the state of all
the program variables after each step, or Possibly after some selected steps, of

ithe program. An inconsistency at any point will indicate a programming error.

'HnCatthy [McC 62, 63, 67], used a function-theoretic approach similar to this. He

.aasumes that at the start of a computation each cell of the computer memory contains
[@ number. An ordered sequence of these numbers is the "state vector" of the

1 computation. Each computer operation is considered as a transformation of the

- existing state vector into another state vector. Therefore the program can be

i
1]
iconsidered as a function in the state vector space. McCarthy introduced a formalism
;(conditional forms) for defining programs as recursive functions. Afterwards, the

. process of verifying the correctness of the pProgram reduces to a problem in recursive
function theory and a method (recursion induction) can be used. Essentially, ;

recursion induction is a set of axioms that can transform a recursively defined
function into an equivalent function. McCarthy and Painter [McC 67] have used this
approach to verify a very simple compiler. : !
Naur [Rau 66], generalizes such an approach by considering the state vector as
a vector of symbolic values rather than numeric values, e.g., X, Y, and Z instead
of -1, 2.5, etc. Computer operations are carried out with these symbolic values to
i obtain symbolic expressions such as X+ Y and X - Y as new elements in the state
vector. Logical comnectives can be introduced to accommodate branches by indicating
vthe conditions -leading to different symbolic values. The symbolic outputs therefore

Iexpress the transformations the program performs on the input variables. This
|approach known as the proof of algorithms by general snapshots (state-vectors),

is impractical since there will be too many symbolic expressions, each of which can
become very complicated even for a small program.

A natural simplification of the above procedure to make it practical is to trace
only the transformations of important variables and to develop symbolic expressions
for these variables only at strategic locations within the program. Hence, we are
using only a subset of the elements of the state vector and the "state" of these
variables are updated only after some computations, not after each computor
operation. Therefore, the sequence of specified state vectors becomes a set of
' "assertions" about the relatiomships of important variables scattered through the
program. The process of verifying the correctness of the program becomes a proof
that each assertion is true every time it is reached by the program. In order to
ptove an assertion, we can assume that all previously reached assertions are true.
There is no well~defined procedure to formulate and locate these assertioms. In
, general, there is a tradeoff between the complexity of the assertions and the
: number of assertions that we hgve to use. Floyd [Flo 67] develops the logical

13

foundations for the informal-assettion method of ptoving program correctness, and
subsequently suggests how the process of verification can be mechanised. Let us
4llustrate with an example the process of assigning assertions to a flowchart E
program and the proof of consistency of an assertion as a function of the previously
- reached assertions.
| ample:
This simple example illustrates the informal inductive assertion method of
proving program correctness. This program divides a positive integer X by another
i positive integer Y by repeated subtraction. Let Q be the quotient and R the

remainder. The flowchart of the'program is shown in Figure 4.

g: (X>0AQ>0)
Ne&X, Q+0

A ; % 9 E=QU+N) A(N20) - ’

Yi (X=QY+R) Allosn <Y)

Ne=N-Y, Q«—Q+l
4

Figure 4: Flowchart of the example

I The input assertion. denoted by @, specifies the domains of the input variables

. and the relationship between their values.’ In this example, the input assertion is
(X>0) A (Y>0). The output assertion, demoted by ¥, specifies the desired

! relationship between the output variables and the input: variables, i.e., the desire

!. result from the program. In this example, the output assertion is

: (X=QY +R) A(0<R< Y). By examining the program we conjecture that the

i assertiom (X=QY +N) A(>0) must be satisfied any time the program control

: is at point @

i In order to prove the correctness of the program by the inductive assertion

' method, one must show that the truth of the assertion at the beginning of each path

of the program, followed by the execution of the path, implies the truth of the i

assertion at the end of the path. First of all, we must show that §, together with

the execution of the path (1, 2), implies ttxat qQ is true, i.e., (X > 0) A (Y > 0),

together with the execution of (N+ X) A (Q+ 0) implies (X = QY+ N) A (N> 0).

|.It does not take too much effort for the reader to see that this is true. Therefore
q is satisfied when control first passes to point @ Next, we must show that if

: 9 is satisfied any time control is at point @, then q, must also be satisfied

| whenever (if at all) control returns to point @ Therefore we have to show that

followed by the execution of the path (3, 4), implies 9) itself, 1.e.,

A

14

(X QY + N) A (N>0) is still satisfied after the operation (N « N—Y) A(Q - Q-l-l) .‘
1f N> Y. This is obviously true since X = QY + N can be rewritten as
X=(Q+1)Y+ (N-Y)and (N~-Y)>0 since N > Y. Therefore, 9 is satisfied no
imatter how many times the loop is executed. Now ve must show that the correct
-result is indeed produced. We have te show that ql, followed by the execution of
| the path (3, 5, 6) implies ¥, i.e., (X =QY+N) A (N2 0)p (N <Y), together with
'the operation R + N, implies that (X'= QY +R) A (0.< R < Y). This can be verified
;very easily. The partial correctness of the program is therefore validated. The
|question of termination of the program can be answered easily by observing that the
gloop can only be executed a finite number of times since N 1s decreased by Y ;
. every time the loop is executed and Y > 0. The correctness of the program is hence
bestablished.
; After the exapple, let us describe the inductive assertion method in a more |
" systematic way. As presented here, the formulation is as described by Good. [Goo 70].
A program is a finite ordered set of statements, with the first statement as start
and the last one as ﬁé;g, and the remaining statements as null, assignment, or two-f
. way branch statements. An assertion is a predicate attached to & point in a prograﬁ.
The first assertion is the input assertion, denoted by . It is attached to gsggg.!
and specifies the qomainé of the input variables and the relationship between their:
values. The last assertion is the output assertion, denoted by ¥. It is attached
Ito helt,'ané specifies the desired result from the program. A path is a sequence
" of statements (Sl,' 20 tee S) such that it is a valid execution sequence of the

| program.
| Let (Sl’ §y0 «ees 8) be a path with assertion q, attached to Sl and assertion;
9, attached to Sn. ‘The path is said to ?e ‘verified if it can be shown that 9, is i
I satisfied 1f 9 is satisfied at the beginning of the path and the statements i
o

' sl, 82, eeey S are executed. A verification condition for a path is the condition

n-1
! that must be satisfied in order to verify the path. The proof of correctness for

- the program consists of choosing and attaching the inductive assertions at different
' locations and of verifying all the paths in the program by constructing and provingl
t ¢he verification conditions. '
The first step of the process is to choose a subset C of statements from the
program to which assertions have to be attached. The set C should contain the !
; first (start) and last (halt) statements, and at least one statement from every '
i loop in the program. The reason for choosing at least one statement from each loop
I is to allow breaking the program into loop-free paths. Then the programmers have
, to supply the assertions for every statement in C. The assertions will include §
and P. The choice of assertion is very closely related to the choice of statements.
* for C. The assertions can be quite simpie if they are appropriately located.
Therefore, it requires much insight of the programmer about the behavior and

! structure of the program. St11l the method of choosing assertions is more like an '

15

" art than a science and no general guideline seems feasible. "It is similar to the l
choice of the induction hypothesis of mathematical induction. Therefore, this is

the most difficult part of the process and it does not seem hopeful that thie part
can be automated, although it can be computer-aided. ’ 4

After the assertions have been supplied and attached to the program, we have
to construct a verification condition for every path that proceeds from one.
assertion 9, (a statement in C) to another 9, with no other assertions in between.I
Therefore, the verification condition depends on the initial and final assertions,

together with the operations performed by the statements in between. The forward

accumulatiom method of conmstruction of a verification condition is presented here. ‘

The verification condition of a path P is formed as

q A (assignment terms)‘ﬁ (traversal conditions) “‘qz,
where the assignment terms are the operations of the assignment statements along
.the path and the traversal conditions are the logical conditions for the branch
statements along P under with the path P will be taken. The assignment terms and
traversal conditions do not include the last statement in the path since the i

. assertion 1, has to be satisfied before the statement to which it is attached is

executed. The construction of the verification conditions can be fully automated
by using predicate calculus. Afterwards, the conditions can be mechanically

proved in order to validate the correctness of the program, if the program 18 iudeed

correctly coded.) _ : o i
Systems have been implemented to automate part of the process of proving

program correctness. The philosophy is to let the computer take over as much of

the burden as possible., Two of the most well-known ones are that implemented by

King [Kin 69], and by Good. [Goo 70]. King's Program Verifier only accepts a '

special Algol-like language, with only integer variables and one-dimensional arrays.

Relational operators ("greater than", etc.), "GO TO"s, and logical connectives
(“and“,'"or“. etc.) are included. The assertions are Boolean expressions supplied
by the programmer. The verification conditions are generated automatically using a
backward traversal of the path. An automatic theorem prover is then used to prove
these conditions. King's system is the most automated system of this kind yet
implemented. Good's system, on the other hand, is an interactive program. It also

. uses a programming language similar to King's. Assertions are manually supplied.

i The verification conditions are automatically generated by the system. The

 programmer then supplies proofs of the verification conditions. The proofs are

accepted by the system without question and stored in the computer. When all such
proofs have been supplied, the computer outputs the completed proof.
The proof of program correctness by such an approach has certain degree of
success. However, it can only be applied to programs of relatively small size.
The largest programs proved by hand using such an approacc consist of several

hundred instructions. The most automated systems have only proved programs of less

ave

16

than a hundred instructions. Besides, many of the assertions and the proofs have

to be supplied by the programmer himself. This procéss is as fallible as writing
- the program. In order to make advances in this area, it seems that a completely
mechanical verifier is the only foolproof approach. Such a fully automated approach
‘w1l require more formalism in the proofs. In the next section we will briefly
| describe some of the formal approaches to the proving of program correctness.
§ 2.1.2 Formal approaches to proving program correctness
' As concluded in the last section, it seems that a formal mechanical approach

to program verification appears to be the most reliable, although the efficiency 1is
expected to be low. The verification of a program can be reduced to the proving of
a theorem in the first-order predicate calculus. Speaking very informally, the

ifirst-order predicate calculus is a formalssystem which consists of constants,
ivariables, functional constants, predicates, the logical constants T (true) and F
. (£alse), the logical symbols A, V, ~, 2, =, V, and 3, which can be combined
'to form well-formed formulas of first-order logic according to some rules with the
aid of commas and parentheses for punctuation marks. (A formal and complete
description of formal logic is beyond.the scope of this paper. Interested readers
| are referred to the discussion by Manna. [Man 69a].) With this in nind, the
% section attempts to give the reader some intuitive feelings about the formal approach.

i
1

i The discussion will be very informal and interested readers are encouraged to read
% the referenced papers for a more rigorous and complete treatment.
: Most mechanical theorem-provers for first-order logic employs the resolution
F principle. This is an indirect proof of a theorem: we assume the negation of the
? theorem and try to derive a contradiction. There are systematic methods to construct
i such a proof and the process can be made more efficient by introducing some heuristic
|‘procedures. This resolution process works very_satisfacto:ily 1f the conjectured
, theorem is indeed true, but very inefficient otherwise.

Manna [Man 69b] has proposed a formal approach to proving program correctness.

. He shows that one can set up well-formed formulas in the first-order predicate

calculus corresponding to an arbitrary flowchart program. In order to facilitate
. the conversion, the program is expressed in a standardized form such that for every
program statement i, we can define a well-formed formula wi. (Wi is very similar
to an "assertion" in the Floyd-Naur sense and 9 is the predicate associated with
' wi.) A well-formed formula [P, ¢] is then formed as ‘ |

G A¥ A2 A A Yo !

! where 9, is an unspecified predicate associated with wl. Then Manna's Satisfiability

Theorem states that the program P is partially correct with respect to 9 (input
assertion) and ¥ (output assertion) if and only if wp[ﬂ, y] 1s satisfiable (i.e.,

is true under some interpretation of the predicate symbols q s for example,as the
!

Floyd assertions), wherg‘

17

—— e = o ——— e e s —ed i e —— e — - - PP .-

W8, vl (Y0 06 D (2, ¥]) .

‘We can see that this theorem 1s'essentially equivalent to Floyd's results.

The more important work is the Unsatisfiability Theorem which states that the
. program P is correct with respect to @ and y if and only if ﬁp[t. ¥v] is
unsatisfiable (i.e., is false under every interpretation of the predicate symbols

q;), where .
“PW.%P J: (3x) {0(x) AP, v Y] (%)} .

Therefore, a program can be demonstrated to be totally correct in a ‘single proof
process. However, the disadvantages of this approach is that the theorem prover is
very complex and the entire program is treated as a single entity and thus’

; decomposition of the verification process is impossible. It also requires the
!program to be written in a special language so that a well-formed formula wi can be

" easily generated from statement i. _ |
The interest in the formal proof of correctness of programs has produced a new

area 6f research, that of automatic program synthesis. Much interesting work has '

been done by Manna and Waldinger [Man 71]. The programmer would only supply the

input-output relationship of the desired program, together with some assertions

i about the proéram algorithm. Theorem-proving teghniques can be used to prove the

jcorrectness of the assertions and the proof itself can be used to build the desired..

!program. This program, generated by the computer, would hopefully be free of errors.
2.1.3 _Conclusion a '
An assessment of the techniques for proving program correctness has been
| discussed by Elspas et al. [Els 72]. The'reader is also referred to the complete
{-bibliography of London [Lon 70] for more information. All these techniques are
: infeasible for any sizable programs. [Lin 72]. In order to make meaningful advance;
' in this ‘field, more research works are still needed in the field of formal specifica-

" tions of programs, formal semantics of programming languages, and mathematical

" theory of computation. A concise and precise specification of the program will
+-allow us to know effectively what the correct program should do. Formalization of
" language semantics will allow us to convert a source-language program into a

" canonical model easily. Mathematical theory of computation enables us to develop
‘the verification conditions and the proof of the program. Before any significant

.; breakthroughs have been achieved in these areas, mechanical verifiers will continue
. to be very inefficient. Automatic program synthesis will be a very distant goal.
In the meantime, we just have to settle for the use of the informal techniques

- for proving program correctness. Though inefficient, these techniques are very
effective when we integrate the proof with the program design, especially when

- applied selectively to the critical sections of the program. They are also useful -

for the testing of small modules of the program before integration. However, these

‘18

techniques are subjected to human errors and are very 'unreliable' for large
programs. Automated software evaluation and validation systems seem to be the
more feasible analysis tools for large ﬁtOgrams;

2.2 Automated Evaluation and Partial.Validation '
2.2.1 Introduction
The current trend in software shows an increasing demand of "' - large real-

time software. At present; the techniques in proving program correctness are
dnfeasible to solve the problem of reliability in large software systems.

Naturally it has become necessary to use a more cost-effective and practical
‘ approach, 1In order to analyze any sizable programs efficiently, computer

assistance becomes essential, Since a complete validation of the correctness

. of a program is impractical, we will only aim at a partial validation of the
program, using techniques -that are subject to a hiéh degree of automation. The
objective of automated evaluation and partial validation is to achieve an accept--

able degree of assurance of the reliability and performance of the produced i
software to be put into operation.

The characteristics of any computing system can be classified into two cate-
gories: the structural characteristics and the ﬁehav;oral characteristics [Ram 67).
A program is usually specified by its behavioral properties, such as the rela-

tionship between its inputs and outputs., The structure of the program, however,

is usually left to the discretion of the designer. The program can then be looked
upon as the superposition of behavioral characteristics of the components on its
structural form. Thé complete validation of the program means to verify the
correct operation of the system for all possible inputs, by obtaining and eva-
Juating the completé4behavioral characteristics. However, the collection and

examination of all behavioral characteristics is practically an infeasible task,
especially in the case of a large program. .

" A more feasible approach would be to decompose those characteristics into a
certain number of classes and then to validate each class of characteristics to
a limited extent., This is the basic idea underlying the partial validation. ‘

Decomposition of behavioral characteristics is a non-trivial task. Fortu-

: nately, the careful examination of the structural characteristics reveals various
useful informations which could help devising the decomposition scheme and the
validation strategy. Naturally, the analysis of structural characteristics forms
the important initial basis for most automated evaluation and validation systems

(AEVS). : ' |

2.2.1.1 Error detection techniques

. Different types of software errors in large programs have already been
, discussed in section 1.4.2. - Most of them have to be detected and corrected

1
_. during the debugging phase of the program. Considerable attention has been given

19

to deb
tracing variable values, interactive step-wise execution of programs, and many

other features [Rus 71]. These conventional systems have been successful in pro-
However, there are

ugging systems, resulting in sophisticated techniques for trapping and

viding very useful aids to programmers in correcting errors.
certain limitations which present préblems in debugging large programs. For

example, the amount of information necessary to determine long and complex paths
through a large program may be prohibitive. Additionally, debugging systems are

basically designed to trace the source of known errors which occur during execu-

tion with various test cases. Therefore, they do not necessarily predict errors

or possible errors. .
Efforts to detect residual errors must go beyond traditional debugging sys=

tems to provide a more complete program analysis. Various techniques employed
i 4n validation systems are now discussed. :

(1) The checking of ‘component interfaces requires a description of the
system structure and detailed information on parameters and information passed
between components. 'Graphical analysis is parficularly useful in this area
since it provides a means of displaying the program structure at various hier-
The interrelation and interdependency of components can be

archial levels.
determined ‘from this graphical representation and, together with lists of the

| data passed, can be examined to uncover interface errors.
(2) Sequencing errors can be detected through the automatic extraction from

program code of certain specified events. The flow paths defined by these

sequences of events can be compared with the proper sequences.
(3) The problem of data integrity necessitates a detailed examination of
This includes a mapping of data

variables and their use throughout a program.
common to various components, locations where this data is used and modified,

-ete. This information can be used to detect such errors as unauthorized use-or

- availability of data.
checking the values of critical variables such as array indices, conditional

The use of execution-time monitors is also important in

branch expressions, etc.
(4) Semantic errors and error-prone constructs can largely be detected by a

detailed examination of the program source code, This is most easily accom-

plished by an automatic language processor which examines each program statement,
recording pertinent information and recognizing the error-prone conditions pecu-

liar to that language.
(5) Program structure is easily determined by graphical techniques as

previously mentioned. The graphical representation can be examined for its

connectivity characteristics, thus exposing errors in the well-formation of a
program.

From the above description, it is evident that many of the residual errors
| present in large systems can be detected using the techniques ocutlined. It is

20

assumed here that, once detectéd, these errors may also be easily corrected.
These techniques are used throughout the structure of the large validation system.
However, error detection is only one of the functions of any AEVS. The other vali-

I dation functions are discussed in the next sectiom. '

2.2.1,2 Validation functions
The correct operation of a large real-time software system has two aspects.

The system not only has to produce the correct output for the given input but
also has to satisfy the performance requirement such as execution time bound,
space constraints, etc. Therefore, validation functions can be classified

roughly into two groups: error diagnosis and performance verification. The
former is supported by a diagnosing aid system, while the latter is supported by

an evaluation aid system. The AEVS is an'integration of both aid systems.,

The implementation of these functions has appeared in various forms: _I

debugging, simulation, formal proof of program correctness, software testing, etc. '
Here testing is a systematic process which mainly determines that an error
 exists, while debugging is regarded as a follow-up process which localizeé the
cause of errors and corrects them. This doesn't mean that software testing is
restricted to error detection. As will be seen later, it can support other
validation functions such as error location and performance verification, too.

. According to the type of the function it provides it is further characterized as

| either functional testing or performance testing [Elm 71].

: The essential requirement for an effective validation process is the amena-
! bility to automation. Software testing is extensively employed in most AEVS's :
due to its high adaptiveness to automation and its effectiveness in validating

|.a large software. This and other processes are discussed later in detail,
I . i

2.2,1.3 Structure of the AEVS ,
The common philosophy in most AEVS's is to provide automated tools which '
relieve the programmer of collecting data about both structural and behavioral

characteristics and assist him in evaluating the collected data. Strategies in

those systems are generally of two types. One is a hierarchical bottom-up
validation in which each module is (partially or completely) validated first and
then the validation of module interactions and interfaces follows. The other is
a hierarchical top-dowm validation in which validation starts with the global

program and proceeds to the smaller segment (or module) with the increasing
assurance,
Each of these two has its own advantages and suitable application'enviton-
' ments. Where the program contains abundant bugs, the bottom-up approach will be
. more effective since validation can proceed in more straightforward fashion with-
~ out much interference from multiple errors. On the other hand, the top-dowmn
! approach will be more cost-effective where the program is expected to have a small

-

——

.

number of bugs. In this paper we assume that the program is at least syntactically
correct, Aithough not essential, the top-down abproach is implicitly adopted in
several places, .V)
From the implementation point of view, an AEVS consists of two parts: static
analysis and dynamic analysis. The static analysis is the validation process

- 2.2,2 Overview of Program Models

i
performed only by examining the external form of the software, i.e. code itself, E
without executing it. It reveals most of structural characteristics. A consider-'
able amount of behavioral characteristics are also verified by it. On the other !
hand, the dynamic analysis is the process of software testing performed by running
the software with the devised test inputs and evaluating the output results. Its '
function is to validate various behavioral characteristics vhich cannot be eﬁfi— !
ciently identified by the staﬁic analysis. The performance of the dynamic ana- !
lysis is enhanced on the basis of informations provided by the static analysis. :
Various techniques employed in both parts are discussed in subsequent sec- |
tions, Most of them can be found in two representative systems, ACES [Mee 73,
Ram 73a, Ram 73b] and PACE [Bro 72a, Bro 72b]. Before going into those vali-
dation techniqﬁes, techniques of modelling programs are examined since the effi-

cient program model is a cornerstone for automated validation.

The purpose of modelling prograﬁs is to -obtain an easy-~to-use representation
of only those informations relevant to the intended analysis, while unnecessary
details are masked. The model must be simple, They must be easily represented
and manipulated in a computer. The representation of the process must be homo- ,
geneous such that tpe same analyiical tools can be used at any level. This implies
that by choosing the proper level of representation, details not useful for the ‘
problem at hand must be masked out. Another important requirement is that the
modification on the program being modeled should not be cumbersohe in simulation.
Since the structural characteristics serve as useful guidelines for the cost-
effective validation, the model should be suitable for an efficient structural
analysis., » ’

Among various models three representative ones are briefly reviewed in this
section: finite-state-machine (FSM) model, decision-table model and directed-

graph model [Ram 71b]. o

2.2.2.1 FSM model

In this model, the computer (the sequential machine) is taken from state to
state by a transition table (procedure) and a set of inputs (data). Therefore
all behavioral characteristics are embedded in this model without being abstracted.
It is evident that the size of the model becomes unmanageable in the case of a
large program due to the rapid increase in the number of states, Although :

22

o . c——————

certain formal proof techniques benefit from this model [Mﬁn 69b], the inability
of the model to contend with a sizable program is a serious drawback.,

i 2.2.2.2 Decision-table model

In this model, a program is represented by a decision table [Kin 67]. A
rudimentary decision table is illustrated inm Fig. 5.

Action Action

1 2
Condition 1 Y N
éondi;ion 2 Y -
Condition 3 N -

Fig. 5 Example of a decision table

N2
The vertical.c&ordinate lists a set of conditions that may or mai not occur in
all possible combinations. The horizontal coordinate lists a set of actions to
be taken by the proéram. These could be different procedures or merely GO TO
statements. Each column of the table indicates the subset of conditions that
must be satisfied if the action listed under that column is to be carried out.

Y stands for yes and N stands for no, and a dash (don't care symbol) signi-
fies that the particular condition 1nvolved.is‘irre1evant to the action in the
correspénding column, A '

A decision table contains less information than a corresponding flow-chart
for the same logical process. A flow-chart of a conditional phrase contains the
logical rules.of the problem and also specifies the order in which various tests
will be carried out., The decision table &oes not indicate how the logic should
be structured in terms of program steps. Consequently, it doesn't support the
exploration and analysis of the structural characteristics. This is the major
drawbaék making the model inefficient for the purpose of validating a large pro-
gram, though it provides a partial verification of the logical correctness of

the program and an assistance in generating test inputs.

2.2.2.3 Directed-graph model ’
. 1
This model has its root in the flow-chart. The representation is concep-
tually simple and natural. In this model, a program is absgtracted into a

directed graph where each node corresponds to a set of statements and each
directed arc represents a possible transfer of control from one node to another

node. When each node represents one statement or a set of sequentially executed

statements, a graph model of a program is called a program graph. A simple

example of a program graph is shown in Fig. 6.

23

— . es e m e mam——— - - o cmm— s e —— —_— . C e e s e e e
’

1(: :1-;Pl | .

2 50 I=1I+1
= P
3 C v2(1) 2(1)
IF (1.EQ.10) GO TO 100

«C

€0 10 50
5 100 V3 = SUM(V2)
6 IF (v3.GT.100) GO TO 150
7 - .
C 60 T0 200
150 —
8 .
G0 T0 200
(200 VL = s
RETURN

Fig. 6 Example of a program graph

This model clearly reveals structural characteristics of a program, while
unnecessary details about functional characteristics are masked out. Necessary
functional characteristics are selectively assoclated with each node depending
uvpon the intended analysis. All possible paths, loops, entries and exits can be
easily detected.

The size of the .program graph.is generally in direct relation with the size
of the program. The complexity of the analysis increases more rapidly with the
size of the program graph. Therefore, it becomes desirable to devise a procedure
by which a large object can be attacked plece by piece where the size of each
. plece as well as the complexity of its analysis becomes more manageable. Tech-
~;.niques of iterative abstraction have been developed. The iterative abstraction
' contains two aspects: loop abstraction and link-subgraph abstraction. A loop in
- a progéam has often been an obstacle in efficient validationms. It.contributes
to increases not only in the number of logical paths and the structural complexity
. but also in the undecidable properties. The separation of a loop and the manipu-
lation of a loop independent of . the rest of the program graph makes the
total validation process simpie and uniform. This is the motivation behind the
! loop abstraction.

A maximal stropgly connected (MCS) subgraph is a strongly connected subgraph

that includes all possible nodes which are strongly connected with each other.

' The replacemént of every MSC subgraph in the program graph by a single node trans-
forms the program graph into the reduced program graph (RPG)A[Ram 66, 67). Fig. 7

shows the RPG corresponding to the program graph of Fig. 6.

Fig. 7 The RPG of the pyogram graph of Fig. 2

This loop abstraction contributes to the significant reduction in the size of the
model and the structural complexity, If further abstraction is desirable due to
the large size of the RPG, then the link subgraph abstraction can be applied. A i
link subgraph is a subgraph that contains no strongly connected subgraphs or '
unconnected subgraphs in it iRam 67). Fig. 8 is the result of the application of

the link subgraph abstraction to the RPG of Fig., 7. This is called the basis
- graph,

-

2,3,4

4

(5,6,7,8,9) |

Fig. 8 The basis graph of the program graph in Fig. 3

' On the basis of this modelling technique, various analysis can'be performed.
In general, those can be categorized into two types according to the order of
abstractions analyzed: top-dowﬂ and bottom~ﬁp. The basic idea of top-dowm
strategy is as follows. First, the basis graph or RPG is used by the first-step
analysis. As a result, the more detailed analysis of a certain node becomes
necessary, Then the subgraph corresponding to this.node is taken for the next-
step analysis, If the subgraph is a link subgraph, there is no differgnce between
the first-step analysis and the second-step analysis. If it is a MSC subgraph,
then the technique can be applied for opening the loop with the removal of feed-
back arcs [Ram 67). This is illustrated in Fig. 9.

—— ettt = ¢ sme v . « - P . mew esseme = o - —— e e el - S . . .-

Fig. 9 Loop opening and reduction

Thereafter the modified subgraph can be used by the second-step analysis
or sbstracted into the RPG and then analyzed. Therefore, the analysis is
essentially of iterative nature.

In the bottom-up strategy the analysis proceeds in the reverse order of
the top-down analysis. Subgraphs at the lowest level are taken for the first-
step analysis(and abstracted into a node in the graph model for the next-step
analysis. The graph model used by the last-step analysis is the abstraction of
a total program, C ’

A number of techniques for manipulating the graph model by the computer are
available, Some basic ones appear in Appendix'A. In the rest of the discussion,;
this graph model is used as a basis.in deséribing various validation strategies.

2.,2.3 Static Analysis -
As mentioned earlier, an organized validation effort can be developed

using the two step approach: static analysis and dynémic analysis. The former
is based on the examination of the program code while the latter is based on the
test runs of the program. The static analysis part of the AEVS is discussed
here and the dynamic analysis part is discussed in section 2,2.4.

The main objectives of the static analysis are (1) to analyze the program
for the detection of various semantic and structural anomalies, and (2) to pro-
vide backgroundsfor the efficient dynamic analysis. That is, various structural
characteristics are identified and unreliable constructs are pointed out as the ‘
target of the dynamic analysis. .In pursuit of these objectives, a large amount
of repetitive scanning processes are involved. In order to increase the effi-
ciency of the analysis, the generation and use of the data base are common to
most AEVS's, Therefore, the static analysis contains three major aspects:
data base generation, structural analysis, and detection of vulnerable
constructs,

2,2.3,1 Data Base Generation)
The construction of a.data base is intended to provide a convenient means

of retrieving various program characteristics., The philosophy here is to

26

cme et L mme M es em— . s e Sttt ——— et e e
- g e C e e s W aam e = .
1

relieve botb the program investigator and the analyzer of the tedious process
of examining program listings for information required to validate the program.

'Furthermore, it forms the basis for other validation techniques, thus eliminating

puch duplication of effort. . L
For the sake of clarity, the dibcussién on data base proceeds with typical '
examples rather than general arguments. Most of the examples are extracted from)
two systems, ACES and PACE. Typicai examples of data bases consist of the '
following components: symbol table, symbol use table, statement type table, global
storage map and the program graph.
The symbol table and symbol use table are illustrated in Fig. 10.

Symbol Table (Hash Coded)
Name ' Module # Type Pointer

N4

J | VARIABLEY : n

. ~ Symbol. Use Table.
(Statement #) Bkwd. Ptr. Fwd. Ptr.
| o > J 12

12 [> N 13

ol

(|
13 [~ 12 0

Fig. 10 Examples of symbol and symbol use tables

The symbol table normally contains information regarding all variables, items,
functions, macros and labels used in a program. An entry in this table consists
of the symbol name, module number, type and linkage to the symbol use table. '
On the other ﬁand, the symbol use table contains a record of each use of a symbol
name in a program. An entry consists of an indicator for the type of use
(either input or output to the statement), the statement number in which the
symbol was used, and linkage to other feferences to the symbol contained in the
table. ‘ o
The use of a hashing iechnique gseems to be suitable for providing an

27

efficient access to the symbol table. That is, the address of the storage where
8 symbol name is stored is determined by the hash-coding with the character code
for the characters making up a symbol name. This technique provides a 3ood'dia-
tribution of table entries and a }apid access to any particular eantry. The
linked 1list structure of the symbol-use table pfovides immediate access to the
chain of occurrences for each symbol name, while information (list of symbol
-references) pertaining to a given statement are grouped in sequential locations
of the table, '

These two tables provide complete static information on all program symbol
names and stateménts in a.neat,way and allows the retrieval of answeré to ques-
tions such as the folloying.

(1) . Does variable Vi appear as an input (output) to any of the. following
statements: 31,52....,sk? . :

(2) 1In what statements does Vi occur? \

(3) What are fhe inputs (outputs) to statements sk?

(4) Does any variable appear as an output and not as an input?

(5) What are the inputs for conditional branch si? Where do they appear
as outputs? What are the inputs to these statements? (In this manner the user
can determine which vafiables and statements affect the outcome of a conditional
branch statement,))

This information is important in the analysis of semantic properties and
anomalies. Moreover, it is an usefui aid to implementing changes in syntax,
program modifications, and changes in programming practices. For example, the
-effects of changes in a program variable, macro or label can be easily deter-
mined by accessing the list of references to that symbol in the program module
and other related modules. .

The statement type table is simply a list of codes indicating the statement
type of each statement in the program. The logical structure of a program is
stored either in a connectivity matrix [Appendix A) or in a successor table, a

modified version of a connectivity matrix. This is shown in Fig., 1l1.

ointer 5UCCEeSsor iink

y/’//gil\\\\‘ 1 3 1 2 0

2 4 2 3 1

3 6 3 4 2

YR HERE
5 8 5 5 0
@ 6| 9 6] 6 | s.
program graph 7 0 7 7 0
8 7 0

pointer-array 9 7 0

Fig, 11 Storagé of program structure
: . --table L=

s

28

The successor table consists of a pointer-array and a table. The poiﬁce:-array
contains an entry for each node. Each entry consists of a pointer to a chain of
entries in the table. Such a chain repiesents all possible successors of the
node. That is, a row in the table containg a successor node and a pointer for
chain linkage. For example, an ent;y for node 3 in the pointer-array of Fig. 2
.points to the chain of successors §6,5) in the table. This table together
with symbol and symbol use tables are used as the basis for the extraction of
structural characteristics of a program.
As mentioned earlier, integration of indepeddently developed modules is the
" source of a large number of errors. A substantial portion of these.errors can
be detected by the static analysis. For thié purpose, information on global
storages and interfaces needsto be stored in the structural data base. Those
dnformation are'ﬁypically stored in two tables, a common table and a module i
interface table. S) |
A modulé interface table consists of an actual parameter table and a formal '
parameter table. Fig. 12 illustrates a graph representing module interfaces
and the correéponding module interface table,

module interfaces

called actual

calling module . arameters .
modu e‘r——- : 2 - =T+ Var. 1 in symbol table
¥ 3) : ~=+ Var. 2 (1] L] " .

;’ g \ 7 \ -+ Var, 3 " " w
3 6\ 4 —+Vvar. 4" " "

4 8 \ S L3

5 0 6 .
6 0 5 ‘

. 6
An actual parameter table
formal
called arameters
- module = Var. 101 in symbol table
1 0 > var. 102 " " "o
2 4 . ~1~+ Var. 103 " " "
3 6 \ ~~+ Var. 104 " " "

2 * .
5 : '
6 !
H

A formal parameter table

Fig. 12 An example of a module interface table

29

— e . .. o P B - - e - Ce e ammma e e

This table together with others provide a convenient means for the detection of
various structural flaws and semantic anomalies. It is a gimple matter to check
I
the consistency of types and numbers between actual parameters and formal para- -,
b

meters and to detect the recursive calling, etc.’ Moreover, they can be used for

the determination of the affected areas when a few modules are modified.
A common table consists of a common storage table and a ‘common variable
table. An example appears in Fig. 13.
block storage variable module
name address pointer name dimension number link
1 2 - A 2 1 i
1 50 -\ B 2 2
5 120 —\ c 2 3)
2 50 . B 48 2
2 51 D 70 2
2 60 :
2 70
coumon storage table common variable table
Fig. 13 An example of a common table

These tables are constructed by examining all declaration (especially COMMON and
EQUIVALENCE) statements in the source program. The common storage table contains
one row for each continuous and homogeneous segment of global storage. In Fig.
13, memories 1 and 2 in a block 1 are always referenced by the same variable,
i.e., by A in module 1, B in module 2, or C in module 3. The third colummn in
the common storage.taﬁle contains a pointer to the set of common variables i
referencing to the storage segment. The common variable table contains informa-
tion regarding variable name, dimension and module number for each common
variable. An array type of common variable is sometimes divided into several
rows in the table when the referenced common storage is divided into several TOows
4n the common storage table. The common variable B of module 2 in Fig. 13 is an
example. On the basis of these and other tables, procedures can be designed for
the detection of misequivalencing, unnecessary declaration and inconsistency of
variable pré or dimension. It is also feasible to design a system for the
optimal allocation of global storages [Bro 72b]. i

In summary, this data base provides not only an efficient and convenient i
means of retrieving information required by varioué validation procedures, but
also a strong assistance in maintcnance and modification of a program. Thus it
45 desirable to take the generation of the data base as an integral part of
program documentation. '

2.2.3.,2 Structural analysis |

The analysis of program structure is éssential to the validation process

" undesirable and unreliable (error-prone) ones. Fig. 14 shows exambles.

since it allows the detection.of structural flaws and the identification of cri-
tical or interesting flow paths in the program. The data base contains necessary
dnformation for this analysis'in a well-structured form. Included in the struc-
tural analysis are well-formation check, loop enumeration, path‘identificacion.
and reaching and reachable vector generatiom, etc, |
Well-formation check is a process pf examining the program structure to see
if there is any structural flaw. It includes the detection of unreferenced i
labels, unreachable statements and statements with no successors. These charac-
teristics do not necessarily lead to the run~time error, but these are unplanned,'

unreachable statement

unreferenced label

GO TO 30
10 D = A%E
) .. GO TO 20 .
30
S = A+D

statement vith no successor

: i
Fig. 14 Examples of structural flaws :
Loop detection is performed by applying the procedure described in Appendix A

to the program graph. An analysis of each loop characterizes the loop as
intrinsic, deterministic or non-deterministic one. An intrinsic loop is the one

which can be determined not to terminate by the static analysis. A loop is said
to be either deterministic or non-deterministic according to whether the number

of iterations can be determined by the static analysis or mot. Thus the number

of iterations in the case of a deterministic loop is apparently data-indepehdent.:
Fig. 15 illustrates each type of loop.

-31

— e — Coee e —— - -

Scheduler)¢

module)Cnodule
1. 2

Intrinsic loop Deterministic loop Non-deterministic loop

READ 1,N
DO 10 I=1,N .
10 A(T)= B(I)#C(I)+D(I)

Do 10 I=1,100
10 A(I)= B(I)*C(I)+D(I)

Pig. 15 Types of loops

After the loop detection, the reduced program graph (RPG) is generated and
kept for the subsequent analysis. ' . | l

A logical path in the program is represented by a path in the program graph.
In general, a path may contain loops in 2t and two paths containing the same loop
are considered as two different ones when the number of iterations of the loop
| 4s not the same for both paths. The number of paths in a large program is nor-
wmally prohibitive, especially where the program contains a few loops. Therefore,
a definition of an interesting path is adopted for the purpose of practical vali-‘
dation such that the number of paths becomes much reduced while no useful infor-

mation for validation is lost by the use of interesting paths. There exist
several approaches to the definition of an interesting path [Mil 74, Ito 73]. A"
‘ typiéal definition [Ram 74b] which is also adopted in the rest of the discussion
is either a path in an RPG or an interestiné path in each MSC subgraph. A path
4n an RPG 1s a series of arcs from entry to exit., An interesting path in an MSC
graph is defined as follows. A node in a graph is said to be essential if it is
reachable from an entry node and an exit node is reachable from it. Removal of
feedback arcs from-an MSC graph produces the following two subgraphs. One con-

' sists of all essential nodes and all arcs between them, while the other consists
of the .remaining nodes, arcs and removed arcs. The former is called a forward

subgraph and the latter is called a backward subgraph. Both subgraphs are then
transformed into RPG's, respectively. Now an interesting path in an MSC graph is

defined as a path in the RPG of either the forward subgraph or the removed sub~-
graph. Fig. 16 illustrates interesting paths in an MSC graph. |

"*~feedback path

. interesting paths for the
'. MSC graph:

! path 1: (7,1)
g path 2: (1,2',7)
R path 3: (1,6,7)

interesting
paths for this
i ' MSC subgraph:

| path 1: (5,2) '
: path 2: (2,3,5) ’
i path 3: (2,4,5)

! : Fig. 16 Interesting paths in an MSC graph

— = eem e camemn] e+ o e ee—— — e

32

fr—— . -~ . e ——— -

Hereafter, an interesting path and a path are in;erm:ler in u;;; “':t;ia-d.effn-i.t.i;;x.
of a path is of iterative nature. Paths are defined in accordance with the level
of abstraction. For instance, paths inside the strongly comnected subgraph
(2,3,4,5) in Fig. 16 are irrelevant to the definition of. paths for the global
MSC graph. '

All paths in an RPG can be easily identified [Har 65]. Iun the case of an
MSC subgraph, a procedure is applied to remove a few backward arcs and thea both
forward and backward subgraphs are ided:ified. Thereafter, both subgraphs are
reduced and interesting paths are identified by the procedure used for an RPG.

An additional feature, the detection of non~physical paths, 1is included in
the path identification. A logical path is said to be non-physical if no inputs
to the program can lead to the execution ,of the path. An example of a mon-physi-
cal path is shown in Fig. 17. '

non-physical paths:

1,3,5,6,8)
(1,4,5,6,8)

Fig. 17 Exanples of non-physical paths

" Although the complete detection of non-physical paths is infeasible and it may
involve an exhaustive process of logical inference, a substantial amount of non-

physical paths can be detected by the static analysis and the detection is an
dmportant support to the dynamic analysis.

The structural analysis also includes the generation of reaching and reach-
able vectors for a specified set of statements. The reaching vector of a parti-

. cular statement provides a list of those statements whose execution may lead to -
the execution of the statement in question. On the other hand, the reachable

vector is a list of those statements which may be reached after the execution of
the statement in question. This information can be easily extracted by manipula-
tion of the program graph (i.e., connectivity matrix or successor table) as shown
in Appendix A and by the consideration of non-physical paths.

]
2.2.3.3 Detection of vulnerable constructs :

Since we assume that the program is at least free from syntactical errors, -
our concern in static analysis is in the detection of semantic errors or anoma-

ljes. This analysis will provide not only the running configuration of a program

-33
r_-;;.ie used in dynamic analysis but also the “guidelines for more cost-effective
testing processes. The data base forms the basis for the efficient performance
i of this analysis. Included in this analysis are the detection of redundant state-
ments, uninitialized statemeats, interfacing anonalies, nndependable language
constructs, etc.

A typical example of a redundant statement considered here is an assignment
‘gtatement whose left-hand side variable never appears in predicates or in the
right-hand éidesof later statements. Analogously, uninitialized statements are
the ones whose right-hand side variable never appear in input statements, sub~
routine calls or in the left-hand sides of earlier statements. These code-segments
in a program are highly error-prone areas, though those constructs do not neces-

! sarily lead to run-time errors. A misspelling or mistake in keypunching often
leads to these types of constructs. The detection of these constructs can be

performed on the basis of the data base. Fig. 18 shows examples of these

constructs.

N = 100
N = Ml

]
uninitialized statement because of
a mistake in keypunching :

ERRORR = ERROR%*2 4-—-——-—-r~redundant statement
SUM = SQRT(ERROR)

Fig, 18 Examples of redundant and uninitialized statements

| Interfacing anomalies refer -to various semantic anomalies occurring from the

i integration of independently developed modules, The module interface table and

y the common table are effective supports to the analysis of these. Using this
inform;tion in module interface, symbol and symbol use tables, it is a simple

| matter to detect mismatches in types and numbers between actual parameters and

formal parameters as well as recursive calling. On the othef hand, the common

table provides a convenient basis for the detection of anomalies in global sto-

rage allocation such as misequivalencing, inconsistency of variable type or di-
mension declarations, and allocation of unnecessary storage.

Use of certain features available in the language often result in the de-
graded reliability of the produced program, though it may increase the execution
efficiency. A computed GO TO statement in FORTRAN is an example, This type of
statement depends on the value of a variable for determination of transfer loca-
tions, It often happens that the value of this variable exceeds the limit and
possibly catastrophic transfers occur. It has been pointed out that even GO TO
statements are generally harmful to the program reliability [Dij 68al. Conse- ;
quently, it is desirable to include in the AEVS a feature detecting these

34

i vulnerable constructs and pinpointing those areas for the thotough dynam:lc

. analysis. . !

2.2.4 Dynamic Analysis .

The dynamic analysis in autcomated evaluation and partial validation is a com~
glenentary process to static analysis. It is intended to verify various behav:lorai
characteristics which remain unchecked by static analysis. It is basically a pro-
cess of software testing consisting of driving the program with the devised test

inputs and evaluating the outputs. As mentioned earlier, this process is greatly
assisted by the static analysis. The static analysis provides information which

can be used as guidelines for cost-effective testing. Dynamic analysis performs

both validation functions, that is, error,diagnosis and performance verification.

Although both static and dynamic analyses participate in exror diagnosis, per-
formance verification is mainly achieved by dynamic analysis. A typical implemen- ‘
tation of these validation functions takes the formof program profile generation
and diagnostic and performance testing. These are discussed in sequel in the

' following sectionms.

2.2.4,1 Program profile generation
The term program profile is used to mean a table of frequency counts which

record how often each statement is pe;fomed in & typical run [Kou 7(b]. In a more
general sense, it refers to a collection of statistics on program be.havior shown
in typical runs. Information contained in the profile is typically execution fre-
quency of each statement, execution time of each statement, frequency of successes
on the logical test for each conditional branch statement, maximum and minimum

values of instances of certain variables, frequencies of references to certain

variables, etc, Fig. 19 shows an example of a program profile. ‘ l

--tify the usefulness of the profile on validation processes. i

Statements Executions Time Successes

DO 25 1=23,24 200 400 .

IF (CHAR(I).EQ.SPACE) GO TO 18 1354 4170 108 !

0 15 J=1,11 1246 2492 |

IF (CHAR(I),NE.SPCHAR(J)) GO TO 15 12344 61488 12112 :

60 TO (100, 90,70),J 232 464 l

15 CONTINUE 12112 12112 '
25 CONTINUE 1154 1154 '
]

Fig. 19 Example of program profile'

This program profile serves as an useful basis in various phases of software

design. We discuss techniques of obtaining program profiles first and then jus-

S

The typical approach to the generation, of a table of frequency counts is

—— —— Ce cmae e - ——— a— ———

35

OO U

M}

based on the use of software counters automatically inserted by the system at
appropriate locations inside a program. This frequency counter is an element of
& more general class of software Qermed monitor or self-metric software. That 13.‘
the monitor or self-metric software refers to the program-segment inserted inside
the target program and used as tools"for obiaining execution characteristics of
ghe program. Other monitors will be introduced as it becomes necessary in later

sections. The physical implementation of a frequency counter takes the form of |
either a counter-incrementing statement or a call to the subroutine which ia turn

increments the appropriate counter. This is illustrated in Fig. 20.

' SUB COUNT(I)

Onemet— . Ot t—

" ICOUNT (10) ='ICOUNT(10)+1 - CALL COUNT (10) ICOUNT(I) = ICOUNT(15+1
—_— . —_— RETURN
' END
dncrementing statement subroutine call

Fig. 20 Example of a frequency counter

s

A consideration must be given to the artifacts accompanied with frequency
counteré. That is, the effects on the progfam execution due to insertion of
counters must be- considered., If memory constraints or timing constraints are
critical, the addition of a counter may cause unacceptable perturbations becauée
of the measurement overhead or the increased storage requirement., In the case
where a program is running on a computer éystem with a paged memory, the insertion
of counters may lead to the different paging traffic. . [

With regard to this, it is desirable to insert a minimum number of counters
sufficient for profile generation., A technique isavailable to determine 2 minimum
number of counters and suitable locations for the insertion of them [Che 74]. It
is based on the manipulation of a program graph.

The measﬁrement of total execution time of each statement is based on the use
of both execution frequency and estimated time for one execution of the statement,
A reasonable estimation can be made by the syntactic analysis of each statement
with respect to the number and types of operators, etc. Then, the total execution
time is the product of this estimated time and execution frequency. It is also a -
simple matter to extract frequencies of successes on branches from the information
provided by frequency counters, '

Now that the generation of a profile is discussed, we consider the usefulness
of program profile in regard to software validation.

First, program profile gids in diagnostic testing. It provides guidelines

for an effective testing., In general, the most active or frequently executed

36

portions of a program are thoroughly teSted while the less active portions re-
ceive inadequate testing. Program-segments with zero or low frequency couats
could be given more attention in ‘testing and singled out for early and inteasive
testing. - .) . l

Seéond, profile often provides useful information for error detection. The '
statistics on branches and calls leave a record of what happened and often it is
sufficient to indicate errors. The number of iterations of each loop is often
uvseful for checking convergence of an employed algorithm.

Third, profile plays a significant role in perforﬁance verification. The
examination of a profile, espe;ially statistics on execution time of each code~-
segment, is often sufficient to check if the performance meets the requirement,
Furthermore, it simplifies the improvement in the performance of a prosraﬁ. Since
it is generally true that most of execution time of a program is spent in a rela-
tively small portion of program code, portions with the high frequency counts can
be designated as candidates for program optimization. Ingalls reports in [ING 71]
that in a typical program only 3% of the statements make up 50% of the program's
_execution time. When either testing or examination of a profile reveals the
unsatisfagtory perfofmance of the produced proéram, profiles can guide cost-
effective sttateéies of program optimization. !

Besides thgse, usefu;ness of program profile can be recogpi;eq in o;heg
phases of a program's life. Indication of good algorithms and sensitivity
analysis of program performance to.the change in the system environment could be

supported by the use of program profile. '

© 2. 2 4,2 Diagnostic testing
As mentioned earlier, testing is regarded as a systematic process of error
detection by means of exercising the program with test inputs and evaluating the

outputs, while debugging 1is regarded as a process of error location and correc-
tion. However, testing can often assist error location as will bé shown later.
The complete testing refers to a testing with all possible inputs.. It is a pro-
cess too exhaustive to be practical in the case of a large program. Naturally,
a more practical testing which establishes a sufficient degree of confidence in
the reliability of a program becomes desirable. The common philosophy is to view
the behavioral characteristics into a number of classes and then to verify cach
class to a yractically sufficient extent, Structural characteristics recognized
by the static analysis provides useful information for the decomposition of the
behavioral characteristics which in turn supports testing strategies.' This
approach is to decompose the behavioral characteristics into a number of classes
such that each class corresponds to one or a set of logical paths. Paths here
are the interesting paths identified by the structural analysis in section
2.2.3.2; In any case, . testing of each path in a program is a fundamental and

37

primitive operation. In order to manipulate paths, each éath muéé be idenéified
and then isolated whenever desired. : i

Isolation of each path can be performed in several ways. The most convenient
one among them is to install and ;perate a new type of monitor. The concept of !
the blocking gate (BG) approach to the hardware diagnosis [RAM 71d] can be easily
transported to the software diagnosis. A blocking gate (BG) is a device in-
;talled on the connection between two system elements, which blocks or unblocks
the transfer of information under the control of a test driver. In the case of
software, it is another kind of software monitor which blocks or unblocks the
transfer of control between program segments, Blocking could mean an execution
of STOP statement or a ;ransfei to the test driving system.

By the same reasoning applied to frequency counters, it becomes clear, that
the minimum mumber of BG's capaﬁle of isolating e§ery path is desirable, A
technique is available to. £ind such a set of BG's and suitable locations for
dnstallation -[Ram 7ﬁb]. It turned out that the same locations can be used for

e ———— ————— —" e —— o m—

installation of various other types of monitors useful to validation processes.
These are introduced in later sections. The physical function of a BG depends
upon the testing strategy and thus is discussed together with each strategy.

’

2.2.4.2.1 Test input generation

When testing is performed with rahdomly generated inputs, it is called the
randoﬁ-input testing. On the other hand, when test inputs to exercise a certain

path or set of paths are devised either manually or by the system using the
information provided in the course of design, the testing is called the synthe-

sized-input testing. In the former case, input variables together with asso-

.ciated types are available from the data base and each input variable is

. assigned a random value of the specified type., It is often necessary to use some

information provided by the designer even in this case. It 1s unpredictabie
which path will be exercised and thus the physical implementation of a BG takes
the form of a code which transfers the control to the test driver when the,path'
is blocked, This is illustrated in Fig, 21. ‘ '

Test driver f€ ---=-mccccccccsmamm e c cmmem e cemmenm e

4

Test input
generator

IF BG(3) = 'unblock' THEN GO TO NEXT
INFORMATION = 'CONTROL CAME TO BG #3'
GO TO test driver

Se e m e e me mcm -

\
N

NEXT:

Fig. 21 .A BG in the random input testing

38

— . e

program. Therefore, a BG plays a role of the detector of both program and test

In the latter case, it is known a priori which path or ;né éfbéwset of ﬁatha'
will be exercised. The physical implementation of a BG in this case becomes a
safety device. That is, it detects unexpected situations where the control gets
out of the range of paths for which the inputs have been:syn:hes1zed. This may ;
occur due to either the incorrect synthesis of test inputs or the errors in a

design errors. Now we proceed to discuss several testing strategies based on the
operation of BG's or other types of monitors. i

2.2.4.2,2 Path-by-Path testing
The strategy of this testing is to test every interesting path at least

once, That is, a set of test paths is a.sec of interesting paths defined in
section 2.2.3.2. Besides this, several approaches to the selection of test paths
exist., This is mainly due to loops, especially non-deterministic loops. One
example is to define all test paths as a set of all paths in the program graph
under the constraint that no path may contain more than a certain number k of
iterations of a loop [{to 73]. The suitable definition of all test paths should

be determined with the consideration of the size of a progrem, the requirement
in the degree of assurance and the amount of testing costs. When each path is
tésted, it is desirable to sensitize it since the overall testing becomes more
systematic and cost-effective, That‘ia. it ié desirable to make it the only
active path while ali other paths are blocked. The simplest way of sensitizing
a path is to block all BG's except the ones installed on the path to be sensi-
tized, In addition, the BG's on the sensitized path may be transformed into
other useful types of monitors such as out-of-bounds detector for interesting
variables, etc. Either random inputs or synthesized inputs may be used. In the
case of the random-input testing, the evaluation of test outputs does not easily
lend to automation. Although, run-time checks facilitated in the system or soft-
ware monitors installed on the path can detect various erroneous conditions, the
manual inspection is inevitable in general.

On the other hand, the generation of synthesized test inputs normally
includes corresponding outputs or criteria for determining the correctness of
outputs. In‘'this case, the validation of outputs becomes more amenable to auto-
mation and the speed of the whole testing process can be increased. The current
trend in software design is to take the synthesis of test inputs and outputs as .
an integral step of the design process. However, the completeness of synthesized‘
test inputs are hardly expected. It is quite probable that test inputs exercis-
ing a certain test path are missing. Moreover, the synthesis of complete test
cases becomes generally infeasible in the case of a large program, though it sim-
plifies the testing to a large extent, Therefore, the coﬁbination of both ran-
dom-input testing and synthesized-input testing would be the most practical

. strategy.

39

There ia one more obs:acle commonly encountered in most testing strategies,
It 1s a non-physical path., Although the detection of non-physical paths can be
performed to a certain extent by the static analysis, the complete detection ig
not. feasible in general. In fact, this is one of the faétors obscuring the syu-
thesis of complete test cases. The practical approach to the solution is to
diterate random-input testing to exercise the interesting path and regard it as ;
the non-physical one when the path is not exercised within a certain limit of
time or iterations. The accurate decision whether it is a non-physical path is
again subject to the manual inspection.

2.2.4.2.3 Test point insertion .
’ In testing a subgraph, two approaches are possible. One way is to sensitize
the path in the global program graph leading to the subgraph and then to sensi-
tize each path inside the subgraph. Test inputs always enter. through the entry
to the global program graph. The other way is to install test points right be~
fore the entry to the subgraph and after the exit from the subgraph and then to
enter test inputs through the first test point and evaluate outputs at the second '

test point. Although this method requires an analysis for obtaining input ?

variables and output variables to be used in each test point, it could speed upand

simplify the testing process. i

In addition, the test point together with the segmentation can be applied to
further simplify the testing process in a large program [Ram 7lal]. This is
illustrated in Fig. 22.

T

. |) | (§’ | 4 paths l
. + .
Total Test S ?

. 4 x 4 = 16 paths Point

Fig. 22 Example of test point

4 paths
i
[}

Total 8 paths

FoAE

That is, the number of test paths can be reduced by installing test points on

the locations determined by the segmentation algoxrithm. The validation of the
first segment will provide the legitimate values of the state vector which will
be in turn used as test inputs for the validation of the second segment. i

2.2.4.2.4 Other simple testing strategies |
There could be almost an infinite number of testing ‘strategies im addition

to the strategies discussed in the brecéding section. In this section, some

strategies simpler than the ones already discussed are briefly introduced. The

40 -

—

—:;;mon philosophy'in those stiﬁtésiés is to :aké‘E";L1£3b1e subset of 1n:e£estin3w
pPaths as test paths. The consequence is that the testing becomes less expensive
! though the assurance provided ia also reduced. A typical one is to test only a !
i wminimum set of paths coveriné all arcs in the program graph. Such a sat of pathsf

is called a covering set of paths. Another is to test only a minimum set of

paths covering all nodes in the program graph. When the software is supposed to
have few bugs, these strategies become more cost-effective.

.

2,2,4.2,5 Error location

' Upon the detection of errors on a certain test path, a process of error
location and correction must be followed. This is the area where debugging
resides as a host. In this section we discuss the usefulness of testing in
regard to error location. The idea is based on the principle that the cross-
section of two malfunctioning paths has a high probability of containing bugs.
Therefore, the diagnosing aid system can be built in such a way that as soon as
a malfuhctioniﬂg path is detected, all paths crossing the detected one are iden-

|
[
tified and scheduled for testing. This mode of testing is called the cross- !
testing. The extent of debugging will be significantly reduced in this way. !
The software monitors embedded on the -detected path can provide additional infor- |

mation useful to error location.

" 2,2,4.2.6 Path frequency counting ‘ o !
There is still another mode of testing., It is called stochastic testing.
In this approach, a program is continuously tested with a sufficient number of

randomly generated inputs. Test outputs are evaluated collectively at the end
of the whole test run. During the test run of a program, frequency of traversal
of each path is counted. Paths with high frequencies of traversals may be re- '
garded. as sufficiently tested, while paths with low frequencies may be taken for
additional tests. In order to test paths with low frequencies, ones with high
frequencies are blocked by BG's so that the testing efficiency may be increased.

In addition, the detection of non-physical paths can be achieved to a cer-
tain extent, Path-frequency counts can be contained in a program profile. The
tool for path-frequency counting is another type of software monitor called a
path-frequency counter installed on the same location as a BG., Im other words,
counters installed on same locations where BG's are resident are sufficient to
count all path-frequencies. The detail is referred to in [Ram 74b].

2.2.4,2.7 Performance verification
¢ Program profile discussed in section 2.2.4.1 provides a certain degree of

assistance in performance verification. Based on it, the total execution time

of a program can be measured and compared to the performance requiremént. How~-

l ever, from the general nature of a profile, it shows only general tendency but

oy

——

41

doesa't provide sufficient confidence in éeffofm#nce.EBQ varioua‘inputa. More

thorough performance verification becomes desirable and it can be achieved to a
certain extent by the testing with the sufficient number of test inputs. When- |
ever the testing is performed for error diagnosis, an additional check can be ;
made if the execution time on the path ﬂas been within a certain bound, Once the.

path whose execution time exceeds the limit is detected, the execution-time pro-

‘f1le can pinpoint the major candidate for optimization for that path. In addi-~

tion, this combination of diagnostic and performance testing identifies a set of

.eritical paths. Therefore, both error diagnosis and performance verification arel

|
performed interchangeably and implemented in a AEVS, an integration of diagnosing
aid and evaluation aid systems.

2,2,5 Operational practices of AEVS's
In this section, the current status of AEVS's and the practical experiences

in using those systems are briefly reviewed. There have been a number of reports
on successes resulting from the utilization of AEVS's in the development and
wmaintenance of various software systems.))

The ACES [Ram 73a, Mee 73] contains features such as data base generation,
thorough structural analysis, unreliable constructs detection, profile generation.
and critical variables monitoring. This system has been successfully used by thef
SAFEGUARD Systems Evaluation Agency as a gross-survey of substantial amounts of
program code, For ekample one partial process --'a small portion of the complete
software system -- which was analyzed by the ACES, consists of 90 routines and
subroutines containing approximately 23,000executable statements. Results showed
unreliable practices such as coﬁputed GOTO statements with untested Jump para- :
meters, DO-loops with untested initial or final values of the loop parameters, .
and transfers of control into the middle of DO-loops., These conditioﬁs were fur-
ther ihvestigated by the user and either resolved or reported to the developer

for modification.

In testing and maintenance of the Houston Operations Predictor/Estimator
(HOPE) program, cost savings achieved by the use of the PACE [Bro 72a, 72b] was
$8000 per year. The PACE disclosed that the existing test file consisting of 33
test cases covered 857 of the subprograms and that one-half of this number were
exercised by almost every case. It required 4.5 hours of computer time and 35~50
man-hours of test results evaluation. Consideration of these statistics initiated
the subsequent analysis to produce a more cffective test file, A file of six
cases was generated. These tested 93% of the subprograms, but they required less
than 24 man-hours of test results examination. Similarly, the cost required in
verification and retesting of the Automated Verification System (AVS) was reduced
by $1000 per year by the uge of automated tools. These are represencétive exam=-

ples and similar reports are becoming more frcquent.. .

42

The operating cost of the AEVS is worth receiving attention. The precise
cost is dependent upon the organization and capability of the AEVS as well as
the size and nature of the source program. Available statistics are very limited
at present. The 6bservation made during experiences of the ACES showed the
general tendency that the construction of data base took approximately one and
an half times as much as the compile time and the size of the data base was two
and an half times as large as the size of the object code. Instrumentation of

!
the program generally resulted in 20% expansion in the program size and the !
execution time.) . I
A fully automated validation is beyond the capability of current AEVS's.Although

it is premature to make a rigorous quantitative judgement on the basis of these
examples, the increasing availability of ,similar reports substantiates the ;
prediction of more successes of future AEVS's on software validation. I

|

|

2.2,6 _Summary

In this section, we have examined features of currently available AEVS'e.
At present, the partial validation uand automated evaluation appears to be the
most effective approach to the validation of a large program. Although the ,
absolute correctness cannot be proved by this approach, the degree of assurance .’
obtained by the assistance of the sophisticated AEVS will be acceptable in most .
practical situations. The success and effiéieﬁéy of this approach depends
laréely upon the approach in softwaré design. The well conceived design process
can simplify the validation processes to a great extent and increase the effec-
tivenss in validation. On the other hand, the design process could become more
efficient on the basis of powerful AEVS. The largest obstacle on the way to the
fully automated validation has been the synthesis of test inputs. Problems
encountered in the program correctness approach to the validation of a large ptograﬁ
reappears in the automated synthesis of test inputs. Future works on structuring
software design processes such that validation, especially the test input generation .
becomes highly amenable to automation will be of great significance.

2.3 Conclusion ‘
The analytic approach to-improve software reliability has been reviewed. The

proof of program correctness approach enables us to validate many simple but
frequently used algorithms. Hopefully, we can build up a library of validated
algorithms which can be used to conmstruct more complicated algorithms. The use of
automated tools for evaluation and partial validation is an increasingly popular
approach to improving both the productivity of the programmer and the reliability '
of the program. Although at present, a considerable amount of human judgement and
manual labour are involved, the validation procedure can.be much simplified 1if the

program 1s prepared with the goal of reliability in mind.
°)

43

-—— . . . e e = e e emeee
. o —— ——

3. The consttuctive approach to improve software reliability

We can see that the analytic approach has several disadvantages if the program
i4s written without any consideration for.iés reliability. All the techniques
:developed become infeasible, ineffective and inefficient whea the program is too
Elaxge. The analytic approach is designed for detecting and correcting errors.
'There is no guarantee'that the end product after extensive debugging is free of

ertor. as Dijkstra pointed out, "Program testing can be used to show the presence
of bugs, but never to show their absence." [Dij 6%). There are no criteria to
determine when our debugging effort should end. Besides it seems that debugging is
a waste of effort on something (bugs) which should not be there in the first place.
ﬂhy should we spend 45% of our effort (in debugging and testing) to get rid of the

. mistakes that-we made in the first 55% of our work (in the design and implementation
'stages)? More care and time in design and implementation are clearly needed since

'1t will not only reduce our debugging effort but also give us a more reliable program.

The constructive approach to improve software reliability has the objective of

! never finding the first error in the program. The design and implementation of the
I

program are carefully and patiently performed, always keeping the reliability and
correctness of the program in mind. Basically two approaches can be taken. A :
: collection of programming techniques, called "structured programming"”, can be used

i to develop more reliable software by better design, management and coding.methods.

i Programming redundancies, called softvare defenses, can also be introduced to the

. systen to detect and contain error propagation in real-time systems.

3 1 Structured programming

Structured programming, a term mentioned so often these days, has been consid-

; ered as a "major intellectual invention", one that can be compared to the sub-

! routine concept and even the stored progéam concept. [McC 73]. However, no one

’ really "“invented" structured programming. A few people, especially Professor E.W.
Dijkstra, have contributed a great deal to the formulation and consolidation of the
- philosophies of "reliable programming", which then become known collectively as
“techniques for structured programming'. .

The term "structured programming” has been associated with wany meanings in the
}iterature due to the broad spectrum of techniques it encompasses. In some places,
4t has been associated with the syntax rules of a program, especially as a case
against the GO TO statement [Dij 68a) and restrictions placed on the type of control
structures that can be used to code a program. {Lis .71, Mil 71]. In other coantexts,

1t has been used to denote a design method for reliable systems, the so-called "top-
down approach". [Mil 71). It has even been related to the management method called

, “chief programﬁer teams". [Bak 72a].

' pijkstra [Dij 68b) defines structured programming as "to construct his (the

. designer's) mechanism in such a way, l.e., so effectively structured, that at every

stage of the testing procedure the number of relevant test cases will be so small

« ey

44

- .

" that he can try them all." It is therefore, a method of éttﬁc;u;ing the program 80

. that it can be "exhaustively" tested and confidently verified. Baker [Bak 72a)

defines it as “a method of‘progfamming according to a set of rules that enhance a

. program’'s readability and maintainability". Hence, it can be considered as a 5

programming style for clarity. Mills [Mil 71] defines it as "a complex of ideas of
organization and discipline in the programming process". Structured programming 18’
then both a design methodology and a technique for coding programs such that the
resulting software product is more reliable than an equivalent program developed
using conventional methods.
3.1.1 Structured programming as a coding technique
3.1.1.1 "GO TO" -~ free programming '

The énghusiasm in structured programming is often traced back to the
famous letter from Dijkstra [Dij 68a], "Go To Statement Considered Harmful", in
which he suggested that "the GO TO statement should be abolished from all high |

level programming languages' because "it is too much an invitation to make a mess
of one's program". Dijkstra pointed out that it is the process controlled by the !
program that accomplishes the desired effects for a programmer. In order to ,
‘minimize logical errors, one must "shorten the conceptual gap between the static
program aqg the dynamic process, to make the correspondence between the program

(spread out in text space) and the process (spread out in time) as trivial as

. possible". With the unrestraint use of the GO TO statement, it will become

extremely difficult to trace the progress of the dynamic process evolving in time
by examining the static program. Consider trying to understand a small algorithm
(process) in the middle of a large program. If the algorithm has a condltional

GO TO statement which transfers control outside the algorithm, theﬁ it is necessary
to understand the effect of the code at the destination of the GO TO before the
algorithm can be understood. This requires examining the effect of the external

~ environment. If this GO TO leads to another and then another, the tracing of the
" external enviromment may eventually obscure all our understanding of the algorithm

" since the control or decision statements are separated in space on the page from

. the computations evoked from them. These jumps, sometimes in both forward and back-

ward directions in the program, make it difficult to follow the logic of the program
and difficult to visualize at any given point of the program what the present ,
conditions are (such as the sequence of operations executed, the state of the

variables, etc.) The program text does not correspond in space on the page listing’

to the execution of the program in time. Furthermore, as a program is debugged and

' changes are made to correct errors or to meet new specifications, the complexity of

the program grows rapidly. Any change in an algorithm with GO TO's can have "side
effects" in control on the environment in which ii is used because this algorithm
may jump out of its local environment and affect other parts of the proéram. New
bugs are created due to these unanticipated side effeéts of the changes. If, on

~ following rules: ' ,

45

the other hand, an algorithm has no GO TO statements, then the effect of the dynamic
process created by the algorithm can be understood very easily as the cumula:ive
effect of all its statements without worrying about the external enviromment of the
algorithm (except for the state of the input variables). Therefore the dynamic
process 1s "localized" in the static codé. Any change in the code will only affect
the "local" process. As a result, the user has more confidence in the program since
it is readily readable and understandable. It is also very easy to modify, debug '
and maintain the program. It is therefore not surprising that Dijkstra remarked
that the quality of programmers seems to be inversely proportional to the density
of GO TO statements in their programs. [Dij 68a]. . '

After all the discussions on the evils of the GO TO statement, one may still
wonder 1f it is possible to write programg without them, and whether the replacement
will create the same kind of problems. We would like to replace the GO TO statement
with statements that will force the decisional statements to be associated with the.
computations evoked by them. Then the computational process evoked by the program
execution (in time) will correspond more closely to the program text and becomes
more easily understood. Bohm and Jacopini [Boh 66] have laid down the theoretical '
basis for structured programming by showing that it is possible to write any program

using only three control structures. A program in this language will be a compound

. . * .
: statement formed by simple assignment statements and predicates according to the

1. If S1 and S2 are statements,othen the concatenation of S]1 and S2 is a
statement., (SEQUENCE).
2. If Sl and S2 are statements and P i{s a predicate, then the conditional
statement IF P THEN S1 ELSE S2 is a statement. (IF THEN ELSE).
3. If 8 is a statement and P a predicate, then the iterative statement
" WHILE P DO § dis a statement. (DO WHILE). : |-

A program written in this language will have a flowchart made up only of the single-

l enéry single-exit structures as shown in Figure 23. Each block in the figure may

be replaced by one of the three structures. Therefore the control structures can
be nested. .

Programs written in this block structured programming language has a very
simple control 8tructuré. There are no GO TO statements and no labels. There is

a direct correspondence between the static form of the program and the dynamic flow

' during its execution. Using only concatenation, alternation and iteration as the

: control structures, the process is "localized" with the flow of control in the

program. The computatiocns evoked by a decisional statement can be closely followed.

A predicate is defined as an logical expression which when evaluated will yield
a value which is either TRUE or FALSE.

SEQUENCE -

IF THEN ELSE

L

, DO WHILE]
‘'Figure 23 Control structures for structured programming

There is no back-tracking. Without GO TO's, transfer of comtrol always proceeds
unidirectionally. A structured program can be broken down into meaningful segments

‘which have only one entry and one exit. Execution always proceeds from the single

enfry point to the single exit point of a subprogram (block). This simplification

of control makes it no longer necessary to flowchart a subprogram. In fact, as a j
general rule of thumb, a structured program which cannot be understood without flow-
charting i; too complicated and should ﬁe'broken down into modules. The straight- ‘

forward control transfer in structured programming is also very helpful for proving

. program correctness. The proof of the .correctness of a program which does not

contain GO TO's becomes much simpler since the termination of the program depends
only upon iteration statements (not upon a possibly infinite transfer of control).
If a block of code contains a GO TO statement, we have to ethine, understand, and

| prove the termination of the block of code to which the GO TO statement transfers

control. A chain of GO TO statements will make the understanding and proof of
termination very difficult. If, however, we restrict the program blocks to be
executed sequentially or at most in’an iterative fashion, we can explicitly state
the conditions under which a.block of code terminates. Withdut GO TO statements,

~ the proof of a program breaks down naturally into the proof of separate program

. components. Also the proving process is much simplified because the program is

" clearer and easier to understand. Each method of combihing the simple assignment

statements corresponds to a rule of inference. Concatenation is understoocd by
enumeration, conditional statements by case study and iterative statements by

mathematical induction. Programmers are familiar with these rules of inference.

" [Lis 71). Therefore, it becomes feasible to prove, at least informally, the

correctness of a large program. Dijkstra by using structured programming has

. developed and informally proved an entire operating system. [Dij 68b].

ay
0

e

- .

47

3.1.1.2 Objections to structured programming

There are, however, some programmers who question the merits of such

~restrictions imposed by structured programming. Objections to structured programming

usually come from one of two sources: basic programmer conservatism and concern about

i efficiency of the programs produced. "The conservative reaction comes about because

a;ructured programming 1s a new technique which may be more difficult to learn and
to use than conventional programming.. It will also require a change of programming
habits, which may affect the software productivity of the programmer. However, the
actual degree of difficulty may be overestimated. At the University of California
at Santa Clara, only structured -programming is taught. Their experiences indicate
no unusual problems in teaching and learning structured instead of unstructured
programming. Experience reporte§ by Baker [Bak 72a] on the development of the New
York Times Information Bank showed that software productivity of a programmer is .
increased slightly rather than decreased by using structured programming. Besides,l
there is always the advantage of a reducﬁion in debugging time.

There 1is also the concern about the efficiency of the program in terms of
execution time and memory storage required. Knuth and Floyd'have discussed
techniques to avoid GO TO statements in a program by using recursive procedure
method and‘by-duplication of code. [Knu 70al Both of these methods will cause an
increase in memory storage and execution time. Ashcroft and Manna have shown that
every flowchart program can be written withoﬁt GO TO statements by using WHILE
statements. [Ash‘?i]. Given a set of inputs, the WHILE program will produce the
same set of results as the original program but need not perform the same computation
sequence although the topology of the original program is preserved. However, new
variables are introduced to preserve the values of certain variables at particular
points in the program or alternatively special boolean variables are introduced. to
keep information about the course of the computation. In general, it is always

necessary to add extra variables in order to translate a flowchart®program into an

_ equivalent WHILE program. Therefore, it may mean an increase in memory storage.

However, Ashcroft and Manna have reported the same order of execution time

. efficiency for the structured WHILE program. It is still unclear if there will be

any inefficiency when the program is flowcharted with structured programming in
mind. Dijkstra feels that structured programs are just as likely to lead to

efficient code as any other type of program. He also feels that an increase in

~efficiency always comes from an exploitation of program structure. [Dij 65].

Furthermore, structured programs will be written in high level languages and a

' powerful optimizing compiler can be used to produce efficient code.

3.1.1.3 Other considerations for a structured programming language l

Structured programming is a technique that reduces a program's complexity;
increases its clarity, and results in easy understanding and maintenance. A reliable

program should have very simple structure and . its structure should be clearly

© to the program: meaningful names, informative comments, clear code layout and’

' indentation for readability, more levels of modularization, good documentation,

¢ Plauger. [Ker 73]. A good language for structured programming should not contain

48

visible by an examination of the code. To achieve these goals with tﬁe mere
elimination of the GO TO statement appears to be a simplistic approach. Reducing

a program's complexity can be thought of as a process of removing obstacles from .
the program: complicated control paths, obscure structures, uninformative comments,}
unnecessary jumps, redundant and obsolete code, ambiguous constructs, etc.
Restricting the programmer's use of control structures to SEQUENCE, IF THEN ELSE,
and WHILE may also lead to unnecessary inconvenience sometimes. Different forms ofl
restricted use of 'GO TO' have been proposed, such as the EXIT statement in BLISS
'[Hul 71] and the COME FROM by Clark [Cla 73]. It has been suggested that the CASE !
statement (as used in ALGOL) be added to the allowable control structures. [Mil 71]:
It is also suggested that the single-exit law be relaxed for abnormal termination.

[Don 73]. Improving program clarity can be thought of as a process of adding things
|

clean interface, etc. ’
It is clear that structured programming can be achieved with a combination of

good programming style and language design. The drawbacks of existing programming

|

languages have been investigated by Elspas et al. [Els 71], and Kernighan and
[

features that are conducive to error. It should encourage concise expression t
rather than cryptic. A language like APL is an open invitation for clever tricks
which are very difficult to understand; even by the programmer himself after some
time has elapsed. The language should have a rich and descriptive syntax, making
it very easy to read and understand, even by people who are not familiar with the

language. For example, in APL,
> 6xi(x>y)

means "IF x > #, GO TO 6". However, a statement

+ 6x (x>y)

" means "IF x > y, GO TO 6, ELSE RETURN". The hidden "RETURN" is often overlooked.

Irregularities of treatment of the same syntax construct in different enviromment

i1s another-drawback of many languages. For example, in Fortran, there are different
constraints on the integer expression, according to whether they appear in a DO
statement, an I/0 statement, a subscript, a computed GO TO, a declaration, etc.

A programmer would much prefer only one integer expression usable anywhere. Some
other irregularities are provided in order to save the programmer some keypunch
time. However, saving a few characters can sometimes create a lot of confusion.
Algol 68 allows the statement .
label; :‘
as a legal branch to be interpreted as "GO TO label". These irregularities should

S e - .

49

‘be removed. The language specification becomes bigger, and thus enlarges the

compiler size. The cryptic expression makes error checking very difficult. Also
these special cases may be treated differently in different installations, thus
affecting the transportability of r:he program. Therefore a good language should
encourage uniformity and generalizatienm. Algol 65 has some good features in this
aspect. Statements and expressions are treated as the same thing in Algol. The
CASE statement encourages a uniform organization of the programmer. Program'layout.
and commenting can affect tﬁe readability of the program drastically. A language :
should allow free-format 1nput and proper indentation. The compiler should also
improve the readability of the program by providing optional informative outputs of
the program layout besidqs the standard listing. This may be a listing of the
program with information about its topology, such as the loops and the branches.

|
, : . I
. Comments are crucial to the understanding of a program. However, too often I
i

uninformative comments are written by the programmer. It may not be a bad idea at
all to design a "structured" language for commenting a program. Comments written .
in the form of asseréions used in proving program correctness may be useful in !
understanding the program. '

A good language for structured programming should also encourage a programmer
to write reliable programs, even at the expense of additional constraints on his

style. This affects the syntax of the language,.its semantics, and even the prag- '

matics of impleméntation. The language syntax should be descriptive of the desired

action. Language redundancy can also provide error protection. The requirement

: of the programmer to declare all program variables and the way they are used in

 Algol 68 helps. to reduce errors due to misspelling of identifiers. During program

]
¢

: execution, array-~bound checking should be ﬁrovided by using special hardware (as
¢ 48 done in the B5000) or by run-time system software to verify that subscript values

do indeed fall in the declared range. Descriptive and meaningful names should be

" used and clarity of expression should be emphasized. The compiler should also

perform some semantic checking on the program to reveal semantic errors, which may

be very helpful for debugging.
Therefore we can see that a good language for structured programming should

" support the three types of well-structured control structures: SEQUENCE, IF THEN

J S

ELSE, and DO WHILE. Unrestricted use of the GO TO statement should not be allowed..
It should encourage concise and clear expressions, clear code layout and indentation
for readability, and informative comments. .It should have a rich and descriptive
syntax, uniformity in language constructs, and clear precise semantics. It should
contéin error reducing properties, such as language redundancy. The implementation
of the language should try to improve the reliability of the program. No existing
programming languages have all these properties. PL/1l and Algol can support the
three basic control structures. Therefore they can easily be used for writing
structured programs by elimix;ating the features that are conducive to error. Other

50

-

modifications of their syntax and semantics for more reliable programming are also

" very desirable. Kelley [Kel 73] has developed an experimental programming language

- ,ineorporated in the syntax.

called APLGOL which adds structured programning facilities to the existing framework
of APL. The conventional semantics of APL is unaltered and only minor changes are

A good program design can also help to produce reliable software. Many proata;
errors can be avoided by writing the code first in some “virtual language" and then
expand and translate into the desired high level language. This two-step coding
procedure will increase the reliability and intelligibility of the resulting program,
besides helping the programmer to write informative comments and useéul documentation.
The "virtual language" need not be formal but should be precise and descriptive of
the action to be performed. For a large programming system it may be advantageous
for the programmers to agree on such a "yirtual language" so that uniform documenta-

| tion can be provided, making the programs easier to understand by all programmers.

In a way, this can be considered as similar to the top-down approach of design of

| structured programs to be discussed in the next section. i

3.1.2 Structured programming as a design technique '

We notice that structured programming aims at simplifying the control patha

of the program so that it becomes more readable and understandable. However, even

" when a program is well structured, it.may still be very difficult to understand if
. it contains DO 1oops with thousands of instructions ‘and IF-THEN-ELSE statements

taking up twenty or thirty pages. The program has to be divided up into smaller

; subprograms of more manageable size called program modules, a common practice called

" modularization. Modularity allows modules to be written, compiled, and tested

independently. Traditionally the process of modularization is performed in a care-
less and arbitrary fashion. The division of a program into modules is usually domne
accordiﬁg_to the boxes of the flowchart of the program. This may work in small
programs. In large programs, there are complicated interactions among the modules.
Modules interact in control (via the entry and exit points), in data (through shared
data or arguments passed between them), and in the service which they provide for
one another. An arbitrary modularization may obscure many of these interactions

(inte}action complexity) so that subtle software bugs may be created. It may also

introduce unnecessary functional complexity by putting too many functions in a

module or by failing to abstract a common function shared by several different

modules.
. From these considerations, we notice that in a good modularization, we should

. minimize the assumptions thet the modules make about each other (to reduce inter-
. action complexity) and we should_also limit the size of the modules (to reduce

functional complexity). Parnas [Par 71] has also made other suggestions on the
modularization of the program. The modules should be’defined around assumptions

which are likely to change. In specification of modules, we should specify

'
.

“o

51

,- - . -

’ identities or relations between the externally visible aspects of th; module rather
. than the internal construction.

In terms of structure& programming, good modularization can be achieved by two
techaiques. The first, levels of abstraction, [Dfj 68b] allows us to resolve the
complexity of the system by conceiving the system as a hierarchy of levels of
abstract machines. The second, top down designm, [(Mil 71), enables us to develop
a iarge program as a tree structure of functional modules.
3.1.2.1 Levels of abstraction !

Levels of abstraction was first proposed by Dijkstra for the design of the
T.H.E. Multiprogramming System so that it can be.proved logically correct and
tested exhaustively. [Dij 68b]. The system is designed as a hierarchy of levels
of abstract machines, the lowest levels befing those closest to the machine. At

each level, the abstract machine allows us to understand the operations at that
level without requiring the detailed knowledge of how the operations are carried out,
For example, the virtual memory can be considered as a level of abstraction while
the physical memory is a lower level of abstraction. Two rules are used for the
formulation of levels of ‘abstractions. Each level owns resources exclusively for
its own use and these resources are not accessible from other levels. Lower levels

are not aware of the existence of higher levels and therefore may not refer to them

in any way. For example, the disk and core are resources owned by the physical

- memory level while pages and segments are resources in the virtual memory level.

The physical memory is not aware of the cxistence of the virtual memory.

Each level of abstraction contains a collection of related.functions. ;
Operations in each level are interpreted by the abstract machine on the next lower
level. Higher levels are supported by lower levels. Therefore, high levels may .
obtain service and information from lower levels. Each level may contain ektetnallj
accessible functions in addition to internal functions used exclusively to support
the level. Since each level has its own resources, each level can be considered

as a level of abstract resources. The division of resources into levels implies
that each level has to be 'complete'. The operations at one level have to be
supportable by the abstract resources provided by the underlying levels.

The hierarchy arrangement of levels of abstraction allows us to design good

modularization of the system. Subtle errors due to shared resources are controlled

by treating the ownership of resources in a rigorous fashion. The interface problem
is reduced by defining system primitives which wust be used for communications
between levels. The cooperation of processés are regulated by a set of formal

synchronizing primitives. However, the success of the design of the entire system

 depends critically upon the design of the top level. The design of this level

depends on the experience and judgement of the programmer,” as well as his under-
standing of the system. Dijkstra suggests that, in general, decisions should be
delayed as long as possible (hold onto the abstractions as long as possible).

52

——— e e e . cae e e . . e . R - [

Whenever possible, we should gain more understanding of the system before we make

a decision. If a module is tooflarge, the principle of "divide and rule" can be

applied to decompose it into smaller modules. Begsides the program should be P

designed for adaptability by considering potential generalizations at each stage in
I
the design. This helps us to gain insights into the structure of the system. l

Specifications are likely to be changed while the system is being built because of

more understanding of the system. Modifications are always necessary after the
i system is put into operation for system optimization and tuning, as well as user l

. convenience. Therefore, structured programming should also be used for implementiné

. the system for maintenance and modifications. l

' Dijkstra also gave scme design rules for the specifications of the modules.

[Dij 65). His "principle of non-interference" states that modules should be

. constructed to satisfy specifications so that they are independent of each other

and 1ndependent of the context in which they will be used. The modules are logically
independent so that they can be designed and constructed independently. Independence
implies that all interfaces have been defined and that all conflicts over resources

have been resolved. When the modules are inteérated together, the correct working

of the system can be established by considering only the exterior specifications

(an abstraction) of the modules without requiting knowledge about the interior
construction. Therefore, starting from. the lowest. level, at every stage of inter-
' gration, the correctness of the system can be proved by an exhaustive case analysis.
Dijkstra concluded that a designer should structure his program so that the number

of relevant test cases is so small that they can be exhaustively tested. [Dij 68b] .

Besides the T.H.E. System, there are other systems constructed with levels of
-abstraction, such as the Venus system designed by Liskov [Lis 72a) and the file
system designed by Madnick and Alsop. [Mad 69).

3.1.2,2 Top down design

There are basically two approaches:to build a system: from the bottom up

"or from the top down. In the bottom up approach, implementation begins after an
initial design which identifies the tasks. The most elementary (low-level) functions

. are implemented first and then used as building blocks to compose more complicated

tagks, and so on. In this way, debugging of the code is easier and can be performed

in parallel with the design of more complicated components. However, there are

* several dangers with this "building block" approach. The building blocks are
‘implemented before the system is well-defined. They may not be the most useful
components in building the system. Modifications of these building blocks are
frequently necessary when difficulties are encountered in the higher levels. System

" integration is difficult because the interfaces between programs are not rigidly
-defined and modifications of building blocks often create subtle side-effects.
Worse than all these, the existence of these building blocks may influence the

[V -

oy

f is organized as a hierarchy of levels of function specifications, (Note that the

53

'system design., Therefore, the design of the system is constrainted by deéisions
made before we have an overall understanding of the systenm.

i The top down approach uses the opposite philosophy. [Mil 71]. The highest |
level, which represents a rather formal description of the overall system, is :

Ispec:lfied first. It describes the flow of control among the major subsystems,

| each having a functional specification. Each of these subsystems is then expanded

finto an intermediate system of code and functional Bubsﬁecifications. This process'

t 48 carried on until all functional specifications are coded. Therefore the system I

levels used here are different from levels of abétraction because they are not
associated with the ownership of resources.)
There are several disadvantages assocfated with the top down approach. The .

| specification of the components are rigidly defined, including the data structures

it employs, without much consideration to how the components will be implemented.
This may lead to'problems of ihefficiené 1mpiementation. The design may also be
complicated since the system is very complex and it may be difficult to write down’
all the specifications at each level. To understand the operation of the system,

' one may have to simulate the system as the design proceeds in order to debug his

specifications, as suggested by Randell. [Ran 69].

. views the functional specifications as-similar to mathematical functions which map .

 initial data into final data for some codes yet to be specified. The whole

can be overcome by the introduction of structured programming. [Mil 71]. Mills

' organization is based on functional programming, defining composite functions in

terms of other functions. The design structure is carried out directly in code,

which can be at least syntax checked, with "program stubs" representing functional

. subspecifications. This process of functional expansion is carried on; with new

functional subspecifications represented by names of dummy members of a programming

- 1ibrary, until the whole system is defined. Each functional subspecification,

called a segment, may consist of a mixture of control statements, and macro calls
(to lower level segments) with possibly a number of initializing, file or

assignment statements as well.

Mills .also put other restrictions on the construction of a segmeﬁt. Only
structured programming techniques can be used, implying that the control structutef
will oﬂly consist of sequencing, IF-THEN-ELSE, and DO-WHILE. The size of the
segment is limited to about 50 lines of code or one page of listing, so that each
segment is small enough to be readable and understandable. A segment 1s also

_ restricted to have only a single entry and a single exit. Therefore, a segment

behaves as a simple data transformation function independent of the enviromment in

. which it is used so that there are no side effects in the program control. Segments

are stored under symbolic names in a library and are substituted at any point in the

4

H. M{l1ls, an advocate of the top down design, showed that most of these probleﬁa '

54

program by a macro-like call. The segments form a tree structure with the system

. specification at the root. The system is written from top down and at each level

| we can verify that the intermediate system is logically equivalent to its predecessor

. system. Therefore, the system can be.verified to be correct one level at a time by

functional expansion up to the lowest level, i.e.,, the code of the program. Since
each segment is small and well-structured, the proof of.correc:neaa 1s much }
simplified. Interfaces between segments are rigidlf defined, minimizing the inter-|
face problem. Documentation is automatically provided by the functional specifica-
tions and the verification procedure. The finished system also contains traces of .
the design process, which is veéy helpful for the maintenence and modification of '
the program. It is alsotpossible to execute the system ac any intermediate level ’

by "simulating" mo?ules that are -not yet implemented. The modules are never

detected and feeolved ear1§ in the design process.

Mills' apbtoach‘of system design has been carried out by Baker [Bak 72a] in th
design of ao information bank system for the New York Times. It was reported that
programming productivity was substantially 1mproved and the system had no serious Z

i
checked out independent of the system. Therefore, conflicts over resources are ;
1
e

¢ errors for the first twenty months.

3.1.3 Structured prog;amming d4s a management technique
Reliable programs cannot be produced efficiently without a 3ood management ‘

policy. Communication problems among programmers are the chief source of program

. errors. Conventional management approaches often suffer from the lack of functional

- separation, communication, discipline and team work. The hierarchical arrangement

. of a structured program provides a natural organization for the assignment of jobs.

' The communication problems are minimized-by rigid specifications of the components

" and the interfaces. All these give us an opportunity to use a more systematic

approach of management. The Chief Programmer Team approach has been proposeo by
Mills [Mil 73] and Baker [Bak 72a) as a way to improve the manageability, quality

: and productivity of programming. The nucleus of a chief programmer team consists

ships among specialists, and stress discipline and teamwork". [Bak 73].

of a chief programmer, a backup programmer, and a programming secretary. Other

personnel can be added at the discretion of the chief programmer. The main

objective is to structure "programming work into specialized jobs, define relation-
]

The chief programmer is a technical manager whose principal work is to design ‘
and code central, critical segments of the eystem and make specifications of
programs to be assigned to other programmers. Besides, he also reviews and then
integrates programs coded by other programmers. The backup programmer is another

person whu is completely familiar with the design and development of the program

' by working closely with the chief programmer. He reviews decisions and provides

test planning for the system. He also formulates programming strategy and
tactics, relieving the chief programmer to concentrate on the central problems of

55
system development. Therefore he is both an assistant and a back-up man for the
chief programmer.
; The programming secrecary is responsible for maintaining the current status and
previous history of the project in the Development Support Library (DSL) in both

,an internal (machine readable) and an external (human readable) form. [Bak 73].
The DSL contains all the project programs- and data files in the computer and all che
-project documentation, listings, and outputs, including test runs, whether successful
ior not. A detailed history of the development of the program is kept. The progtam~
ming secretary has to collect from the programmers the project notebooks containing
changes to be made in the internal programs and data files. Then he prepares the ‘
Einput and excutes the project programs on the computer, with the help of keypunch
éoperators. The machine executes the program while updating the library data in the;
;internal library file. The secretary obtains the output and enters them with the
'new source listings in the project notebooks of the extermal library, with the
necessary documentation. The outdated documents, however, are not destroyed but
flogged in chronclogical journals. He then returns ‘the notebooks to the programmers.
ITherefore the programming secretary is also a key personnel in the nucleus. He .
.releives the programmers of most of the clerical and secretarial work for maintaining
:a11 project records, current status, and test data so that they can work more :
‘effectivély and efficiently. o !
The DSL represents a concept of moving the programming production process from
private art to public practice. All computer runs and program data become public
assets and the visibility of the DSL simplifies the communication problem among the

: !
programmers. The record of the history of project developuent facilitates the

]

-maintenance of the program. The concept of "egoless programming" is alsb adopted. .
iIWei 71). The chief programmer has to read, understand, and verify all program '
.data developed by other programmers on the team. They, in turn, have to do the same
on programs written by the chief programmer to define the specifications and inter-
.faces. This ensures that at least two programmers fully understand every line of
the developing program. '

About 100,000 lines of source code seems to be the maximum size properly
assigned to a single team. 1In really large programs, we have to define a hierarchy
of chief programmer teams. A team of skilled programmers may start out the system

‘with the overall system design. After the design is completed, each member in this:
team may become the chief programmer of the oqther teams responsible for the next
level of design and implementation, and so on. The evolution of assignment in a top-

‘down fashion will retain the spirit as well as the discipline of the Chief Programmer
Team.

:

" 3.2 Software defenses

l Although structured programming can help us to construct reasonably reliable

software we are still not certain that no critical error will ever occur. In some

56

real-time systems, even this low error rate cannot be tolerated. A protection .
technique, called software defense, [Cha 73] can be used to trap and contain the

propagation of software errors in a real-time system. This technique 1is a

" precautionary procedure to make sure that there will not be a catastrophic disaster
| even when a software error occurs. These techniques are highly goal-oriented so

: that it is very difficult to generalize them. They have been proved to be very
! useful in the ESS of the Bell Telephone Company [Cha 73].

| There are two types of software defense techniques: defensive programming
wmethods and audits. The former includes techniques used in the design of the

:
|
|
i
% program and data to detect software errors before they cause system misbehavior.
fthe latter are used .to detect, contain, and possibly correct software errors after
! they have occurred. Since audits are used primarily to protect the integrity of the
Iprogram, they will 'be discussed in the next section. '

i Defensive programming may include a variety of methods. They are special !
’precaution procedures to be implemented in the prdgram to reduce the possibility :
gof a software error. They are dependent on the purpose of the program and the style
|of the programmer. A commonly used technique is the range check. Range checks can

|be performed on the values of data, memory locations accessible to a program, and :

areas where a program control can be transferred to. A state check to verify that
the system indicators and the actual states of the resources are in agreement before
'a resource is allocated can reduce many system errors and mutilation of potentially
valuable data. Reasonableness checks on the input data can eliminate many system
;misbehavior due to abnormal input data. A reverse check is also an effective tool
' to ensure the correct operation of the system. For example, when a complicated
Iprocedure is employed to search a file, we should examine some characteristics of
lthe file searched before any modification to make sure that we are operating on the
 correct file. Whenever a translation is performed, a reversed translation can also
. be done as a check. The defensive programming techniques can be viewed as software
, redundancy to improve the reliability of the program. The degree to which these

- techniques should be applied must be considered carefully in order not to degrade

. the efficiency of the program significantly.
In a multiprocessor system, software defense can be provided by the architecture
i of the operating system. The operating system functioms can be distributed among ’
" the processors. The design of an operatihg system with distributed intelligence
enables us to.achieve a fail-soft behavior in presence of a software error. The
operating system of the PRIME System is an example.
" PRIME, developed at the University of California, Berkeley, is an experimental

itime—sharing system designed for continuous availability, data privacy, and cost

effectiveness. [Bas 72). It is a multiprocessor system in which one processor is
dynamically designated the job of the control processor and the rest problem
ptoccssors. The technique of dynamic verification is used in the constructicn of

-57

the operating system to ensure continuous availability and the data privacy of a
user even in the presence of a gingle hardware or software fault. [Fab 73].

Furthermore, multiple faults will not lead to unreliable operation unless they

. reinforce each other. Dynamic verification of a decision implies that every time
the operating system makes a decision there is a consistency check performed on the
decision using independent hardware and software. This technique is applied in the
control monitor of the operating system. The control monitor performs the functions
of scheduling of processes to be run on problem processors, the allocation of memory
pages and disk cylinders to processes, and the management of a virtual communication
system, It consists of two parts, the central monitor (CCM) and the extended control
monitor (ECM). . The CCM is written in a high level language and is executed only by
the control piocessor. The ECM, resident in the probiem processors, is microcoded
and acts as a local representative of the CCM to enforce its decision. However, ’
dynamic verification is possible because the CCM does not interact directly with
the ECM but rather by sending messages to the ECM. Each timé a decision is made
by.the CCM, such as starting a process sending a message to a process, or allocating
a resource, the ECM can verify if the action of the CCM is appropriate. Inter- :
process communications are performed through messages and are similarly checked by
_the_ECM's.- The decision making and decision checking processes are performed by
i different hardware and using different algori;hmé. Therefore, the integrity of the

. system is maintained in the presence of a single hardware fault or software error.

: Such decision verification procedures can also be applied to other software

! architecture with distributed intelligence. . . |

| 3.3 Conclusion : : .) ,
Several programming systems of considerable size have been developed using the

constructive approach, notably the THE System, the information bank of the New York

" Times, etc. All these systems have shown to be very reliable after they have been
put into use. For example, the information bank of the New York Times had been put
into operation for 13 months. before the first error was detected that resulted in
system failure. The acceptance test took a total of 9 weeks and only 21 errors
were detected, all of which were fixed in one day [Boe 73]. The productivity of
the programmers is high, 83000 lines of high-level language source code produced

_ 4in 11 man-years (6 men and 22 months). The reliability of the program is high,
with only 25 errors in over a year's operation. This corresponds to approximately
one error for each 5 man-months of effort on the project, which is quite remarkable.
[Bak 72bl. As a result of using the constructive approach to reliable programming,
the project cost was cut by 507 and development time was reduced to 25% of the
initial estimate! [Boe 73). The mission simulation system developed for the
Skylab operations by IBM has similar success. - 400,000 lines of code were
produced in 2 years and the software was delivered on the original schedule in

_ spite of 1,200 formal changes in the requirements. (Bak 73).

K3

58

The constructive approach therefore appears to be a very useful way of
designing and implementing reliable programs. Howevér, there are still people who
‘are skeptical of its success. The systems constructed by this approach so far are
:relatively small and simple compared to really large programs like the national
missile defense programs. The number of programmers involved are small, six full~-
time programmers in the New York Times Project and six half-time programmers in the;
:THE Systa‘. They are experienced, well disciplined (mostly mathematicians with ;
5 to 8 years of university training in the THE System), and under excellent leader-
ship (Mills, Baker and Dijkstra). It may be doubtful if the same remarkable succes;

jcan be achieved in a large programming project iavolving, say, 2000 relatively i

funexperienced programmers. Besides, most of the theory developed in this area are A
iguidelines and principles rather than procedures which a programmer can follow stepj
iby step to construct his program, especially in the design stage. Many of the taskﬁ
lhave to be performed manually and decisions have to be made arbitrarily without any‘
methodology to evaluate them before, or é&ven after, they are made. The design of

the system depends as much on the experience and judgement as on the intuition of _

i the programmer. In general, we know what the end product should be without too much

'idea on how to arrive at it. For example, Dijkskra suggested that the program should
' be structured in a way so that the number of relevant test cases at each stage of -

ltesting will be so small that they can be exhaustively tested. However, there is no’

,general method that will enable us to arrive at this end product. There may even be

" cases where this is impossible, when the decisions are tightly "interwoven" together.

"In the design of the system with the "top-down" approach or the "levels of abstraction"

approach, it is difficult for us to decide how to form a "complete" level. Besides,

' the decomposition procedﬁre of large modules is done in an arbitrary fashion. When

{difficulties are encountered in a level, it may be necessary for us to go back and

'modify the higher levels. Fortunately, the structural programming approach makes
such modification easier,

) It is highly desirable for us to be able to mechanise some of the procedures
so that automated tools can be used to help us to design, implement and test the
program. Computer assistance in validating and evaluating our decisions during the
development stage is clearly very valuable. Obviously, such tools are still

. necessary for the end product. Therefore, it seems that the analytic methods to

~ dmprove program reliability are still essential for assuring the quality of programs

?deveIOped by the constructive approach, when the program is too large and complex.

&4, Integrity of a program .

4.1 Introduction

By now we have already surveyed different methods to construct reliable soft-

ware. Reliability implies the ability to perform a specific function by the piece
of software. However. the correct operation of the process created by the piece of '
' the software cannot be achieved if its integrity cannot be guaranteed. Integrity

59

is a particularly serious problem in large real-time systems since the program is
controlling an on-going physical process such as a nuclear reaction, air traffic
control system or a national anti-ballistic missile defense system. In many cases,

- the security of a program is as important as its reliability. Loss of integrity

18 usually associated with malicious Eampering of the code of a program by an i
unauthorized intruder in a hostile environment. This is not necessarily the case.
Loss of integrity may be caused by a subtle software bug inside the program itself.
Modification of code by another user may be unintentional, due to a flaw in the '
operating system. Transient hardware faults can also -cause tampering of codes
vhich are very difficult to detect. Real~time systems are especially vulnerable
to intrusions since they.have to be on-line and accessible to a large number of
users. This makes protection quite difficult. Things are even more complicated
in a multi-processﬁr system since processes are created and destroyed in real-time '
and they may even co-operéte in a mutually suspicious manner. The reliability of
such software systems has to be safeguarded against intentional or unintentional
intrusion.

If an intruder can masquerade ingeniously as a legal user, follow normal

procedures and perform normal operations, there is very little that we can do to

detect it in real-time. An intrusion is usually detected by abnormal phenomena,

such as a user accessing a part of the memory not assigned to him, a user's attemptr
to read a file with the wrong password; or an execution of a program without .
authorization. Since a residual software bug can also cause such derivations from v
the normal behavior, all of these can be viewed as software bugs, either in the
user program or in the operating system.” There is a close relationship between the
reliability and integrity of the program. Security safeguards can therefore be
considered as a form of software bug trapping mechanism in real-time. The 1ntegrity
of a program is protected by security measures, which protect the program from
accidental or intentional disclosure to unauthorized users and from unauthorized
modification.

In real-time systems particularly those dealing with national defense and
banking, it becomes particularly important for the security of the system to be
sure that the program contains no critical software bugs and that the system-will

not compromise the sensitive information when there is a hardware failure. The

. software bugs in the program can lead to a breach of security and may be planted

by an infiltrator. A large computer program must necessarily involve a considerable
number of programmers. An intelligent infiltrator will therefore start at the

stage when the program is most vulnerable, namely, when it 1s being wriften. Subtle
software errors can be introduced to make the program inoperative when special
conditions arise. Secret entry points and loopholes can also be created by the
infiltrator for later usage.. Not only are these bugs difficult to find but even

when these errors are discovered, the ingenious infiltrator can always appear

DO

60

as an ingenuous programmer to relieve the blame. (However, in any case, he should
be firedl) The risk of the infiltrator is therefore minimal. The only effective
countermeasure is to validate the system with automated tool so that it operates
correctly as required for all the inputs at all time. .
Active infiltration into the system during its operation can be achieved in
different ways. [Pet 67]. A person may use legitimate access to ask unauthorized
questions. He may find subtle entry points or "trap doors" which may exist by

virtue of the combinatorial aspects of the many system control variables. He may
also masquerade as a legitimate user by unlawfully obtaining the prcper identifica-
tioﬁ such as a password or by intercepting and cancelling the legitimate user's i
sign-off signals, followed by continued operation under his name. Another common :
method of infiltration is by examining the contents of core memory left behind by

the previous user to look for useful information such as passwords, file names, etc.
An intruder may also force his entry into a critical program and execute it. Mote-
over, a clever person may be able to put his process into supervisor mode and then ;

' virtuglly'do anything that he. likes. Protection of the integrity and privacy of

.

programs must be provided against all these active threats.
4.2 Security-analysis)

Security is the process of detecting and preventing unauthorized modification,
access and snooping of sensitive information.. This implies the necessity.of adequate

! safeguards built into the management agd hardware/sof tware agpects of the system.

" As in any large-scale system, the analysis effort is considerably reduced when it

’Z is possible to arrange the system in a hierarchical faghion. Then we can conven-

iently concentrate our effort at one level at a time, starting from the lowest |

. level. At each level, we can neutralize the threats; thus providing a secured
" "hardcore" to work on the next higher level. A secure system can be arranged into
" a hierarchy of 6 levels, according to the vulnetability.to threats. (See Figure 24)

The lowest or the most critical area which must be secured is the program
specification. Inconsistent or poorly defined specifications would provide the

ready means to introduce programming bugs, such as trap doors and loopholes. The '

. .specification must be very rigid, providing no reason for ambiguity. The next 1eve}

- e—teme

of security involves the operating system, since it could modify any program under :
execution. The operating system must be checked to see that it interacts with the i
Job program properly and would not modify it in an unknown way. The third level of:
security is concerned with the program implementation process of the gpecification.

; The program design must be such that the behavior of the execution sequence must be

. clearly visible from an examination of the static code. In other words, a static

- implies that the program must be structured and modular.

analysis of the code should reveal all actions the program takes very clearly. This

. |
The next level of security involves the machine diagnostic aspects and the

.'computer operator, since bad maintenance procedures could reveal the contents of the

61 _ 3]

memory or an unscrupulous computer operator may modify the contents of-the memory
without proper authorization. Hardware faults are also threats to the system
security. The next level of security will consider the active threats, which are
execution time interferences. Here the saf eguards. would involve authentication of .
entries of users into the system, real time sequence checking (relay runmner) and
real time validation of code before execution. The last level of security would

. be threats which involve stealing the information physically from storage devices

or by monitoring the radiation emanated by the electrical devices.

Active threat§

Passive threats

Figure 24 Levels of Security Analysis

4.3 Security safeguards

4.,3.1 Safeguards against software and hardware errors.

The first three levels of security can be protected by validating the
program against software errors. Techniques for constructing réliable programs
can be used. Precise and unambiguous specifications should be formulated by
committees. The programé should be written as structured programs so that high
level personnels can understand and verify-them. Well-structured programs make '
loopholes and blanted bugs easily visible. The interface between the program and
the operating system should be validated. After that, automated tools can be used
to analyse and test the system for security.) i

_ The maintenance engineer and console operator hﬁve direct access to the

' machine. Reliable personnel should be employed in these important posiﬁions (from

a security point of view). The integrity of the hardware system can be checked

by performing periodic diagnosis. Techniques for protecting the system from hard- oo
ware malfunctions are well—kpown [Ram 74a), though rarely implemented, due to the

high cost. Thus the fourth level of security can be satisfactorily protected.

62

. . . . N , X cemaq

4.3.2 Safeguards against active threats '

4.3.2.1 Introduction . i
Bardware and software safeguards can be used in this level of security.

Hardware safeguards can be used to ma}e sure that privileged instructions can‘only
be executed in the supervisor state. Privileged instructions prevent the user froml
interfering with the operating system or another user's file or program. Various
types of memory protection schemes are useful to ptdtect the integrity of user
programs and data, such as relocation and bounds registers (in CDC 6000 series),
lock and key scheme (in IBM 360 series), paging (in XDS 940), segmentation (in
Honeywell 645), etc. The ring structure in Multices can also provide adequate
protection of user privacy. Other types of hardware countermeasures include built—

in identificetion codes for computers (such as the IBM 370) or terminals, microcode,

etc. .
Software.aafeguardscaukbe provided by access management and threat monitoring.

Access management deals with the methods of accessing infotmation and service in i

i the computer and determining who is going to get what. Different ways of

authentication and identification of users can be used, such as passwords,
authentication algorithms, and proferring of physical items like badges, finger-
prints, etc. Threat monitoring keeps a record of all access or attempts to access

' sensitive data and service. A log of all sensitive operations can be kept,

recording who got access to what. A review of this record periodically can detect

. unauthorized attempts to use sensitive’ information or service. All successful br-

. eaches of security are also recorded, allowing.the system manager to close these

- trapdoors. 3Besides, it is an effective tool against intrusions based on a trial

and error strategy. Threat monitoring should always be active as long as the
camputer is operating. Therefore, we must make sure that it will not be deactivated

by a privileged instruction. '
All these safeguards have been discussed extensively in current literature,

* [Hof 73], However, all these techniques can only be used in the design of the

hardware and software of the system. The user remains a helpless prey of loopholes
in the secufity of the system. It is highly desirable for a user to have program-

" ming techniques which he can use to protect critical sections of his program. The .

. “relay-runner" scheme in the next section is such a techni@ue.
'4.3.2.2 The “relay-runner" scheme _ i

In order to prevent illegal eﬁecution, we can authenticate all entries
into the system by means of passwords, etc. [Gar 70). If the intruder enters the '
system masquerading as a legal user, the "relay-runner" scheme can be used
effectively to neutralize his threats. The "relay-runner" scheme provides ;
protection against illegal execution of the code by an infiltrator as well as
prohibits illegal jumps and modifications that may be due to software errors or

hardware malfunctions in the system. This is achieved by detecting all ;11egal

——

63

changes in the execution sequence.

Consider the case of a simple assenbly language program with no branchings and
no loops. This piece of code can be partitioned into blocks separated by relay
checkpoints. These checkpoints are conditional statements to test 1f the program
flow carries the valid, up-to-date relay code. The user, upon legal entry into the

' system, enters the program and executes from the first executable gtatement, Here

it stores the first of a series of relay codes (baton) in some address, say, RYCl.
Then the normal program begins execution. When program execution reaches the first
relay checkpoint, the instruction compares the content at RYCl with-a preset code
number. If the codes agree, the content of RYC1l is changed to some other number,
and 2 new relay code is stored in location RYC2. If the codes do not agree during
the test at the first relay checkpoint, a trap routine is invoked and execution is '
discontinued. This process is carried on at suitable intervals throughout the
program, with the "baton" carried along. This is analogous to a relay-race, where
the next relay-runner will not continue unless he receives the "baton" from the
previous runner. This prevents the programmer from modifying the execution
sequence. If he jumps ahead by one step the relay-point is not yet activated and
so the program will not continue its execution. If the programmer backtracks in his
execution, the old "baton" value is already lost and the relay-point check will also

~ discontinue its execution. The "relay-rummer" protocol also prevents illegal -entry-

into the program for unauthorized code execution since the intruder will not possess
the correct "baton", which is generated in real-time. The use of "relay-runner"
checks therefore reduces the legal entry points into one, which can be. tightly
ﬁfotected. Depeﬁding on how closely the relay checkpoints are installed, a varying.
degree of security is obtained. Closely installed checkpoints give tighter secu-
rity., Fig. 25a gives a graphical representation of the Relay Runner concept,

To visualize how the program of Figure 25ais protected from illegal execution,
assume the legal user has just executed the instruction p3 in Figure 25b and is in

- waiting state because of some resource request. An infiltrator enters this piece

of codes and starts executing the instruction at Pl. He will be successful until
program control reaches RP2, at which point the content of RYC2 is compared with 15.

Since the legal user has executed the instruction at CP21, RYC2 now contains 200.
|

Therefore, the test fails and the trap routine will be invoked.

1f branching exists in the original program, care must be taken in the place—'
ment of relay codes and checkpoints such that every possible path of program flow
is covered, and that the setting and resetting of relay codes do not interfere. 1In
general, the programmer should organize his program so that all branches should
emerge from one common exit. In this case, the relay checkpoint can be placed right

at the exit point. Figure 26 shows one way of achieving this.

2/

i

. single-exit fashion. A tagging strategy may also be used to indicate the specific

' -
64 3
Start —————[R¥CTE -Entrx;-——) RYCIe5 .] .
& cones CODES
First . RP1 RYC1=5?
Re'la{ - YC1=57 O TRAP e RYC1e<100
Checkpoint :)
Yes cP2 RYC2¢-15
YC1<100 3
_RYC2¢-15 CODES
o Pl :
Second CODES RP2 RYC2=157
Relay Yc2=15>—NoTrap cp2l RYC2+-200
Checkpoint Yes cpP22 RYC3¢155
RYC2+«200 . E
RYC3¢155 ' CODES
',L _RP3 RYC3=1557?
’ cP31 RYC3¢89
CP32 RYC4 e 756
p3 :

Figure 25a A Partial Flowchart for
a program with the Relay
Runner scheme implemented.

If loops exist in the program, relay chéckpoints may be placed right before
and after the loops if they are small. But if much input/output is done within

: :

Figure 25b Existence of Critical
Points within the
Protected Program.

the loop, the programmer may wish to put checkpoints inside the loop as well.

4s advisable, in most cases, to organize the loops and branches in a single-entry/

Reset RYC
Conditional Statemeg}o

Relay checkpoint

Yes

Figure 26 Configuration to handle Branching inside Program.

" Some programs using this technique were run on a CDC 6400 system with COMPASS
support. The objective is to obtain some overhead figures for various block sizes

and sub-block sizes. The structure of the actual program used bears a close

resemblance to the one described in Figure 27 [Ng 73].

With a mean program lenﬁth of 80000 COMPASS instructions, run-time overhead

——————— —— e

2L

- paths traversed so that the proper relay codes are addressed at the common checkpoints.

65

figures are obtained for programs with block sizes up to 5000. The results are
summed up by the graphs of Figure 28. ’

Start ————1 KODE(5)<—123
IX]&9

Instruction

L IXi<]X1-4 J

7
| nlnstiuctions]

L IX1<-1X1+20)

R
{ n Instructions | L

| IX1<=1X1;20 J

KODE (3)<—KODE(5)~26
. IX1—=1X1-19
v
Figure.27) A refined relay-runr'xer implementation using indexing !
R)
Block size =5, =10, no ir’\dexing,
100 [° _
. .
Block size = 15
Block size = 20 :
!
10 F Block size = 150 ,
' = 300 |
o
+ o .
2 '
$e
g
= B,:f_c-l-(-jlzﬁf 1000
o i
& 5 = 2000
e ! —
& Block size = 5000
Fx)
5
2.
(3] !
o 0‘] i 1 T L !
1 10 100 . 1000 '

Figure 28 Run-time overheads for some simulation runs

For sizes of n ranging from 3 to 1000, the run-time overhead varies from 557
to 0.89%. Since these are average figures, the user has the freedom to protect the
critical parts of his codes with a small block size. ' :

While overhead figures of 25% or 50% may sound high, typical programs do not

.

| smaller. Therefore, the Relay Runner scheme is a valuable tool for controlling

66

have large critical areas, so that large block sizes can be tolerated. Note that

overheads between 1% and 10% can be achieved by using block sizes of 2000 and

illegal executions due to unwarranted intrustions.or unpredicted errors in real
time programs. "

The above discussions and schemes are equally applicable to protecting pure
ptdcedures and shared codes provided that users have their own data storage.
4.3.2.3 Integrity checks .

Even with all these safeguards implemented, there is still no guarantee

that the system is absolutely secure. A real subversion is usually caused by a
penetration that has not.been detected. The execution of a program that has been
illegally modified can be disastrous. It is desirable therefore to be able to
check the integrity of the system perlodically or just before critical programs are
executed. In real-time systems, the detection of damage is very important. In
many cases, we would, rather stop a process than allow a wrong operation to be
performed since many of the results are inevocable.

To ensure that the code 'to be executed is not illegally modified, one could

validate the code just before execution. A simple scheme for this will be to

develop a check sum of the contents of the code to be executed and compare it

against the correct check sum that is stored at a secure place. If the computed

" check sum agrees, the sub-program 1s allowed to be executed. It is important to

» modifications are made during execution..

recompute the check sum for validation:of the sub-ptogram if some authorized

The integrity of the hardware of the system can be checked by periodie
diagnosis. The design of systems which can tolerate hardware faults has been :
investigated intensively. ([Ram 74a). However, in systems employing stored progrém
control, software problems can also destroy the integrity of the system, and then
the user progfams. Software errors can come from residual design errors, incorrect
maintenance, o;}intrusions from external sources. In order to protect the
integrity of the system for continuous operation, different kin&s of software
defenses can be used. These defenses are highly specialized for the enviromment

- 4dn which they are used. . Seme techniques used by the ESS system of the Bell System

' interpreted as a software error. In-line program checks can be provided by the

are presented here. [Con 72]. They include circuits that monitor program operatioh,
in-line program checks, and audits. Circuits can be designed to monitor the proper -
sequence of operations of the program and trigger recovery action if an error is
detected. An example is the usc of an external "watchdog" timer which have to be
reset periodically by program action. A failure to reset the timer will be

program itself to check for "impossible'conditions or abnormal states of the ’T.
program. These will also include defensive programming techniques discussed in the

last section.

n

67

Audits are a collection of independent check programs which detect and

correct errors in memory content. These techniques are especially necessary for

PRI

systems employing stored program control, such as the ESS. Audits cam use the :
!

! redundancy in the software structure to perform logical checks to locate errors and

inconsistencies. Sometimes the redundancy is inherent in the data structure, such

as a linked list. In other cases, it may be necessary to expand the data structute
for audit programs. In these systems, audits have to be run periodically and ;
frequently to ensure the integrity of the memory content. They are also run during
system reinitialization during recovery from an error. Audit programs can be used :
to check that a linked list structure is intact or to verify the integrity of data ?
constants and parameters stored in a writable memory by comsistency checks with a :
less volatile backup record. Integrity checks can be performed by comparing some

redundant data stored in different parts of the system to detect state discrepancieo

| of facilities involved. Timing checks can also be used to ensure that no facility '

is being used beyond its maximum allowed time-limit. This prevents the loss of i

facilities due to an error. Audits are integrated into the system software. They
can be run in an interleaved fashion with normal system operations. After detection
of errors by oudit programs, a recovery procedure follows. Backup information can ‘
be used to.return the software to a "safe" state. If the error is serious, a

system reinitialization may be performed.

4.3.3 Safeguards against passive threats .
Passive threats consist of different means to obtain information illegally,

including wiretapping, unauthorized access to data in removable files, etc. The
effective countermeasure against these threats is encryption. Encryption is a

form of privacy transformations, which takes data in its natural form and transforms
it by scrambling so that it is hopefully unrecognizable by unauthorized people.

: Therefore even if a person is able to obtain the information, it will be meaningless

to him.
An encryption system can be visualized in Figure 29, ;
Source T(M,K) Cipher text '(M K)
> Transmittin > Rece1v1n De-
Text M M Dev1ce(C1pheg) TMK) “|vic i M
T TK

Key Source Key Source

Figure 29 An encryption scheme

The operation done on the source text M depends on an input paraﬁeter K,
called the "key". This key is essential for us to perform the decipher process.
Only authorized people possess this key. Some aimple encryption procedure includes.

substitution of one character strings for another, algebraic addition of key '

characters to message characters to form encoded messages, Or rearrangement of the

4

Kd
by

B e e

68) ‘ s,

~ordering of characters in a word. For different encryption schemes , the reader is
referred to the famous book "The Codebreakers". [Kah 67]. ’
i4.3.4 Conclusion) ' i
’ We can see that the reliable operation of a large program depends on the
Iintegrity of the program, which in turn hinges on the integrity of the systen. A
fuumber of security measures to protect the integrity and privacy of the system are
!discussed here. These techniques can be applied to protect the system against

; imple hardware and software errors internal to the system as well as intrusions

+

and threats from outside the system. However, a user must always bear in mind that

1

these security measures do impose a cost on the user, in the form of longer :

execution time, larger memory storage, hardware redundancy, software redundancy and
inconvenience. The extensiveness to which‘these techniques should be applied depends '
on the sensitivity of the information to be protected and the penalty-cost of a ;
Isuccessful intrusion. A cost-effectiveness analysis of each of these techniques is
urgently needed in the near future. Unfortunately, however, many of these techniques
‘afe tailored to certain specific environments. It is very difficult to generalize
many of these techniques for analysis. |
After the safeguards have been implemented, it is desirable for us to be able ‘
to evaluate the effectiveness of the protection that they provide to the system and
different means to improve the protection economically. This can be achieved by

measurement and modelling. Several models have been proposed, including Weissman's
'ADEPT-50 Model [Wei 69], Turn's Model [Tur 72], etc. Although these models are far
 from perfect, they represent some significant efforts towards the performance
evaluation of security systems. Of course, all these safeguards would be wasted 1f
we do hot have a good administrative and physical security. The techniques required

to achieve this goal are discussed in the book by Van Tassel [Van 72]. !

5. Conclusion

From the discussion in the previous sections, we have surveyed different prob-
lems of developing large reliable computer programs and different techhiques to
improve the reliability of a program. @All of these techniques have their advantages
and their weakness. Fortunately these techniques complement each other and a com-
bination of these techniques can enable us to produce a piece of reasonably reliable
- medium-sized software. For really large computer programs,‘avlot of work still needé
:to be done, as indicated throughout the text.
We are proposing the following scbeme as a reasonable approach to developing

reliable large-scale softwa;e:
(1) Specifications of the system. . P
(2) Design of the structure, decomposition, and modularization of the systenm,
with the specification of each module. '
(3) Coding of the system in a suitable programming language. o
(4) Debugging, integration and check out of the system.

69

(5) Software evaluation and partial validation with the help of automated
tools. '
(6) Software fail-safe fail-secure instrumentation.
(7) Validation of protection and security measures.
' The specification of the ptogram‘has to be concise and precise, providing the
implementor all the informations that he needs in order to complete the program. A
uniform specification language should be used for modules at different levels. The
language should be sufficiently formal and yet descriptive, allowing a programmer to'
understand all the exterior properties of the module easily. Some formal languages
:for the specification of software modules have been proposed, such as by Parnas
;[Par 72}. However, the usefulness and effectiveness of specification using a formal
. '1anguage still need to be evaluated since not enough experience has been reported.
The investigation of the relationships between the external properties and the inter-
nal attributes of a program is also needed. ’

The design of the program involves the decomposition of the program into smaller
modules and the organization of these modules. Some design methodologies have already
‘been discussed in section 3.1.2. Liskov has also proposed some guidelines for the
‘design of reliable software systems [Lis 72b]. Abstraction is a very useful concept.
gto simplify ' and order the compexigy of the system. The abstraction specifies what ie
‘being done without the details of how it is done. The identification of abstractioms,
.however, depends.very much on the desigoer and the concept that he wants to support
‘and clarify. In some systems, abstractions of resources are used to structure the ;
;system. In systems for supporting a data base, the characteristics of data structure
iuny form good abstractions. In order to make the modules for different levels of
iahst;actions to be ldéically'independent, the combined activity of the functions in e.
;level of abstraction should only support that abstraction and nothing else. [Lis 72b]
’The system should be designed for maintainability and adaptability. The levels of
'absttactions should be arranged in a heirarchy fashion (as discussed in section
3.1.2.) and data used by 2 different levels should be passed as explicit arguments
only. The distribution of system resources in this hierarchy should also be deter-
mined before implementation starts. The design of the program is still an art
.although much discipline have already been introduced by the concept of structured

‘:programming. Since the development of the program depends very critically on the
:initial design, much research work is urgently needed for methodologies to evaluate
‘the design and propose improvements before the actual implementation of the program
‘takes place. .

F The implementation of the system should be carried out with discipline The
!philosophies of structured programming should be enforced. The program should be
rwritten for readability and understandability. Wherever the restrictions of struc- -
.tuted progt?mming (as presented by Dijkstra and Mills) seriously affect the produc-

'tivity of the programmer and the efficiency of the program module, these restrictions

70

‘should be relaxed at a local level, i.e., the program module should behave like a
structured program when used externally although it may be "unstructured" to a certain
‘extent 1ntérnally. Attributes for a structured programming language have been dis-
cussed in sgccion 3.1.1.3. Some equally important areas of ‘research may include

"structure documentation" and "structured’™ techniques for an informal proof of

correctness of each module.
The debugging of the program should be carried out in a bottom-up fashion, start-

ing from the individual modules. The compiler can locate syntax errors as well as
structural flows. A compiler with powerful diagnostics should be used at this stage!
rather than one with high efficiency. An optimizing compiler may be.used to generate:
efficient code after the debugging stage. (This optimizing compiler, of course, has
to be very reliable.) The development of verifying compiler for potential structured
programming languages are also very valuable, since it will also help us to design
such languages. Assertion languages will also enable us to establish our confidence‘
on the program by an informal proof. '
When the modules are integrated together, automated evaluation and partial

validation systems can be used effectively. S;nce the modules are written to be
logically independent, the number of relevant test cases for modules in 2 levels of

abstraction is the sum of the relevant test cases for each level, not the product.
The testing of combinations of modules requires only the validation of the interface

,(1nput and output-parameters) of the modules since this is the only interaction
‘between modules. There are no complicated interaction in control or implicitly shared
ldata because the program is written with structured programming. Therefore, we can
’see how design can simplify the testing and check-out of the program. The automated
|evalvation and partial validation systems also will build up a maintenance data base
so that modification of the program is very easy. Automated generation of test inputs

is still far from satisfactory at present, although computerized assistance is very
helpful for the programmer's synthesis of test data. When an error is discovered and
corrected, the AEVS can also help us to avoid introducing undesirable side-effects to
other parts of the program. Different monitors can be introduced into the system

to collect program behavior statistics and provide run-time analysis of the program.
This piece'of self-metric software may also enable us to quantify some reliability

;measures of the system. The development of a useful reliability model for software

development 1s urgently needed. |

i After all this careful development aﬁd.extensive validation, the program should
be quite reliable. However, for some real-time systems, such low error-rate still
?cannét be tolerated. Software fail-soft instrumentation can then be applied to detect
'and contain sofﬁware errors in real-time using software defenses. Hopefully, unde-
sirable actions due to software errors can be avoided and damages ninimized when such
errors are detected as early as possible. Fail-secure instrumentation are designed
‘to protect the integrity and secutity of the information in the system against active
intrusions or system software and havdware errors. These instrumecntations depend

K
.

N . |-

71

very much on the operational environment of the system. Therefore, these protection

.and security measures have to be validated in the appropriate environment.
i "o .

Appendix A, Techniques for the manipulation of the graph mbdel

{ For any model, the essential requirement is that the manipulation techniques
?muht be amenable to automation. Various techniques for manipulating the graph
Enodel are available, The most representative approach is based on the use of 8
connectivity matrix. The graph is represented by a connectivity matrix C in
which one row and one column correspond to each node and cij = 1 4if and only if
there is a directed arc from node i to node j in the graph. Fig. A.l is the
connectivity matrix of the program graph o§ Fig. 6.

[
N
w
&S
v
[+,

VONOUNSWN
ocoocooccoo00O
coocoOoROOK
cococoococoroO
cocoocoocorHOoO
cocoocoroOO

- ococo0cOoOMmOOOCO
coorHOCOOOO w

‘o0 O0O0OHOOOCO ®
OrHHOOCOOOO ©

Fig. A.1 The connectivity matrix of the graph of Fig. 6

lon the basis of this representation, various manipulations can be performed in a
fconvenient way. The suitability of this machine representation mainly comes from
!1ts structural resemblance to the storage structure of mest computers. Some of the
ibasic techniques are menfioned here. A node j is said to be reachable from node i
}if there is at least one directed path from node i to node j. All nodes reachable
from each node can be easily found. A reachability matrix R 1s’ a matrix in which
‘one row and one column correspond to each nede and- Rij = 1 1f and only if node j

is reachable from node i, It was shown in [Pro 59] that R = 1lim (C+I) where I
) Nooo
is an unit matrix, A more efficient algorithm was developed in [Ram 66]. A column

j in R represents all nodes which can reach to j. By using R, all MSC eub-
!graphs can be simply ddentified as follows, First a new matrix M = Rf\R is

. |obtained. The number of MSC subgraphs is given by the number of distinct nonzero

}row vectors of M, Moreover, if M # 0, then the nodes of the MSC subgraph

correspond to the nonzero columns of Mi" In Fig, A.2, M # 0 and the nonzero
"columns of Mz, are (2,3,5). So, (2,3,5) are all nodes in that MSC subgraph.

[Pro 59] Prosser, R., "Applications of Boolean Matrices to the Analysis of Flow
Diagrams" Proc. Eastern Joint Comp. Conf. 1959,

72

R=011111111 M= Rf\Rt =000000000
011111111 011100000
: 011111111 ’ 011100000
! 011111111 011100000
- 000001111) 000000000
000000111 : 000000000
000000001 000000000
{ ’ 000000001 000000000
| 000000000 000000000

I Fig., A.2 R and M matrices of the program graph of Fig., 6

1

‘Other manipulation techniques such as opening the loop, etc., are available and the
] - .

.details are referred to in [Ram 66, 67]. All these tools are the background for

i the implementation of automated validation discussed in section 2.2.

N

REFERENCES
'[e\lt 69]
[Ash 7]
[Bak 72a]
:[s'a‘k 72b)
i

Tvak 73]
|

{Bas 72)
Ben 73]
IBoe)
imoe 73]
im'h 6]
‘[Bro 72a)
-iIBréa 725)]
'{tha 73]
|

i[{@he 74)
|

.![t'la 73]
[Con 72]
iy %3]
|

[ij 68a)
_;[Dij 68b]
([D4j 69a]
|

DI 69b)
iy 3]

DATAMATION, May 1973. i

73

Alexander, T. "Computers Can't Solve Everything," Fortune, May 1?69.

Ashcropt, E and Manpa, Z. "The Translation of 'go to' Programs to
"while' Programs," Stanford AI Memo AIM-138, STAN-CS-71-188, January 1971.

Baker, F. T., "Chief Programmér Team Management of Production Program-

wing," IBM Syst. J., 1972, pp. 56 - 73. |
Baker, F. T., "System Quality Through Structured Programming,' Fall
Joint Conmputer Conference, 1972, pp. 339 - 343. |

Baker, F. T. and Mills, H. D., "Chief Programmer Teams," Datamation, ‘
Dezember 1973, pp. 58 - 61.

Baskin, H. B., Borgerson, B. R. and Roberts, R., "PRIME - A Modular
Architecture for Terminal-Oriented Systems," Spring Joint Comp. Conf,,
1972, pp. 431 - 437. |

Benson, J. B., "Structured Programming Techniques," Record of the 1973
JEEE Symposium on Computer Software Reliability, May 1973, pp. l43 - 147.

Boehm, B. W., "Some Information Processing Implications of Air Force
Space Missions: 1970-1980," Astronautics and Aeronautics, January 1971.

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"

Bohm, C. and Jacopini, G., "Flow Diagrams, Turing Machines and Languageﬁl
with Only Two Formation Rules," Comm of ACM, May 1966, pp. 366-371.

Brown, J. R. and Hoffman, R. H., "Evaluating the Effectiveness of Soft-

- ware Verification — Practical Experience with an Automated Tool," "
AFIPS FJCC, 1972. .

Brown, J. R. and Hoffman, R. H., "Autom&ting Software Development: A
Survey of Techniques and Automated Tools," TRW Tech. Rep., May 1972.

Thang, M. Y., "Topics in Designing Maintainable Real-Time Systems,"
Proceeding of the 2nd Texas Conference on Computing Systems, Nov. 1973.

Cheimg, R. C., Kim, K. H., Ramamoorthy, C. V., and Reddi, S. S.,
"Auromated Generarion of Self-Metric Software," 7th Hawaii International
Conference on Systems Sciences, January 1974.

Tlark, R. L., ™A Linguistic Contribution to GOTO-less Programming,"
DATAMATION, Deccmber 1973, pp. 62 - 63.

Commet, J. R., Pasternak, E. J., and Wagner, B. D., "Software Defenses
in Real-Time Control Systems,' Digest of Papers of the 1972 Internmational
Symposium on Fault-Tolerant Computing, June 1972, pp. 94-99.

Dijkstra, E. W., "Programming Considered as a Human Activity," Information
Processing 65, W. A. Kalenick, (ed.). Proc. of IFIP Congress 65, VI,
Spartan Books, Inc., Washington, D.C., 1965, s

Dijkstra, E. W., "GO TO Statement Considered Harmful," Comm. of ACM,
March 1968, pp. 147 — 148.

Dijkstra, E. W., "The Structure of the "THE" - Multiprogramming System,"
Comm. ACM, 1968, pp. 341 - 346. .

Dijkstra, E. W., "Structured Programming,'" Software Engineering Techniques
Report on a Conference sponsored by the NATO Science Committee Rome, ~
Jtaly, J.N. Buxton and B. Randell (eds), 1969, pp. 84 - 88. !

Dijkstra, E. W. Notes on Structured Programming, Teshnische Hogeschool, .
Findhoven, Netherlands, August, 1969,

Ponaldson, J. R., "Structured Programming,' DATAMATION, December 1973,
p. 32 ~ 54.

I

=

7i]
2]
nj
73]
67]

70]
63)
68)
70)

85]
73)
n)
m
78]
§7)
'AY

73}

$9)
67]
70a)
70b]

73]

74

Elspas, B., Green, M. W., and Levitt, K.-N., "Software Reliability,"

- Computer, January 1971, pp. 21 - 27.

Elspas, Levitt, Waldinger, and Waksman, "An Assessment of Techniques for
Proving Program Correctmess,” Computing Surveys, June 1972, pp. 97 - 147.

Elmendorf, W. R., "Disciplined Software Testing," Courant Symposium on

Debupping Technique in Large Systems, 1971,

Fabry, R. $., "Dynamic Verification of Operating System Decisions,"

Comm. of ACM, November 1973, pp. 659 - 668.

Floyd, R. W., "Assigning Meanings to programs," Mathematical Aspects of

Computer Science, Vol. 19, 1967, pp. 19 - 32.

Carrison, W. A. and Ramamoorthy, C. V., "Privacy and Security in Data
Bank," Technical Memorandum No. 24, Information Systems Research Lab.,

University of Texas at Austin, 1970.

Goldstine, H. H. and von Neumarn, J., "Planning and Coding Problems for
an Electronic Computer Instrument, Part 2, Vol. 1 - 3," John von Neumann
eollected works, Vol. 5, Pergamon Press, New York, 1963, pp. 80 - 235.

Good; D. I. and London, R. L,, "Interval Arithmetic for the Burroughs
B5500: Four Algol Procedures and Proofs of Their Correctnmess," Computer
Seiences Technical Report No. 26, University of Wisconsin, June 1968.

Good, D. I., "Toward a Man-Machine System for Proving Program Correct-
ness,” Ph.D. Thesis, Dept. of Comp. Sci., Univ. of Wisconsin, Madisonm,

Wisconsin, 1970.

Marary, T., Norman, K. 2. and Cartwright, D., "Structural Models: An
Introduction to the Theory of Directed Graphs," John Wiley & Sons, 1965.

Moffman, L. J.. (ed.), Security and Privacy in Computer Systems, John

Wiley & Soms, 1973.

Ingallo, D., "The Execution Time Profile as a Programming Tool," Courant

Symposium_on Compiler Optimization, 1971.

Itoh, D. and Tzutani, T., "TABEBUG-I, A New Tool for Program Debugging,"

IEEE Symposium on Computer Sqftwarc Reliability, 1973.

< |

Jelinski, 2. and Moranda, P. B.,."Application of a Probability-Based
Model to a Code Reading Experiment,” Record of the 1973 IEEE Symposium
[]

on_Computer Software Reliability, May 1973, pp. 78-81.

Xahn, D., The Codebreakers, MacMillan Co., 1967.

Xelley, R. A., "APLGOL, An Experimental Structured Pro
Janvary 1973, IBM J. Res. Develop., pp. 69-73.

gramming Language,"

Xernighan, B. W. and Plauger, P. J., "Programming Style for Programmers
and Language Designers," Record of the 1973 IEEE Symposium on Computer

Sofrware Reliability, May 1973, pp. 148-154.

.Xing, J. C., "A Program Yerifier," Ph.D. Thesis, Carnegie-Mellon Univ.,?

Pittsburg, Pa., 1969.

King, P. J. H., "Decision Tables," Comput. J., August 1967.

Knuth, D. E. and Floyd, R. W., "Notes on Avoiding 'go to' Statements,"
Computer Science Department, Technical Report No. CS 148, Stanford

Vniversity, January 1970.

.

Knuth, D., "An Empirical Study of FORTRAN Programs,” CS-186, Dept. of -
Computer Science, Stanford Univ., 1970.

Xrause, X. W., Smith, R. W. and Goodwin, M. A., "Optimal Software Test

Planning Through ‘Automated Network Analysis," IEEE Symposium om Computer

SoTtware Reliability, 1973.

[Lin

[Lis

[Lis
[Lis
[Lon
-+ [Mad
[Man
[Man
[Man
[McC

[McC

:[McC

[McC
| [McG

[Mee

[Mi1

[Mi1

Ml
: [Nau
g
1

'[Pai

[Par

72]

71]

72a)
72b]
70]
2
69a]
69b]
1]
62]

63]
67&
73]

'71]

73]

71]

73]

74]
66)
73]
73]

71)

75

Linden, T. A., "A Summary of Progress Toward Proving Program Correctness,"
Fall Joint Computer Conference, 1972, pp. 201-21l.

Liskov, B. H. and Towster, E.,” "The Proof of Correctness Approach to
Reliable Systems," The MITRE Corporation MIR 2073, Bedford, Massachusetts,
1971.]

Liskov, B. H., "The Design of the Venus Operating System," Comm. ACM, .
1972, pp: 144-149 ;
Liskov, B. H., "A Design Methodology for Reliable Software Systems,"

Fall Joint Computer Conference, 1972, pp. 191-199. '

London, R. L., "Bibliography on Proving the Correctness of Computer
Programs,” Machine Intelligence, 1970, pp. 569-580.

Madnick, S. and Alsop, J. W., II, "A Modular Approach to File System
Design," AFIPS Conference Proceedings 34, 1969, pp. 1-13.

Manna, Z., "Properties of Programs and the First-Order Predicate !
Calculus," Journal of ACM, April 1969, pp. 244-255. l

Manna, Z., "The Correctness of Programs," J. of Computer and System
Sciences, May 1969, pp. 119-127. '

Manna, Z.’ and Waldinger, R. J., "Tovards Automatic Program Synthesis,"
Comm. ACM, March 1971, pp. 151-165. .

McCarthy, J., "Towards a Mathematical Science of Computation," Proc
IFIP Cong., 1962, pp- 21-28. o H
‘McCarthy, J., "A Basis for a Mathematical Theory of Computation,”)

" Computer Programming and Formal Systems, N. Holland Publ. Co., Amsterdam,

1963, pp. 33-70.

McCarthy, J. and Painter, J. A., "Correctness of a Compiler for Arith-
metic: Expressions," Mathematical Aspects of Computer Science, Vol. 19,
1967, pp. 33-41. |

McCracken, D. D., "Revolution in Programming - An Overview," DATAMATION

~ December 1973, pp. '50-52.

McGonagle, J. D., A Study of a Software Development Project, James P.
Anderson and Co., September 21, 1971. i

Meeker, R. E. and Ramamoorthy, C. V., "A Study in Software Reliability'
and Evaluation," Tech. Memo No. 39, Electronics Research Center, The
University of Texas at Austin, February 1973. :

Mills, H. D., "Top-Down Programming in Large Systems," Debugging Tech-
nijues in Large Systems, R. Rustin (ed), Prentice Hall, 1971, pp. 41-55.

Mills, H. D., "On the Development of Large Reliable Programs," Record of
the 1973 IEEE Symposium on Computer Software Reliability, May 1973,
PP. 155-158. !

Miller, E. F., Paige, M. R., Benson, J. P., and Wischart, W. R.,
“"Structural Techniques of Program Validation," Proc. COMPCON, 1974.

Naur, P., "Proof of Algorithms by General Snapshots,” BIT, 1966,
PP. - 310-316.

Ng, F., "Run-Time Protection Schemes for User Software," Master Thesis,
University of California, Berkeley, 1973.

Paige, M. R. and Balkovich, E. E., "On Testing Programs," IEEE Symposium
on Computer Software Reliability, 1973. \

Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into
Modules," Technical Report CMU-CS-71~10l, Carnegie-Mellon University,
1971.

.

[Par
[ret
.[Ram
[Ram
[Ram
[Ram
[Ram
[Ram

(Ran

[Ram

{[Ram

i [Ram

[Ran

i[Rus

!fSac

[Tur

;[Van .
[Wel

[Wed

(Wil

[Sho

72]
67]
66]
67]
7la]
71b]
71c])
71d]

73a])
73b]
74a) .

74b)
69)
71)
70]

73]
72)

72]
69]
71]

70]

71}

ey

76)

Parnas, D. L., "A Technique for Software Module Specification with
Examples," Comm. of ACM, May 1972, pp. 330-336.

Petersen, H. E. and Turn, R., ' 'System Implications of Information
Privacy," Spring Joint Comp. Conf., 1967, PP. 291-300, l .

Ramamoorthy, C. v.. “Analysis.of Graphs by Connectivity Considerations,"
JACH, 1966. |

Ramamoorthy, C. V., "A Sttuctural Theory of Machine Diagnosis," AFIPS
SJCC, 1967.

Ramamoorthy, C. V. and Chang, L. C., “System Segmentation for the I
Parallel Diagnosis of Computer,” IEEE TC, March 1971. l

Ramamoorthy, C. V., "Computer Program Models," Symposium on Computers
and Automata, Polytechnic Institute of Brooklyn, April 1971.

!
Ramamoorthy, C. V., "Fault-Tolerant Computing: An Introduction and !
Overview," IEEE TC, November 1971. ,

8

Ramamoorthy, C. V. and Mayeda, W., “Computer Diagnosis Using the Blockin
Gate Approach," IEEE TC, November 1971.

Ramamoorthy, C. V., "Error Control, Protection and Security of Real Time
Computer Programs," Invited paper at the InternationalComputer Conference
in Taiwan, August 1973. l

Ramamoorthy, C. V., Meeker, R. E., and Turner, J., "Design and Construc-
tion of An Automated Software Evaluation System," IEEE Symposium ‘on
Computer Software Reliability, 1973. |

Ramamoorthy, C. V..and Cheung, R. C., "Design of Fault-Toletant Computing
Systems," to be published in Applied Computation Theory (ed. by R. Yeh),
Prentice ‘Hall, 1974.

Ramamoorthy, C. V., Kim, K. H., and Chen, W. T., "The Blocking Gate
Approach to Software Testing,” in preparation.

Randel, B., "Towards a Methodology of Computer Systems Design," Software
Engineering, January 1969, pp. 204-208. ,

Rustin, R. (ed), Debugging Techniques in Large Systems. Courant
Symposium, 1971.

Sackman, H., Man—Computer Problem Solving, Auerback Publishers, Inc.,
1970. ,

Shooman, M. L., "Operational Testing and Software Reliability Estima-
tion During Program Development," Record of the 1973 IEEE Symposium on
Computer Software Reliability, May 1973, pp. 51-57.

Turn, R. and Shapiro, N., "Privacy and Security in Databank Systems: .
Measures of Effectiveness, Costs, and Protector - Intruder Interactions,"
RAND Corporation Memo P-4871, July 1972. '

Van Tassel, D., Computer Security Management, Prentice Hall, 1972.

Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing System,"
Fall Joint Comp. Conf., 1969.

Weinberg, G. M., The Psychology of Computer Programming, New York, Van .
Nostrand Reinhold, 1971. .

Williman, A. O. and C. O'Donnell, "Through the Central 'Multiprocessor'
Avionics Enters the Computer Era," Astronautics and Aeronautics, July .
1970.

Wulf, W. A., Russell, D. B., and Habermann, A. N., "BLISS: A Language
for Systems Programming," Comm. of ACM, December 1971, pp. 780-790. .

|
-
|

