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1. Introduction

1.1 Cost of software

It was not too long ago that programming was generally considered as an art.
I In these past few years, .the emergence of the term 'software engineering' indicated
ja major change of public opinion. Programming is not only considered as a science
Ibut also as a branth of engineering where disciplines can be enforced. This is due
j partly to more understanding of the 'art' of programming and partly to the strong
• pressure of economics. There was a time when hardware was king and every effort
!possible was spent in improving the utilization of the hardware of the computer.
; However, the rapidly decreasing cost of the computer itself and the continuously

I^^Ising salary of the human programmers have compelled us to focus our attention on
! improving the efficiency of software development. For example, software occupied
Ionly about 25% of the United States Air Force budget for electronic data processing
I in 1960 (75% for hardware) while in 1973 software occupies about 80% of the USAF

budget for EDP. The cost of software is still rising continuously in a linear
; fashion. This trend is expected to continue and the lopsidedness of the software-
I hardware cost ratio is probably characteristic of other organizations too.
! Software has become big business in'the United States. For the United States
IAir Force, an annual expenditure of between $1 billion and $1.5 billion has been
: spent on software for the fiscal year of 1972. This amounted to about 4 or 5% of

the total Air Force budget. [Boe 73) At present, overall software costs in the

United States are probably over $10 billion every year, over 1% of the gross
national product. [Boe 73).

1.2 Problems of software i

Our past experiences with software development have been depressing. Most of
the software development projects are unsuccessful in terms of specification, time
and cost. The final software product delivered is often unresponsive to the actual
needs of the organization it was developed for. The users are promised one thing
but end up with another. In many cases, a significant portion (up to 67%) has to
be rewritten, after the system is delivered, in order to meet the operational needs
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of the users. Delay In delivery is commonplace while gross underestimation of the
cost by a factor of four Is not unusual. For example, the IBM OS/360 was delivered

Ione year behind schedule and was estimated to cost more than 200 million dollars,
;£Ale69].

j Big as these direct costs of software may be, the Indirect costs due to delays
and errors are even greater. Software Is usually on the critical path In the over
all system development so that any delay In software delivery will directly upset
the schedule of the whole system, which Is extremely expensive. Moreover, the
management can do very little to speed up the software development. Adding more

jprogrammers to a late project simply makes It later. To scrimp the testing,
Iintegration, or documentation procedures cost much more In the long run. Generally,
Ithe simple solution adopted Is to eliminate all expandable capabilities, making the
jsystem unappealing to the user. This Is especially true for many real-time systens.
• Not only Is the software always late and expensive, the final delivered product
Iis also very unreliable. Much software are released with thousands of bugs still In
j.it. Bach new release of the OS/360 contains roughly 1000 new software errors,

r * *I[Boe 73], Even after the program Is considered to be thoroughly tested, there were
118 discrepancies found In the software during the 10-day flight of Apollo lA, I
j iBoe 73], This becomes more scary when we consider the complexity of the programs
jfor national defense and air traffic control.

j1.3 Reduction of software cost
i
I1.3.1 Software-oriented system design

I From the discussion above we can"see that cost and reliability are the two
Jmajor causes of concern about software. In many projects, especially real-time '
j systems, the software effort has to wait until the hardware Is procured, or at least
Iuntil the selection Is made. Then the programs are written under the hardware
constraints. This procedure has several disadvantages. The time spent on hardware

: procurement pushes software farther out onto the critical path. Any delay In soft-
delivery will Incur an unaccountable amount of Indirect cost to the whole

system. Besides, the selection of hardware Is made without much consideration to

the software development. A typical study of the extent to which hardware

constraints affect software productivity Is shown In Figure 1. [Wll 70], We can
see that as we approach 85/^ utilization of hardware speed and memory capacity, the
software cost rises abruptly. The hardware constraints may drastically Increase
tiie cost and time for software development. With the decreasing cost of hardware

• and rising cost of software we have to avoid this unnecessary saturation point. We
should make the hardware selection after we understand sufficiently well the

j requirements of software. We would rather acquire a computer with 50% to 100% extra

capacity than to risk having a computer too "small" for our purpose. Whenever hard-

' ware constraints affect software development, the cheaper hardware should be traded

! off to save on the more expensive software. In order to get software off the



critical path, we have to Initiate software development earlier In the system
development cycle. The software should be specified first and a simulator or mlcro-

I programmed computer can be used to support the software development. After we have
j ^tablished a solid basis in software development and have enough knowledge about
^its requirements, we will then give the detailed design specification of the hard-
Iware required to support the software. The hardware can then be built, or selected

from existing systems. In parallel with the software development and testing. In |
this way, the hardware Is more responsive to the need of the software. It will use'
a more up-to-date technology and will probably be cheaper. Besides, hardware

development requires less time than software and significant delays are rare.
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Figure 1. Effect of hardware utilization on software productivity

1.3.2 Increasing software productivity

Let us now look Into methods to Increase the software productivity of each

individual programmer. It Is difficult to specify what Is meant by software

productivity. A common measure Is the number of source level Instructions that a

programmer produces per unit time, e.g., the number of Fortran statements per week.

A study by Sackman [Sac 70] shows that the productivity of Individuals may vary by

factors up to 26:1. The productivity of a programmer can be Improved by many

methods. On-line programming may cause an Improvement of 20% over batch programming

[Sac 70]. The selection of the right programming language, especially the use of

special purpose language, may cause a productivity Improvement of several fold .

There are also tradeoffs between the productivity of the programmer and the

efficiency of the program produced. Other Important factors that affect the

productivity may Include stability of program design, amount of mathematical Ins

tructions, number of subprograms, concurrent hardware development, etc.

1.4 Improvement of program reliability

A careful reader may notice that all the factors discussed so far are Involved

in coding of the program only. Software development can bd roughly divided Into

3 phases: design, coding and -testing. A study [Boe 71] has shown that for large-
scale programs about 36% of software effort Is spent In analysis and design, 19%



In coding and auditing, and 45% in checkout and testing! About half of the effort

Is spent In removing errors made in design and coding of the program. Any

Improvement in the reliability of the program and cost of debugging will therefore

significantly decrease the total software cost. The goals-of reducing cost and

increasing reliability can be achieved simultaneously by minimizing the software

bugs Introduced during the design and coding stages of the program. In order to

Investigate techniques for reliable programming we must first understand the meaning

of software reliability, the characteristics of large programs, and the nature and

behavior of software bugs.

1*4.1 Meaning .of software reliability

Software reliability is a term that every programmer understands while

nobody can give a formal definition. Although very meaningful work has been done

in hardware reliability, the theory cannot be immediately applied to software |
because of the basic differences in behavior and characteristics. In hardware.

i

the reliability of a system is usually defined as the probability that a specified

function will be adequately performed for a specified time by the system. In I
i general. It Is assumed that the hardware system is perfect (100% reliable) to start

'I with and the components deteriorate with time, creating a probability of failure.
I In contrast, the elementary components of software are instructions, whose behavior
i does not change with time. Besides, these components cannot fail. Errors are not

caused by the failure of the elementary components but rather by incorrect

combinations of them. The interactions between these components are much more
i

conplicated than the interconnections of hardware components. The piece of soft

ware is put into operation with many bugs still in it.. There arc no feasible

methods of measuring the nxjunber of bugs in a program. More complicated still, eyen

when ve detect a "software bug" and correct it, we are still not sure that the total

number of bugs left in the system Is decreased by one, since we cannot predict if

I uur correction procedure has any side effects on the other parts of the program.

The correction procedure is not as simple as replacing a faulty hardware component
I • I

with a good one.

Serious effort has been attempted by many people in deriving a quantitative

measure of the 'reliability' of a program. Many reliability models have been

proposed. Shooman [Sho 73] proposed a model using a "software reliability function"

: R(t) as the probability that the system will not fail up to time t. This model is

apparently borrowed from hardware reliability theory. Other people, such as

Jellnskl and Moranda [Jel 73] have formulated similar models. All these attempts

have been less than satisfactory because they completely ignore the differences in

behavior between software and hardware. They failed to establish connections

between the parameters of the models and actual software properties. The

< applicability of such models is doubtful.

{ Here, -we will npt attempt to give any formal definition of the reliability



of a program. Instead, we will treat software reliability as a qualitative measure
and discuss different factors which will affect the quality of a program from a
reliability point of view. We will say that an error Is committed If, given the ^

' Input value and the specifications of the computation to be performed by the program,
the output value is either Incorrect or Indefinitely delayed. j

j The reliability of a piece of software may be evaluated from two points of j
! view. We can rate the reliability of a program by the "number" of software bugs .
1. inherent In the program. I.e., the number of mistakes made during the design and •
Iimplementation of the program. Reliability Is therefore an Inherent property of ^
jthe piece of software product and Is subject to assessment by an analysis of the |
; program. However, software bugs, like software reliability. Is not easily subject
i to quantitative evaluation. It Is not clear what Is meant by the "number of soft- ^
jware bugs" In a program or how to measure It. It has been suggested that the rate ,
• at which software errors are detected can be used as a projection of the number of ,
i software bugs still resident In the program. The accuracy and validity of such a .
1projection Is still questionable. Moreover, even If we were able to measure the
jnumber of bugs In aprogram, there Is still no convenient way for us to normalize .

such a measure so that it can be used as a comparative parameter of the reliability
I of different programs.
' We may also treat the reliability of a program from the viewpoint of the j
j quality of service it gives to auser. To a user, the reliability of a program Is
! evaluated by the correctness of the output that he receives. The reliability of a
!program can therefore be defined as the probability that a run of the program will
i give the desired output with avalid set of Input data. Since It Is the process

controlled by the program that performs the required computations, this definition
really measures the reliability of the process rather than the program. Since the
sequence of codes executed (the process created) Is heavily dependent on the values

' of the Input parameters, the probability of obtaining the correct result will
depend on the Input data selected. Therefore, the reliability of the program should

' be a weighted function according to the distribution of the Input data (the process
created) of the given user environment. It depends on the user environment. This

' seems to be a more reasonable evaluation of the reliability of the program because
I there may be a part of the program that Is full of bugs but rarely used. These
i software bugs will not affect the operation of most users and are therefore harmless.
I This definition of reliability is related to the probability that a software bug Is
! activated by a set of inputs. As an extension, we should also take Into account the

crlticallty and penalty-cost of the software error. Asoftware bug In the missile
! firing procedure of a defense missile system may make the whole program unacceptably
I unreliable, even if the rest of the program is error-free. j
' The user-viewpoint definition of software reUabllity has other drawbacks.
! The reliability is not an inherent property of the program. The Incorrect !



functioning of a program may be due to some program Independent errors* Even if

the program were perfectly coded, there may be mistakes due to the key-punch

; operator, the compiler and assembler, and the operating system. Errors may be

Icaused by the Incompatibility of the program and the computer hardware. More
, resources may be requested than the computer can supply. Bugs can occur due to '

truncation or Imprecision In the calculation by the hardware. These errors are

extremely difficult to detect since they only arise with the "right combination"

of the variables. Other hardware malfunctions. Including transient errors and I

data-^sensltlve faults, will also give us the wrong result. Input->output oriented

«n:ors are not uncommon since many devices have different Idlosyncrocles. Errors

can also be caused by parallel and asynchronous operations. In multiprocessing

systems, typical errors may Include resource deadlocks, storage encroachments,

timing and scheduling anomalies. These program Independent errors are particularly,

serious to real-time programs and should be checked before the program Is put Into

operation. If we desire a reliable system, we have to take Into account the '
operating environment of the program besides the reliability of the program It

self. However, from now on, we will only restrict ourselves to program dependent

errors and discuss different'techniques to minimize these errors, leading to a more

reliable program.

1.4.1 Characteristics of large programs

Large programs (or programming systems), as referred to here, are character

ized by complex structure and many Instructions. Due to the size of the program.

It Is usually developed by a large number of programmers, sometimes In different
i

locations. There will be a large number of program components with complicated

interactions. It Is very difficult for a person to have a good understanding of ^
the whole system. A large program id.ll contain a significant number of possible

-flow paths so that exhaustive testing Is unfeasible. For this reason, such programs

are not'expected to be completely error free. The number and critical nature of

errors or possible errors In the software product will determine Its reliability.

There are a number of differences between small and large programming systems, such

as the methods of Implementation, phase structure, .expansion of the system, and

tolerance to user abuse. These will affect the extent and effectiveness of

different validation techniques. j
Since the small system has limited authorship, the implementation techniques

are homogeneous, i.e., similar methods are used to solve a given type of problem.

Consequently, If a given method Is validated for one occurrence. It Is also validated
for other occurrences. By contrast, large systems are developed by large numbers of

programmers, each having his own way of thinking. Problems in communication may

prevent them from arriving at a common optimal solution for a problem. Instead,
various Implementation techniques are used for the same piurpose, requiring additional

validation procedures. I



The simple data structure of small systems is contrasted with the complex

structure of data bases employed by large systems* The former allows an intuitive

understanding of the use of data while the latter obscures the meaning and use of

variable names and provides more opportunities for misuse of data. It Is also very

difficult to provide an effective data structure for a data base used by different

programmers In a variety of ways.

The phase structure of a system Is another Important aspect In validation.

Small systems tend to have Independent phases with limited Interaction. Consequent"
ly it may be possible to exercise all possible paths and check interactions by j
examining the data dependencies of each phase. Large systems, however, will contain
complex interactions among functional tasks which are coordinated by a supervisory
system. Dependencies are expressed in the supervisory calling sequence. For these
systems a thorough'investigation of all paths is not feasible and more sophisticated
techniques are required to validate interfaces. j

The expansion ai^d modification of a system will require re-evaluation and ;
validation. For small systems this task is relatively simple since the effects of
changes are limited and easily traced. Modifications to large systems may have ^
more far reaching effects and their acceptance by all other parts of the system

I

must be certified. !

The detection and correction of operational errors depends on the system's
• 1

tolerance to user abuse. Small systems are employed in a limited user community.

This implies adequate communication between developer and users to specify program
xequirements and locate faults. On the other hand, large systems often have a
vide community of users and communication is hindered. The detection of faults is
more difficult and subtle faults may be propagated through the system. The

complexity of the system inhibits understanding by the user. I
The problems associated with large programming systems are largely the result

of faulty integration of system components, due to communication problems among
programmers and lack of understanding of the whole program. The segmentation and
interaction between components of large systems presents several types of problems,
including data integrity, interface problems, and sequencing problems. In addition
to these considerations, there are also errors common to smaller programs such as

semantic errors, unreachable code, logic errors, etc. The nature of errors will be
investigated in the next section. j
1.4,2 Nature of software bugs in large programs !

In order to gain some insight into the nature of software bugs, let us
briefly review the typical steps of the development of a large software system:

1) Specifications of the requirements of the system.

2) Design of the overall structure and decomposition of the program in flow
chart form and the descriptions of the different software modules.

3) Coding of each software modules in some suitable programming language.



usually a "high level" language. I
4) Debugging of each software modules with testing sample data.

5) Integration of the tested software modules and debugging of the whole system.

6) Check out of the whole system for delivery. j
I In all the above steps there are sources of error. The program specifications

Isay be Incomplete, leading to ambiguities or software bugs. The designer may have
I failed to understand fully the problem or have conceived a faulty algorithm. He may

have overlooked special cases of the Input data. During the coding of the program,

there are even more errors. Errors may arise from Incorrect semantics and language

j constructs, such as the misspelling of variables and labels. Incorrect use of mlxed-
I

mode operations, etc. Logic errors such as "off by 1" In Indexing or shifting are

not unusual. Array over-write and wrong Initialization are other common errors. '
The use of certain statement constructs such as computed GO TO statements In

Fortran are error-prone. This type of statement depends on the value of a variable

for determination of transfer locations^ A bug would cause the transfer to nowhere

or to an unexpected part of the program. Structural errors of the program are also

common, such as Incorrect flow of control, unreachable program segments, no exit .

path from a segment, etc. An additional area of concern Is that of loop termination.
I

A program loop may be executed an Incorrect number of times or even Indefinitely,

I depending on combinations of variable values In conditional branches and limits of
I

I explicitly defined loops.
! Difficult as It may be, these errors can be pretty well controlled with a
i '
little bit of care and patience from the programmer. The real problems usually

! i
; arise from the faulty Integration of the software modules. This Is due to a \

[ development process In which a large number of programmers are Involved. An |
:indlvldual working on a single system component may overlook certain obscure but

possible conditions. The lack of complete and rigorous Interface specifications,
i

coupled with the misunderstanding of the scope or Intent of component operation,

may lead to Improper use or unforeseen side effects. The flow of Information from

one component to another is often the source of Interface errors. For example,

consider the passing of parameters In calling a subroutine. If the number, format,

and type of parameters are not consistent, the subroutine may make unexpected

modifications to the parameters or Improper operation due to the passing of

1 incorrect parameters. In a large program errors can also arise from the Improper
1

sequencing of operations, which Is obscured by the complexity and number of flow

' paths.

( The order of operations for a certain process may be changed when Integrated

{ with other processes. For example, a routine which accesses and transforms data In

! a certain sequence may be disrupted If a second routine alters the same data.

Improper Interface and sequencing may lead to errors In data Integrity. Data
I • * . ,

I integrity refers to the maintenance of proper data In correct locations at the



prescribed time.- Errors include overrunlng array bounds, so tl^at adjacent data

are destroyed, and non-alignment of common data blocks. Equivalences between

! variables of different names may cause the unexpected change In the value of one

variable when the value of Its equivalent Is altered. j
I Therefore, we can see that the most -conanon errors In Implementation can be de

scribed In roughly 5 major categories according to the place where they are found:

1) Interfaces, (2) Sequencing, (3) Data Integrity, (A) Semantics and

language constructs, (5) Structure and well-formation.

These are not Intended to be all—encompassing and there will be some Interaction
! •
j and overlapping,, but most errors are traceable to one (or more) of these problem
I areas.
I

I 1.A.3 Behavior of software bugs In large programs

j In general, the complexity of a system will depend on the number and inter
action of system components, while at the component level, complexity depends on the

number of branches and external references. For a large program, exhaustive testing

Is unfeasible. Therefore such programs always contain residual errors which survive

the design,development and debugging stages. The occurrence of errors in the

Idevelopment of the program may be expected to follow a general pattern as In
I Figure 2.

Initial use will uncover Increasing numbers of errors as the system Is used

i more frequently and to fuller capacity. The correction of major errors will then
i '

result in a gradual decrease in error detection until only Infrequent errors occur.

• The piece of software becomes "operational" when the rate of errors found is less

than a certain number epsilon, which represents the level of tolerance of the user

t to software bugs. It may seem strange to note that the number of errors that are

Idetected and fixed after the system is operational seems to be almost constant.
One may expect a monotonically decreasing number of errors with our debugging

effort, since bugs are constantly detected and removed from the program. However,

In the process of correcting a detected error, the programmer nay unintentionally

introduce some subtle errors in other parts of the program, especially if good

documentation is not available. A study by McGonagle [McG 71] shows that 19% of

the errors of a set of programs resulted from unexpected side effects to changes.

Another reason for the constant error rate is that a large portion of the program

is not tested or exercised. Errors in this large portion of tiie code remain dormant
I

until much later. '

The behavior of systems with several releases may present a pattern similar to

that of Figure 3, since every release represents a major revision of program

specifications and modification on the program code. If tl* residual type of

errors can be detected and corrected before a program is released for use, the

peaks of these curves will be effectively reduced, thus improvise the confidence

level and reliability of tbe program. Tbis is the objective of the evaluation and
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validation process i
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I

J.»5 Conclusion

From our discussion above, we can see that the main fundamental reasons for the

large number of errors are the complex system application, the loose specifications,
together with the large number of programmers. The Inefficiency of *bug removal*
Is due to the lack of software validation and evaluation tools and methodologies.

The reliability of a program can be improved by 2 approaches: the 'analytic'
approach and the 'constructive approach'. The latter Includes methodologies for
developing more reliable software, such as structured programming and software

defense. The former approach Is primarily concerned with testing and validating

the program after It Is written, using techniques such as proving program correct

ness and automated tools. In large real-time programs like those In ballistic mlssle

defense and alr-trafflc control, errors are very disastrous. After the removal of

critical software errors, one still has to worry about the Integrity of the program

at the moment It Is being executed In order to ensure the reliable operation of the
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system. Security measures have to be Implemented to protect the program against
unauthorized tampering of the program. All of these will be discussed in the
following sections.

! 2. The analytic approach to Improve software reliability j
The analytic approach Is primarily concerned with the validation of the j

xellablllty of the program after It Is written. It Is done through an analysis
of the program after It Is coded. Roughly speaking, two approaches can be taken.
The first approach Involves the proof of correctness of the program by some formal
means. A proof of correctness can, of course, establish our confidence In the

• reliability of the program. However, this approach becomes Infeaslble when the
I size of the program is large. The largest program proved by this method has only
I 433 Algol statements. [Goo 68]. The second approach has the more humble goal of
I detecting and removing errors from the program. This Is the more conventional

method of debugging. Although this method can never show that a program Is |
completely reliable. It Is practical for a large program because a lot of the
techniques can be automated. The computerized assistance greatly facilitates the
debugging effort of the programmer. After the major errors are removed, the

i program may be quite reliable.
! 2.1 Proving program correctness

I The process of proving program correctneiss Is an analytic method to show that
; the program, with Inputs satisfying some constraints, will terminate and will ^
I produce outputs which are specified functions of the Inputs, provided that the
! program Is correctly compiled and. executed In a 'perfect computer . By a perfect
! computer', we mean the Utopia of every programmer, with such features as a memory
i large enough for any program, an arithmetic processor with no errors due to round

off, underflow, overflow, etc. Although proving program correctness does not
consider the compatibility of the program and the machine. It does prove the
correctness of the coding of an algorithm In a suitable programming language,
provided that syntactic errors are absent. Hence, It establishes our confidence
in the reliability of the program and reduces the testing cost of the program.
In fact, most of the software errors are caused by the Incorrect coding of the

' program by the programmer. '

1 Rigorously speaking, a proof of correctness should Include a proof of program
I !

termination. In practice, we may separate the verification procedure Into two
steps. The first step is a proof of partial correctness. I.e., that the program
yields the correct answer if it terminates; the second step will be a proof of

! termination of the program. (Some procedures can perform both steps simultaneously.)
' Two approaches can be taken in establishing the correctness of a program, namely,

by an Informal proof, or by a formal proof utilizing a mechanical theorem prover.
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Informal approaches to proving program correctness
The approach towards an Informal proof of program correctness dates back to

the days of Goldstine and Von Neumann [Gol 63], who noted that the program can be
;verified, at least in principle, if the programmer can describe the state of all
, the program variables after each step*,' or possibly after some selected steps, of
Ithe program. An Inconsistency at any point will indicate a programming error. '
IMcCarthy [McC 62, 63, 67], used a function-theoretic approach similar to this. Be
Iassumes that at the start of a computation each cell of the computer memory contains
ja number. An ordered sequence of these numbers is the "state vector" of the
Icomputation. Each computer operation is considered as a transformation of the '
jexisting state vector into another state vector. Therefore the program can be ^
Iconsidered as a function in the state vector space. McCarthy Introduced a formalism
I(conditional forms) for defining programs as recursive functions. Afterwards, the
process of verifying the correctness of the program reduces to a problem in recursive

Ifunction theory and a method (recursion induction') can be used. Essentially, i
, recursion induction is a set of axioms that can transform a recursively defined '
function into an equivalent function. McCarthy and Painter (McC 67] have used this
approach to verify a very simple compiler. j

Naur (Nau 66], generalizes such an approach by considering the state vector as '
a vector of symbolic values rather than numeric values, e.g., X, Y, and 2 Instead
of -1, 2.3, etc. Computer operations are carried out with these symbolic values to
obtain symbolic expressions such as X+ Yand X- Yas new elements in the state
vector. Logical connectives can be introduced to accommodate branches by Indicating
the conditions leading to different symbolic values. The symbolic outputs therefore

jexpress the transformations the program performs on the input variables. This
Iapproach, known as the proof of algorithms by general snapshots (state-vectors^.
Îs impractical since there will be too many symbolic expressions, each of which can
become very complicated even for a small program.

Anatural simplification of the above procedure to make it practical is to trace
only the transformations of important variables and to develop symbolic expressions
for these variables only at strategic locations within the program. Hence, we are
using only a subset of the elements of the state vector and the "state" of these
variables are updated only after some computations, not after each computer
ôperation. Therefore, the sequence of specified state vectors becomes a set of

;"assertions" about the relationships of important variables scattered through the
program. The process of verifying the correctness of the program becomes a proof

• that each assertion is true every time it is reached by the program. In order to
; prove an assertion, we can assume that all previously reached assertions are true.

There is no well-defined procedure to formulate and locate these assertions. In

^ general, there is a tradeoff between the complexity of the assertions and the

number of assertions that we have to use. Floyd [Flo 67] develops the logical
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foundations for the informal-assertion method of proving program correctness, and

subsequently suggests how the process of^verification can be mechanised. Let us

illustrate with an example the process of assigning assertions to a flowchart

!
I
j
!

i

i
I ^ X
I it- A
I ' r 1
I Voy
I i 0 : (X>0) a(Y>0)

q : (X=QY+N) a (N^O)

No

f: (X-QY+R)^^40 ^ R<Y)

Yes

N<-N-Y, Q<-Qfl

Figure 4: Flowchart of the example

The input assertion, denoted by 0, specifies the domains of the input variables
and the relationship between their values.' In this example, the input assertion is^
(X > 0) (Y > 0). The output assertion," denoted by i(», specifies the desired
relationship between the output variables and the input variables, i.e., the desire

result from the program. In this example, the output assertion is

(X " QY + R) A(0 £ R < Y). By examining the program we conjecture that the
assertion- (X ^ QY + N) A(N ^ 0) must be satisfied any time the program control
is at point (^. ^

In order to prove the correctness of the program by the inductive assertion
method, one must show that the truth of the assertion at the beginning of each path
of the program, followed by the execution of the path. Implies the truth of the
assertion at the end of the path. First of all, we must show that 0, together with

the execution of the path (1, 2), implies that q^^ is true, i.e., (X > 0) A(Y > 0),
together with the execution of (N X) A(Q 0) Implies (X = QY + N) A(N ^ 0).
It does not take too much effort for the reader to see that this is true. Therefore

q^^ is satisfied when control first passes to point Next, we must show that if
q^^ is satisfied any time control is at point , then q^^ must also be satisfied
whenever (if at all) control returns to point (^. Therefore we have to show that
qj^, followed by the execution of the path (3, A), implies q^^ Itself, i.e.,

The input assertion, denoted by 0, specifies the domains of the input variables
: and the relationship between their values.' In this example, the input assertion is^

(X > 0) (Y > 0). The output assertion," denoted by i(», specifies the desired
relationship between the output variables and the input variables, i.e., the desire

! result from the program. In this example, the output assertion is '
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(X • QY + N) A (N ^ 0) Is still satisfied after the operation (N N-Y) A(Q Q**l)»
If N 3^ Y. This Is obviously true since X « QY + N can be rewritten as

X • (Q + 1)Y + (N - Y) and (N - Y) ^ 0 since N^ Y. Therefore, Is satisfied no
!matter how many times the loop Is executed. Now we must show that the correct '

1

result Is Indeed produced. We have to show that followed by the execution of

Ithe path (3, 5, 6) implies i//, I.e., (X " QY +N) a (N ^0) a (N <Y), together with
ithe operation R -f- N, Implies that (X » QY + R) A (0 < R < Y). This can be verified

jvery easily. The partial correctness of the program Is therefore validated. The
jquestion of termination of the program can be answered easily by observing that the
Iloop can only be executed a finite number of times since N Is decreased by Y
, every time the loop Is executed and Y > 0. The correctness of the program Is hence

i established.
I

I After the exf^ple, let us describe the Inductive assertion method In a more ^
• systematic way. As presented here, the formulation Is as described by Good. (Goo 70]

• A program Is a.finite ordered set of statements, with the first statement as start
I t ' ' ^
I and the last one as halt. and the remaining statements as null, assignment, or two- !

, way branch statements. An assertion Is a predicate attached to a point In a program.
I

The first assertion Is the Input assertion, denoted by 0. It Is attached to start,

and specifies the domains of the Input variables and the relationship between their

values. The last assertion Is the output assertion, denoted by jJ>, It Is attached ^
to halt, and specifies the desired result from the program. A path Is a sequence

of statements (Sj^., 82, S^) such that It Is a valid execution sequence of the
program.

Let (S^, $2* •••> he a path with assertion q^ attached to and assertion
jq2 attached to S^. The path Is said to be verified If It can be shown that q2 is j
jsatisfied If q^ Is satisfied at the beginning of the path and the statements |
^1' ^2' •••* ^n-1 executed. Averification condition for a path Is the condition

' that must be satisfied In order to verify the path; The proof of correctness for

the program consists of choosing and attaching the Inductive assertions at different

locations and Of verifying all the paths In the program by constructing and proving

!-<he verification conditions. |
The first step of the process Is to choose a subset C of statements from the

program to which assertions have to be attached. The set C should contain the -

, first (start) and last (halt) statements, and at least one statement from every

j loop In the program. The reason for choosing at least one statement from each loop
is to allow breaking the program into loop-free paths. Then the programmers have

, to supply the assertions for every statement In C. The assertions will Include 0

and 1^. The choice of assertion Is very closely related to the choice of statements

' for C. The assertions can be quite simple If they are appropriately located.

Therefore, It requires much Insight of the progranuner about the behavior and

I structure of the program. Still the method of choosing assertions Is more like an
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art than a science and no general guideline seems feasible. It Is similar to the
choice of the Induction hypothesis of mathematical induction. Therefore, this Is
the most difficult part of the process and It does not seem hopeful that this part

j be automated, although It can be computer-aided.
After the assertions have been supplied and attached to the program, we have

to construct a verification condition for every path that proceeds from one
assertion (a statement In C) to another <^2* with no other assertions In between
Therefore, the verification condition depends on the initial and final assertions,
together with the operations performed by the statements In between. The forward
accumulatiom method of construction of a verification condition Is presented here.
The verification condition of a path P is formed as

A(assignment terms)^ A(traversal conditions) •*" qj*
where the assignment terms are the operations of the assignment statements along ^
the path and the traversal conditions are the logical conditions for the branch
statements along Punder with the path Pwill be taken. The assignment terms and ^
traversal conditions do not include the last statement In the path since the j
assertion q2 has to be satisfied before the statement to which It Is attached is .
executed. The construction of the verification conditions can be fully automated
by using predicate calculus. Afterwards, the conditions can be mechanically ,

. proved In order to validate the correctness of Ae program, if the program Is Indeed
I correctly coded. 1
! Systems have been implemented to automate part of the process of proving
jprogram correctness. The philosophy is to let the computer take over as much of
I the burden as possible. Two of the most well-known ones are that Implemented by
j King [Kin 69], and by Good. [Goo 70]. King's Program Verifier only accepts a .
! special Algol-like language, with only integer variables and one-dimensional arrays,
i Relational operators ("greater than", etc.), "GO-TO"s, and logical connectives
' ("and", "or", etc.) are included. The assertions are Boolean expressions supplied

by the programmer. The verification conditions are generated automatically using a
' backward traversal of the path. An automatic theorem prover is then used to prove
• these conditions. King's system is the most automated system of this kind yet
' Implemented. Good's system, on the other hand, is an interactive program. It also

uses a programming language similar to King's. Assertions are manually supplied.
The verification conditions are automatically generated by the system. The
programmer then supplies proofs of the verification conditions. The proofs are

' accepted by the system without question and stored in the computer. Wlien all such
j proofs have been supplied, the computer outputs the completed proof,
j. The proof of program correctness by such an approach has certain degree of
i success. However, it can only be applied to programs of relatively small size,
i The largest programs proved by hand using such an approach consist of several
I hundred instructions. The most automated systems have only proved programs of less
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than a hundred Instructions. Besides, many of the assertions and the proofs have

to he supplied by the programmer himself. This process Is as fallible as writing
• the program. In order to make advances In this area. It seems that a completely
mechanical verifier Is the only foolproof approach* Such a fully automated approach

:will require more formalism In the proofs. In the next section we will briefly
j describe some of the formal approaches to the proving of program correctness. i
I 2.1.2 Formal approaches to proving program correctness |
j As concluded in the last section, It seems that a formal mechanical approach
Ito program verification appears to be the most reliable, although the efficiency Is
! expected to be low. The verification of a program can be reduced to the proving of
i a theorem In the first-order predicate calculus. Speaking very Informally, the
! first-order predicate calculus Is a formal.system which consists of constants,
jvariables, functional constants, predicates, the logical constants T (true) and F

(false), the logical symbols A, V, .V, and 3, which can be combined
to form well-formed formulas of flrst-or'der logic according to some rules with the ^
aid of commas and parentheses for punctuation marks. (A formal and complete

Idescription of formal logic Is beyond the scope of this paper. Interested readers
jare referred to the discussion by Manna. [Man 69a]. ) With this In mind, the
! section attempts to give the reader some Intuitive feelings about the formal approach.
' The discussion will be very Informal and Interested readers are encouraged to read
*the referenced papers for a more rigorous and complete treatment. |

Most mechanical theorem-provers for first-order lo^c enploys the resolution
' principle. This Is an indirect proof of a theorem: we assume the negation of the
i theorem and try to derive a contradiction. There are systematic methods to construct
i such a proof and the process can be made more efficient by introducing some heuristic
I-procedures. This resolution process works very satisfactorily If the conjectured

theorem Is Indeed true, but very inefficient otherwise.

Manna [Man 69b] has proposed a formal approach to proving program correctness.
He shows that one can set up well-formed formulas In the first-order predicate
calculus corresponding to an arbitrary flowchart program. In order to facilitate

! the conversion, the program is expressed In a standardized form such that for every
program statement 1, we can define a well-formed formula W^. (W^ Is very similar
to an "assertion" in the Floyd-Naur sense and is the predicate associated with
W^.) Awell-formed formula [P, i^] Is then formed as j

• ^1 a"i a"2 a a "n • 1

' where q^ is an unspecified predicate associated with W^^. Then Manna's Satisfiability
i Theorem states that the program P Is partially correct with respect to 0 (Input
' assertion) and (output assertion) if and only If Wp[0, ij».] is satlsfiable (I.e.,

Is true under some interpretation of the predicate symbols q^, for example.as the ^
• Floyd assertions), where
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Wpte. i']: ( VX) {0(x) =5 [p, (x)} .

We can see that this theorem Is essentially equivalent to Floyd's results.

The sore Important work Is the Unsatlsflablllty Theorem which states that the
A

program P Is correct with respect to 0 and \p If and only If W [0, is
p

jnnsatlsflable (I.e., Is false under every'Interpretation of the predicate symbols

where

Wp[0»<;' ]: C3 x) {0(x) A[P. (x» .

i Therefore, a program can be demonstrated to be totally correct in a 'single proof
I • I
; process. However, the disadvantages of this approach Is that the theorem prover is

jvcry complex and the entire program Is treated as a single entity and thus
Idecomposition of the verification process Is Impossible. It also requires the
i I
program to be written In a special language so that a well-formed formula can be

easily generated from statement 1. I
The Interest In the formal proof of correctness of programs has produced a new

area of research, that of automatic program synthesis. Much Interesting work has

been done by Maima and Waldlnger [Man 71]. Thie programmer would only supply the :
input-output relationship of the desired program, together with some assertions •

i about the {}rogram algorithm. Theorem—proving techniques can be used to prove the

j correctness of the assertions and the proof Itself can be used to build the desired

• program. This program, generated by the computer, would hopefully be free of errors.
2.1.3 Conclusion

An assessment of the techniques for proving program correctness has been

discussed by Elspas at al. [Els 72]. The reader Is also referred to the complete

l>ibllography of London [Lon 70] for more Information. All these techniques are
I

Infeasible for any sizable programs. [Lin 72]. In order to make meaningful advances

in this field, more research works are still needed In the field of formal specifica

tions of programs, formal semantics of programming languages, and mathematical

theory of computation. A concise and precise specification of the program will

'-allow us to know effectively what the correct program should do. Formalizatlon.of

language semantics will allow us to convert a source-language program Into a

canonical model easily. Mathematical theory of computation enables us to develop

the verification conditions and the proof of the program. Before any significant

breakthroughs have been achieved In these areas, mechanical verifiers will continue

to be very Inefficient. Automatic program synthesis will be a very distant goal.

In the meantime, we just have to settle for the use of the Informal techniques

for proving program correctness. Though Inefficient, these techniques are very

• effective when we Integrate the proof with the program design, especially when

applied selectively to the critical sections of the program. They are also useful

• for the testing of small modules of the program before Integration. However, these
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techniques are subjected to human errors and are very 'unreliable* for large

programs. Automated software evaluation and validation systems seem to be the

more feasible analysis tools for large programs.

2.2 Automated Evaluation and Partial.-Validation

2.2.1 Introduction

The current trend In software shows an Increasing demand of - large real-*

time software. At present, the techniques In proving program correctness are

infeaslble to solve the problem of reliability in large software systems. I
Katurally it has become necessaiy to use a more cost-effective and practical

approach. In order to analyze any sizable programs efficiently, computer I

assistance becomes essential. Since a complete validation of the correctness
j

of a program is impractical, we Will only aim at a partial validation of the

program, using techniques that are subject to a high degree of automation. The

objective of automated evaluation and partial validation is to achieve an accept--

able degree of assurance of the reliability and performance of the produced |
software to be put into operation. j

The characteristics of any computing system can be classified into two cate

gories: the structural characteristics and the behavioral characteristics [Ram 67).

A program is usually specified by its behavioral properties, such as the rela

tionship between its inputs and outputs. The structure of the program, however.

Is usually left to the discretion of the designer. The program can then be looked

upon as the superposition of behavioral characteristics of the components on its

structural fom. The complete validation of the program means to verify the

correct operation of the system for all possible inputs, by obtaining and eva

luating the complete behavioral characteristics. However, the collection and

examination of all behavioral characteristics is practically an infeasible task,

•especially in the case of a large program.

A more feasible approach would be to decompose those characteristics into a

certain number of classes and then to validate each class of characteristics to

a limited extent. This is the basic idea underlying the partial validation.

Decomposition of behavioral characteristics is a non-trivial task. Fortu

nately, the careful examination of the structural characteristics reveals various

useful informations which could help devising the decomposition scheme and the

validation strategy. Naturally, the analysis of structural characteristics forms

the important initial basis for most automated evaluation and validation systems

(AEVS). ,

2*2.1.1 Error detection techniques

Different types of software errors in large programs have already been

discussed in section 1.4.2. • Most of them have to be detected and corrected

during the debugging phase of.the program. Considerable attention has been given
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Co debugging sysceoSf resulting in sophisticated technicjues for trapping and
tracing variable values» interactive step—wise execution of programsi and many
other features [Rus 71]. These conventional systems have been successful in pro

viding very useful aids to progranmers in correcting errors. However^ there are

certain limitations which present prb'blems in debugging large programs. For

nxample, the amount of information necessary to determine long and complex paths
through a large program may be prohibitive. Additionally, debugging systems are

basically designed to trace the source of known errors which occur during execu
tion with various test cases. Therefore, they do not necessarily predict errors

or possible errors.

Efforts to detect residual errors must go beyond traditional debugging sys

tems to provide a more complete program analysis. Various techniques employed
in validation syspems are now discussed.

(1) The checking of 'component interfaces requires a description of the
structure and detailed information on parameters and information passed

between components. Graphical analysis is particularly useful in this area
since it provides a means of displaying the program structure at various hier-

archial levels. The interrelation and interdependency of components can be

determined'from this graphical representation and, together with lists of the

data passed, can be examined to xincover Interface errors.

(2) Sequencing errors can be detected through the automatic extraction from

program code of certain specified events. The flow paths defined by these
! sequences of events can be compared with the proper sequences *

I (3) The problem of data integrity necessitates adetailed examination of
I variables and their use throughout a program. This includes a napping of data
I common to various components, locations where this data is used and modified,
I -etc. This information can be used to detect such errors as unauthorized use-or

availability of data. The use of execution-time monitors is also important in

checking the values of critical variables such as array indices, conditional

branch expressions, etc.

(A) Semantic errors and error-prone constructs can largely be detected by a

detailed examination of the program source code. This is most easily accom

plished by an automatic language processor which examines each program statement,

xecording pertinent information and recognizing the error-prone conditions pecu

liar to that language.

(5) Program structure is easily determined by graphical techniques as

previously mentioned. The graphical representation can be examined for its '•
connectivity characteristics, thus exposing errors in the well-formation of a

program.

Erom the above description, it is evident that many of the residual errors ^
present in large systems can be detected using the techniques outlined. It is
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assumed here that, once detected, these errors may also'be easily'corrected.

These techniques are used throughout the structure of the large validation system.
However, error detection is only one of the functions of any AEVS. The other vali-

datipn functions are discussed in the next section. I

2*2.1.2 Validation functions

The correct operation of a large real-time software system has two aspects.

The system not only has to produce the correct output for the given input but

also has to satisfy the performance requirement such as execution time bound,

space constraints, etc. Therefore, validation functions can be classified !
roughly into two groups: error diagnosis and performance verification. The j

• former is supported by a diagnosing aid system, while the latter is supported by

j an evaluation aid system. The AEVS is an integration of both aid systems. :
! The implementation of these functions has appeared in various forms: I
• debugging, simulation, formal proof of program correctness, software testing, etc.

I Here testing is asystematic process which mainly determines that an error |
exists, while debugging is regarded as a follow-up process which localizes the

j cause of errors and corrects them. This doesn't mean that software testing is |
I restricted to error detection. As will be seen later, it can support other
j validation functions such as error location and performance verification, too.

According to the type of the function it provides it is further characterized as

j either functional testing or performance testing [Elm 71]. |
The essential requirement for an effective validation process is the amena-

I bility to automation. Software testing is extensively employed in most AEVS's '
due to its high adaptiveness to automation and its effectiveness in validating

I .a large software. This and other processes are discussed later in detail. '
I .1

2.2.1.3 Structure of the AEVS

The common philosophy in most AEVS*8 is to provide automated tools which

relieve the programmer of collecting data about both structural and behavioral

characteristics and assist him in evaluating the collected data. Strategies in

those systems are generally of two types. One is a hierarchical bottom-up

validation in which each module is (partially or completely) validated first and

then the validation of module interactions and interfaces follows. The other is

a hierarchical top-down validation in which validation starts with the global

program and proceeds to the smaller segment (or module) with the increasing

assurance.

Each of these two has its own advantages and suitable application environ

ments. Where the program contains abundant bugs, the bottom-up approach will be

more effective since validation can proceed in more straightforward fashion with

out much interference from multiple errors. On the other hand, the top-down

^ approach will be more cost-effective where the program is expected to have a small
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number of bugs. In this paper we assume that the program Is at least syntactically

correct. Although not essential, the top-down approach is implicitly adopted in

several places.

From the implementation point of view, an AEVS consists of two parts: static

. analysis and dynamic analysis. The static analysis is the validation process \

I ^rformed only by examining the external form of the software, i.e. code itself, |
< without executing it. It reveals most of structural characteristics. A consider- '
i ^ I
; able amount of behavioral characteristics are also verified by it. On the other

I
i band, the dynamic analysis is the process of software testing performed by running ;
1 * >

i the software with the devised test inputs and evaluating the output results. Its j
I function is to validate various behavioral characteristics which cannot be effi- |
' ciently identified by the static analysis. The performance of the dynamic ana- |
! lysis is enhanced on the basis of informations provided by the static analysis. |
I Various techniques employed in both parts are discussed in subsequent sec- |

tlons. Kost of them can be found in two representative systems, ACES [Mee 73,

Ram 73a, Ram 73b] and PACE [Bro 72a, Bro 72b]. Before going into those vali

dation techniques, techniques of modelling programs are examined since the effi

cient program model is a cornerstone for automated validation.

2.2.2 Overview of Program Models

The purpose of modelling programs is to obtain an easy-to-use representation .

of only those informations relevant to the intended analysis, while unnecessary

details are masked. The model must be simple. They must be easily represented |
and manipulated in a computer. The representation of the process must be homo

geneous such that the same analytical tools can be used at any level. This implies

^hat by choosing the proper level of representation, details not useful for the

problem at hand must be masked out. Another important requirement is that the

modification on the program being modeled should not be cumbersobe in simulation.

Since the structural characteristics serve as useful guidelines for the cost-

effective validation, the model should be suitable for an efficient structural

analysis.

Among various models three representative ones are briefly reviewed in this

section: finite-state-machine (FSM) model, decision-table model and dlrectcd-

graph model [Ram 71b].

I
2.2.2.1 FSM model

In this model, the computer (the sequential machine) is taken from state to

state by a transition table (procedure) and a set of Inputs (data). Therefore

all behavioral characteristics are embedded in this model without being abstracted.

It is evident that the size of the model becomes unmanageable in the case of a

large program due to the rapid increase in the number of states. Although
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certain formal proof techniques benefit from this model [Man 69b], the Inability

of the model to contend with a sizable program Is a serious drawback.

i 2.2.2.2 Decision-table model

In this model, a program is represented by a decision table [Kin 67]. A

rudimentary decision table Is Illustrated In Fig. 5.

Action

1

Action

2

Condition 1 Y N

Condition 2 Y -

Condition 3 N -

^ Fig. 5 Example of a decision table

The vertical coordinate li.sts a set of conditions that may or may not occur In

all possible combinations. The horizontal coordinate lists a set of actions to
be taken by the program. These could be different procedures or merely 60 TO
statements. Each column of the table Indicates the subset of conditions that

must be satisfied if the action listed under that column Is to be carried out.

y stands for yes.and N stands for no, and a dash (don't care symbol) slgnl-
i fles that the particular condition involved Is Irrelevant to the action In the
j corresponding column.
! A decision table contains less Information than a corresponding flow-chart
' for the same logical.process. A flow-chart of a conditional phrase contains the
1 logical rules of the problem and also specifies the order In which various tests
i will be carried out. The decision table does not Indicate how the logic should
i be structured in terms of program steps. Consequently, It doesn't support the
' exploration and analysis of the structural characteristics. This Is the major
' drawback making the model inefficient for the purpose of validating a large pro

gram, though It provides a partial verification of the logical correctness of
the program and an assistance In generating test Inputs.

2.2.2.3 Dlrected-graph model
• 1

This model has Its root In the flow-chart. The representation Is concep

tually simple and natural. In this model, a program Is abstracted Into a
directed graph where each node corresponds to a set of statements and each
directed arc represents a possible transfer of control from one node to another

node. When each node represents one statement or a set of sequentially executed
statements, a graph model of a program is called a program graph. A simple
example of a program graph is shown in Fig. 6.
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Fig. 6 Example of a program graph

This model clearly reveals structural characteristics of a program, while
unnecessary details about functional characteristics are masked out. Necessary
functional characteristics are selectively associated with each node depending
upon the Intended analysis. All possible paths, loops, entries and exits can be
easily detected.'

The size of the program graph Is generally In direct relation with the size
of the program. The complexity of the an^ysis Increases more rapidly with the
size of the program graph. Therefore, It becomes desirable to devise a procedure
by which a large object can be attacked piece by piece where the size of each
piece as well as the complexity of Its analysis becomes more manageable. Tech
niques of Iterative abstraction have been developed. The iterative abstraction

; contains two aspects: loop abstraction and link-subgraph abstraction. A loop in
a program has often been an obstacle in efficient validations. It contributes

; to Increases not only in the number of logical paths and the structural complexity
but also in the undecidable properties. The separation of a loop and the manipu
lation of a loop independent of . the rest of the program graph makes the

! total validation process simple and uniform. This Is the motivation behind the
I

! loop abstraction.

; A maximal strongly connected (MCS) subgraph is a strongly connected subgraph
that includes all possible nodes which are strongly connected with each other,

f The replacement of every MSG subgraph in the program graph by a single node trans
forms the program graph into the reduced program graph (RPG) [Ram 66, 67]. Fig. 7
shows the RPG corresponding to the program graph of Fig. 6.

^ 200 VI
sC
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Fig. 7 The RFG of the pi;ogram graph of Fig. 2

This loop abstraction contributes to the significant reduction in the size of the

model and the structural complexity. If further abstraction is desirable due to

the large size of the RP6, then the link subgraph abstraction can be applied. A

link subgraph is a subgraph that contains no strongly connected subgraphs or

unconnected subgraphs in it [Ram 67]. Fig. 8 is the result of the application of

the link subgraph abstraction to the RFG of Fig. 7. This is called the basis

graph.

Q)'

dlM)

(5.6.7,8.9)

Fig. 8 The basis graph,of the program graph in Fig. 3

On the basis of this modelling technique, various analysis can be performed.

In general, those can be categorized into two types according to the order of

abstractions analyzed: top-down and bottom-up. The basic idea of top-down

strategy is as follows. First, the basis graph or RFG is used by the first-step

analysis. As a result, the more detailed analysis of a certain node becomes

necessary. Then the subgraph corresponding to this.node is taken for the next-

step analysis. If the subgraph is a link subgraph, there is no difference between

the first-step analysis and the second-step analysis. If it is a MSG subgraph,

then the technique can be applied for opening the loop with the removal of feed

back arcs [Ram 67]. This is illustrated in Fig. 9.
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?lg. 9 Loop opening and reduction

Thereafter the modified subgraph can be used by the second-step analysis

or abstracted Into the RPG and then analyzed. Therefore, the analysis Is

essentially of Iterative nature.

In the bottom-up strategy the analysis proceeds In the reverse order of

the top-down analysis. Subgraphs at the lowest level are taken for the first-

step analysis and abstracted Into a node In the graph model for the next-step

analysis. The graph model used by the last-step analysis Is the abstraction of

a total program.

A ntimber of techniques for manipulating the graph model by the computer are

available. Some basic ones appear In Appendix-A. In the rest of the discussion,

this graph model Is used as a basis In describing various validation strategies.

2.2.3 Static Analysis

As mentioned earlier, an organized validation effort can be developed

using the two step approach: static analysis and dynamic analysis. The former

Is based on the examination of the program code while the latter Is based on the

test runs of the program. The static analysis part of the ABVS Is discussed

here and the dynamic analysis part Is discussed In section 2.2.4.

The main objectives of the static analysis are (1) to analyze the program

for the detection of various semantic and structural anomalies, and (2) to pro

vide backgrounds for the efficient dynamic analysis. That Is, various structural

characteristics are Identified and unreliable constructs are pointed out as the

target of the dynamic analysis. In pursuit of these objectives, a large amount

of repetitive scanning processes are Involved. In order to Increase the effi

ciency of the analysis, the generation and use of the data base are common to

most AEVS's. Therefore, the static analysis contains three major aspects:

data base generation, structural analysis, and detection of vulnerable

constructs.

2.2.3.1 Data Base Generation

The construction of a .data base Is Intended to provide a convenient means

of retrieving various program characteristics. The philosophy here Is to
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relieve both the program investigator and the analyzer of the tedious process

of examining program listings for information required to validate the program.

Furthermore» it forms the basis for other validation techniques, thus eliminating

Btuch duplication of effort.

For the sake of clarity, the discussion on data base proceeds with typical

examples rather than general arguments. Most of the examples are extracted from

two systems, ACES and FACE. Typical examples of data bases consist of the
following components: symbol table, symbol use table, statement type table, global

storage map and the progr^ graph.

The symbol table and symbol use table are illustrated in Fig. 10.

Symbol Table (Hash Coded)

Name Module # Type Pointer

VARIABLET 11

n

12

13

Symbol Use Table

Fwd. Ptr.

0 12

(
1 > n 13

(
1 ^ 12 0

Fig. 10 Examples of symbol and symbol use tables

The symbol table normally contains information regarding all variables, items,
functions, macros and labels used in a program. An entry in this table consists

of the symbol name, module number, type and linkage to the symbol use table.
On the other hand, the symbol use table contains a record of each use of a symbol
name in a program. An entry consists of an indicator for the type of use
(either input or output to the statement), the statement number in which the
symbol was used, and linkage to other references to the symbol contained in the
table.

The use of a hashing technique seems to be suitable for providing an

.. J
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efficient access to the symbol table. That is, the address of the storage where

a symbol name is stored is determined by the hash-coding with the character code
for the characters making up a symbol name. This technique provides a good dis
tribution of table entries and a rapid access to any particular entry. The
linked list structure of the symbol'Use table provides ixamediate access to the

chain of occurrences for each symbol name, while information (list of symbol
•references) pertaining to a given statement are grouped in sequential locations

of the table.

These two tables provide complete static information on all program symbol

names and statements in a neat,way and allows the retrieval of answers to ques
tions such as the following.

(1) . Does variable V. appear as an input (output) to any of the. following
statements: ®1»®2'

(2) In what statements does

(3)

(A) Does any variable appear as an output and not as an input?
(5) What are the inputs for conditional branch s^? Where do they appear

as outputs? What are the inputs to these statements? (In this manner the user

can determine which variables and statements affect the outcome of a conditional

branch statement.)

This information is important in the analysis of semantic properties and

anomalies. Moreover, it is an useful aid to implementing changes in syntax,

program modifications, and changes in programming practices. For example, the

affects of changes in a program variable, macro or label can be easily deter
mined by accessing the list of references to that symbol in the program module

-and other related modules.

The statement type table is simply a list of codes indicating the statement

type of each statement in the program. The logical structure of a program is
stored either in a connectivity matrix [Appendix A) or in a successor table, a

modified version of a connectivity matrix. This is shown in Fig, 11.

occur?

VJhat are the inputs (outputs) to statements Sj^?

program graph

Fig. 11

pointer successor link

1 3 1 2 0

2 A 2 3 1

3 6 3 A 2

A 7 A 7 0

5 8 5 5 0

6 9 6 6 5
1

7 0 7 7 0 i
8 7 0 i

pointer-array
9 7 0 1

of program structure
table

I
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The successor table consists of a pointer-array and a table. The pointer-array
contains an entry for each node. Each entry consists of a pointer to a chain of
entries in the table. Such a chain represents all possible successors of the
node. That is, a row in the table contains a successor node and a pointer for
chain linkage. For example, an entry for node 3 in the pointer-array of Fig. 2
points to the chain of successors (6,5) in the table. This table together
with symbol and symbol use tables are used as the basis for the extraction of
structural characteristics of a program.

As mentioned earlier, integration of independently developed modules is the
source of a large number of errors. A substantial portion of these.errors can

be detected by the static analysis. For this purpose, information on global
storages and interfaces needs to be stored in the structural data base. Those

Information are typically stored in two tables, a common table and a module
Interface table.

A module interface table consists of an actual parameter table and a formal

parameter table. Fig, 12 illustrates a graph representing module Interfaces

and the corresponding module interface table.

id)

calling
module

module interfaces

called

module
actual

)arameters

An actual parameter table

called

module

1

2

3
4
5

6

formal

parameters

A formal parameter table

Var.

Var.

Var.

Var.

1 in symbol table
2 (• 11 ••
3 II II If
^ II II II

Var. 101 in symbol table
Var. 102 " " "
Var. 103 " " " '
Var. 104 " " "

Fig. 12 An example of a module interface table
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this table together with others provide a convenient means for the detection of
various structural flaws and semantic anomalies. It is a simple matter to check
the consistency of types and numbers between actual parameters and formal para
meters and to detect the recursive calling, etc.' Moreover, they can be used for
the determination of the affected areas when a few modules are modified.

A common table consists of a common storage table and a common variable
table. An example appears in Fig. 13.

block storage
pointer

1 2

1 50

1 120

2 50

2 51

2 60

2 70

variable module
number linkdimension

A 2 1

B 2 2

C 2 3 J
B A8 2

D 70 2

coBBnon storage" table common variable table

Fig. 13 An example of a common table

These tables are constructed by examining all declaration (especially COMMON and
EQUIVALENCE) statements in the source program. The common storage table contains
one row for each continuous and homogeneous segment of global storage. In Fig.
13, memories 1 %nd 2 in a block 1 are always referenced by the same variable,
I.e., by Ain module 1, Bin module 2, or Cin module 3. The third column in
the common storage, table contains a pointer to the set of common variables
referencing to the storage segment. The common variable table contains informa
tion regarding variable name, dimension and module number for each common
variable. An array type of common variable is sometimes divided into several
rows in the table when the referenced common storage is divided into several rows
in the common storage table. The common variable B of module 2 in Fig. 13 is an
example. On the basis of these and other tables, procedures can be designed for
the detection of misequivalcncing, unnecessary declaration and inconsistency of
variable type or dimension. It is also feasible to design a system for the
optimal allocation of global storages [Bro 72b).

In summary, this data base provides not only an efficient and convenient
means of retrieving information required by various validation procedures, but
also a strong assistance in maintenance and modification of a program; Thus it
is desirable to take the generation of the data base as an Integral part of
program documentation,

2.2.3,2 Structural analysis

The analysis of program structure is essential to the validation process
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since it allows the detection of structural flaws and the Identification of cri

tical or interesting flow paths in the program. The data base contains necessary

Information for this analysis in a well-structured form. Included in the struc

tural analysis are well-formation check, loop enumeration, path identification,

and reaching and reachable vector generation, etc.

Vell-fozmation check is a process of examining the program structure to see

if there is any structural flaw. It includes the detection of unreferenced

labels, unreachable statements and statements with no successors. These charac

teristics do not necessarily lead to the run-time error, but these are unplanned,

undesirable cmd unreliable (error-prone) ones. Fig. 14 shows examples.

GO TO 10

A « B+C

I " I+l

D = P(I)*A

GO TO 30

D » A*E

GO TO 20. .

S " A+D

END

unreachable statement

unreferenced label

statement with no successor

Fig. 14 Examples of structural flaws

Loop detection is performed by applying the procedure described in Appendix A
to the program graph. An analysis of each loop characterizes the loop as
Intrinsic, deterministic or non-deterministic one. An intrinsic loop is the one

^dkich can be determined not to terminate by the static analysis. A loop is said
to Le either deterministic or non-deterministic according to whether the number

of iterations can be determined by the static analysis or not. Thus the number
of iterations in the case of a deterministic loop is apparently data-independent.

Fig. 15 illustrates each type of loop.



HScheduler

module

Intrinsic loop

module

31

DO 10 1-1,100

10 A(I)=B(I)*C(I)+D(I)

BEAD 1,N

DO 10 I-l.M

10 A(I)-B(I)*C(I)+D(I)

Deterministic loop Ron^'detexiBlnlstlc loop

Pig. 15 Types of loops

After the loop detection, the reduced program graph (BPG) Is generated and
kept for the subsequent analysis. !

A logical path In the program Is represented by a path In the program graph.
In general, a path may contain loops in it and two paths containing the same loop
are considered as two different ones when the number of Iterations of the loop

Is not the same for both paths. The number of paths In a large program Is nor
mally prohibitive, especially where the program contains a few loops. Therefore,
a definition of an Interesting path Is adopted for the purpose of practical vali
dation such that the number of paths becomes much reduced while no useful Infor

mation for validation Is lost by the use of Interesting paths. There exist

several approaches to the definition of an Interesting path [Mil 74, Ito 73]. A
typical definition [Ram 74b] which Is also adopted In the rest Of the discussion
Is either a path In an RPG or an Interesting path In each MSG subgraph. A path
In an RPG Is a series of arcs from entry to exit. An Interesting path in an MSG
gxaph Is defined as follows. A node In a graph Is said to be essential If It Is
reachable from an entry node and an exit node Is reachable from It. Removal of
feedback arcs from an MSG graph produces the following two subgraphs. One con

sists of all essential nodes and all arcs between them, while the other consists
of the .remaining nodes, arcs and removed arcs. The former Is called a forward
subgraph and the latter Is called a backward subgraph. Both subgraphs are then
transformed Into RPG's, respectively. Now an Interesting path In an MSG graph Is

defined as a path In the RPG of either the forward subgraph or the removed sub
graph. Fig. 16 Illustrates Interesting paths In an MSG graph.

'"^feedback path

rrt-^

Interesting
paths for this

MSG subgraph:
path 1: (5,2)
path 2: (2,3,5)
path 3: (2,4,5)

Fig. 16 Interesting paths In an MSG graph

. Interesting paths for the
MSG graph:

path 1: (7,1)
' path 2: (1,2*,7)

path 3: (1,6,7)

J
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Hereafter, an interesting path and a path are intermixed in use. This definition

of a path is of iterative nature. Paths are defined in accordance vith the level
of abstraction. For instance, paths Ihside the strongly connected subgraph

(2,3,4,5) in Fig. 16 are irrelevant to the definition of paths for the global
MSG graph.

All paths in an BPG can be easily identified [Har 65]. In the case of an
MSG subgraph, a procedure is applied to remove a few backward arcs and then both
iorward and backward subgraphs are identified. Thereafter, both subgraphs are
reduced and interesting paths are identified by the procedure used for an BPG.

An additional feature, the detection of non-physical paths, is included in
the path identification. Alogical path is said to be non-physical if no Inputs
to the program can lead to the execution,of the path. An example of a non-physi
cal path is shown in Fig. 17. ^

A>100 < 100

non-physical paths;

(1,3,5,6,8)
(1,4,5,6,8)

fig, 17 Examples of non-physical paths

-Although the complete detection of non-physical paths is infeasible and it may
Involve an exhaustive process of logical Inference, a substantial amount of non-
physical paths can be detected by the static analysis and the detection is on
important support to the dynamic analysis.

The structural analysis also includes the generation of reacdjing and reach
able vectors for a specified set of statements. The reaching vector of a parti
cular statement provides a list of those statements whose execution may lead to
the execution of the statement in question. On the other hand, the reachable
vector is a list of those statements which may be reached after the execution of
the statement in question. This information can be easily extracted by manipula
tion of the program graph (i.e., connectivity matrix or successor table) as shown
in Appendix Aand by the consideration of non-physical paths.

I

2.2.3.3 Detection of vulnerable constructs

Since we assume that the program is at least free from syntactical errors,
our concern in static analysis is in the detection of semantic errors or anoma

lies. This analysis will provide not only the running configuration of a program
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to be used in dynamic analysis but also the guidelines for more cost-effective

testing processes. The data base forms the basis for the efficient performance

of this analysis. Included in this analysis are the detection of redundant state-

sents* uninitialized statements, interfacing anomalies, undependable language

constructs, etc. j
A typical example of a redundant statement considered here is an assignment

I

'Statement whose left-hand side variable never appears in predicates or in the
I

right-hand sides of later statements. Analogously, uninitialized statements are

the ones whose right-hand side variable never appear in input statements, sub

routine calls or in the left-hand sides of earlier statements. These code-segments

In a program are highly error-prone areas, though those constructs do not neces-
i

sarily lead to run-time errors. A misspelling or mistake in keypunching often
I

leads to these types of constructs. The detection of these constructs can be j
performed on the basis of the data base. Fig. 18 shows examples of these

constructs.

100

Mtl

ERRORR ERR0R**2

SUM ° SQRT (ERROR)

uninitialized statement because of

a mistake in keypunching

redundant statement

Fig. 18 Examples of redundant and uninitialized statements

Interfacing anomalies refer vto various semantic anomalies occurring from the

integration of independently developed modules. The module interface table and

the common table are effective supports to the analysis of these. Using this

information in module interface, symbol and symbol use tables, it is a simple

matter to detect mismatches in tyi>es and numbers between actual parameters and

formal parameters as well as recursive calling. On the other hand, the common

table provides a convenient basis for the detection of anomalies in global sto

rage allocation such as misequlvalencing, inconsistency of variable type or di

mension declarations, and allocation of unnecessary storage.

Use of certain features available in the language often result in the de

graded reliability of the produced program, though it may increase the execution

efficiency. A computed GO TO statement in FORTRAN is an example. This type of

statement depends on the value of a variable for determination of transfer loca

tions. It often happens that the value of this variable exceeds the limit and

possibly catastrophic transfers occur. It has been pointed out that even GO TO

statements are generally harmful to the program reliability [DiJ 68a]. Conse

quently, it is desirable to include in the'AEVS a feature detecting these
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vulnerable constructs and pinpointing those areas for the thorough dTuanlc

analysis*

2.2..4 Dynamic Analysis

The. dynamic analysis in automated evaluation and partial validation is a com

plementary process to static analysis* It is Intended to verify various behavioral

characteristics vhich remain unchecked by static analysis* It is basically a pro

cess of software testing consisting of driving the program with the devised test

inputs and evaluating the outputs* As mentioned earlier» this process is greatly

assisted by the static analysis* The static analysis provides infoxmation which

can be used as guidelines for cost-effective testing* Dynamic analysis performs

both validation functions* that is, error^diagnosis and performance verification.

Although both static and dynamic analyses participate in error diagnosis, per
formance verification is mainly achieved by dynamic analysis* A typical implemen

tation of these validation functions takes the formsof program profile generation

and diagnostic and performance testing* These are discussed in sequel in the

following sections.

2*2.4.1 Program profile generation

The term program profile Is used to mean a table of frequency counts which

record how often each statement is performed in a typical run [Rnu 7Cb]. In a more

' g^eral sense, it refers to a collection of statistics on program behavior shown
1 in typical runs. Information contained in the profile is tj^ically execution fre-
i quency of each statement, execution time of each statement, frequency of successes

on the logical test for each conditional branch statement, maximum and minimum
1 values of instances of certain variables, frequencies of references to certain

^ variables, etc. Fig. 19 shows an example of a program profile.

Statements Executions Time Successes

IX) 25 1=23,24 200 400
IF (CHAR(I) .EQ. SPACE) GO TO 18 1354 4170 108
DO 15 J=l,ll 1246 2492
IF (CHAR(I),NE.SPCHAR(J)) GO TO 15 12344 61488 12112

GO TO (100. 90.70).J 232 464

! 15 CONTINUE 12112 12112

25 CONTINUE 1154 1154

Fig. 19 Example of program profile

This program profile serves as an useful basis in various phases of software
design. We discuss techniques of obtaining program profiles first and then jus
tify the usefulness of the profile on validation processes.

The typical approach to the generation.of a table of frequency counts is
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based on the use of software counters automatically Inserted by the system at
appropriate -locations inside a program. This frequency counter is an element of

a more general class of software termed monitor or self-metric software. That is*

the monitor or self-metric software refers to the program-segment inserted inside

the target program and used as tools'for obtaining execution characteristics of

the program. Other, monitors will be introduced as it becomes necessary in later

sections. The physical Implementation of a frequency counter takes the form of

either a counter-incrementing statement or a call to the subroutine which in turn

increments the appropriate counter. This is illustrated in Fig. 20.

' SUB COUNT (I)

ICOUNT(IO) " ICOUNT(10)-fl • CALL COUNT (10) ICOUNT(I) « IC0UNT(I)+1

RETURN

END

incrementing statement subroutine call

, Fig. 20 Example of a frequency counter

A consideration must be given to the artifacts accompanied with frequency

counters. That is, the effects on the program execution due to insertion of

counters must be considered. If memory constraints or timing constraints are

critical, the additlpn of a counter may cause unacceptable perturbations because

of the measurement overhead or the increased storage requirement. In the case

where a program is running on a computer system with a paged memory, the insertion

of counters may lead to the different paging traffic. • |

With regard to this, it is desirable to insert a minimum number of counters

sufficient for profile generation. A technique is available to determine a minimum

number of counters and suitable locations for the insertion of them [Che 74]. It

is based on the manipulation of a program graph.

The measurement of total execution time of each statement is based on the use

of both execution frequency and estimated time for one execution of the statement.

A reasonable estimation can be made by the syntactic analysis of each statement

with respect to the number and types of operators, etc. Then, the total execution

time is the product of this estimated time and execution frequency. It is also a

simple matter to extract frequencies of successes on branches from the information

provided by frequency counters.

Now that the generation of a profile is discussed, we consider the usefulness

of program profile in regard to software validation.

First, program profile aids in diagnostic testing. It provides guidelines

for an effective testing. In general, the most active or frequently executed
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portions of a program are thoroughly tested while the less active portions re

ceive inadequate testing. Program-segments with zero or low frequency counts

could be given more attention in 'testing and singled out for early and intensive

testing. .. I

Second, profile often provides useful information for error detection. The

statistics on branches and calls leave a record of what happened and often it is

sufficient to Indicate errors. The ntmber of iterations of each loop is often

useful for checking convergence of an employed algorithm.

Third, profile plays a significant role ±a performance verification. The

eacamination of a profile, especially statistics on execution time of each code-

segment, is often sufficient to check if the performance meets the requirement.
Furthermore, it simplifies the improvement in the performance of a program. Since

It is generally true that most of execution time of a program is spent in a rela
tively small portion of program code, portions with the high frequency counts can

be designated as candidates for program optimization. Ingalls reports in IING 71]
that in a typical program only 3% of the statements make up 50% of the program's
execution time. When either testing or examination of a profile reveals the

unsatisfaptory performance of the produced program, profiles can guide cost-
effective strategies of program optimization. j

Besides these, usefulness of program profile can be recognized in other ^
phases of a program's life. Indication of good algorithms and sensitivity
analysis of program performance to the change in the system environment could be
supported by the use of program profile.

2.2.4.2 Diagnostic testing

As mentioned earlier, testing is regarded as a systematic process of error
detection by means of exercising the program with test inputs and evaluating the
outputs, xjhile debugging is regarded as a process of error location and correc
tion. However, testing can often assist error location as will be shown later.

The complete testing refers to a testing with all possible inputs. It is a pro
cess too exhaustive to be practical in the case of a large program. Naturally,
a more practical testing which establishes a sufficient degree of confidence in
•the reliability of a program becomes desirable. The common philosophy is to view
the behavioral characteristics into a number of classes and then to verify each

class to a practically sufficient extent. Structural characteristics recognized
by the static analysis provides useful information for the decomposition of the
behavioral characteristics which in turn supports testing strategies. This

approach is to decompose the behavioral characteristics into a number of classes
such that each class corresponds to one or a set of logical, paths. Paths here
are the interesting paths identified by the structural analysis in section

2.2.3.2. In any case, testing of each path in a program is a fundamental and



37

primitive operation* In order to manipulate paths» each path must be Identified

and then Isolated whenever desired.

Isolation of each path can be performed In several ways. The most convenient
"I

one among them is to install and operate a new type of monitor. The concept of

the blocking gate (BG) approach to fhe hardware diagnosis [RAH 71d] can be easily ^
transported to the software diagnosis. Ablocking gate (BG) Is a device In- |
stalled on the connection between two system elements^ which blocks or unblocks j
the transfer of information under the control of a test driver. In the case of ^
6o£tware» it is another kind of software monitor which blocks or unblocks the j
transfer of control between program segments. Blocking could mean an execution

of STOP statement or a transfer to the test driving system.

By the same reasoning applied to frequency counters, it becomes clear that
the minimum niimber of BG's capable of isolating every path Is desirable. A

technique Is available to. find such a set of BG*8 and suitable locations for

Installation [Ram 7Ab]. It turned out that the same locations can be used for

Installation of various other types of monitors useful to validation processes.

These are introduced in later sections. The physical function of a BG depends

upon the testing strategy and thus is discussed together with each strategy.
$

2.2.4.2.1 Test input generation

Vh'en testing is performed with randomly generated inputs, it is called the
random-input testing. On the other hand, when test inputs to exercise a certain

path or set of paths are devised either manually or by the system using the
information provided in the course of design, the testing is called the synthe-

slzed-lnput testing. In the former case,' input variables together with asso

ciated types are available from the data base and each input variable is

assigned a random value of the specified type. It is often necessary to use some

information provided by the designer even in this case. It is unpredictable

Which path will be exercised and thus the physical implementation of a BG takes
the form of a code which transfers the control to the test driver when the path

is blocked. This is illustrated in Fig. 21.

Test driver

Test input
generator

IF BG(3) = 'unblock' THEN GO TO NFJCT
INFORMATION = 'CONTROL CAME TO BG i?3'
GO TO test driver

NEXT;

Fig. 21 A BG in the random input testing
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In the latter case. It Is known a priori which path or one of a set of paths

vill be exercised. The physical Implementation of a B6 in this case becomes a

safety device. That is, it detects unexpected situations where the control gets

oot of the range of paths for which the Inputs have been .synthesized. This may

occur due to either the incorrect synthesis of test inputs or the errors in a

program. Therefore, a B6 plays a role of the detector of both program and test

design errors. Now we proceed to discuss several testing strategies based on the

(^eration of B6*s or other types of monitors.

2.2.A.2.2 Path-by-Path testing

The strategy of this testing is to test every interesting path at least

once. That is, a set of test paths is a set of interesting paths defined in

section 2.2.3.2. Besides this, several approaches to the selection of test paths

exist. This is mainly due to loops, especially non-deterministic loops. One

example is to define all test paths as. a set of all paths in the program graph

under the constraint that no path may contain more than a certain number k of

Iterations of a loop [ Ito 73]. The suitable definition of all test paths should

be determined with the consideration of the size of a program, the requirement

in the degree of assurance and the amount of testing costs. Hhen each path is

tested, it is desirable to sensitize it since the overall testing becomes more
systematic and cost-effective. That is, it is desirable to make it the only
active path while all other paths are blocked. The simplest way of sensitizing
a path is to block all BG's except the ones installed on the path to be sensi

tized. In addition, the BG's on the sensitized path may be transformed into

other useful types of monitors such as out-of-bounds detector for interesting

variables, etc. Either random inputs or synthesized inputs may be used. In the
case of the random-input testing, the evaluation of test outputs does not easily

lend to automation. Although, run-time checks facilitated in the system or soft
ware monitors installed on the path can detect various erroneous conditions, the

wfiwnal inspection is inevitable in general.

On the other hand, the generation of synthesized test inputs normally

includes corresponding outputs or criteria for determining the correctness of
outputs. In this case, the validation of outputs becomes more amenable to auto
mation and the speed of the whole testing process can be increased. The current
trend in software design is to take the synthesis of test inputs and outputs as

an integral step of the design process. However, the completeness of synthesized
test inputs are hardly expected. It is quite probable that test inputs exercis
ing a certain test path are missing. Moreover, the synthesis of complete test
cases becomes generally infeasible in the case of a large program, though it sim
plifies the testing to a large extent. Therefore, the combination of both ran
dom-input testing and synthesized-input testing would be the most practical
strategy.
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There Is one more obstacle commonly encountered In most testing strategies.

It Is a non-physical path. Although the detection of non-physical paths can be

performed to a certain extent by the s'tatlc analysis, the complete detection la

not- feasible In general. In fact, this Is one of the factors obscuring the syn

thesis of complete test cases. The practical approach to the solution Is to

Iterate random-Input testing to exercise the Interesting path and regard It as

the non—physical one when the path is not exercised within a certain limit of

time or Iterations. The accurate decision whether It Is a non-physical path Is

again subject to the manual Inspection.

2.2.A.2.3 Test point insertion

In testing a subgraph, two approaches are possible. One way Is to sensitize

the path In the global program graph leading to the subgraph and then to sensi

tize each path Inside the subgraph. Test Inputs always enter through the entry |
to the global program graph. The other way is to Install test points right be

fore the entry to the subgraph and after the exit from the subgraph and then to

enter test inputs through the first test point and evaluate outputs at the second

test point. Although this method requires an analysis for obtaining Input •

variables and output variables to be used In each test point. It could speed up and

simplify the testing process. |
In addition, the test point together with the segmentation can be applied to

i
further simplify the testing process in a large program [Ram 71a]. This is

Illustrated in Fig. 22.

T

Total

4 X A a 16 paths
Test

Point

A paths

A paths

Total 8 paths

Fig. 22 Example of test point

That is, the number of test paths can be reduced by installing test points on

the locations determined by the segmentation algorithm. The validation of the

first segment will provide the legitimate values of the state vector which will

be in turn used as test inputs for the validation of the second segment.

2.2.A.2.A Other simple testing strategies

There could be almost an infinite number of testing 'strategies in addition

to the strategies discussed in the preceding section. In this section, some

strategies simpler than the ones already discussed are briefly introduced. The
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common philosophy in those strategies Is to take a suitable subset of interesting

paths as test paths. The consequence is that the testing becomes less expensive

though the assurance provided is also reduced. A typical one is to test only a
• I

niniimim set of paths covering all arcs in the program graph. Such a set of paths

Is called a covering set of paths. Another is to test only a minimum set of j
paths covering all nodes in the program graph. When the software is supposed to

have few bugs, these strategies become more cost-effective.

2»2.4.2.5 Error location

Upon the detection of errors on a certain test path, a process of error

location and correction must be followed. This is the area where debugging

resides as a host. In this section we discuss the usefulness of testing in

regard to error location. The idea is based on the principle that the cross-

section of two malfunctioning paths has a high probability of containing bugs.

Therefore, the diagnosing aid system can be built in such a way that as soon as

a malfunctioning path is detected, all paths crossing the detected one are iden

tified and scheduled for testing. This mode of testing is called the cross-

testing. The extent of debugging will be significantly reduced in this way.

The software monitors embedded on the detected path can provide additional infor

mation useful to error location.

2.2.A.2.6 Path frequency counting

There is still another mode of testing. It is called stochastic testing.

In this approach, a program is continuously tested with a sufficient number of

randomly generated inputs. Test outputs are evaluated collectively at the end

of the whole test run. During the test run of a program, frequency of traversal

of each path is counted. Paths with high frequencies of traversals may be re

garded- as sufficiently tested, while paths with low frequencies may be taken for

additional tests. In order to test paths with low frequencies, ones with high

frequencies are blocked by BG*s so that the testing efficiency may be increased.

In addition, the detection of non-physical paths can be achieved to a cer

tain extent. Path-frequency counts can be contained in a program profile. The

tool for path-frequency counting is another type of software monitor called a

path-frequency counter Installed on the same location as a BG. In other words,

counters installed on same locations where BG's are resident are sufficient to

count all path-frequencies. The detail is referred to in [Ram 74b].

2.2.4.2.7 Performance verification

Program profile discussed in section 2.2.4.1 provides a certain degree of

assistance in performance verification. Based on it, the total execution time

of a program can be measured and compared to the performance requirement. How

ever, from the general nature of a profile, it shows only general tendency but
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doesn't provide sufficient confidence in performance for various inputs* More

thorough performance verification becomes desirable and it can be achieved to a

certain extent by the testing with the sufficient number of test inputs. Mien-

ever the testing is performed for error diagnosis, an additional check can be

made if the execution time on the path has been within a certain bound. Once the

path whose execution time exceeds the limit is detected, the execution-time pro

file can pinpoint the major candidate for optimization for that path. In addi

tion, this combination of diagnostic and performance testing identifies a set of

•Critical paths. Therefore, both error diagnosis and performance verification are

performed interchangeably and implemented in a AEVS, an integration of diagnosing

aid and evaluation aid systems.

2.2.5 Operational practices of AEVS's

In this section, the current status of AEVS's and the practical experiences

in using those systems are briefly reviewed. There have been a number of reports

on successes resulting from the utilization of AEVS's in the development and

maintenance of various software systems.

The ACES [Ram 73a, Mee' 73] contains features such as data base generation,

thorough structural analysis, unreliable constructs detection, profile generation

and critical variables monitoring. This system has been successfully used by the

SAFEGUARD Systems Evaluation Agency as a gross survey of substantial amounts of

program code. For example one partial process — a small portion of the complete

software system — which was analyzed by the ACES, consists of 90 routines and

subroutines containing approximately 23,000executable statements. Results showed

unreliable practices such as computed GOTO statements with untested Jump para

meters, DO-loops with untested initial or final values of the loop parameters,
and transfers of control into the middle of DO-loops* These conditions were fur

ther investigated by the user and either resolved or reported to the developer

for modification.

in testing and maintenance of the Houston Operations Predictor/Estimator

(HOPE) program, cost savings achieved by the use of the PACE [Bro 72a, 72b] was •

$8000 per year. The PACE disclosed that the existing test file consisting of 33

test cases covered 85% of the subprograms and that one-half of this number were

exercised by almost every case. It required A.5 hours of computer time and 35-50

man-hours of test results evaluation. Consideration of these statistics initiated

the subsequent analysis to produce a more effective test file. A file of six

cases was generated. These tested 93% of the subprograms, but they required less

than 2A man-hours of test results examination. Similarly, the cost required in

verification and retesting of the Automated Verification System (AVS) was reduced

by $1000 per year by the use of automated tools. These are representative exam

ples and similar reports are becoming more frequent. '



A2

The operating cost of the AEVS is worth receiving attention. The precise

cost is dependent upon the organization and capability of the AEVS as well as

the size and nature of the source program. Available statistics are very limited

at present. The observation made during experiences of the ACES showed the

general tendency that the construction of data base took approximately one and

an half times as much as the compile time and the size of the data base was two

and an half times as large as the size of the object code. Instrumentation of

the program generally resulted in 20Z expansion in the program size and the

execution time.

A fully automated validation is beyond the capability of current AEVS's.Although

it is premature to make a rigorous quantitative Judgement on the basis of these

examples, the increasing availability of«similar reports substantiates the

prediction of more successes of future AEVS's on software validation.

2.2.6 Stimmary

In this section, we have examined features of currently available AEVS*8.

At present, the partial validation and automated evaluation appears to be the

most effective approach to the validation of a large program. Although the ,

absolute correctness cannot be proved by this approach, the degree of assurance

obtained by the assistance of the sophisticated AEVS will be acceptable in most
i

practical situations. The success and efficiency of this approach depends

largely upon the approach in software design. The well conceived design process

can simplify the validation processes to a great extent and increase the effec-

tivenss in validation. On the other hand, the design process could become more

efficient on the basis of powerful AEVS. The largest obstacle on the way to the

fully automated validation has been the synthesis of test inputs. Problems

encountered in the program correctness approach to the validation of a large program

reappears in the automated synthesis of test inputs. Future works on structuring

software design processes such that validation, especially the test input generation

becomes highly amenable to automation will be of great significance.

2.3 Conclusion

The analytic approach to improve software reliability has been reviewed. The

proof of program correctness approach enables us to validate many simple but

frequently used algorithms. Hopefully, we can build up a library of validated

algorithms which can be used to construct more complicated algorithms. The use of

automated tools for evaluation and partial validation is an increasingly popular

approach to Improving both the productivity of the programmer and the reliability

of the program. Although at present, a considerable amount of human Judgement and

manual labour are Involved, the validation procedure can.be much simplified If the

program Is prepared with the goal of reliability in mind.
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3, The constructive approach to Improve software reliability
We can see that the analytic approach has several disadvantages if the program

i is written without any consideration for its reliability# All the techniques
developed become infeasible, ineffective and inefficient when the program is too

^large# The analytic approach is designed for detecting and correcting errors# ^
IThere is no guarantee that the end product after extensive debugging is free of
: error» as Dijkstra pointed out, "Program testing can be used to show the presence
•of bugs, but never to show their absence." [Dij 6fe]. There are no criteria to
Idetermine when our debugging effort should end. Besides it seems that debugging is
a waste of effort on something (bugs) which should not be there in the first place.

;Why should we spend 45% of our effort (in debugging and testing) to get rid of the
'mistakes that we made in the first 55% of our work (in the design and Implementation
' stages)? More care and time in design and implementation are clearly needed since
it will not only reduce our debugging effort but also give us a more reliable program.

The constructive'approach to improve software reliability has the objective of
never finding the first error in the program. The design and implementation of the

!program are carefully and patiently performed, always keeping the reliability and
1correctness,of the program in mind. Basically two approaches can be taken. A
; collection of programming techniques, called "structured programming", can be used
Ito develop more reliable software by better design, management and coding.methods,
jProgramming redundancies, called software defenses, can also be introduced to the
• system to detect and contain error propagation in real-time systems. .
I3.1 Structured programming '

Structured programMing, a term mentioned so often these days, has been consid-
• ered as a "major intellectual invention", one that can be compared to the sub-
' routine concept and even the stored program concept. [McC 73]. However, no one
really "invented" structured programming. Afew people, especially Professor E.W.
Dijkstra, have contributed a great deal to the formulation and consolidation of the
philosophies of "reliable programming", which then become known collectively as
"techniques for structured programming".

The term "structured programming" has been associated with many meanings in the
literature due to the broad spectrum of techniques it encompasses. In some places,
it has been associated with the syntax rules of a program, especially as a case
against the GO TO statement [Dij 68a] and restrictions placed on the type of control
structures that can be used to code a program. (Lis 71, Mil 71]. In other contexts,
it has been used to denote a design method for reliable systems, the so-called top-
down approach". [Mil 71]. It has even been related to the management method called
"chief programmer teams". [Bak 72a]. ,

Dijkstra (Dij 68b] defines structured programming as "to construct his (the
designer's) mechanism in such a way, i.e., so effectively structured, that at every
stage of the testing procedure the number of relevant tqst cases will be so small
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that he can try them all." It Is therefore, a method of structuring the program so
that it can be "exhaustively" tested and confidently verified. Baker [Bak 72a]
defines It as "a method of programming according to a set of rules that enhance a

program's readability and maintainability". Hence, it can be considered as a

programming style for clarity. Mills [Mil 71] defines It as "a complex of Ideas of

organization and discipline in the programming process". Structured programming Is

then both a design methodology and a technique for coding programs such that the

resulting software product is more reliable than an equivalent program developed

using conventional methods.

3.1.1 Structured programming as a coding technique

3.1.1.1 "GO TO" - free programming

The enthusiasm in structured programming Is often traced back to the

famous letter from Dijkstra [DiJ 68a], "Go To Statement Considered Harmful", In

which he suggested that "the GO TO statement should be abolished from all high

level programming languages" because "It is too much an invitation to make a mess ^
of one's program". Dijkstra pointed out that It Is the process controlled by the

program that accomplishes the desired effects for a programmer. In order to

minimize logical errors, one must "shorten the conceptual gap between the static

program and the dynamic process, to make the correspondence between the program

(spread out In text space) and the process (spread out in time) as trivial as

possible". With the unrestraint use of the GO TO statement. It will become

extremely difficult to trace the progress of the dynamic process evolving in time

by examining the static program. Consider trying to understand a small algorithm

(process) in the middle of a large program. If the algorithm has a conditional

GO TO statement which transfers control outside the algorithm, then It is necessary

to understand the effect of the code at the destination of the GO TO before the
I

algorithm can be understood. This requires examining the effect of the external

environment. If this GO TO leads to another and then another, the tracing of the

external environment may eventually obscure all our understanding of the algorithm

sihce the control or decision statements are separated in space on the page from

the computations evoked from them. These Jumps, sometimes in both forward and back

ward directions in the program, make it difficult to follow the logic of the program

and difficult to visualize at any given point of the program what the present

conditions are (such as the sequence of operations executed, the state of the '
variables, etc.) The program text does not correspond in space on the page listing

to the execution of the program in time. Furthermore, as a program is debugged and

changes are made to correct errors or to meet new specifications, the complexity of

the program grows rapidly. Any change in an algorithm with GO TO's can have "side
effects" in control on the environment in which it is used because this algorithm

may Jump out of its local environment and affect other parts of the program. New ^
bugs are created due to these unanticipated side effects of the changes. If, on
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the other hand, an algorithm has no GO TO statements, then the effect of the dynamic

process created by the algorithm can be understood very easily as the cumulative

j effect of all Its statements without worrying about the external environment of the

algorithm (except for the state of the Input variables). Therefore the dynamic

: process Is "localized" In the static code. Any change In the code will only affect

! the "local" process. As a result, the user has more confidence In the program since
j It is readily readable and understandable. It Is also very easy to modify, debug

i and maintain the program. It Is therefore not surprising that Dljkstra remarked
I that the quality of programmers seems to be Inversely proportional ^o the density
j of GO TO statements In their programs. [Dlj 68a]. I
I I
! After all the discussions on the evils of the GO TO statement, one may still

I wonder If it Is possible to write programs without them, and whether the replacement

! will create the same kind of problems. We would like to replace the GO TO statement

' with statements that will force the declslonal statements to be associated with the

! computations evoked by them. Then the computational process evoked by the program

I execution (in time) will correspond more closely to the program text and becomes
j more easily understood. Bohm' and Jacoplnl [Boh 66] have laid down the theoretical
i basis for structured programming by showing that It Is possible to write any program

I using only three control structures. Aprogram in this language will be a compound
I ' *
! statement formed by simple assignment statements and predicates according to the

following rules: ,

1. If SI and S2 are statements,'then the concatenation of SI and S2 Is a
i statement. (SEQUENCE). j

2. If SI and S2 are statements and T Is a predicate, then the conditional

i statement IF P THEN SI ELSE S2 is a statement. (IF THEN ELSE). j
i 3. If S is a statement and P a predicate, then the iterative statement '

WHILE P S Is a statement. (DO WHILE). I•

A program written In this language will have a flowchart made up only of the single^

entry single-exit structures as shown In Figure 23. Each block In the figure may

be replaced by one of the three structures. Therefore the control structures can

be nested. !

Programs written In this block structured programming language has a very

• simple control structure. There are no 60 TO statements and no labels. There is

! a direct correspondence between the static form of the program and the dynamic flow

during its execution. Using only concatenation, alternation and Iteration as the

control structures, the process Is "localized" with the flow of control in the

, program. The computations evoked by a declslonal statement can be closely followed.

A predicate Is defined as an logical expression which when evaluated will yield
a value which Is cither TRUE or FALSE.



46

SEQUENCE

IF THEN ELSE

DO WHILE

Figure 23 Control structures for structured progranmlng

There is no back-tracking. Without GO TO's^ transfer of control always proceeds

unldlrectionally. A structured program can be broken down into meaningful segments

which have only one entry and one exit. Execution always proceeds from the single

entry point to the single exit point of a subprogram (block). This simplification

of control makes It no longer necessary to flowchart a subprogram. In fact, as a

general rule of thumb, a structured program v/hlch cannot be understood without flow

charting Is too complicated and should be broken down Into modules. The straight

forward control transfer In structured programming Is also very helpful for proving

. program correctness. The proof of the .correctness of a program which does not

Icontain GO TO's becomes much simpler since the termination of the program depends
1only upon Iteration statements (not upon a possibly Infinite transfer of control),

j If a block of code contains a GO TO statement, we have to examine, understand, and
i prove the termination of the block of code to which the GO TO statement transfers
, control. A chain of GO TO statements will make the understanding and piroof of

termination very difficult. If, however, wc restrict the program blocks to be

executed sequentially or at most In an Iterative fashion, we can explicitly state

the conditions under which a block of code terminates. Without GO TO statements,

the proof of a program breaks down naturally Into the proof of separate program

components. Also the proving process Is much simplified because the program Is

clearer and easier to understand. Each method of combining the simple assignment

statements corresponds to a rule of Inference. Concatenation Is understood by

enumeration, conditional statements by case study and Iterative statements by

mathematical Induction. Programmers are familiar with these rules of Inference.

[Lls 71]. Therefore, It becomes feasible to prove, at least Informally, the

correctness of a large program. Dljkstra by using structured programming has

developed and Informally proved an entire operating system. [Dlj 68b].
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3.1.1.2 Objections to structured programning

There are» however, some programmers who question the nerlts of such

restrictions Imposed by structured, programing. Objections to structured programming

usually come from one of two sources: basic programmer conservatism and concern about

efficiency of the programs produced. The conservative reaction comes about because

structured programming Is a new technique which may be more difficult to learn and

to use than conventional programming. It will also require a change of programming

habits, which may affect the software productivity of the programmer. However, the

actual degree of difficulty, may be overestimated. At the University of California

at Santa Clara, only structured -programming is taught. Their experiences Indicate

no unusual problems In teaching and learning structured Instead of unstructured

programming. Experience reported by Baker [Bak 72b] on the development of the New

York Times Information Bank showed that software productivity of a programmer Is

Increased slightly rather than decreased by using structured programming. Besides,

there is always the advantage of a reduction in debugging time. |
There Is also the concern about the efficiency of the program In terms of

execution time and memory storage required. Knuth and Floyd have discussed >
i

techniques to avoid GO TO statements in a program by using recursive procedure

method and by duplication of code. [Knu 70b1 Both of these methods will cause an

increase in memory storage and execution time. Ashcroft and Hanna have shown that

every flowchart program can be written without GO TO statements by using WHILE

statements. [Ash 71]. Given a set of Inputs, the WHILE program will produce the

same set of results as the original program but need not perform the same computation

sequence although the topology of the original program Is preserved. However, new

variables are introduced to preserve the values of certain variables at particular

points in the program or alternatively special boolean variables are introduced, to

keep Infprmatlon about the course of the computation. In general. It Is always

necessary to add extra variables In order to translate a flowchart#program into an

equivalent WHILE program. Therefore, It may mean an increase in memory storage.

However, Ashcroft and Manna have reported the same order of execution time

efficiency for the structured WHILE program. It is still unclear if there will be

any Inefficiency when the program is flowcharted with structured programming in

mind. Dijkstra feels that structured programs are just as likely to lead to

efficient code as any other type of program. He also feels that an Increase in

efficiency always comes from an exploitation of program structure. [Dij 65].

Furthermore, structured programs will be written in high level languages and a

powerful optimizing compiler can be used to produce efficient code.

3.1.1.3 Other considerations for a structured programming language '
Structured programming is a technique that reduces a program's complexity.

Increases Its clarity, and r.esults In easy understanding and maintenance. A reliable

program should have very simple structure and - Its structure should be clearly
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visible by an examination of the code. To achieve these goals with the mere
elimination of the GO TO statement appears to be a simplistic approach. Reducing

, a program's complexity can be thought of as a process of r^oving obstacles from
the program: complicated control paths, obscure structures, uninfcrmative comments,

I unnecessary Jumps, redundant and obsolete code, ambiguous constructs, etc.
^Restricting the programmer's use of control structures to SEQUENCE, IF THEN ELSE,
! and WHILE may also lead to unnecessary inconvenience sometimes. Different forms of'

restricted use of 'GO TO* have been proposed, such as the EXIT statement in BLISS '

tWul 71] and the COME FROM by Clark [Cla 73]. It has been suggested that the CASE
statement (as used in ALGOL) be added to the allowable control structures. [Mil 71].
It is also suggested that the single-exit law be relaxed for abnormal termination. '

(Don 73]. Improving program clarity can b'e thought of as a process of adding things
to the program: meaningful names, informative cocoments, clear code layout and" j
Indentation for readability, more levels of modularization, good documentation,
clean interface, etc.

It is clear that structured programming can be achieved with a combination of

good programming style and language design. The drawbacks of existing programming

languages have been investigated by Elspas et al. [Els 71), and Kornlghan and

Plauger. [Ker 73]. A good language for structured programming should not contain

features that are conducive to error. It should encourage concise expression
rather than cryptic. A language like APL is an" open invitation for clever tricks

which are very difficult to understand*, even by the programmer himself after some

time has elapsed. The language should have a rich and descriptive syntax, making

It very easy to read and understand, even by people who are not familiar with the

language. For example, in APL,

6 X l(x > y)

means "IF x > GO TO 6". However, a statement

-*• 6 X (x > y)

means "IF x > y, GO TO 6, ELSE RETURN". The hidden "RETURN" is often overlooked.

Irregularities of treatment of the same syntax construct in different environment

is another-drawback of many languages. For example, in Fortran, there are different

constraints on the integer expression, according to whether they appear in a DO

statement, an I/O statement, a subscript, a computed GO TO, a declaration, etc. '
A programmer would much prefer only one integer expression usable anywhere. Some

other irregularities are provided in order to save the programmer some keypunch

time. However, saving a few characters can sometimes create a lot of confusion.

Algol 68 allows the statement

label; '•
as a legal branch to be interpreted as "GO TO label". These irregularities should
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be removed. The language specification becomes bigger, and thus enlarges the

compiler size. The cryptic expression makes error checking very difficult. Also

these special cases may be treated differently In different Installations, thus

affecting the transportability of the program. Therefore a good language should

encourage uniformity and generalization. Algol 68 has some good features In this

; aspect. Statements and expressions are treated as the same thing In Algol. The

' CASE statement encourages a uniform organization of the programmer. Program layout,

j and commenting can affect the readability of the program drastically. A language ^
I I

: should allow free-format Input and proper Indentation. The compiler should also ^
j Improve the readability of the program by providing optional Informative outputs of ^
: the program layout besides the standard listing. This may be a listing of the j
I program with Information about Its topology, such as the loops and the branches.

Comments are crucial to the understanding of a program. However, too often

' nnlnformatlve comments are"written by the programmer. It may not be a bad Idea at

, all to design a "structured" language for commenting a program. Comments written
j /
I in the form of assertions used In proving program correctness may be useful In

j understanding the program.
! A good language for structured programming should also encourage a programmer
I j
• to write reliable programs, even at the expense of additional constraints on his

style. This affects the syntax of the language,.Its semantics, and even the prag

matics of Implementation. The language syntax should be descriptive of the desired

action. Language- redundancy can also provide error protection. The requirement

' of the programmer to declare all program variables and the way they are used In

' Algol 68 helps- to reduce errors due to misspelling of Identifiers. During program

; execution, array-bound checking should be provided by using special hardware (as
Iis done In the B5000) or by run-time system software to verify that subscript values

do indeed fall In the declared range. Descriptive and meaningful names should be

• used and clarity of expression should be emphasized. The compiler should also

perform some semantic checking on the program to reveal semantic errors, which may

be very helpful for debugging.

Therefore we can see that a good language for structured programming should

support the three types of well-structured control structures: SEQUENCE, IF THEN

ELSE, and DO WHILE. Unrestricted use of the GO TO statement should not be allowed.

, It should encourage concise and clear expressions, clear code layout and Indentation

for readability, and Informative comments. It should have a rich and descriptive

syntax, uniformity In language constructs, and clear precise semantics. It should

contain error reducing properties, such as language redundancy. The Implementation

of the language should try to Improve the reliability of the program. No existing

programming languages have all these properties. PL/1 and Algol can support the

three basic control structures. Therefore they can easily be used for writing

structured programs by eliminating the features that are conducive to error. Other



50

modifications of their syntax and semantics for more reliable programming are also

very desirable. Kelley [Kel 73] has developed an experimental programming language
j called APLGOL which adds structured programming facilities to the existing framework

of APL. The conventional semantics of APL is unaltered and only minor changes are
incorporated in the syntax. j

A good program design can also help to produce reliable software. Many program
errors can be avoided by witing tdie code first in some "virtual language" and then
expand and translate into the desired high level language. This two-step coding
procedure will increase the reliability and intelligibility of the resulting program,
besides helping the programmer to write informative comments and useful documentation.
The "virtual language" need not be formal but should be precise and descriptive of
the action to be performed. For a large programming system it may be advantageous
for the programmers to agree on such a "virtual language" so that uniform documenta
tion can be provided, making the programs easier to understand by all programmers.
In a way, this can be considered as similar to the top-down approach of design of
g^]»u£^tured programs to be discussed in the next section. 1
3,1,2 Structured programming as a design technique !

We notice that structured programming aims at simplifying the control paths

of the program so that it becomes more readable and understandable. However, even
when a program is well structured, it. may still be very difficult to understand if
it contains DO loops with thousands of instructions and IF-THEN-ELSE statements

, taking up twenty or thirty pages. The -program has to be divided up into smaller
; subprograms of more manageable size called program modules, a common practice called

modularization. Modularity allows modules to be written, compiled, and tested
! independently. Traditionally the process of modularization is performed in a care-
I less and arbitrary fashion. The division of a program into modules is usually done

according to the boxes of the flowchart of the program. This may work in small
programs. In large programs, there are complicated interactions among the modules.
Modules interact in control (via the entry and exit points), in data (through shared
data or arguments passed between them), and in the service which they provide for
one another. An arbitrary modularization may obscure many of these interactions

' (interaction complexity) so that subtle software bugs may be created. It may also
introduce unnecessary functional complexity by putting too many functions in a
module or by failing to abstract a common function shared by several different
modules.

• From these considerations, we notice that in a good modularization, we should
minimize the assumptions that the modules make about each other (to reduce inter
action complexity) and we should also limit the size of the modules (to reduce
functional complexity). Parnas [Par 71] has also made other suggestions on the

I modularization of the program. The modules should be defined around assumptions _
which are likely to change. In specification of modules, we should specify
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Identities or relations between the externally visible aspects of the module rather

than the Internal construction.

In terms of structured programming, good modularization can be achieved by two

techhlques. The first, levels of abstraction. (Dfj 68b] allows us to resolve the

complexity of the system by conceiving the system as a hierarchy of levels of

abstract machines. The second, top down design, [Mil 71], enables us to develop

a large program as a tree structure of functional modules.

3.1.2.1 Levels of abstraction

Levels of abstraction was first proposed by Oljkstra for the design of the

T.H.E. Multiprogramming System so that It can be proved logically correct and

tested exhaustively. [Dlj 68b]. The system Is designed as a hierarchy of levels

of abstract machines, the lowest levels b^ng those closest to the machine. At

each level, the abstract machine allows us to understand the operations at that

level without requiring the detailed knowledge of how the operations are carried out.

For example, the virtual memory can be considered as a level of abstraction while

the physical memory Is a lower level of abstraction. Two rules are used for the

formulation of levels of abstractions. Each level owns resources exclusively for

its own use and these resources are not accessible from other levels. Lower levels

are not aware of the existence of higher levels and therefore may not refer to them

In any way. For example, the disk and core are resources owned by the physical

memory level while pages and segments are resources In the virtual memory level.

The physical memory Is not aware of the existence of the virtual memory.

Each level of abstraction contains a collection of related functions.

Operations In each level are Interpreted by the abstract machine on the next lower

level. Higher levels are supported by lower levels. Therefore, high levels may

obtain service and Information from lower levels. Each level may contain externally

accessible functions In addition to Internal functions used exclusively to support

the level. Since each level has Its own resources, each level can be considered

as a level of abstract resources. The division of resources Into levels Implies

that each level has to be 'complete'. The operations at one level have to be

supportable by the abstract resources provided by the underlying levels.

The hierarchy arrangement of levels of abstraction allows us to design good

modularization of the system. Subtle errors due to shared resources are controlled

by treating the ownership of resources In a rigorous fashion. The Interface problem

Is reduced by defining system primitives which must be used for communications

between levels. The cooperation of processes are regulated by a set of formal

synchronizing primitives. However, the success of the design of the entire system

depends critically upon the design of the top level. The design of this level

depends on the experience and Judgement of the programmer," as well as his under

standing of the system. Dljkstra suggests that. In general, decisions should be

delayed as long as possible (hold onto the abstractions as long as possible).
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Whenever possible, we should gain more understanding of the system before we make
a decision. If a module is too large, the principle of "divide and rule" can be

' applied to decompose it into smaller modules. Besides the program should be |
. designed for adaptability by considering potential generalizations at each stage in
j I' the design. This helps us to gain insights into the structure of the system. j

Specifications are likely to be changed while the system is being built because of
• more understanding of the system. Modifications are always necessary after the '
; Ij system is put into operation for system optimization and tuning, as well as user
; convenience. Therefore, structured programming should also be used for implementing

j the system for maintenance and modifications. I

I Dijkstra also gave some design rules for the specifications of the modules.
j[DiJ 65]. His "principle of non-interference" states chat modules should be |

constructed to satisfy specifications so that they are independent of each other

and independent of the context in which they will be used. The modules are logically

IIndependent so that they can be designed and constructed independently. Independence
implies that all interfaces have been defined and that all conflicts over resources

I ^ . • • I
I have been resolved. When the modules are integrated together, the correct working

of the system can be established by considering only the exterior specifications

(an abstraction) of the modules without requiring, knowledge about the interior '•

construction. Therefore, starting from the lowest level, at every stage of inter-

gration, the correctness of the system can be proved by an exhaustive case analysis.

Dijkstra concluded that a designer should structure his program so that the number

of relevant test cases is so small that they can be exhaustively tested. [DiJ 68b].

Besides the T.H.E. System, there are other systems constructed with levels of

abstraction, such as the Venus system designed by Liskov [Lis 72a] and the file

system designed by Madnick and Alsop. [Mad 69]. ^
3.1.2.2 Top down design

There are basically two approaches *to build a system: from the bottom up

or from the top down. In the' bottom up approach, implementation begins after an

initial design which identifies the tasks. The most elementary (low-level) functions

are implemented first and then used, as building blocks to compose more complicated

tasks, and so on. In this way, debugging of the code is easier and can be performed
I

in parallel with the design of more complicated components. However, there are

several dangers with this "building block" approach. The building blocks are

implemented before the system is well-defined. They may not be the most useful

components in building the system. Modifications of these building blocks are

frequently necessary when difficulties are encountered in the higher levels. System

integration is difficult because the interfaces between programs are not rigidly

defined and modifications of building blocks often create subtle side-effects.

Worse than all these, the existence of these building blocks may influence the

*9
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system design. Therefore, the design of the system Is constrainted by decisions

made before we have an overall understanding of the system.

I The top down approach uses the opposite philosophy. [Mil 71]• The highest |
level, which represents a rather formal description of the overall system, is

Ispecified first. It describes the flow of control among the major subsystems,
I each having a functional specification. Each of these subsystems is then expanded

' into an intermediate system of code and functional subspecifications. This process

! is carried on until all functional specifications are coded. Therefore the system

: is organized as a hierarchy of levels of function specifications. (Note that the

levels used here are different from levels of abstraction because they are not

associated with the ownership of resources.)

There are several disadvantages associated with the top down approach. The
I

I specification of the components are rigidly defined, including the data structures
! It employs, without much consideration to how the components will be implemented.

This may lead to problems of inefficient implementation. The design may also be ^
complicated since the system is very complex and it may be difficult to write down

Iall the specifications at each level. To understand the operation of the system,
I one may have to simulate the system as the design proceeds in order to debug his

Ispecifications, as suggested by Randall. [Ran 69]. j
H. Hills, an advocate of the top down design, showed that most of these problems

can be overcome by the introduction of'structured programming. [Mil 71]. Mills

views the functional specifications as'similar to mathematical functions which map

initial data into final data for some codes yet to be specified. The whole ^
' organization is based on functional prograaiminR, defining composite functions in

I terms of other functions. The design structure is carried out directly in code,
' which can be at least syntax checked, with "program stubs" representing functional

subspecifications. This process of functional expansion is carried on, with new

functional subspecifications represented by names of dummy members of a programming

library, until the whole system is defined. Each functional subspecification,

called a segment, may consist of a mixture of control statements, and macro calls

(to lower level segments) vdth possibly a number of initializing, file or j
assignment statements as well. j

Mills'also put other restrictions on the construction of a segment. Only

structured programming techniques can be used. Implying that the control structure

will only consist of sequencing, IF-THEN-ELSE, and DO-WHILE. The size of the

segment is limited to about 50 lines of code or one page of listing, so that each

segment is small enough to be readable and understandable. A segment is also

restricted to have only a single entry and a single exit. Therefore, a segment

behaves as a simple data transformation function independent of the environment in

which it is used so that there are no side effects in the program control. Segments

are stored under symbolic names in a library and are substituted at any point in the
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program by a macro-like call. The segments form a tree structure with the system
specification at the root. The system is written from top down and at each level

Iwe can verify that the intermediate system is logically equivalent to its predecessor
system. Therefore, the system can be,.verified to be correct one level at a time by

I functional expansion up to the lowest level, i.e., the code of the program. Since
each segment is small and well-structured, the proof of correctness is much \

simplified. Interfaces between segments are rigidly defined, minimizing the inter-'
face problem. Documentation is automatically provided by the functional specifica

tions and the verification procedure. The finished system also contains traces of

' the design process, which is very helpful for the maintenence and modification of
! • II the program. It is also'possible to execute the system at any intermediate level

iI by simulating modules that are not yet implemented. The modules are never
I •' I
I checked out independent of, the system. Therefore, conflicts over resources are :

^detected and resolved early in the design process. I
• • I

Hills* approach'of system design has been carried out by Baker [Bak 72a] in the

• design of an information bank system for the New York Times. It was reported that

I programming productivity was substantially improved and the system had no serious
; errors for^the first twenty months.

3.1.3 Structured programming as a management technique

Reliable programs cannot be produced efficiently without a good management

policy. Communication problems among programmers are the chief source of program

. errors. Conventional management approaches often suffer from the lack of functional

separation, communication, discipline and team work. The hierarchical arrangement

: of a structured program provides a natural- organization for the assignment of Jobs.

! The communication problems are minimized-by rigid specifications of the components
• I

and the interfaces. All these give us an opportunity to use a more systematic

approach of management. The Chief Programmer Team approach has been proposed by

Hills [Mil 73] and Baker [Bak 72a] as a way to Improve the manageability, quality

' and productivity of programming. The nucleus of a chief programmer team consists

of a chief programmer, a backup programmer, and a programming secretary. Other

personnel can be added at the discretion of the chief programmer. The main

objective is to structure "programming work Into specialized Jobs, define relation

ships among specialists, and stress discipline and teamwork". [Bak 73]. !

The chief programmer is a technical manager whose principal work Is to design

and code central, critical segments of the system and make specifications of

i programs to be assigned to other programmers. Besides, he also reviews and then

integrates programs coded by other programmers. The backup programmer is another

person who is completely familiar with the design and development of the program

by working closely with the chief programmer. He reviews decisions and provides

I test planning for the system. He also formulates programming strategy and

tactics, relieving the chief programmer to concentrate on the central problems of
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system development. Therefore he Is both an assistant and a back-up man for the

chief programmer.

The programming secretary Is responsible for maintaining the current status and

previous history of the project In the Development Support Library (DSL) In both
,an Internal (machine readable) and an external (human readable) form. (Bak 73).

The DSL contains all the project programs and data files In the computer and all the

^project documentation, listings, and outputs. Including test runs, whether successful
lor not. A detailed history of the development of the program Is kept. The program-

imlng secretary has to collect from the programmers the project notebooks containing
'changes to be made In the Internal programs and data files. Then he prepares the
Input and excutes the project programs on the computer, with the help of keypunch

:operators. The machine executes the program while updating the library data In the
!Internal library file. The secretary obtains the output and enters them with the ,

•new source listings In the project notebooks of the external library, with the

jnecessary documentation. The outdated documents, however, are not destroyed but
'logged In chronological journals. He then returns the notebooks to the programmers.
ITherefore the programming secretary is also a key personnel In the nucleus. He

irelelves the programmers of most of the clerical and secretarial work for maintaining

lall project records, current status, and test data so that they can work more
! ' ' !
effectively and efficiently.

The DSL represents a concept of moving the programming production process from
private art to public practice. All computer runs and program data become public
assets and the visibility of the DSL simplifies the communication problem among the ^
programmers. The record of the history of project development facilitates the
maintenance of the program. The concept of "egoless programming" Is also adopted.

[Wei 71). The chief programmer has to read, understand, and verify all program
data developed by other programmers on the team. They, In turn, have to do the same

on programs written by the chief programmer to define the specifications and Inter
faces. This ensures that at least two programmers fully understand every line of

the developing program.

About 100,000 lines of source code seems to be the maximum size properly

assigned to a single team. In really large programs, we have to define a hierarchy
of chief programmer teams. A team of skilled programmers may start out the system

with the overall system design. After the design Is completed, each member In this
team may become the chief programmer of the other teams responsible for the next
level of design and implementation, and so on. The evolution of assignment in a top-

' down fashion will retain the spirit as well as the discipline of the Chief Programmer
Team.

3.2 Software defenses

Although structured programming can help us to construct reasonably reliable
software we are still not certain that no critical error will ever occur. In some
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real-tljne systems, even this low error rate cannot be tolerated. A protection

technique, called software defense, [Cha 73] can be used to trap and contain the

j propagation of software errors In a real-time system. This technique Is a
precautionary procedure to make sure that there will not be a catastrophic disaster

j even when a software error occurs. These techniques are highly goal-orlented so

' that It Is very difficult to generalize them. They have been proved to be very
I useful In the ESS of the Bell Telephone Company [Cha 73].
I There are two types of software defense techniques: defensive progratsmlng
I Btethods and audits. The former Includes techniques used In the design of the

I program and data to detect software errors before they cause system misbehavior.
i
! The latter are used to detect, contain, and possibly correct software errors after
i
; they have occurred. Since audits, are used primarily to protect the Integrity of the

Iprogram, they will'be discussed In the next section.
; Defensive progranunlng may Include a variety of methods. They are special |

Iprecaution procedures to be Implemented In the program to reduce the possibility !
1 •
I of a software error. They are dependent on the purpose of the program and the style

1

I of the programmer. A commonly used technique Is the range check. Range checks can
I '
j be performed on the values of data, memory locations accessible to a program, and !
' I i
! areas where a program control can be transferred to. A state check to verify that

the system Indicators and the actual states of the resources are In agreement before

a resource Is allocated can reduce many system errors and mutilation of potentially

valuable data. Reasonableness checks, on the Input data can eliminate many system

; misbehavior due to abnormal Input data. A reverse check Is also an effective tool

to ensure the correct operation of the system. For example, when a complicatedIiprocedure Is employed to search a file, we should examine some characteristics of ^
Ithe file searched before any modification to make sure that we are operating on the
! correct file. Whenever a translation Is performed, a reversed translation can also

be done as a check. The defensive programming techniques can be viewed as software

, redundancy to Improve the reliability of the program. The degree to which.these

' techniques should be applied must be considered carefully In order not to degrade

. the efficiency of the program significantly.

In a multiprocessor system, software defense can be provided by the architecture

i of the operating system. The operating system functions can be distributed among
I

' the processors. The design of an operating system with distributed Intelligence
I *
[enables us to achieve a fall-soft behavior In presence of a software error. The
Ioperating system of the PRIME System Is an example. I
' PRIME, developed at the University of California, Berkeley, Is an experimental

! time-sharing system designed for continuous availability, data privacy,' and cost
effectiveness. [Bas 72]. It Is a multiprocessor system In which one processor Is

. dynamically designated the Job of the control processor and the rest problem

processors. The technique of dynamic vcrlfIc.ntlon Is used In the construction of
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the operating syscem to ensure continuous availability and the data privacy of a

user even in the presence of a single hardware or software fault. [Fab 73].

Furthermore, multiple faults will not lead to unreliable operation unless they '

reinforce each other. Dynamic verification of a decision implies that every time

the operating system makes a decision there is a consistency check performed on the

decision using independent hardware and software. This technique is applied in the

control monitor of the operating system. The control monitor performs the functions

of scheduling of processes to be run on problem processors, the allocation of memory

pages and disk cylinders to processes, and the management of a virtual communication

1system. It consists of two parts, the central monitor (CCM) and the extended control
I monitor (ECM). The CCM is written in a high level language and is executed only by

i the control processor. The ECM, resident in the problem processors, is microcoded
i I

I and acts as a local representative of the CCM to enforce its decision. However,
' dynamic verification is possible because the CCM does not Interact directly with

I the ECM but rather by sending messages to the ECM. Each time a decision is made
I

' by.the CCM, such as starting a process sending a message to a process, or allocating

a resource, the ECM can verify if the action of the CCM is appropriate. Inter

process communications are performed through messages and are similarly checked by
the ECM*s.' The decision making and decision checking processes are performed by

' different hardware and using different algorithms. Therefore, the integrity of the

: system is maintained in the presence of a single hardware fault or software error.

Such decision verification procedures can also be applied to other software

architecture with distributed intelligence. |
3.3 Conclusioii i

Several programming systems of considerable size have been developed using the

constructive approach, notably the THE System, the information bank of the New York

Times, etc. All these systems have shown to be very reliable after they have been
put into use. For example, the information bank of the New York Times had been put
into operation for 13 months before the first error was detected that resulted in
system failure. The acceptance test took a total of 9 weeks and only 21 errors

were detected, all of which were fixed in one day [Boe 73]. The productivity of
the programmers is high, 83000 lines of high-level language source code produced
in 11 man-years (6 men and 22 months). The reliability of the program is high,
with only 25 errors in over a year's operation. This corresponds to approximately
one error for each 5 man-months of effort on the project, which is quite remarkable.

[Bak 72b]. As a result of using the constructive approach to reliable programming,

the project cost was cut by 50% and development time was reduced to 25% of the
initial estimate! (Boe 73]. The mission simulation system developed for the

Skylab operations by IBM has similar success. ADO,COG lines of code were

produced in 2 years and the "software was delivered on the original schedule in

spite of 1,200 formal changes in the requirements. [Bak 73).
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The constructive approach therefore appears to be a very useful way of
designing and implementing reliable programs. However, there are still people who
Iare skeptical of its success. The systems constructed by this approach so far are '
;relatively small and simple compared to really large programs like the national [
Imissile defense programs. The number of programmers involved are small, six full-

Itime programmers in the New York Times Project and six half-time programmers in the '
jTHE System. They are experienced, well disciplined (mostly mathematicians with J
j5 to 8 years of university training in the THE System), and under excellent leader-
Iship (Mills, Baker and Dijkstra). It may be doubtful if the same remarkable success
jean be achieved in a large programming project involving, say, 2000 relatively '
junexperienced programmers. Besides, most of the theory developed in this area are

jguidelines and principles rather than proc^ures which a programmer can follow step

by step to construct his progr^, especially in the design stage. Many of the tasks

have to be performed manually and decisions have to be made arbitrarily without any

methodology to evaluate them before, or bven after, they are made. The design of

the system depends as much on the experience and judgement as on the intuition of '
i the programmer. In general, we know what the end product should be without too much
!idea on how to arrive at it. For example, Dijkslbra suggested that the program should
:be structured in a way so that the number of relevant test cases at each stage of

! testing will be so small that they can be exhaustively tested. However, there is no
; general method that will enable us to arrive at this end product. There may even be

' cases where this is impossible, when thje decisions are tightly "interwoven" together.
In the design of the system with the "top-down" approach or the "levels of abstraction"

approach, it is difficult for us to decide how to form a "complete" level. Besides,

: the decomposition procedure of large modules is done in an arbitrary fashion. When

Jdifficulties are encountered in a level, it may be necessary for us to go back and

modify the higher levels. Fortunately, the structural programming approach makes
• • • ! .

such modification easier.

It is highly desirable for us to be able to mechanise some of the procedures

so that automated tools can be used to help us to design, implement and test the

program. Computer assistance in validating and evaluating our decisions during the

development stage is clearly very valuable. Obviously, such tools are still

^necessary for the end product. Therefore, it seems that the analytic methods to

improve program reliability are still essential for assuring the quality of programs

^developed by the constructive approach, when the program is too large and complex.
A. Integrity of a program

A.l Introduction t

By now we have already surveyed different methods to construct reliable soft

ware. Reliability implies the ability to perform a specific function by the piece

of software. However, the correct operation of the process created by the piece of
I *

the software cannot be achieved if its integrity cannot be guaranteed. Integrity
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is a particularly serious problem in large real-time systems since the program Is

controlling an on-going physical process such as a nuclear reaction, air traffic

I control system or a national anti-ballistic missile defense system. In many cases,
the security of a program is as important as its reliability. Loss of integrity

Iis usually associated with malicious tampering of the code of a program by an
unauthorized intruder in a hostile environment. This is not necessarily the case.

Loss of integrity may be caused by a subtle software bug inside the program itself.

Modification of code by another user may be unintentional, due to a flaw in the

operating system. Transient hardware faults can also 'cause tampering of codes

which are very difficult to detect. Real-time systems are especially vulnerable

to intrusions since they-have to be on-line and accessible to a large number of

users. This makes protection quite difficult. Things are even more complicated

I in a multi-processor system since processes are created and destroyed in real-time
I and they may even co-operate in a mutually suspicious manner. The reliability of
I such software systems has to be safeguarded against intentional or unintentional
I intrusion. I
I If an intruder can masquerade ingeniously as a leg^ user, follow normal °
; procedures and perform normal operations, there is very little that we can do to
! ' • '
j detect it in real-time. An intrusion is usually detected by abnormal phenomena,

such as a user accessing a part of the memory not assigned to him, a user's attempt

to read a file with the wrong password, or an execution of a program without

authorization. Since a residual software bug can also cause such derivations from

the normal behavior, all of these can be viewed as software bugs, either in the

' user program or in the operating system." There is a close relationship between the

I reliability and integrity of the program. Security safeguards can therefore be
I considered as a form of software bug trapping mechanism in real-time. The integrity

of a program is protected by security measures, which protect the program from

accidental or intentional disclosure to unauthorized users and from unauthorized

modification.

In real-time systems particularly those dealing with national defense and

banking, it becomes particularly important for the security of the system to be

sure that the program contains no critical software bugs and that the system will

not compromise the sensitive information when there is a hardware failure. The

software bugs in the program can lead to a breach of security and may be planted

by an Infiltrator. A large computer program must necessarily involve a considerable

number of programmers. An intelligent infiltrator will therefore start at the

stage when the program is roost vulnerable, namely, when it is being written. Subtle

software errors can be introduced to make the program inoperative when special

conditions arise. Secret entry .points and loopholes can also be created by the

infiltrator for later usage.. Not only are these bugs difficult to find but even

when these errors are discovered, the ingenious infiltrator can always appear
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as an ingenuous programmer to relieve the blame. (However, in any case, he should
j be fired!) The risk of the infiltrator is therefore minimal. The only effective
j countermeasure is to validate the system with automated tool so that it operates '
j correctly as required for all the inputs at all time. i

I Active infiltration into the system during its operation can be achieved in '
i ' i

different ways. [Pet 67J. A person may use legitimate access to ask unauthorized
questions. He may find subtle entry points or "trap doors" which may exist by j
virtue of the combinatorial aspects of the many system control variables. He may

I also masquerade as a legitimate user by unlawfully obtaining the proper identifica-
I tion such as a password or by Intercepting and cancelling the legitimate user's I
I sign-off signals, followed by continued operation under his name. Another common '

method of infiltration is by examining the contents of core memory left behind by
the previous user to look for useful information such as passwords, file names, etc'.
An intruder may also force his entry into a critical program and execute it. More-'
over, a clever person may be able to put his process into supervisor mode and then ^
virtu^ly do anything that he. likes. Protection of the integrity and privacy of

programs must be provided against all these active threats.

4.2 Security•analysis

Security is the process of detecting and preventing unauthorized modification,

access and snooping of sensitive information. This Implies the necessity of adequate

safeguards built into the management and hardware/software aspects of the system. '
As in any large-scale system, the analysis effort is considerably reduced when it

is possible to arrange the system in a hierarchical fashion. Then we can conven

iently concentrate our effort at one level at a time, starting from the lowest j
level. At each level, we can neutralize the threats, thus providing a secured j
"hardcore" to work on the next higher level. A secure system can be arranged into
a hierarchy of 6 levels, according to the vulnerability to threats. (See Figure 24)

The lowest or the most critical area which must be secured is the program

specification* Inconsistent or poorly defined specifications would provide the

ready means to introduce programming bugs, such as trap doors and loopholes. The
I

.specification must be very rigid, providing no reason for ambiguity. The next level

of security involves the operating system, since it could modify any program under
i

execution. The operating system must be checked to see that it interacts with the

Job program properly and would not modify it in an unknown way. The third level of

security is concerned with the program implementation process of the specification.

The program design must be such that the behavior of the execution sequence must be

clearly visible from an examination of the static code. In other words, a static

analysis of the code should reveal all actions the program takes very clearly. This

implies that the program must be structured and modular.

The next level of security involves the machine diagnostic aspects and the '
computer operator, since bad maintenance procedures could reveal the contents of the
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memory or an unscrupulous computer operator may modify the contents of the memory

without proper authorization. Hardware faults are also threats to the system

security. The next level of security will consider the active threats* which are

execution time interferences. Here the safeguards, would involve authentication of

entries of users into the system* real time sequence checking (relay runner) and

real time validation of code before execution. The last level of security would

be threats which involve stealing the information physically from storage devices

or by monitoring the radiation emanated by the electrical devices.

ImplementatiQ

ctive threats

Passive threats

Figure 24 Levels of Security Analysis

4.3 Security safeguards

4.3.1 Safeguards against software and hardware errors.

The first .three levels of security can be protected by validating the

program a.gainst software errors. Techniques for constructing reliable programs

can be used. Precise and unambiguous specifications should be formulated by

committees. The programs should be written as structured programs so that high

level personnels can understand and verify .them. Well-structured programs make

loopholes and planted bugs easily visible. The interface between the .program and

the operating system should be validated. After that* automated tools can be used

to analyse and test the system for security.

The maintenance engineer and console operator have direct access to the

machine. Reliable personnel should be employed in these important positions (from

a security point of view). The integrity of the hardware system can be checked

by performing periodic diagnosis. Techniques for protecting the system from hard

ware malfunctions are well-known [Ram 74a], though rarely implemented, due to the

high cost. Thus the fourth level of security can be satisfactorily protected.

'J
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A»3«2 Safeguards against active threats

4*3.2.1 Introduction
, I
I Bardvare and software safeguards can be used In this level of security.

Hardware safeguards can be used to make sure, that privileged instructions can only
be executed In the supervisor state. Privileged instructions prevent the user from

I

Interfering with the operating system or another user's file or program. Various
types of memory protection schemes are useful to protect the Integrity of user I
programs and data, such as relocation and bounds registers (In CDC 6000 series), I
lock and key scheme (in IBM 360 series). paging (in XDS 940), segmentation (In !
Honeywell 645), etc. The ring structure in Multlces can also provide adequate

protection of user privacy. Other types of hardware countermeasures Include bullt-^
In Identification codes for computers (such as the IBM 370) or terminals, microcode,

etc.

Software safeguards can be provided by access management and threat monitoring.

Access management deals x^th the methods of accessing Information and service In '

the computer and determining who is going to get what. Different ways of ^
authentication and identification of users can be used, such as passwords, j
authentication algorithms, and proferring of physical items like badges, flnger-

ptiats, etc. Threat monitoring keeps a record of all access or attempts to access

sensitive data and service, A log of all sensitive operations can be kept,

I recording who got .access to what, A review of this record periodically can detect

: unauthorized attempts to use sensitive'information or service. All successful br

eaches of security are also recorded, allowing.the system manager to close these

trapdoors. Besides, It Is an effective tool against intrusions based on a trial

Innd error strategy. Threat monitoring should always be active as long as the '
computer Is operating. Therefore, we must make sure that it will not be deactivated

by a privileged Instruction. i

All these safeguards have been discussed extensively in current literature.

• [Hof 733." However, all these techniques can only be used in the design of the

hardware and software of the system. The user remains a helpless prey of loopholes

in the security of the system. It is highly desirable for a user to have program

ming techniques which he can use to protect critical sections of his program. The

"relay-runnefr" scheme in the next section is such a technique. '
•4.3.2.2 The "relay-runner" scheme |

In order to prevent illegal execution, we can authenticate all entries

, into the system by means of passwords, etc. [Gar 70]. If the intruder enters the
' I

system masquerading as a legal user, the "relay-runner" scheme can be used

effectively to neutralize his threats. The "relay-runner" scheme provides ,
protection against illegal execution of the code by an infiltrator as well as

, prohibits Illegal Jumps and modifications that may be due to software errors or

hardware malfunctions in the system. This is achieved by detecting all Illegal
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changes In the execution sequence.

Consider the case of a simple assembly language program with no branchings and

I no loops. This piece of code can be partitioned into blocks separated by relay

checkpoints. These checkpoints are conditional statements to test if the program

flow carries the valid» up-to-date relay code. The user, upon legal entry into the

system, enters the program and executes from the first executable statement. Here

I It stores the first of a series of relay codes (baton) in some address, say, RYCl.
Then the normal program begins execution. When program execution reaches the first

relay checkpoint, the instruction compares the content at RYCl with'a preset code

number. If the codes agree, the content of RYCl is changed to some other number,
(

and a new relay code is stored in location RYC2. If the codes do not agree during

the test at the first relay checkpoint, a trap routine is invoked and execution is
I

discontinued. This process is carried on at suitable intervals throughout the

program, with the "baton" carried along. This is analogous to a relay-race, where

the next relay-runner will not continue unless he receives the "baton" from the ,

previous mnner. This prevents the programmer from modifying the execution '
sequence. If he jumps ahead by one step the relay-point is not yet activated and

so the program will not continue its execution. If the programmer backtracks in his

execution,- the old "baton" value is already lost and the relay-point check will also

discontinue its execution. The "relay-runner" protocol also prevents illegal entry-

into the program for unauthorized code execution since the intruder will not possess

the correct "baton", which is generated in real-time. The use of "relay-runner"

checks therefore reduces the legal entry points into one, which can be tightly

protected. Depending on how closely the relay checkpoints are installed, a varying

degree of security is obtained. Closely'installed checkpoints give tighter secu

rity. Fig, 25a gives a graphical representation of the Relay Runner concept.

To visualize how the program of Figure 25a is protected from illegal execution,

assume the legal user has just executed the instruction p3 in Figure 25b and is in

waiting, s'tate because of some resource request. An infiltrator enters this piece

of codes and starts executing the instruction at PI. He will be successful until

program control reaches RP2, at which point the content of RYC2 is compared with 15.

since the legal user has executed the instruction at CP21, RYC2 now contains 200.

Therefore, the test fails and the trap routine will be invoked. '
If branching exists in the original program, care must be taken in the place

ment of relay codes and checkpoints such that every possible path of program flow

is covered, and that the setting and resetting of relay codes do not interfere. In

general, the programmer should organize his program so that all branches should

emerge from one common exit. In this case, the relay checkpoint can be placed right

at the exit point. Figure 26 shows one way of achieving this.
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If loops exist in the program, relay checkpoints may be placed right before

! and after the loops if they are small. But if much input/output is done within

! the loop, the programmer may wish to put checkpoints inside the loop as well. It

I is advisable, in most cases, to organize the loops and branches in a single-entry/

. single-exit fashion. A tagging strategy may also be used to indicate the specific
I

j paths traversed so that the proper relay codes are addressed at the common checkpoints.

Conditional Statement^ r
»o

Relay checkpoint
Yes

Figure 26 Configuration to handle Branching inside Program.

Some programs using this technique were run on a CDC 6400 system with COMPASS

support. The objective is to obtain some overhead figures for various block sizes

and sub-block sizes. The structure of the actual program used bears a close /

resemblance to the one described in Figure 27, [Ng 73].

Uith a mean program length of 80000 COblPASS instructions, run-time overhead
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figures are obtained for programs with block sizes up to 5000* The results are

summed up by the graphs of Figure 28.
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i .
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Figure 27 A refined relay-runner implementation using indexing
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28 Run-time overheads for some simulation runs

^lock size =5, =10, no indexing

-Block size = 15

Block size = 20

X

Block size = 150

= 300

Block size = 1000

Toofi

= 2000

Block size = 5000

For sizes of n ranging from 3 to 1000, the run-time overhead varies from 55%

to 0.89%. Since these are average figures, the user has the freedom to protect the

critical parts of his codes with a small block size.

While overhead figures of 25% or 50% may sound high, typical programs do not
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have large critical areas, so that large block sizes can be tolerated. Note that

overheads between 1% and 10% can be achieved by using block sizes of 2000 and

smaller. Therefore, the Relay Runner scheme Is a valuable tool for controlling
illegal executions due to unwarranted Intrustlons- or unpredlcted errors in real

time programs.

The above discussions and schemes are equally applicable to protecting pure

procedures and shared codes provided that users have their own data storage.

4.3.2.3 Integrity checks

Even with all these safeguards Implemented, there Is still no guarantee

that the system Is absolutely secure. A real subversion Is usually caused by a
I

penetration that has not been detected. The execution of a program that has been

Illegally modified can be disastrous. It Is desirable therefore to be able to '
check the Integrity of the system periodically or just before critical programs are

executed. In real-time systems, the detection of damage Is very Important. In

many cases, we would,rather stop a process than allow a wrong operation to be .

performed since many of the results are Incvocable. I
To ensure that the code to be executed Is not Illegally modified, one could

validate the code just before execution. A simple scheme for this will be to

develop a check sum of the contents of the code to be executed and compare It

against the correct check sum that Is stored, at a secure place. If the computed

check sum agrees, the sub-program Is allowed to be executed. It Is Important to

recompute the check sum for validation' of the sub-program If some authorized

modifications are made during execution.
i

The Integrity of the hardware of the .system can be checked by periodic '

diagnosis. The design of systems which can tolerate hardware faults has been •

Investigated Intensively. [Ram 74a]. However, In systems employing stored program

control,' software problems can also destroy the Integrity of the system, and then

the user programs. Software errors can come from residual design errors. Incorrect

maintenance, or Intrusions from external sources. In order to protect the

Integrity of the system for continuous operation, different kinds of software

defenses can be used. These defenses are highly specialized for the environment

In which they are used. . Some techniques used by the ESS system of the Bell System

are presented here. [Con 72]. They Include circuits that monitor program operation.

In-line program checks, and audits. Circuits can be designed to monitor the proper

sequence of operations of the program and trigger recovery action If an error Is

detected. An example is the use of an external "watchdog" timer which have to be

reset periodically by program action. A failure to reset the timer will be

Interpreted as a software error. In-line program checks can be provided by the

program Itself to check for "lmpossible"condltlons or abnormal states of the

program. These will also Include defensive programming techniques discussed In the

last section.
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Audits are a collection of Independent check programs which detect and

correct errors In memory content; These techniques are especially necessary for

systems employing stored program control* such as the ESS. Audits can use the j
redundancy In the software structure to perform logical checks to locate errors and

Inconsistencies. Sometimes the redundancy Is Inherent In the data structure* such

as a linked list. In other cases* It may be necessary to expand the data structure

for audit programs. In these systems* audits have to be run periodically and j
frequently to ensure the Integrity of the memory content. They are also run during
system reinitialization during recovery from an error. Audit programs can be used
to check that a linked list structure Is Intact or to verify the Integrity of data

constants and parameters stored in a writable memory by consistency checks with a
!

less volatile backup record. Integrity checks can be performed by comparing some
redundant data stored In different parts of the system to detect state discrepancies

of facilities involved. Timing checks can also be used to ensure that no facility

Is being used beyond its maximum allowed time-limit. This prevents the loss of j
facilities due to an error. Audits are integrated into the system software. They

can be run In an interleaved fashion with normal system operations. After detection
of errors by audit programs, a recovery procedure follows. Backup Information can
be used to.return the software to a "safe" state. If the error is serious, a ^
system reinitialization may be performed. i
4,3.3 Safeguards against passive threats i

Passive threats consist of different means to obtain Information Illegally*

Including wiretapping, unauthorized access to data in removable files* etc. The .
effective countermeasure against these threats is encryption. Encryption is a
form of privacy transformations, which takes data in its natural form and transforms
It by scrambling so that it is hopefully unrecognizable by unauthorized people.
Therefore even if a person is able to obtain the information, it will be meaningless
to him.

i

An encryption system can be visualized in Figure 29. • !

Source
T(M,K)

Transmitting
Device(Cipher)

Cipher text
•> Receiving De-

virefDecipherl
>

Text M M
—p T(M*K) ' M

Figure 29

Key Source

An encryption scheme

Key Source

The operation done on the source text M depends on an input parameter K*
called the "key". This key is essential for us to perform the decipher process.

Only authorized people possess this key. Some simple encryption procedure includes,
substitution of one character strings for another* algebraic addition of key ^
characters to message characters to form encoded messages* or rearrangement of the
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ordering of characters in a word. For different encryption schemes , the reader Is

referred to the famous book "The Codebreakers". [Kah 67].
!j4.3.4 Conclusion j

We can see that the reliable operation of a large program depends on the

Iintegrity of the program* which In turn hlng^ on the Integrity of the system. A
; number of security measures to protect the Integrity and privacy of the system are

jdiscussed here. These techniques can be applied to protect the system against
i simple hardware and software errors Internal to the system as well as Intrusions

Iand threats from outside the system. However, a user must always bear In mind that
jthese security measures do Impose a cost on the user. In the form of longer
Iexecution time, larger memory storage, hardware redundancy, software redundancy and
IInconvenience. The extenslveness to which'these techniques should be applied depends
Ion the sensitivity of the Information to be protected and the penalty-cost of a ^
isuccessful Intrusion. Acost-effectiveness analysis of each of these techniques Is
[urgently needed In the near future. Unfortunately, however, many of these techniques
Iare tailored to certain specific environments. It is very difficult to generalize

many of these techniques for analysis. |
After the safeguards have been implemented, it Is desirable for us to be able

to evaluate the effectiveness of the protection that they provide to the system and

different means to Improve the protection economically. This can be achieved by

.'measurement and modelling. Several models have been proposed, including Welssman's

IADEPT-50 Model [Wei 69], Turn's Model '[Tur 72], etc. Although these models are far

• from perfect, they represent some significant efforts towards the performance

' evaluation of security systems. Of course, all these safeguards would be wasted If
Iwe do not have a good administrative and physical security. The techniques required
Ito achieve this goal are discussed in the book by Van Tassel [Van 72]. i
! 5. Conclusion i

From the discussion in the previous sections, we have surveyed different prob

lems of developing large reliable computer programs and different techniques to

Improve the reliability of a program. All of these techniques have their advantages

and their weakness. Fortunately these techniques complement each other and a com

bination of these techniques can enable us to produce a piece of reasonably reliable

medium-sized software. For really large computer programs, a lot of work still needs

; to be done, as indicated throughout the text. !
' We are proposing the following scheme as a reasonable approach to developing

reliable large-scale software:

(1) Specifications of the system.

(2) Design of the structure, decomposition, and modularization of the system,

with the specification of each module.

(3) Coding of the system In a suitable programming language. j
(4) Debugging, Integration and check oiit of the system.
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(5) Software evaluation and partial validation with the help of automated

tools.

(6) Software fall-safe fall-secure Instrumentation.

(7) Validation of protection and security measures,

j The specification of the program has to be concise and precise, providing the
implementor all the Informations that he needs In order to complete the program. A

unlfona specification language should be used for modules at different levels. The
t

language should be sufficiently formal and yet descriptive, allowing a programmer to

understand all the exterior properties of the module easily. Some formal languages

for the specification of software modules have been proposed, such as by Farnas

![Par 72]. However, the usefulness and effectiveness of specification using a formal

'language still need to be evaluated since not enough experience has been reported.

The investigation cf£ the relationships between the external properties and the Inter-

;nal attributes of a program Is also needed. |
I The design of the program Involves the decomposition of the program Into smaller
;modules and the organization of these modules. Some design methodologies have already

.been discussed in section 3.1.'2. Llskov has also proposed some guidelines for the

design of reliable software systems [Lls 72b]. Abstraction Is a very useful concept
j

ice simplify and order the compexlty of the system. The abstraction specifies what Is

ibelng done without the details of how It Is done. The Identification of abstractions,
however, depends ..very much on the designer and the concept that he wants to support

and clarify. In some systems, abstractions of resources are used to structure the

system. In systems for supporting a data base, the characteristics of data structure

may form good abstractions. In order to make the modules for different levels of

^abstractions to be logically independent, the combined activity of the functions In a

ilevel of abstraction should only support that abstraction and nothing else. [Lls 72b]

Tbe syst«n should be designed for maintainability and adaptability. The levels of
T

abstractions should be arranged In a helrarchy fashion (as discussed in section .

3.1.2.) and data used by 2 different levels should be passed as explicit arguments

only. The distribution of system resources In this hierarchy should also be deter

mined before implementation starts. The design of the program Is still an art

.although much discipline have already been Introduced by the concept of structured
i

..programming. Since the development of the program depends very critically on the

jinitial design, much research work Is urgently needed for methodologies to evaluate

ithe design and propose improvements before the actual Implementation of the program

'takes place.

' The implementation of the system should be carried out with discipline. The
'philosophies of structured programming should be enforced. The program should be
written for readability and understandabillty. Wherever the restrictions of struc- -

tured programming (as presented by Dljkstra and Mills) seriously affect the produc-
I

tivity of the programmer and the efficiency of the program module, these restrictions
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'should be relaxed at- a local level. I.e., the program module should behave like a

structured program when used externally although It may be "unstructured" to a certain

iextent internally. Attributes for a structured programming language have been dls-

cussed In section 3.1.1.3. Some equally Important areas of'research may Include

"structure documentation" and "structured" techniques for an Informal proof of

correctness of each module.

The debugging of the program should be carried out In a bottom-up fashion, start

ing from the individual modules. The compiler can locate syntax errors as well as

structural flows. A compiler with powerful diagnostics should be used at this stage

rather than one with high efficiency. An optimizing compiler may be used to generate*

efficient code after the debugging stage. (This optimizing compiler, of course, has

to be very reliable.) The development of verifying compiler for potential structured

programming languages are also very valuable, since It will also help us to design
i

such languages. Assertion languages will also enable us to establish our confidence

on the program by an Informal proof. |
When the modules are Integrated together, automated evaluation and partial

validation systems can be used effectively. Since the modules are written to be
i

logically Independent, the number of relevant test cases for modules In 2 levels of

abstraction Is the sum of the relevant test cases for each level, not the product.

The testing, of combinations of modules requires only the validation of the interface

j(input and output parameters) of the modules since this Is the only Interaction
'between modules. There are no complicated interaction in control or implicitly shared
'data because the program is written with structured programming. Therefore, we can
see how design can simplify the testing and check-out of the program. The automated

evaluation and partial validation systems also will build up a maintenance data base

so that modification of the program Is very easy. Automated generation of test inputs

.is still far from satisfactory at present, although computerized assistance is very

helpful for the programmer's synthesis of test data. When an error is discovered and

corrected, the AEVS can also help us to avoid Introducing undesirable side-effects to
I * * ^

other parts of the program. Different monitors can be Introduced Into the system

jto collect program behavior statistics and provide run-time analysis of the program.
jThis piece of self-metric software may also enable us to quantify some reliability
measures of the system. The development of a useful reliability model for software

i

development is urgently needed. '

i After all this careful development and.extensive validation, the program should

be quite reliable. However, for some real-time systems, such low error-rate still

cannot be tolerated. Software fall-soft Instrumentation can then be applied to detect

'and contain software errors In real-time using software defenses. Hopefully, unde

sirable actions due to software errors can be avoided and damages minimized when such

errors are detected as early as possible. Fall-secure Instrumentation are designed

to protect the Integrity and security of the Information In the system against active
Intrusions or system software and hardware errors. These instrumentations depend

r
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very much on the operational environment of the system. Therefore, these protection

and security measures have to be validated in the appropriate environment.

I * • '!
Appendix A. Techniques for the manipulation of the graph model

j For any model, the essential requirement is that the manipulation techniques
must be amenable to automation. Various techniques for manipulating the graph

'model are available. The most representative approach is based on the use of a
ijconnectivity matrix. The graph is represented by a connectivity matrix C in

'which one row and one column correspond to each node and •• 1 if and only if
'there is a directed arc from node i to node j in the graph. Fig. A.l is the

connectivity matrix of the program graph of Fig. 6. j

1 2 3 4 5 6 7 8 9

1 0 1 0 0 0 0 0 0 0

2 0 0 1. 0 0 0 0 0 0

3 0 0 0 1 1 0 0 0 0

4 0 1 0 0 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0

6 0 0 0 0 0 0 1 1 0

7 0 0 0 0 0 0 0 0 1

8 0 .0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0

Fig. A.l The connectivity matrix of the graph of Fig. 6
i

!on the basis of this representation, various manipulations can be performed in a
iconvenient way. The suitability of this machine representation mainly comes from
jits structural resemblance to the storage structure of most computers. Some of the
jbasic techniques are .mentioned here. Anode j is said to be reachable from node i
iif there is at least one directed path from node i to node j. All nodes reachable
j
from each node can be easily found. A reachability matrix R is* a matrix in which

'one row and one column correspond to each node and' R .1 if and only if node j
1 ij jj

is reachable from node i. It was shown in [Pro 59] that R = lim (C+I) where I

' IfKo
is an unit matrix. A more efficient algorithm was developed in [Ram 66]. A column

j in R represents all nodes which can reach to j. By using R, all MSG sub-
I • • Tjgraphs can be simply identified as'follows. First a new matrix H« Rf^R is
1obtained. The number of MSG subgraphs is given by the number of distinct nonzero

Irow vectors of M. Moreover, if M^^?' 0, then the nodes of the MSG subgraph
'correspond to the nonzero columns of • Is Fig. A.2, M^, 9^ 0 snd the nonzero
columns of M2, are (2,3,5). So, (2,3,5) are all nodes in that MSG subgraph.

|1 [Pro 59] Prosser, R., "Applications of Boolean Matrices to the Analysis of Flow
Diagrams" Proc. Eastern Joint Gomp, Conf. 1959.
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0 1 11 1 11 1 1 M- ROr^ -00 0 0 0 0 0 0 0
0 1 11 1 1 1 1 1 0 1 1 10 0 0 0 0

0 1 11 1 1 1 1 1 0 1 1 1 0 0 0 0 0
0 1 11 1 11 1 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1
••

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. A.2 R and M matrices of the program graph of Fig. 6

Other manipulation techniques such as opening the loop, etc. are available and the
I • •

.details are referred to in [Ram 66, 67]. All these tools are the background for

'the Implementation of automated validation discussed in section 2.2.
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