

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A NEW ALGORITHM FOR FINDING WEAK COMPONENTS

by

Robert Endre Tarjan

Memorandijm No. ERL-432

3 April 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A NEW ALGORITHM FOR FINDING WEAK COMPONENTS

+

Robert Endre Tarjan
Department of Electrical Engineering

and Computer Sciences
University of California

Berkeley, California

ABSTRACT

Pacault has devised an algorithm for finding the weak components

of a directed graph G having V vertices and E edges in 0(V+E) time.

This paper presents another 0(V+E) algorithm which is more

straightforward and which calculates weak components of certain subgraphs

of G as well as of G.

Keywords: algorithm, connectivity, directed graph, strong components,

topological sorting, weak components.

•j-
This work was partially supported by the National Science Foundation,

Grant Number NSF-GJ-35604X, and by a Miller Research Fellowship.

A NEW ALGORITHM FOR FINDING WEAK COMPONENTS

Robert Endre Tarjan

Let V and w be two vertices in a directed graph G. There is a

non-path from v to w if there is no path from v to w. If there is a

non-path from v. to v.,- for 1 < i < n, then v., v., ..., v is a
1 i+i. 1 z n

sequence of non-path steps from to v^. Vertices v and w are in the

same weak component of G if they are in the same strong component (there

is a path from v to w and from w to v) or if there is a sequence of non-

path steps from v to w and from w to v. The relation "v and w are in the

same weak component " is an equivalence relation on the vertices of G [1].

Pacault [2] has devised an algorithm to find the weak components of G in

0(V+E) time and space, if G has V vertices and E edges. Here is another

0(V+E) algorithm which is directly related to Pacault*s but is more

straightforward. It gives the weak components of certain subgraphs of G

as well as of the entire graph.

The weak components of G are unions of its strong components.

(1) Find the strong components 0^^ of Gand shrink each to a single vertex
i, with an edge (i,j) in the new graph if and only if there is an edge

(v,w) in Gwith v € and wG0^.

The weak components of the resulting acyclic graph give the weak components

of G. Shrinking the strong components requires 0(V+E) time using depth-first

search [3]. Henceforth, assume that G is acyclic.

(2) Number the vertices of G from 1 to V so that all arcs run from a lower

numbered to a higher numbered vertex.

-1-

This operation is called topologically sorting the vertices of G

and may be carried out in 0(V+E) time using depth-first search [A] or

other methods [5]. In fact, steps (1) and (2) may if desired be carried

out using a single depth-first search. Henceforth assume that vertices

are identified by number.

Lemma 1

The vertices of any weak component of G are consecutive.

Proof

Let i < j < k with i and k in the same weak component. There is

a non-path from k to j, a non-path from j to i, and a sequence of non-path

steps from i to k. Thus, j is in the component.

Q.E.D.

Now we use the obvious approach; namely, we examine vertices in order,

one by one, computing weak components as we go. By Lemma 1, the vertex

numbering gives an ordering of the weak components, and the set of largest

vertices of the weak components uniquely characterizes them. For 1 ^ k £ V,

let B(k) •= {j|(j9k) is an edge} and let G^^ be the induced subgraph of G

with vertices {j| 1 < j < k}. Let L, = {v- < v« < ... < v } be the set
— k 12 n

of largest vertices of the weak components of G^. For 1 ^ i £ n, let

W^(v^) be the weak component containing vertex v^. Asink j ^

a vertex such that all edges from j lead to vertices larger than v^.

Let S(v^) be the set of sinks of

Lemma 2

Let 1 _< k < V, and let v^^^ =min{Vj|vj ^ max({i GB(k+1)} ^ {0})}.
(A) If £ B(k+1) then » {v^, » otherwise

1^1 = {v^. Vj. k+ 1} .

-2-

(B) ~ {j ^ S^(k) 1(j ,k+l) is not an edge};

'j ^ ^fcfi ^ I'k'

Proof

Vertex k+1 has no edges leading to smaller numbered vertices; thus,

if i, j ^ k there is a path from i to j in Gj^ iff there is a path from

i to j in It follows that the weak components of are unions

of {k+l} and the weak components of There is a non-path from

+ 1 to k + 1, 80 Wj^(v^) c (k+1). If Sj.(v^) 5 B(k+1)

then there is a non-path from some vertex in S (v) to k + 1, and
iC Xf

Wk(Vj^) C (k+1). There is a non-path from every vertex in

to every vertex in for j > i, so there must be a path from every

vertex in to every vertex in for all j>i. Thus, there is a path

from every vertex in with j < £ to k + 1, and if Sj^(v^) C B(k+1),

then there is a path from every vertex in to k + 1. It follows

that value given in (A). (B) follows immediately from the

definition of sinks.

Q.E.D.

Step (3) below is a program in Algol-like notation which uses Lemma 2

to calculate weak components. The implementation is a little tricky. At the

beginning of the kth iteration of while loop a, L = and S(v) =

each V^ L^. We assume that L is a stack with highest element on top and the

S(v)'s are linked lists with elements in decreasing order. At the beginning

of the kth iteration of while loop a, if vertex i appears in S(k), p(i) is a

pointer to that occurrence; otherwise, if i ^ k, p(i) = 0. We need the

array p to carry out the calculation in (B) of Lemma 2.

Assume that the elements of B(k) are in order from highest to lowest;

-3-

if not, we can sort them in 0(V+E) time using a radix sort [6].

(3) S(1):= {!};

set p(l) to point to 1 in S(l);

a: for k = 1 until V - 1 ^ begin

m:= max({j G B(k+1)} U {0});

let V be the first element of L;

b: while v ^ m ^ begin

w:= v;

delete v from L;

let V be the new first element of L (- 1 if none exists);

end;

c: jLf S(w) C B(k+1) then begin

add w to the front of L;

if w = k then begin

S(k+1):= 0;

for j G B(k+1) ^ p(j):= 0;

go to ADD;

end end;

d: S(k+1): = S(k);

ADD: add k + 1 to the front of S(k + 1);

set p(k+l) to point to k + 1 in S(k+1);

for .i G B(k+1) ^ if p(j) 5^ 0 then begin

delete j from S(k+1) using pointer p(j);

p(j):« 0;

-4- .

end;

add k + 1 to the front of L;

end end;

Clearly, step (3) Is an implementation of the result in Lemma 2,

and L = Ly when the algorithm is completed. Consider the test in

statement c. Since S(v) and B(k+1) are in order, highest to lowest,

we can step through S(v) and B(k+1) from highest element to lowest,

and test whether S(v) C B(k+1) in time proportional to |B(k+l)|.

Statement d only requires setting the list pointer of S(k+1) to point

at list S(k) and thus this statement requires a fixed finite time.

At most 2V - 1 elements are ever added to set L, and each execution of

loop b deletes an element from L, so loop b is executed at most 2V times.

A simple count shows that step (3) requires 0(V+E) time total. Thus

steps (1) - (3) give an 0(V+E) algorithm to find weak components. The

storage required in step (3) is 2V + E words for B, V words for L,

V words for P, 2V words for S, and the total is 6V + E + C for

some constant C.

This algorithm processes the vertices in order and has the nice

feature that we can read off the weak components of for any k as

the calculation proceeds, which is not true of Pacault*s original algorithm.

The algorithm can also be modified to process vertices from highest to

lowest instead of from lowest to highest.

-5-

REFERENCES

[1] R.L. Graham, D.E. Knuth, and T.S. Motzkln, "Complements and
Transitive Closures", Discrete Math*, Vol. 2, No.l, (1972),
17-30.

[2] J.F. Pacault, "Computing the Weak Components of a Directed
Graph", SIAM J. Comput., to appear.

[3] R. Tarjan, "Depth-First Search and Linear Graph Algorithms",
SIAM J. Comput., Vol. 1, No. 2, (July, 1972), 146-160.

[4] R. Tarjan, "Finding Dominators in Directed Graphs", SIAM J.
Comput., to appear.

[5] D.E. Knuth, "The Art of Computer Programming, Volume 1:
Fundamental Algorithms,"Addison-Wesley, Reading, Mass., 1968,
258-265.

[6] D.E. Knuth, "The Art of Computer Programming, Volume 3;
Sorting and Searching,"Addison-Wesley, Reading, Mass., 1973,
170-180.

-6-

