

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EFFICIENCY OF A GOOD BUT NOT LINEAR

SET UNION ALGORITHM

by

Robert Endre Tarjan

Memorandum No. ERL-M434

March 28, 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EFFICIENCY OF A GOOD BUT NOT LINEAR SET UNION ALGORITHM

f
Robert Endre Tarjan

Department of Electrical Engineering
and Computer Sciences

University of California
Berkeley, California

ABSTRACT

Consider two types of instructions for manipulating disjoint sets.

FIND(x) computes the name of the (unique) set containing element x.

UNION(A,B,C) combines sets A and B into a new set named C. We examine

a known algorithm for implementing sequences of these instructions. If

t(n) is the maximum time required by any sequence of 0(n) instructions, we

show that

k^n a(n) ^ t(n) ^ k^n a(n)

for some constants k^^ and k2> where ot(n) is a functional inverse of

Ackermann's function and is very slowly growing.

Keywords and Phrases:

algorithm, complexity, equivalence, partition, set union, tree.

CR Categories: 4.12, 5.25, 5.32.

^ This work was partially supported by the National Science Foundation,
Contract Number NSF-GJ-35604X, and by a Miller Research Fellowship.

EFFICIENCY OF A GOOD BUT NOT LINEAR SET UNION ALGORITHM

Robert Endre Tarjan
Department of Electrical Engineering

and Computer Sciences
Computer Science Division
University of California

Berkeley, California

INTRODUCTION

Suppose we want to use two types of instructions for manipulating

disjoint sets. FIND(x) computes the name of the unique set containing

element x. UNION(A,B,C) combines sets A and B into a new set

named C. Initially we are given n elements, each in a singleton set.

We then wish to carry out 0(n) instructions of the two types.

An algorithm for solving this problem is useful in many contexts,

including handling EQUIVALENCE and COMMON statements in FORTRAN [2,4],

finding minimum spanning trees [7], computing dominators in directed

graphs [13], checking flow graphs for reducibility [12], calculating

depths in trees [1], computing least common ancestors in trees [1], and

solving an off-line minimum problem [5].

Several algorithms have been developed [2, 3, 4, 5, 11]» notably a

V6ry complicated one by Hopcroft and Ullman [5]. It is an extension of
*

an idea by Steams and Rosenkrantz [11] and has an 0(n log n) running

time, where ^ times
4c I ' I .

log n = min {ijlog log ... log (n) ^ 1} .

All other known algorithms are slower, except for the very simple one which

we consider here.

"f-
Each set Is represented as a tree . Each vertex In the tree

represents an element in the set, and the root of the tree represents

the entire set as well as some element. Each tree vertex is represented

in a computer by a cell containing two items: the element corresponding

to the vertex, and either the name of the set (if the vertex is the root

of the tree) or a pointer to the father of the vertex in the tree.

Initially, each singleton set is represented by a tree with one vertex.

The basic notion of representing the sets by trees was presented by

Galler and Fischer [2,4].

To carry out FIND(x), we locate the cell containing x; then we

follow pointers to the root of the corresponding tree to get the name

of the set. In addition, we may collapse the tree:

Collapsing Rule:

After a FIJND, make all vertices reached during the FIND operation

sons of the root of the tree.

•f*
For the purposes of this paper, a tree T is a directed graph with a unique
vertex r, the root of T, such that (i) no edge (v,r) exists in T,
(ii) if w r, there is a unique edge (v,w) in T, and (iii) there are
no cycles in T. If (v,w) is an edge of T (denoted by v w), v is
called the father of w (denoted by v = f(w)) and w is called a son of v.
If there is a path from v to w in T (denoted by v * w), then v is
an ancestor of w and w is a descendant of v. (Every vertex is an
ancestor and a descendant of itself.) If vertex v has no sons, then v
is a leaf of T. The depth of a vertex v is the length of the path from '
r to V, and the height of v is the length of the longest path from v
to a leaf of T. The depth of T is the maximum of the depths of its
vertices. |t| denotes the number of vertices in T, and v ^ T means
V is a vertex of T.

-2-

Figure 1 illustrates a FIND operation with collapsing.

Collapsing at most multiplies the time a FIND takes by a constant factor

and may save time in later finds. Knuth [9] attributes the collapsing

rule to Tritter; independently Mclltoy and Morris used it in an algorithm

for finding spanning trees [6].

To carry out UNION(A,B,C), we locate the roots named A and B,

make one a son of the other, and name the new root C, after deleting

the old names (Figure 2). We may arbitrarily pick A or B as the new

root, or we may apply a union rule, such as the following;

Weighted Union Rule:

If set A contains more elements than set B, make B a son of A.

Otherwise make A a son of B.

In order to implement this rule, we must attach a third item to each

cell, namely the number of its descendants. Bob Morris apparently first

described the weighted union rule [6].

We can easily implement these instructions on a random-access computer.

Suppose we carry out 0(n) FIND's and UNION'S. Each UNION requires a

fixed finite time. Each FIND requires time proportional to one plus the

length of the path from the vertex representing the element to the root of the

corresponding tree. To simplify the analysis slightly, let us assume that

we carry out exactly n FIND's and exactly n - 1 UNION'S.

Let t(n) be the maximum time required by any such sequence of

instructions. If neither the weighting nor the collapsing rule is used,

it is easy to show that:

(1) k^n^ _< t(n) £ k^n^

for suitable constants k^^ and [3] . If only the weighting rule is

-3-

used, it is similarly easy to show that:

(2) n log n £ t(n) £ ^2 ^ ^

for some constants and [3]. If only the collapsing rule is used,

we also have:

(3) k^ n log n £ t(n) £ >2 n log n

for some constants k^ and Fischer proved the lower bound [3]

and Paterson the upper bound [11]•

If we use both the weighting rule and the collapsing rule, the

algorithm becomes much harder to analyze. Fischer [3] showed that

t(n) £ k2 n log log n in this case, and Hopcroft and Ullman [5]
*

improved this bound to t(n) £ ^2 n log n. Here we show that

(4) kj^n a(n) £ t(n) £ k2n a(n)

for some constants k^^ and k2, where a(n) is a functional inverse

of Ackermann*s function and is very slowly growing. Thus, t(n) is

o (n log n) but not 0 (n).

An Upper Bound

It is useful to think about the set union algorithm in the following

way: suppose we perform all n - 1 UNION*s first. Then we have a single

tree with n vertices. Each of the original FIND*s now is a "partial"

find in the new tree: to carry out FIND(x) we follow the path in the tree

from X to the furthest ancestor of x corresponding to a UNION which

appears before FIND(x) in the original sequence of operations. In this

-4-

interpretation of the problem, we are interested in bounding the total

length of m partial finds performed on a tree generated by n - 1

weighted UNION'S. (We shall allow the number of FINDS to be different

from the number of UNIONS.)

The upper bound argument below is a refinement of Hopcroft and

Oilman's method. Let T be any tree with n vertices. Let d(v) be

the number of descendants of any vertex v. Let h(v) be the height

of V in T.

Lemma 1

If T is formed by weighted unions and v w in T, then

d(v) ^ 2d(w).

Proof:

In the process of forming T, some union makes w a son of v.

At this time d(v) 2d(w) because the union obeys the weighting

rule. Subsequent unions cannot change the number of descendants of w

and cannot decrease the number of descendants of v. Q.E.D.

Suppose T is formed by weighted unions. Lemma 1 implies that

d(v) > 2^^^^ for all v ^ T. Fix h(v) as the height of v in the

original tree T and suppose we perform some partial finds on T, creating

a new tree T'. The h(v) values must strictly increase along any path of

T', because v -»• w in T' implies v -»• w in T. Furthermore, if v is

moved by a find, the height of its father must strictly increase.

Let the function A(i, x) on integers be defined by

-5-

(5) A(0, x) = 2x

A(i, 0) = 0 for i ^ 1

A(i, 1) = 2 for i > 1

A(i, x) = A(i-1, A(i, x-1)) for i ^ 1, x ^ 2.

A(i,x) is a slight variant of Ackermann*s function; it is not primitive

recursive. A(i,x) is found by composing A(i-l,y) with itself x-1 times

and taking the value of the resultant function at y = 1.

For X > 1,

(6) A(l, x) = 2*, A(2, x) = 2^ ^ x two's,

and so on.

It is easy to show that A(i, 2) = A for all i.

Let

(7) a(i, n) =min {j | A(i, j) > [^1082
For fixed z, construct sets for 0£i£z, 0_<j < a(i,n),

composed of the vertices of T, as follows:

(8) = {v I A(i, j) £ h(v) < A(i, j + 1)}.

For a fixed value of i, the disjoint, and

a(i,n)-l

(9) U S = {v I V e T} .
j=0

Lemma 1:

Is..1, the number of elements in set S.., satisfies
' i j ' 1 j

(10) '®ij' -

-6-

Proof:

If V ^ T, d(v) ^ If V and w have height k, their

sets of ancestors are disjoint. Thus, for any fixed k, the number

of vertices of height k is bounded above by n/2 .

Thus,

" n 2n

Q.E.D.

Now suppose m partial finds are performed on T. Each find moves all

but the last two vertices on the find path. Let Nq be the number of

edges (v,w) on find paths such that v and w are in the same •

For i < 1 _< z, let be the number of edges (v,w) on find paths

such that V and w are in different k < i and v and w are

in the same Let N^^^ be the number of edges (v,w) on find

paths such that v and w are in different all 0 ^ i ^ z.

The total length N of all the partial finds satisfies:

z+1

(12) N = I
i=0

Lemma 2:

(13) N^^^ £ min(m,n) (a(z,n)-2) + m.

Proof:

There are only a(z,n) sets S . The number of edges (v,w) on

any single find path such that v and w are in different ®

thus a(z,n) ~ 1 since the heights of vertices along the find path strictly

increase. Since there are m finds, ^g+l — ~ *

-7-

For any find, there is at most one edge (v,w) on the find path such

that V and w are in different S ,'s and no edge (v*,w*) on the find path
zj

satisfies w* ->• v and v* and w' are in different S .'s. This gives at most

m edges total. For a fixed w, consider the edges (v,w) on find paths such

that V and w are in different S ,*s and (v,w) is not one of the m or less
2J

edges counted above. After a find containing such an edge, the father of

w jumps to a new . This can happen at most a(z,n) - 2 times, until the

father of w Is In Thus. < n(a(z,n)-2) + m.

Lemma 3:

(14) Nq _< 2n + m

N. < n + m for l£i£z» Q.E.D.
1 — O

Proof:

Each time a given vertex w is in an edge (v,w) on a find path and (v,w)

is not the last edge on the find path, the height of the father of w increases

by at least one after the find. Thus, after w is in two such edges, its

father must be in a different . Thus, ^ 2n + m.

For any i, 1 Ji 1 ^ z, there are at most m edges (v,w),one for each find,

such that V and w are in different k < i, v and w are in the same

, and no edge (v',w*) on the same find path has w' -> v, v* and w' are in

different k < i, and v* and w' are in the same . Count these

edges separately.

Consider any vertex w. Let x be the number of edges (v,w) on find paths

such that Vand ware in different S^ '̂s for k < i, v and ware in the same

, and (v,w) is not counted above. The father of w jumps in height after

such an edge appears in a find. After x - 1 such edges appear in finds the

height of f(w) is at least A(i-l,x-l). Thus, A(i-l,x-l) < A(i,j+1). Since

A(i,j+1) = A(i-l,A(i,j)), X - 1 < A(i,j) and x < A(l,j).

If we count such edges over all vertices w in sets using (10) and

-8-

add the count above, we get

(15) N. <m+ I —571^ A(i,j) 1m+ X—^ 2^ 11n+m.
^ j=2 2^ j=2 2^

(The sum starts at j = 2 because S^q = S^q, for all i.)

By Lemmas 2 and 3,
z+1 c

(16) N= I £ 2n + 2m +(^ n + m)z + min(m,n) (a(z ,n)- 2).
i=0

From (16) we have

(17) t(m,n) £1^2 niin(max(m,n) •z + min(m,n) •a(z,n))
z

for a suitable constant k^, where t(m,n) is the worst-case running time
required for n —1 unions and m finds.

We have

(18) A(k,3) = A(k-1, A(k,2)) = A(k-1,A) = A(k-2, A(k-1,3)) £ A(k-2,k-2)

for all k £ 2 since A(k-1,3) £ k - 2 for all k £ 1.

Thus, A(k,3) grows as fast as A(k,k). Let

(19) a(n) =min {i | A(i,3) > [^log2
Suppose we choose z =a(n). Since A(z,3) > | log2 £ 3>

(20) t(m,n) is 0((m+n) a(n)) for all m and n.

If m and n are not approximately equal, we can get tighter bounds from

(17). For instance, if m£ n • a(k,n) or n £ m»a(k,n) for some fixed

constant k, (17) implies t(m,n) is 0(m+n). Thus, the worst case occurs

when mand n are approximately equal. The next section shows that the

upper bound (20) is tight to within a constant factor when m =« n.

-9-

A Lower Bound

We shall show that for any fixed length k, there is some

B(k) such that there are trees with B(k) vertices oh which we

can perform a partial find of length k on each of a fixed fraction

p of the vertices. It follows that p»k*B(k) t(p B(k), B(k))

for all k, and the function B(k) will give us a lower bound on

the running time of the set union algorithm. This bound is independent

of the union rule used by the algorithm.

For any i ^ 0, let be the tree, all of whose leaves have

depth k, such that the number of sons of any vertex of height

j ^ 1 is 2^. Figure 3 shows K2. Let Tq be the tree with a single
vertex. Let be the tree of three vertices having a root and two

sons of the root. For any i ^ 2, let be the tree formed from

2^+1 trees ^ by making the roots of 2^ of them, sons of the
root of the last

Lemma 4:

(i) contains as a subtree;

(11) It^I 1 2 |k |̂ ;

(iii) may be constructed from single vertices using any

union rule and at most one find on each vertex which is

not a leaf or the root of the embedded K^.

-10

Figure 4 shows the construction of

Proof:

For i ^ 2, the embedded in consists of the root of

plus the embedded trees ^ trees

roots are sons of the root of T^. Part (i) follows by induction

on i. The fraction of vertices in which are not in the

embedded K. is bounded by
i

(21) I 1 I
i=2 2^ + 1

thus, (ii) holds.

We prove (iii) by induction on i; (iii) clearly holds for

i = 0, 1. Suppose (iii) is true for i - 1. To construct T^,

construct 2^+1 trees in a way which satisfies (iii).

Combine the trees T^_^ using any union rule. Then perform finds on

the roots of all the trees T^_^ except the one which is the root of

the new tree. Clearly, the resultant tree is T^. Since no finds

on the roots of the trees T^_^ were used in constructing them, T^

was constructed by using at most one find on each of its vertices

and no finds on its root. Since the leaves of the embedded are the

-11-

leaves of the trees ®°^t>edded in 2^ of the trees

no finds were performed on the leaves of the embedded K^.

Thus, (iii) holds for i. *
Q. E. D,

Now we concentrate on trees. Let be the number of

leaves in K^. Then iig ^ ^i+l ^ Let n^ be the
i+1

number of vertices in K.. Then n_ = 1 and n..^ =2 n. + 1.
i 0 i+1 1

It is easy to show by induction that

(22)

n. < 21-1

Let K^(s,h, {T(v)}) denote the tree formed from by deleting all

vertices of height less than h and replacing each vertex v of

(original) height h by the. tree T(v), which contains s or

fewer leaves all different from its root. We call K^(s, h, {T(v)})

a substituted tree; the leaves of the trees T(v) are the added

leaves of K^(s,h,{T(v)}). The original height of a vertex w in

K^(s,h,{T(v)}) is its height in the original if w^ K^, zero if

w is a root of some T(v), and undefined if w is a non-root vertex

of some T(v). Figure 5 shows a substituted K2 tree. We will show'

that for any fixed k, s, and h, there is some B(k,s,h) such that

in any K^(s,h,{T(v)}) with b ^ B(k,s,h) we can perform a find of

length k on each of the added leaves.

-12-

Let the function B(k,s,h) on non-negative integers be defined

by:

(23) B(0,s,h) = B(l,s,h) = h if s ^ 1, h ^ 0.

B(k,l,h) = B(k-1, 2^^,W-1) ifk^a, h > 0.

B(k.s,h) = B(k-1. 2B(k.s-l.h)(B(k.s-l.h)-.l)/2^
B(k,s-l,h)) if k i 2, 8^2, h > 0.

It is easy to show by double induction that B(k,s,h) is defined

for all integers k^O, s^l, h>^0.

Lemma 5:

For any length k ^ 0, for any spread s ^ 1, for any height

h > 0, for any b > B(k,s,h), let K^(s,h,{T(v)}) be a substituted

tree. Then we can perform a find of length k on each of the added leaves.

Proof:

We prove the Lemma by double induction on k and s. Suppose

k _< 1 and s and h are arbitrary. B(0,s,h) = B(l,s,h) = h, so

b > h. This just means that K^(s,h,{T(v)}) is a non-empty tree. Each

added leaf has a depth of one or more, and a find of length zero or one

changes the position of no vertices, so the Lemma holds for k £ 1, s and

h arbitrary.

Suppose the Lemma holds for all k* < k and arbitrary s' and h',

where k ^ 2. We prove the Lemma for k, s = 1, h arbitrary.

In K^(l, h, {T(v)}) the fathers of all the added leaves are distinct.
For any vertex w in K^(l, h, {t(v)}) of original height h + 1, let

-13-

T'(w) be the tree containing w and all its non-leaf descendants in

h+1K^(l, h, T(v)). Each T*(w) contains no more than 2 leaves since

s = 1 and w has sons. Since b ^ B(k, 1, h) ^ h + 1,

i-i 11

K^(2 , h + 1, {T'(w)}) is a non-empty tree and is contained in

h+1K^(l, h, {T(v)}). Since b ^ B(k, 1, h) = B(k-1, 2 , h+1), we can

perform finds of length k - 1 on each of the added leaves in

h+1K^(2 , h + 1, {T'(w)}) by the induction hypothesis. Hence, we can

perform finds of length k - 1 on all the fathers of added leaves in

K^(l, h, {T(v)}). Since each of these fathers is distinct, we could

just as well perform finds of length k on each of the added leaves

in K^(l, h, {T(v)}), and the Lemma holds for k, s = 1, and

arbitrary h.

Now suppose the Lemma holds for all k^ h' such that k'< k ,

s*^ 1, h'^ 0, and for all k, s\ hj such that s' < s, and

h'^ 0, where k ^ 2 and s ^ 2. We prove the Lemma for k ,

s, and arbitrary h. Clearly B increases in all its variables,

so b _> B(k,s,h) ^ B(k, s-1, h). For each T(v), let T'(v) be a tree formed

from T(v) by deleting one of its leaves Jl(v) and enough other vertices

so that T'(v) has one less leaf (not the root) than T(v). For each

vertex w in K^(s,h,{T*(v)}), let K^(s,h,{T'(v)})(w) denote the

subtree of K^(s,h,{T*(v)}) consisting of w and all its descendants.

If w is any vertex of original height B(k, s-1, h),

K^(s,h,{T'(v)})(w) " s-l,h)^®~ '̂ h,{T'(v)|w* vin Kg(s,h,{T'(v)})}) .
By the induction hypothesis we can perform a find of length k on every

added leaf in Kg(s,h,{T*(v)})(w). Hence we can perform a find of length

k on every added leaf except the A(v)*s in Kg(s,h,{T(v)}), resulting

-14-

in a tree K^(s", B(k, s-1, h), {T"(x)}) for suitable T"(x)*s and a

suitable s".

Given any T"(x), let

T"'(x) = {y |3 JlCv) G T"(x) such that y f(A(v)) in T"(x)}

Then T"'(x) contains at most s"* = l,h)B(k,s l,h) + 1/2 leaves
by (22). Furthermore

K^(s"*, B(k, s-1, h), {T'"(x)}) is a subtree of

K (s", B(k, s-1, h), {T"(x)}).
8L

We can perform finds of length k-1 on each of the added leaves of

K^(s"', B(k,s-l,h), {T"'(x)}) by the induction hypothesis, since

b ^ B(k,s,h) = B(k-1, s"*, B(k,s-l,h)). Hence, we can perform finds

of length k-1 on all the fathers of A(v)'s in

K^(s", B(k, s-1, h), {T"(x)}). Since each of these fathers is distinct,

we could just as well perform finds of length k on all the Jl(v)*s.

Hence, we can perform finds of length k on all the added leaves of

K^(s, h, {T(v)}), the Lemma holds for k, s, and arbitrary h, and by

double induction the Lemma holds in general. Q.E.D.

It is easy to prove by induction that

(24) A(3, x+2) ^ 2 + X + 3 if x ^ 1, and

(25) A(3, x-1) > + X + 2 if x > A(4,4).

Lemma 6:

(26) A(2k, s+h+2) ^ B(k,s,h) for all k > 0, h > 1, s ^ 1.

-15-

Proof I

We prove the Lemma by double induction. Suppose k £ 1, and

s, h ^ 1.

(27) B(0,s,h) = B(l,s,h) = h £ 2(s+h+2) = A(0,s+h+2) < A(l, s+h+2).

Thus the Lemma holds in this case.

Suppose the Lemma holds for k'< k and arbitrary s', h' £ 1,

where k £ 2. We prove the Lemma for k , s = 1, h £ 1.

(28) B(k,l,h) = B(k-1, 2^^^, h + 1)

£ A(2k-2, 2^"^^ + h + 3) by the induction hypothesis

£ A(2k-2, A(3, h + 2)) by (24)

£ A(2k-2, A(2k-1, h + 2)) since k £ 2

= A(2k-1, h + 3) £ A(2k, (h+1) + 2).

Suppose the Lemma holds for all k,' s,' h* such that k' < k,

s'£ 1, h*£ 1, and for all k, sj h' such that s' < s, h' £ 1,

where k > 2 and s £ 2. We prove the Lemma for k, s, and

h £ 1.

(29) B(k,s,h) = B(k-1, B(k,8-l,h))

< A(2k-2, + B(k,s-l,h)+2)

by the induction hypothesis

£ A(2k-2, + A(2k,s+h+l)+2)

by the induction hypothesis

-16-

_< A(2k-2, A(3, A(2k, s+h+l)-l)) by (25) since k 2, and s ^ 2

_< A(2k-2, A(2k-1, A(2k,-s+h+D-D)

A(2k~l, A(2k, s+h+D)

A(2k, s + h + 2).

Thus the Lemma holds in this case, and the Lemma holds in general by

double induction. Q.E.D.

Lemma 6 gives:

(30) B(k, 2, 1) <. A(2k, 5)

and

(31)

Lemma 7:

^ 2B(k,2,l) (B(k,2,l)+l)/2 ^ ^(2^ + 3,3) if k^l

(32) k^ n a(n) £ t(n,n) for some constant k^.

Proof:

n, let k= J - 2. Assume k£ 1.Given

(33)
^^2B(k,2,l)(B(k,2,l)+l)/2 ^ A(2k +3, 3) £ |log2 ^

Starting with n vertices, by Lemma 4 we can construct trees "^2(1^^2,1)

using any union rule and some finds. None of the finds are on leaves of

the embedded trees 2 1)* vertices may be left over, but we can

use up at least n- |log2 ^ vertices. By Lemma 5 we can then

-17-

perform a find of length k on each of the leaves of the embedded trees

K . If necessary, we can perform additional finds to bring the

total up to n.

k
The length of all the finds is at least (n - since

at least half the vertices of a tree T . are in a tree K .

and at least half the vertices of are leaves, by Lemma 4 and
B(k,2,l)

(22). Thus k^ n a(n) t(n,n) for some constant k^.
Q.E.D.

Conclusions

We have analyzed a known algorithm for computing disjoint set unions,

showing that if t(m,n) is the worst-case running time required by n - 1

unions and m finds, then t(m,n) is 0(min(max(m,n) • + min(m,n) • a(z,n))),

where a is very slowly growing. If m = n, the running time is 0(n a(n)),

and this bound is tight to within a constant factor. This is probably the

first, and maybe the only example of a simple algorithm with a very complicated

running time. It is an open problem whether there is a linear-time algorithm

for the set union problem. I conjecture that there is no linear-time

algorithm, and that the algorithm considered here is the fastest possible

to within a constant factor.

-18-

REFERENCES;

[1] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, "On computing least
common ancestors in trees", Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, Austin, Texas (1973), 253-265.

[2] Arden, B.W., B.A. Caller, and R.M. Graham, "An algorithm for
equivalence declarations". Comm. ACM 4 (July, 1961), 310-314.

[3] Fischer, M.J., "Efficiency of equivalence algorithms", in
Complexity of Computer Computations, Miller, R.E., and J.W. Thatcher,
(eds.). Plenum Press, New York, 1972, 153-168.

[4] Caller, B.A., and M.J. Fischer, "An improved equivalence algorithm".
Comm. ACM 7 (May, 1974), 301-303.

[5] Hopcroft, J. and J.D. Ullman, "Set-merging algorithms", SIAM J.
Comput. 2 (December, 1973), 294-303.

[6] Hopcroft, J., private communication.

[7] Kerschenbaum, A., and R. Van Slyke, "Computing minimum spanning
trees efficiently". Proceedings of the 25th Annual Conference of
the ACM (197), 518-527.

[8] Knuth, D.E., The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Redding, Mass., 1969, 353-355.

[9] Knuth, D.E.,"Some combinatorial research problems with a computer
science flavor", notes by L. Cuibas and D. Plaisted from an informal
seminar (January, 1972).

[10] Paterson, M., unpublished report. University of Warwick, Coventry,
Great Britain.

[11] Steams, R.E., and D.J. Rosenkrantz, "Table machine simulation",
10th Annual SWAT Conference Proceedings (1969), 118-128.

[12] Tarjan, R., "Testing flow graph reducibility", Proceedings of the
5th Annual ACM Symposium on Theory of Computing, Austin, Texas
(1973), 96-107.

[13] Tarjan, R. "Finding dominators in directed graphs", SIAM J. Comput.,
to appear.

T'

Figure 1: A FIND on element a, with collapsing. Triangles denote
subtrees. Collapsing converts tree T into tree T*.

Figure 2; Union of two trees. Root r^ of .has a descendants;
root r^ of has b descendants. Root, of new tree has
a + b descendants.

Figure 3; A tree.

A A A A A ^

Figure 4: Forming at tree from trees. Four finds, on

the circled vertices, are used. Vertices of the embedded

K2 tree are boxed.

T(v) = <«

Figure 5: ^2^^' tT(v)}), with all T(v)'s the.same.

