

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PRELIMINARY DESIGN OF INGRES

PART II - PROTECTION, CONCURRENCY, AND GRAPHICS

by

Nancy McDonald, Michael Stonebraker and Eugene Wong

Memorandum No. ERL-M436

9 May 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PRELIMINARY DESIGN OF INGRES

by

Nancy McDonald, Michael Stonebraker and Eugene Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Part I Query Language, Data Storage and Access

Part II - Protection, Concurrency, and Graphics

Abstract

INGRES (Interactive Graphics and Retrieval System) is designed to be

a general purpose data base management system supporting a relational

view of data. This report documents the query language QUEL (QUery

Language) available to the user, the data management features provided,

the protection mechanism supported, the update concurrency allowed, and

the available commands for the display of geographic oriented data.

Research supported in part by the National Science Foundation Grant GK-10656X3,
the Army Research Office, Durham, Grant DAHCO4-74-G0087, the Joint Services
Electronics Program Contract F44620-71-C-0087, the Naval Electronics System
Command Grant N0039-71-C-0255 and the Sloan Foundation.

Forward

Project INGRES Has its origin in two related projects. One was a

computer-graphics system that had been developed by P, Macri and P. P.

Varaiya to deal with map related data. The second was a workshop on

data base systems conducted by M. R. Stonebraker and E. Wong, the

objective of which was to design and implement a system incorporating

certain land-use data of the City :of San Francisco. In late 1973,

certain common interests and goals became apparent to both groups, of

which the foremost was the need for a hardware system. Thanks to

financial support from the National Science Foundation, the Sloan

Foundation, the College of Engineering and the Department of Electrical

Engineering and Computer Sciences at Berkeley, sufficient funds were

obtained to purchase a PDP-11/40 based computer graphics system. It is

expected that the first version of a graphics and retrieval system will

be operational before the end of 1974. In this report we shall describe

the basic design goals and philosophy as well as the preliminary system

specifications.

Division of labor among the three listed co-authors was as follows:

M.R.S. wrote sections 1, 4, 5, 6, 7 and Appendix C, e. W. wrote sections

2, 3 and appendices A and B, N. M. was responsible for section 8.

P. P. Varaiya has been the principal moving spirit in the project from

its inception. But for him, the project would not exist. Primary

responsibility for implementing the retrieval portion of the system is

borne by Karel Youssefi (Query Processor) and Peter Kreps (Access Processor)

The graphics portion of the system is being implemented by Nancy McDonald

and Barbara Cottrell. Members of the Database Workshop (EECS 298-15)

-2-

have implemented a preliminary version of the system commands given in

*

Appendix C and have contributed ideas at every stage of the project.

We are also grateful to Peter Groat of the Planning Department of the City

of San Francisco, to Dean E. S. Kuh of the College of Engineering and

to Chairman T. E. Everhart of the Department of Electrical Engineering

and Computer Sciences for their enthusiastic support.

*

In addition to those already mentioned, the members include W. Chang,
J. I. Chapela, J, M. Ford, P. Jahanian, P. G. Lehot, J. C. Liang,
J. H. Liou, J, N. Yang.

-3-

5. Protection in INGRES

It was decided not to rework the UNIX protection system. Basically,

six protection modes exist for a file: owner read, owner write, non-owner

read, non-owner write, execute and special execute.

The first five modes have the obvious interpretations; the sixth

allows the file only to be executed. Moreover, during execution UNIX

changes the ID of the running process to that of the owner of the f ile.

In order to provide a semblance of controlled sharing under UNIX,

INGRES must run in special execute mode. Files containing relations

managed by INGRES will have protection status: owner read, owner write,

and no other access will be allowed. There will be one user, called the

DATA CZAR, who will be the only user allowed access to INGRES files

without executing INGRES. He will be the owner of the file in which the

code for INGRES is stored.

One CZAR is allowed for each data base (a data base is an arbitrary

collection of relations). In this case several physical copies of the

INGRES code must exist, one owned by each of the CZARS. Also, one CZAR

may serve several data bases, in which case each individual data base

will have an owner, called the DATA BASE ADMINISTRATOR, who has powers

(such as deciding relation storage and access controls) not available

to the average user. The ADMINISTRATOR is distinguished from the CZAR

in that he cannot access his files except through INGRES.

Of special interest here is the fact that the DATA BASE ADMINISTRATOR

can enforce access controls on other users, using QUEL-1ike statements

known as interactions. It will be seen that these provide a flexible

and general protection mechanism.

-4-

We indicate now the two relations that will be used for examples in

this section. The first is an employee relation with domains NAME,

DEPT, SALARY and MANAGER as follows

NAME DEPT SALARY MANAGER

EMPLOYEE Smith toy 10,000 Jones

Jones toy 15,000 Johnson

Adams candy 12,000 Baker

Evans candy 14,000 Todd

Baker admin 20,000 Harding

Harding admin 40,000 none

Each employee has a manager (except for Harding who is presumably the

company president), a salary and is in a department.

The second relation utilized will be a DEPARTMENT relation.

SALESDEPT FLOOR # // EMP

DEPARTMENT toy B 10 10,000

candy 1 5 2,000

tire 1 16 1,500

admin 4 10 0

complaints 2 3 0

5.1 Access Control for Aggregate--Free Interactions

The mechanism for RETRIEVE operations will be indicated. However,

for COMBINE, DELETE and REPLACE the scheme is analogous. We illustrate

the basic approach by an example. Suppose the following access restrictions

are placed on user Smith.

-5-

Example 5.1

Smith can see only information on himself. This statement

specifies a subrelation of the employee relation which can be defined

by the following QUEL statement:

RANGE EMPLOYEE(X)

RETRIEVE Wl:X.NAME,X.DEPT,X.SALARY,X.MANAGER:X.NAME=SMITH

Suppose Smith issues a RETRIEVE operation involving the EMPLOYEE relation,

Example 5.2

Find the salary of Jones.

RANGE EMPLOYEE(X)

RETRIEVE W:X.SALARY: (X.NAME=JONES)

The above statements will automatically be modified to:

RANGE EMPLOYEE(X)

RETRIEVE W:X.SALARY: (X.NAME=JONES)a(X.NAME=SMITH)

Here Smith*s query has been intersected with the portion of the EMPLOYEE

relation to which he is allowed access as indicated in Figure 5.1. The

algorithm which controls this query modification is the following.

For each user, U,a set of access control interactions I = {I-,...I, }

is stored. Each I. is logically of the form

RANGE Relation Name (Symbol,...,Symbol):...:Relation Name

(Symbol,...,Symbol)

(\
RETRIEVE

COMBINE
DELETE 'Target List : Qualification
REPLACE

-6-

The target list contains attributes from a single relation or the key

work 'ALL.' The qualification portion is any valid QUEL qualification

containing any number of tuple variables or the key word *N0 ACCESS1•

For each tuple variable, X, appearing in a given user interaction,

R, the following algorithm is executed.

Access Control Algorithm

1. If RELATION, the relation which X references, is a workspace, then

exit.

2. Find all attributes in the target list or the unmodified qualification

statement of R referenced with X. Call this set S.

3. Find all access control interactions with the same command as R and

with a target list containing all attributes in S. Denote these by

IR = {I *,...,I.*} and their qualifications by Q,*,—,Q.*.

4. Replace Q, the qualification in R, by QA(Q1*VQ2*V-•-VQ.*)

The resulting QUEL statement can then be executed. Moreover,

the resulting query has the following properties.

This can be done by processing the qualification statement into
disjunctive normal form. The result is a valid QUEL interaction which
can then be executed. An alternate approach, which is attractive only
when disjunctions are present, is to use the qualification to restrict
the range of tuple variables directly. An alternate (and equivalent)
form of the modified query in Example 5.2 using this mechanism is

RANGE EMPLOYEE (Y) : W1(X)
RETRIEVE Wl : Y.ALL : Y.NAME = SMITH
RETRIEVE W : X. SALARY : X.NAME = JONES

Here the qualification restricts X to a workspace Wl from its
original range. Note that this approach ensures that all interactions
are valid QUEL statements and avoids the necessity of processing them into
disjunctive normal form.

-7-

i) each tuple variable is restricted to a subrelation to which the

user has access,

ii) each tuple variable can range over all subrelations to which the

user has access,

iii) the workspace in which the result appears contains only information

which the user is allowed access to. Hence he can have unrestricted

access to it.

iv) the tuple variables in an access control interaction only indicate

range. The name of the variable in the appropriate target list of

an access control interaction is changed to X. Others which appear

are given new unique names and appropriate range statements.

A modification to the above algorithm is made for efficiency purposes.

It is expected that all interactions with the same command will have

the following nesting property.

A set I = {I^,...,I } of interactions is properly nested if for any

two interactions I ,1 Gl with target lists T ,T such that T ^T , then
m n m n m n

W ^J as follows,
n m

RETRIEVE W :T :Q
n n in

RETRIEVE W :T :Q
m n ^m

The larger the set of attributes which are specified in a target list,

the more restrictive is the allowed access, as indicated in Figure 5.2.

We assume that all protection interactions for a given user with the

same command will be properly nested and can therefore safely add step

3A to the algorithm.

-8-

3A. Delete from IR all interactions with a target list containing

the target list of another interaction in I .
R

We now present an example of the algorithm at work. The restrictions

are intended more to demonstrate the possibilities than to appear realistic

Example 5.3

Jones can see all salaries as long as his query does not include

name or department in the target list or qualification. Moreover, except

for employee^Baker, he can see names, departments and managers if salary

is not present. Furthermore, he can see names, managers and salaries

for all employees who earn more than their managers. Lastly, he can see

all attributes for departments which sell more than the average department.

These restrictions may be stated in four access control interactions.

RANGE EMPLOYEE(X,Y):DEPARTMENT(Z)

1) RETRIEVE X.SALARY

2) RETRIEVE X.NAME,X,DEPT,X.MANAGER:X.NAME^BAKER

3) RETRIEVE X.NAME,X. SALARY,X.MANAGER:Y.NAME=X.MANAGERAX. SALARY
>Y.SALARY

4) RETRIEVE ALL:Z.SALES>AVE(Z.SALES)

Example 5.4

Suppose Jones issues the query: Find all salaries

RANGE EMPLOYEE(X)

RETRIEVE W: X.SALARY

The algorithm finds S={SALARY} and 1) and 3) contain S. However, step

3A eliminates 3); hence, the resulting query is unchanged from the

-9-

original since 1) has no qualification statement.

Example 5.5

Now Jones issues the query: Find the manager of employee Adams.

RANGE EMPLOYEE(X)

RETRIEVE W: X.MANAGER:X.NAME=ADAMS

Here, S = {MANAGER,NAME} and the algorithm selects 2) and 3) as applicable,

Hence, the query is modified to:

RANGE EMPLOYEE(X,Y)

RETRIEVE W:X.MANAGER:X.NAME=ADAMSA(X.NAME^BAKER V(Y.NAME
=X.MANAGERAX.SALARY>Y.SALARY))

Example 5.6

Suppose Jones then issues the query: Find all employees who

earn more than their managers.

RANGE EMPLOYEE(X,Y)

RETRIEVE W: X.NAME: (X.MANAGER=Y.NAME)A(Y.SALARY<X.SALARY)

Here, S = {MANAGER,NAME,SALARY}, S = {NAME,SALARY}. As a result, 3)
x y

is added for both X and Y, yielding

RANGE EMPLOYEE(X,Y,Z,U)

RETRIEVE W:X.NAME: (X.MANAGER=Y.NAME) A(Y. SALARY<X. SALARY)

A(Z.NAME=Y.MANAGER)A(Y. SALARY>Z.SALARY)

A(U.NAME=X.MANAGER) A(X. SALARY>U. SALARY)

The reader can observe that the effect of the modified query is to

retrieve those employees who make more than their managers and who

have managers who make more than their managers. This is less than

-10-

what the user requested. However, he can retrieve everything he

desires by the following query.

Example 3.7

RANGE EMPLOYEE(X)

RETRIEVE W:X.NAME,X.SALARY

Here, S = {NAME,SALARY} and the algorithm appends 3) yielding the desired

result.

RANGE EMPLOYEE(X,Y)

RETRIEVE W:X.NAME, X.SALARY: Y.NAME=X. MANAGERAX. SALARY>Y. SALARY

The reader can note that allowing access control interactions with

multivariable target lists and modifying the access control algorithm

could alleviate the too strict control placed on Example 5.6. However,

such an algorithm would be quite complicated because different qualifi

cations would be added, depending on which variables in a user query were

associated with which variables in an interaction target list.

If, for example, 3) had a Y. variable in the target list, different

appendages would be applied, depending on association of user variables

to interaction variables. The only reasonable policy in this situation

would be to append the logical "OR" of all such possibilities. Efficiency

and complexity considerations suggest that the added generality is not

worthwhile.

5.2 Protection for Interactions Containing Aggregates

When users issue interactions containing aggregates, an additional

policy consideration appears, as illustrated below.

-11-

Example 5.8

Suppose Adams can retrieve only salaries for employees in the

toy department and has an access control interaction, as follows.

RANGE EMPLOYEE(X)

RETRIEVE X.SALARY:X.DEPARTMENT=TOY

Moreover, suppose he issues the following query.

Example 5.9

Find the average company salary.

RANGE EMPLOYEE(X)

RETRIEVE W: AVE(X.SALARY)

Two policies can be taken in this situation.

1) The access control clause can be added inside the aggregate,

producing

RANGE EMPLOYEE(X)

RETRIEVE W:AVE(X. SALARY; X.DEPARTMENT=TOY)

Adams would then retrieve the average salary of employees

in the toy department (which is probably not what he wants).

2) The retrieval can be allowed unprotected since the user is

obtaining a statistical quantity on a relation of presumably

reasonable size.

In general, the following mechanisms can be potentially enforced

concerning aggregates.

1) allow aggregates without restriction

-12-

2) allow aggregates without restriction if the minimum number of

values aggregated exceeds some threshold.

3) allow aggregates without restriction if they are unqualified

(i.e. are aggregates over a whole relation)

4) allow aggregates only with access control qualifications appended

inside the function.

It can be readily shown that mechanisms 1) and 2) allow the

persistent user information from specific tuples to which he may not be

permitted access. The following query is representative of potentially

unauthorized access using aggregates allowed under mechanism 1).

Example 5.10

Find Smith*s salary

RANGE EMPLOYEE(X)

RETRIEVE W:AVE(X.SALARY;X.NAME=SMITH)

With mechanism 2), the following potentially unauthorized access can

take place.

Example 5.11

RANGE EMPLOYEE(X)

RETRIEVE W:COUNT(X.NAME>EVANS)

RETRIEVE W:AVE(X. SALARY; X. NAME>_EVANS)

RETRIEVE W:AVE(X.SALARY;X.NAME>EVANS)

Let A,,A« and A„, respectively, be the responses to the above RETRIEVE

statements. It is easily computed that Evans' salary is

A1*A2-(A1-1)*A3

-13-

Because these potential violations can occur using mechanisms 1 and

2, and because preventing such violations requires some sort of complex

monitoring of the interaction stream, we are allowing the choice of

mechanisms 3) and 4) for each possible aggregate operator. We are aware,

however, of the following anomaly concerning mechanism 3).

Example 5.12

Suppose Adams is allowed to access only tuples of employees

in the toy department. Suppose also that he issues the queries:

RANGE EMPLOYEE(X)

RETRIEVE W:AVE(X.SALARY)

RETRIEVE W:AVE(X. SALARY;X.NAME>AAAAA)

The first query would be answered with the true average salary

of all employees since it is an unqualified aggregate. On the other

hand, the second query is qualified and therefore would be further

qualified to the following:

RANGE EMPLOYEE(X)

RETRIEVE W:AVE(X.SALARY;X.NAME>AAAAA/X.DEPARTMENT=TOY)

Therefore, the average salary in the toy department is returned.

Hence,' two logically identical queries will yield different answers

This price must be paid for the increased flexibility allowed by

mechanism 3) above mechanism 4).

The reader can now note the obvious extensions which must be made

to the algorithm of the previous section in order to properly enforce

access control for interactions containing aggregates.

-14-

5.3 Efficiency Considerations

Usually, the addition of access control qualification will result

in a decomposition to the same sequence of one-variable interactions

that would occur without access control. Each such interaction is further

qualified by one or more protection statements than would otherwise be

the case. Such a one-variable interaction will usually be at least as

efficient to process as one without protection. In fact, these added

protection clauses may allow redundant indices to be employed to speed

access that would not otherwise be usable. Hence the cost of protection

is usually negligible. Adhering to the following two conditions essentially

insures this statement.

1. The following single variable condition holds: A set of inter

actions, K, with target lists T = {Tj,...,T.} has the single

variable condition if for all T ,T ^T such T Or ?ty, there exists
m n m n

a T. G T = T H T .
1 m n

This condition insures the truth of the following statements:

a) I contains a single interaction as a result of steps 1-3A

of the algorithm

b) In step 4 a user interaction is further qualified by one

qualification clause.

c) One qualification clause is appended for each variable in the

query.

2. Access control qualifications do not contain two or more tuple

variables or the operator "OR".

Here, inefficiency usually results if new variables must be added to

-15-

the original query (as occurred in Example 5.6). In all probability,

more tuple variables would require a longer sequence of one-variable,

queries. Also, for processing convenience, when "OR" is present in a

qualification statement, two one-variable queries are issued and the

set union is taken on the results. Hence, one variable queries do not

contain "OR". As a result, inclusion of additional "OR" operators to

the unmodified query result in a longer sequence of one variable queries.

This latter inefficiency, however, is specific to our search strategy

and could potentially be avoided. It is felt that little generality is

lost by adherence to the two rules above, which guarantee small or

negligible efficiency overhead. More general schemes are, of course,

allowed but execution speed may be slowed significantly.

6. Locking in INGRES

Two basic problems occur when two or more processes concurrently

update a shared data base. They are:

1) ensuring consistency

2) preventing deadlock

The second problem arises during attempts to solve the first. Hence, it

is appropriate to discuss consistency first.

6.1 Consistency

Consider two updates for an inventory relation containing PART,

SUPPLIER and quantity on hand (QOH) as follows:

RANGE INVENTORY (X)

(u6.1) REPLACE INVENTORY:X,QOH = 5 : X.PART=16

(u6.2) REPLACE INVENTORY:X.QOH = 3 : X.PART=16

-16-

If u6.1 and u6.2 can proceed in parallel with no controls it is

possible for one update to be lost and for neither user to be aware of

that fact. If u6.1 and u6,2 update the relation believing that they are

selling items from an inventory, then the resulting relation will be

inconsistent.

A second more subtle example is the following. Consider two somewhat

facetious updates on a data base containing employee information

including NAME, SALARY, DEPARTMENT and HAIR color.

RANGE EMPLOYEE(X)

(u6.3) REPLACE EMPLOYEE:X.HAIR = red : X.HAIR = brown

(u6.4) REPLACE EMPLOYEE:X.HAIR = brown: X.HAIR = red

Here, u6.3 changes the hair color of all brown haired employees to

red while u6.4 changes red haired employees to brown. If for the moment

we assume that everybody initially has either red or brown hair then

the alarming result is

u6.3 executed then u6.4 ^ all employees have brown hair

u6.4 " " u6.3 ^ all employees have red hair

u6.3 executed in parallel

with u6.4 with no

controls =* some employees have red hair and some have

brown hair

Here, the result of the updates depends on the order of execution.

Moreover, if they execute in parallel many outcomes are possible.

These examples illustrate conflicting updates defined as follows:

-17-

Two updates (REPLACE,COMBINE,DELETE) ul and u2 conflict if

a) one or more tuples satisfies the qualification expression

of both updates and the target lists of two updates have an

attribute in common.

b) one or more tuples are changed by one update in such a way

that at least one tuple either enters or leaves the set of

qualifying tuples of the second update.

The first update example illustrates a) while the second explains

situation b).

The following two policy alternatives can potentially be enforced

when processing conflicting updates.

Policy Alternatives

1) Insist that conflicting updates occur logically sequentially (i.e.

as if they were issued sequentially by the same process).

2) Insist that conflicting updates occur sequentially but remove the

words "either enter or" from part b) of the definition of conflict.

Note that policy 1 is more comprehensive than policy 2. For example,

the first set of updates satisfies both notions of conflict; the second

set conflict only by definition 1.

We illustrate the general difficulties involved in each policy

situation using the hair updates as an example. We assume that each

process has an available mechanism to lock tuples in a relation.

Policy 1

u6.3 and u6.4 respectively must lock all brown and red haired

employees. Each then performs the update requested. One then releases

-18-

his locked records. Since some or all do satisfy the lock condition of

the other update, the second user must be backed up so that he can

include these new tuples in his lock set and update them appropriately.

In general, if one insists on policy 1 then either:

a) there can be no concurrency or

b) some processes may have to be "backed up."

Policy 2

Here u6.3 and u6.4 must lock brown and red haired employees

respectively as before so that nobody else can update these records to

nullify the qualification statement. In this case no conflict exists and

both updates proceed in parallel. Unless it becomes necessary to resolve

deadlock, a process need never be backed up.

We feel that the implementation cost of achieving policy 1 is very

high and its marginal utility over policy 2 may be quite small. Moreover,

the following disucssion shows a clean reasonably efficient implementation

of policy 2 which involves no "backing up."

6.2 Locking algorithm

Our basic approach is to force a linear ordering on all resources

and insure that users can lock only resources in the ordering greater

than those they currently have locked. This is well known to avoid

deadlock. Demonstration of the feasibility of this strategy requires an

indication of how updates are processed. We discuss the handling of

REPLACE operations; the other updates are done similarly.

REPLACE statements involving disjunction are broken into several

independent statements each with OR absent from the qualification

-19-

statement. The resulting commands are processed by first executing a

RETRIEVE with the target list and qualification statement of the update.

The appropriate set of tuples is ascertained and subsequently new values

are substituted back into the appropriate tuples in the original relation.

If a new relation is specified by the REPLACE statement, the operation is

comparable.

The RETRIEVE portion of a REPLACE statement is handled as discussed

in section 2. The tuples satisfying each one variable query must be

locked as a RETRIEVE is executed to ensure that policy 2 remains in

force. Note, of course, that workspaces are not shared so that tuples

in them need not be locked.

Our lock algorithm depends on the validity of the following two

statements.

1. Our software conforms to a linear ordering when obtaining

tuples from a relation.

2. Each relation in the data base is used as the range of a one-

variable query only once when locks must be applied to tuples.

If these statements are valid, the policy can be followed of locking

all tuples that satisfy a one variable query whose range is a real

relation. If followed one is assured that no other process can change

a locked tuple and potentially remove it from those qualifying. One is

also assured that no more tuples from a given real relation need ever

be locked since subsequent processing will only further restrict qualifying

tuples.

Therefore if the relations in the data base are ordered in the same

sequence as one variable queries are issued and the tuples within a relation

-20-

ordered according to our software conventions, a process executing a

REPLACE statement will only lock elements greater in the ordering than

he has locked already.

We discuss how to ensure the truth of the second statement above;

then we indicate in more detail our algorithm. When a one variable

query is executed, the range of the corresponding tuple variable is

restricted from its original range to a workspace in which the resulting

relation is stored. Most of the time the above restriction can happen

only once from a real relation to a workspace. Subsequent restriction

is from workspace to workspace. There are three easy to remedy cases

where this is not true.

a) Tuple Substitution

We consider the situation where tuple substitution is required for a

two variable query. As suggested in section 2.10, one relation will be

stepped through a tuple at a time; each retrieved tuple will be substituted

into the two variable query resulting in a one variable query; this one

variable query will then be executed. Notice that many one variable queries

are executed for both relations. If one or both are real relations

rather than workspaces, statement 2 is not true.

We adopt the brute force solution to this problem, namely, the

entirety of both relations will be locked upon starting tuple substitution.

b) Relations with Two Tuple Variables

The same problem arises if two tuple variables range over the same

relation. Again the entirety of the relation can be locked when the

first one variable query is executed.

-21-

c) Aggregates and Aggregate Functions

When an aggregate or aggregate function is defined on the same

relation as another tuple variable, we have another instance of b) above.

Again, the same solution is taken.

The following indicates our locking algorithm.

Locking Algorithm

1. Collect names of relations upon which

a) an aggregate or aggregate function is defined

b) two or more tuple variable are defined

2. Lock the entirety of all such relations, block upon failure

3. Insert each locked relation in the relation ordering as the predecessor

to the first relation over which a tuple variable is defined in the

given interaction.

4. Inspect the next one variable query, if no more queries go to 10.

5. If range is a workspace or a relation already locked by current

process then execute query, go to 4.

6. If range is a relation in the ordering which is not greater than all

existing relations which have a tuple locked by this process,

request new ordering, block.

7. If range is a real relation and tuple substitution mode is used lock

whole relation (if not already locked), block upon failure, execute

query, go to 4.

8. If range is a real relation and query is next one after obtaining

the first tuple of a relation by tuple substitution, lock whole

relation, block upon failure, execute query, go to 4.

-22-

9. Execute query locking qualifying tuples, block if qualifying tuple

locked, go to 4 upon completion,

10. Perform remainder of REPLACE statement, unlock all resources, exit.

Associated with each relation in the ordering will be the number of

processes currently locking one or more resources in that relation. When

this number goes to zero, the relation is removed from the ordering.

Processes which are blocked because of an incorrect relation ordering may

wait some time before a compatible ordering is arranged. This is the

price paid for multivariable updates.

7. Data Independence and Data Definition

This section indicates the data independence provided by INGRES and

the commands being implemented to support this goal. Also indicated

are the data definition commands

7.1 Data Independence

The notion of data independence is supported in five different ways

in INGRES.

a) Relation storage in five different modes is supported and QUEL

programs execute correctly regardless of the current storage mode.

The command MODIFY allows a user to change the storage of a relation.

However, he must be either the DATA BASE ADMINISTRATOR or the DATA

CZAR to have this power for relations that are not temporary ones.

b) Redundant indices are supported. Again QUEL programs execute

correctly regardless of the presence or absence of indices. The

command INDEX allows a user to create an index (again only if he

is DATA BASE ADMINISTRATOR or DATA CZAR). The command DELETE allows

-23-

him to destroy an index (or any other relation).

c) Aliases are supported. Users can create their own aliases for

any attributes and issue QUEL statements using these alternate

names. The command ALIAS allows the user to declare an alias

for an attribute.

d) Conversion of data types are supported. Users may define attributes

to be of different types than what is actually stored. QUEL will

automatically perform a conversion. The current set of types

supported are those available in "C." Another use of the MODIFY

command is to declare such alternate types.

e) Virtual Relations are supported. The user by means of a DEFINE

statement can specify that a query be stored for subsequent use.

This notion is explained by example. Consider the employee relation

of section 5 with domains

NAME,DEPT,SALARY and MANAGER.

The statement

RANGE EMPLOYEE(X)

DEFINE W : X.NAME,X. SALARY : X. SALARY > 1000

defines a workspace W with the target list specified and obeying the

specified qualification. However W is not created physically; only the

above definition is stored. If a user indicates W in a RANGE statement

the initial version of the system will simply create W by executing the

stored query before continuing with the user's request; later versions will

attempt to streamline this operation by substituting the stored query

into the user's interaction and restructuring the result.

-24-

It is expected that virtual relations will be created when one is

required to support obsolete views of the data base. Periodically,

the DATA BASE ADMINISTRATOR may alter the storage or composition of real

relations and define the old version in terms of the new version for

any users who require it. Also, users have unrestricted use of the

DEFINE command to assist them with stating their interactions.

Using these five mechanisms a reasonable degree of data independence

is supported. Although not all one-to-one storage transformations are

supported [11], a substantial subset is.

7.2 Data Definition

There are two means by which the DATA BASE ADMINISTRATOR can enter

relations into a data base. First, he can utilize the command CREATE to

create an empty relation and catalog its existence. Then the administrator

can use COMBINE to append tuples or relations to this relation.

The second mechanism is available to the administrator and other

users alike. Any workspace can be removed from the system by changing

the owner from DATA CZAR to that of the current user. In this way users

can preserve private copies of relations of special interest and modify

them at will. The command RELEASE has this effect. Conversely, the

command LINK transfers a relation from a users' auspices to that of the

system. In this way a user can temporarily transfer a relation to the

system, use QUEL capabilities and then take the relation back. For all

users LINK has the effect of transfering a relation to workspace status,

in which case it is destroyed when the user signs off. Hence, general

users cannot create permanent relations within the system. Only the

DATA BASE ADMINISTRATOR can use MODIFY to change a workspace to a

-25-

permanent relation. The following diagram indicates relation movement

for users.

ingress

files

modify

permanent
relations

users files

A different set of transitions are allowed to the DATA BASE ADMINISTRATOR

as follows.

data base administrator

private files

permanent
relations

r~Y~^i dat

•^uj-.
modify modify

ingress
files

link

modifyf (

workspaces

delete

-26-

release

It was decided to allow only the DATA BASE ADMINISTRATOR to change

relation storage primarily to centralize in one user control of the

data base. Otherwise users would, without doubt, alter the data base

storage to fit their individual desires. A collection of such users

would not harmoniously cooperate.

The full set of commands and their syntax in FORTRAN is given in

Appendix C.

8. Display Subsystem

8.1 Introduction

One of the prime users of INGRES will be a group of researchers

within the College of Engineering dealing with urban economics,

environmental problems, and transportation. This set of users requires

the sophisticated retrieval capability of section 2 but additionally needs

powerful tools to display results of retrieval queries. Typically,

queries are geographically oriented and in one of two forms

a) For various subdivisions of a geographic area (census tracts,

parcels, school districts, election districts, counties, etc.) find

some A-function(s).

For example if a CENSUS relation contains CENSUS TRACT//, AREA,

POPULATION and COUNTY then a typical query of this type would be:

RANGE CENSUS(X)

RETRIEVE W: X.CENSUS TRACT//, X.POPULATION/X.AREA

: X.COUNTY = SAN FRANCISCO

Here a workspace containing population density by census tract is

required for San Francisco County.

-27-

b) For various arcs in a geographic area (buslines, highways, streets,

sewer lines) find some A-function(s).

For example if a BUS relation contains BUS ROUTE//, ANNUAL PATRONAGE,

LENGTH and FREQUENCY OF SERVICE, then a typical query would be:

RANGE BUS(X)

RETRIEVE W: X.BUS ROUTE// :

X.LENGTH = MAX(X. LENGTH)

Here the longest bus route is required from the relation

In each case a pictorial representation of the resulting workspace

would be desirable. In the first situation one might desire the A-

function X.POPULATION/X.AREA to be displayed on a census tract map of

San Francisco either by placing the value of the A-function in the

appropriate map zone or by shading the map zone proportionally to the

value of the A-function. In the second example one might want a map

of the appropriate bus line rather than simply its number.

To accommodate such desires, INGRES allows an attribute to be of type

MAP. in this case it is stored as a variable length character string,

typically using the coding facility described in Section 4, and treated

specially by display software. Two types of MAPS are recognized:

a) The value of the attribute for a particular tuple is a coded

representation for a closed polygon of an arbitrary number of sides,

b) The value of the attribute for a particular tuple is a coded

representation for a set of line segments.

Map attributes are treated like any other attributes in QUEL as the

following example suggests.

-28-

Suppose the CENSUS relation contains CENSUS TRACT//, AREA, POPULATION,

COUNTY, and MAP. The following retrieval creates a workspace containing

MAP.

RANGE CENSUS(X)
Q8.3

RETRIEVE W : X.MAP,X.POPULATION/X.AREA : X.COUNTY = SAN FRANCISCO

Many of the commands discussed in this section display workspaces

assumed to contain at least one MAP. When this is not true, the result

from certain display commands will be garbage.

8.2 Display Commands

Users sit before a graphics terminal (here a Digital Equipment Corp

GT/42) consisting of a display processor with line and character drawing

capability, a light pen and a keyboard. One will be able to enter the

DISPLAY MODE from any point in INGRES by typing the command:

DISPLAY filename

where filename may be the name (or alias) of a relation. It may also be

the name of a previously saved display list for a map. In the latter

case the display appears immediately. Otherwise a select phase is

entered and the following menu appears.

filename Display Types

DOMAIN NAMES 1- TABLE

1. (a) PRINTER

2. (b) GRAPHICS

-29-

3. 2. MAP

4. SHADE: (a) DOT

5. (b) HML

6. (c) ALPHA

7. 3. CURVE GRAPH

8. DISTINGUISH: (a) LINE

9. (b) DOT

10. (c) ALPHA

NEXT SET 4. POINT GRAPH

PREVIOUS SET

DISTINGUISH (a) DOT

(b) ALPHA

5. OVERLAY .

ERASE EXIT OK NEWFILE:

The domain names (shown here as blanks) will contain the first ten

domain names of the relation. NEXT SET is used to page forward through

the domains 10 at a time; PREVIOUS SET does the converse.

By pointing to various items in the menu one can formulate 5 different

types of displays. These are:

1. Table - appropriate parts of a relation will be presented in

tabular form on either the line printer or the graphics terminal.

2. Shaded map - a map will be presented shaded according to the value

of a domain. Several shading characters are allowed.

3. Brightness map - a map will be presented with the intensity of

an arc proportional to the value of a domain.

4. Curve graph - a plot of one domain against another will be

presented. Points in the graph will be connected by lines.

-30-

Several graphs may be constructed simultaneously,

5, Point graph - a plot similar to that of 4 will be presented.

Points will not be connected, however.

The selection sequence for various specific operations is the following.

1. To print a tabular representation of the relation: select either

"PRINTER" or "GRAPHICS" and either a set of specific domain

names or "DOMAIN NAMES" which will be interpreted to mean all

DOMAINS.

2. To create a shaded map, select a domain from the domain list and

the word MAP. This indicates which attribute is to be the map.

Then, one at a time, point to a domain on the left and a shading/

distinguishing character from the right (typing in one if necessary)

to represent that domain until the subset desired has been

specified. If no character is specified a dot is the default

assumption.

3. To create a map with the brightness of the displayed arc

proportional to the value of another attribute proceed as in 2

but select only one domain other than the map domain. If the

map is appropriately coded as an arc map (rather than a polygon

map), the above display is created.

4. & 5. To create a graph: select a domain from the domain list, which is

assumed to be the X-axis, and either "CURVE GRAPH" or "POINT

GRAPH". Then select pairs of (domain name, shading/distinguishing

character) as in 2.

To move on to the check phase one points to OK, Mistakes can be

•31-

corrected using ERASE which eliminates all selections indicated thus far.

EXIT leaves display mode and returns to the mode from whence one came.

NEWFILE allows a new file to be entered through the keyboard for which

display selections are desired.

The check phase allows the user to observe and correct if necessary

the choices he has made. The various menus are indicated by example

Example 8.1

An example of the check-phase for displaying a table on the printer

(indicated by word 'Print') is:

CHECK

Filename Table Print

DOMAINS:

1. Dom 1

2. Dom 4

3. Dom 7

4. Dom 12

CORRECTION RESELECT EXIT OK

The final line contains the four operations to either correct for an

error or end the Check Phase altogether:

1. CORRECTION: by indicating this and the item to be corrected,

one can make small changes via the keyboard (e.g. spelling

corrections or different shading characters). The filename

or display type cannot be changed in this manner. To change them

or make many changes, one should indicate RESELECT.

-32-

2. RESELECT: returns the user to the Select Phase as though one

had just entered with a file name.

3. EXIT: leaves the DISPLAY MODE

4. OK: accepts everything and moves on to the display phase where the

following will appear.

Filename

Dom 1 Dom 2 ...

1.

2. [the appropriat e

3. values

4. will appear

in this

5 space]

CONTINUE RIGHT CONTINUE LEFT

NEXT PAGE PREVIOUS PAGE

EXIT RESELECT O.K.

Dom 10

By selecting the CONTINUE RIGHT and OK the next ten domains will be

displayed. This is a horizontal continuation. Indicating NEXT PAGE and

OK will display the next 25 rows and provides the vertical continuation.

EXIT and RESELECT & OK are identical to those options used in earlier

phases. PREVIOUS PAGE and CONTINUE LEFT have the obvious meanings.

Example 8.2

An example of a map display with shading follows:

CHECK

Filename Map

-33-

Map Variable: Domain 1

DOMAINS

1. Dom 2 - Dot

SELECT: OUTLINE

DENSITY SCALE:

SCREEN SCALE:

CORRECTION RESELECT EXIT OK

The SELECT portion of this display provides the user with the option

of selecting 0, 1 or 2 items. Choosing the single option OUTLINE

provides an intermediate display of an outline map automatically scaled

to fit on the screen. The outline option is advisable when displaying a

map for the first time to analyze the scale of the map to be sure the

detail will show as desired. DENSITY SCALE allows one to override the

internal routine which calculates the shading density and SCREEN SCALE

refers to the horizontal and vertical span over which the map is

displayed upon the screen. Upon selecting outline the following display

might appear.

CENTER SCREEN SCALE: RESELECT OK

DENSITY SCALE:

-34-

CENTER allows one to select the center of a resulting shaded

display. The other commands have the same interpretation as above.

Upon selecting OK the following display might appear.

MAP DIVISIONS: Domain 1

NOMAP SAVE:

EXIT RESELECT

Selecting NOMAP followed by one or more of the tracking crosses, then

OK causes that portion of the map to be deleted. To combine several

sections, select those sections and then O.K. Both of these operations

will result in another display-phase image with the same options.

Selecting "CHANGE* and any of the listed facts in the upper right corner

will allow the user to input a different shading character or scale or

density. MOVE followed by inputs from the keyboard represents the X or

horizontal distance and Y or vertical distance to be shifted. SAVE

allows the display list to be saved for subsequent recall.

Example 8.3

In displaying acurve or point graph the check-phase is exemplified
by:

DOMAIN 2: Dot

CHECK

Filename CURVE GRAPH

X-COORD: Dom 1

Y-COORD: Dom 4s dot

Dom 9: Alpha-Q

-35-

SELECT:

SCALE:

CORRECTION RESELECT EXIT OK

SCALE allows the user to specify the X and Y maximums. The X and Y

minimum will be data dependent. Selection of OK yields a display with

similar options to the map display.

SCALE:

CURVE GRAPH

Dom 1: X-COORD

Dom 4: DOT

Dom 9: ALPHA-Q

SAVE: EXIT RESELECT OK

In the case of the graph display the scale shows at the extreme ends

of the axes and in order to alter them, one must select SCALE and key

in the X and Y changes. All other options are as previously discussed.

The last example in this section illustrates the overlay feature.

Example 8.4

In overlaying one map with another, the following check-list will

appear:

CHECK

Filename OVERLAY MAP

DOMAINS

Dom 2: Dot

Dom 3: HML

Dom 4: Alpha: A

Variable = DOM 1

-36-

Indicating CENTER and typing a pair allows one to specify the map center.

The other options have been as discussed above. Again "OK" allows one

to proceed to the next phase where the following will appear.

Dom 7: Alpha$

SELECT: OUTLINE

DENSITY SCALE:

SCREEN SCALE:

TYPE IN NAME OF FILE WHICH THIS SHALL OVERLAY:

CORRECTION RESELECT EXIT OK

Selection of OK causes the map specified to be presented superimposed on

the one selected for recall.

9. Conclusions

The previous sections have indicated the goals of INGRES, the query

language adopted, solutions to various data management problems and the

display subsystem planned.

In many cases expediency has dictated certain simplifications. These

fall into two categories.

1. Level and form of QUEL. It is anticipated that the unskilled user

will have difficulty programming in QUEL. Work is underway to

design a user language that is less threatening. We are utilizing

the two dimensional medium of our graphics terminal to advantage.

2. Efficiency. Our first goal is to make a straightforward QUEL

processor work. At some later time we will attempt to streamline

interaction processing. Moreover, we will attempt to have the

system give the DATA BASE ADMINISTRATOR assistance in selecting

-37-

storage structures in the future. Lastly, the current version is

v' • onlv inefficiently able to be called from inside another "C"

program. In the future we will attempt to correct these problems,
3

-38-

allowed

requested^

The Access Control Scheme at Work

Figure 1

-39-

result of I
n

resul

-sL

1 o£ *•

lA

Two Properly Nested Interactions

Figure 2

-40-

	Copyright notice 1974
	ERL-436
	ERL-cover
	ERL-436

