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AUGMENTATION PROBLEMS

Kapali P. Eswaran
and

R. 'Endre Tarjan

Introduction:?

A common computational problem in graph theory is that of determining
how many verticés‘or edges must be removed from a graph,in order to
satisfy some commectivity property. For instance, we mighﬁ ask how
many verticéé @ust be ;embved from a graph to discqnpect it. If the
answer is zero, the graph itself is disconmmected; if the answer is one
or more, thgigiaph is éonnected; if the answer is two or more, the
graph is biconnected, and so on. Many good algorithms have been
developed for solving such problems [1,2,3]. |

We can furn this idea around and ask questions about how many gdges must
be added to a graph to satisfy a givenvconnectivitj property. Séveral ,
well-known brdﬁlems, and-also.several heretofore unstudied 6nes, ﬁay
be stated in this form. This paper proposes a theoretical framework for
studying sbch.augmentation,problems, glves well-knowp examples of such
problems, and,analyses.in detail the strong connectiﬁity and bridge- |

connectivity augmentation problems.
Definitions:
A (finite) graph G = (V,E) is a finite set of yertices U and a

finite set of édge ~E. The edges of a graph are either ordered pairs
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(v,w) of distinct vertices (the graph is directed).dr hnordered
pairs (v,w) of distinct vertices (the graph is undirected). A
dirécted edge (v,w) has head w and tail v, gggggg w, and
leaves v. V. is the number of vertices and E ié the number of
edges in G. If E contains all possible edges, them G 1is

complete. Abs&bgraph G, = (Vl, El)~ of G is a graph such that

SV, E CE G, is spamning if V, = V. |

A path p from vy to v, is a sequence of edges
'(Vls VZ)’ (Vé) V3)s ces (Vn_l» Vn)-

A path is closed if v, = V.-

A cycle is a closed path such that v;, V,, «cep V 4

are all discinct. A path may contain no vertices, but a cycle
must contain at least two vertices. A cycle is Hamilton#an

if it isispanning. An undirected graph is connected if

there is a;path between every pair of vertices. If x is a .
vertex of ‘G such that there are vertices v, w #yx fot whiéh
every path.~from v to w contains x, and there is.a path

from v ¢to ﬁ, then x 13 a cutnode. If G is cdﬁnected and
contains no cucnodés, it is biconnected. If (x,y)- ;s an'edge
such that thgre are vertices v, w for which every}path from v to
v passes throﬁgh (x,y) and there is -a path froﬁ ;;;vtp w, ﬁhen
(x,y) 1s a bridge. (An edge is a.bridge if and only 4f it is

contained in no cycles.) If G is connected and contains no bridges,

it is bridge-connected. A directed graph is strongly connected if,
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for all pairs ef vertices v and w, there is a.feth from v to
w. The coﬁneeted (biconnectee, bridge—connected,.etfong1y connected)
components;of a graph are its maximal connected (biconnected, bridge-
connected, strongly connected) subgraphs.

A tree is an undirected, conmnected, acyclic graph; A sganning
tree of a graph G is a spanning subgraph which is a tree. An

arborescence is an acyclic directed graph with one vertex, the root,

having no entering edges, and all other vertices having exactly one

entering edge. A spanning arborescence of a directed graph G 1is

a spanning subgraph which is an arborescence.
Let C be a conmectivity condition on either directed or
undirected graphs. We will assume: (A) 1f G1 _1a'a.subgraph of

G, and G satisfies C, then so does G,; that is, adding extra edges

2
to G1 cannot make C false if it is true in Gl' Consider a set of vertices

V and a real-valued cost function f(v,w) defined on all possible edges between
vertices of V. We will allow f to have value infinity on some edges. The
(weighted) augmentation problem with respect to C 15 the problem of determining
a subgraph G of the complete graph on vertex set eruch that G satisfies C

and the total cost of G's edges is minimum. Beceuse of condition

), we mey agsume without loss of generality that £ ie non- '

negative. Letv G* be the graph with vertex set UV and all edges

having finite cost. If ,G* satisfies C we may restrict our

attention tb  Q*; if not, every subgraph,eatisfyieg C has

infinite cost. If f 4is a 0 - 1 valued functionm, the

augmentation problem is umweighted. In this case, 1f G _1is the



graph whose edges are those of cost zero, then the problgn
is to determine a graph with a minimum number of edges ‘which contains
Go‘ and satisfies C.

One class of hard-to-solve problems deserves special attention.

This is the class of NP-complete problems, as studied by

Cook [ 4 ], Karp[ 5], and others. Let 2* fbé the set of -
all finite strings of 0's and 1's. A subset of I* is a language.
Let P (N P) be the class of languages recognizable in polynomial
time on one-tape deterministic (non-deterministic) Turing machines.
Let NI be the class of functions from £* into I * computable in

polynomiaL time by deterministic one-tape Turing machines. If L and M are

languages, we say L is reducible to M if there is a function
fE€n such‘fhat f(x) €EM iff x€L. A language:fL  is NP-
complete 1€ (1) LENP and (2) every language iﬁ. NP is
reducible to L. A

Reducibility is tfanaitive, so in order to éhoﬁ‘ (2) for a
given language L we need only show that some known NP-

complete problem is reducible to L. The NP—complete

problems are computationally related in the sense that,their time
‘bounds are polynomial functions of each other; that is, either all
these problemsAﬁave polynomial-time algorithms, or-ﬁone'do. Such
famous problemé as the tautology prbblem, the traveliﬁg salesman
probiem, and the chromatic number problem are all NP-complete
[51. |



Examples of. AugEentation Problems:

Several: well-known problems are augmentation problems. For-
instance, suppose we consider undirected graphs, apdw C is
"a given vertei x 1s connected to a given vertex. y." The
resulting augmentation problem asks for the minimum cost path in
G* between x and y. Efficient algorithms for solving this
problem are discussed in [ 6 ]. If C is "G is connected",
>the augmentation problem asks for the minimum-cost séanning tree in
G*. Various researchers have developed algorithmsito find minimum-
cost spanning trees [71]. |

An analogous problem for directed graphs uses ae "Ct
. "all vertices in G are reachable from some single verﬁex". The
augmentation‘pfoblem then asks for a minimum-cost spahﬁing arbofescence
. in the graph! G*, Edmonds [ 8 ] has proposed an algorithm for this problem;
the algorithm is quite efficient if implemented prepé.rly [9].

Eswaren [ 10 ] has considered the problem of edding a minimum-cost
set of edgee‘to a direcfed graph Go so thae there is a cycle wﬁich
contains all the edges of Go' He gives efficient algorithms for solving
both the weighted and the unweighted version of this prpblem.

Not all auémentation problems have efficient elgoriﬁhms. Consider
undirected graphs: let S CV , and suppose C. isv " there is a path
in G between any two vertices in S." This augmentation problem is the
Steiner tree problem, it asks for the minimum-cost tree containing all
vertices in S; other vertices may or may not be included. Karp [5] has

shown that the Steiner tree problem is NP-complete.



A much more general kind of augmentation problem has been
studied by F:ahk_and Chou [12]. Givem a V x V  symmetric

] with r = 0 for all 1, they ask for a

matrix  [r i1

ij
graph with fewést edges such that there are vrij edge—disjoint
paths between.vértices i and j. They provide an'éfficient
algprithm fof solving this version of the augmentatiog,problem,
but fhey give no time bound. The weighted vefsioﬁ of this problem
is polynomiél'complete (as we shall see). They do not -discuss
what happens in the unweighﬁed problem when some of the edges are
predetermined;. presumably the problem becomes much ﬁarder. Here

we shall consider the special case when rij = 2 fof all 1 # ]

and some of the edges are predetermined.
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Strong Connectivity

Let us now look at a fewkaugmentation problems &hich have not
been studied before. Consider direéted graphs and suppose C is
"G is‘stroﬁély connected.” This augmentation prbblem is intermediate
in 'difficulty between the minimum spanning tree prcblem and the
Steiner tree‘pfdblem; its weighted version is polynomial complete,

but its unweighted version has a nice solution.

Theorem i:b

Let UV be a set of vertices, f a cost function on ordered
pairs of distinct vertices, and F a total cost. The problem of
determining whether there exists a set of edges with.cost F or
less which strongly connect the vertices of V is'po;ynomial
complete.

Proof:

(1) It is easy to comstruct a non-determinis;ic Turing machine
which will guess a set of edgés of cost F or 1§ss~and.check whether
it strongly connects the vertices of‘ V in polynbmial time. Thus,
the strong?éonnectivity augmentation problem is solvable.on a

non-deterministic polynomial-time-bounded Turing machine.

(2) We'prove that the directed Hamiltonian cycle problem (which
is polynomial complete [ 5 ]) is reducible to the strong connectivity
augmentation problem. Let G = (V,E) be a directed graph. Construct

a strong connectivity augmentation problem on vertex set V with



costs f(v%w).ﬁ 1 if (v,w) €E, f(v,w) = 2 othérwisg, and
F = V. This augmentation problem has a solution with cost F or
less if and only if G contains a Hamiltonian cycle. This
construction is obviously computable in polynomial timé, so the
weighted strong connectivity augmentation problem is complete. Q.E.D.
it éhéﬁld be noted that only the most general vefgion of this

problem .is complete. For instance, if Go has thg préperty that
some vertex X can be reached from every vertex, then the strong
connectivity augnentation problem reduces torthat of finding a
minimum weight spanﬁing arborescehce with root x, which is
efficiently solvable using Edmond's algorithm [8,9].

| Let's restrict our attention to the unweighted version of the
strong connectivity augmentation problem. We are given a graph Go
to which we want to add a minimum number of edges to form a graph
G which i1s atr@ngly connected. We may reduce this problem by
converting Go into a simplified directed graph Gé which contains one
vertex for each strongly connected component of 'GO. Two vertices
representing components are joined by an edge in G; if there is an
edge from one component to the other in Go' The fedgced graph G;
is well—defiﬁed, acyclic, and may be constructed in v0(V+E) time by
using depth-firgt search [ 1 ] to find the strongly connected |
components of Go'
Lemma 2:

If A is a set of edges which when added to G, strongly connects'Go,



Let A' = {(X,Y)|(v,w) €A, X 1is the strong componént of G
containing v, and Y is ghe strong component of Co*‘containing wl.
Then A' strongly connects G;. Conversely, if A' is a set of edges
which strgngly connect G;, form a set A containing one edge (v,w) such
that v € X énd w € Y for each edge (X,Y) in A', where X and Y are strong

components of,Go. Then A strongly connects Go'

Proof:. Obvious.
Because of Lemma 2 we can restrict our attention to the acyclic

graph G; . This graph contains zero or more sources (vertices with no
entering edges and one or more exiting edges), zero or more sinks
(vertices with po;exiting edges and one or more entering edges), and
zero or more isolated vertices (no entering or exiting edges). The
following theorem gives a lower bound on the number of augmenting

edges needed to make G; strongly connected. ‘ 7
Theorem 3:

Let Gé be an acyclic directed graph with s sources, t sinks,
and q 1solated vertices. Then at least max(s,ﬁ) + q edges are
needed to make .G; strongly connected.

Proof:

After Gé is made strongly connected, each source and each
isolated vertex must have at least one entering edge. Thus, at
least s + q edges must be added. Similarly, each sink and each
isolated vertéx must have at least one exiting edgef Thus, at least

t + q edges must be added. Combining these two results giveé the

theorem.



The bound in Theorem 3 is attainable; thé rest Af tﬁis section
gives an efficient algorithm for finding a set of’max(é,t) + q
edges which wiil strongly conneét G;. First, we qimplifj the graph
still further. :We construct a graph Gg which contginé‘pnly the
sources, sinks, and 1sola£ed vertices of Gé and which only has edges
from the soﬁrces to the sinks. To construct Gg, we explore G;, moving
out from the sources, and label each vertex with the name of one source
from which it is reachable. (The isolated vertices never get labeled.)
Then we expldré Gé moving backward along edges from the sinks, labelling
each vertex with the name of one sink reachable from it. Gg contains
as edges all (v ,w) such that source v is labeled with sink w or sink
w is 1abelgd with source v. The total time required'tq construct Gg
is O(V+E) using any search method.

Lemma 4:

Let A be an augmenting set of edges which strongly connects Gg .
Then A strongly cénnects G;.
 Proof:

Let v and w be any vertices in Gé. If neither v mnor W is isolated,
there is a path in G; from v to some sink x,'and a ﬁath in G; from some
source y to w. Every edge in G;‘corresponds to a path in Gé. Hence,
since A strongiy connects Gg, there is a path from x to y'consisting
of edges in A apd edges in Gg. Thus, there 1is a path from v -to w when
the edges A are added to G;. Similar arguments wo:kAif either v or w

is an isolated vertex. Thus, A strongly connects G;}



Since'Gg.has the same number of sources, sinks, and isolated
vertices as Gé, we may concentrate on Gg. To strongly.connect Gg},
we apply a reduction rule:
(R) fick anf'#ource v such that any vertex x with (v,x) an edge has
two or more enfering edges. . Pick any sink w such that any vertex y with
(y,w) an'edge has two or ﬁore.exiting edges. Add (w,v) as an augmenting

edge and discard v, w, and all incident edges from Gg to form a smaller

"
graph Go'
Graph Gg' has one less sink, one less source, and the same isolated

vertices és.Gg'.'Furthermore:

Lemma 5:

If A is a set of edges which strongly connects Ggf » then
AU {(w,v)}.stfpngly connects Gg.
Proof::

Let the edges A U {(w,v)} be added to Gg. Since v has two 6:
more outgoing edges in Gg, one of them must lead to a vertex other
than w. Thus, there is a path from v to some vertex in Gg' and hence
to any vertex in G;' when set A is added. Similarly there is a path from any
vertex in Gg'.tq w when set A is added. Finally, theledge (w,v)gives a path
from w to v. It follows that AU {(w,v)} strongly connects G;.

We continue applying (R)to smaller and smaller‘grﬁpha, building
up a set of'augqenting edges, untii(R)is no longervappiicable. Then either
- each source v has an edge‘(v,x) to a sink with only one entering- edge or each
sink w has an édge (y,w) from a source with only one exiting edge. The two
situations are symmetric; let's consider the latter. In this case the

number of sinks must be no greater than the number of sources, and we can

=10~



find a set of edges (sl’tl)"’f’(sn’tn) in the remaining graph such

that t1

Suppose m - n + ¢ 3_1, and Vol *tt vm-n+q are the remaining sources

see tn are all the remaining sinks and 8y s s, are all distinct.

and isolated vertices. We can strongly connect the remaining graph by

adding the'm‘+ q edges (ti’si+l) for 1 <1 < n, (tn"?n+1)’ (vi’?i+1) for
n+1l<i <m-n + q, -and (vm-n+q’ tl).
strongly connect the graph by adding the m edges. (ti, si+1) for

If m-n+q=0, we can

1 <i< =n ‘and (tn, sl). Combining the appropriate one of these sets
of‘edges with the set of edges found using (R), we get a minimum
augmenting set of edges‘for Gg » which by Theorem 3 Ahd Lemma 4 also
augménts é; ‘minimally. If n > m, a corresponding construction works.
Using Lemma 2 we can transform this set into a set of edges which minimally
augments Go,,énd we are done. The entire augmentatiqn algorithm is .

presented below in Algolic notation.-

Procedure SCONNECT begin

Sl: Use dgpth-first search to find strong components of graph Go'
.Coﬁs;rucf acyclic graph G; with one veftex ;epresenting
each component of Go' Label each vertex of G; with the
name of some Veftex in_Go contained iﬁ tﬁe’corresponding
compoﬁent. Find sources, sinks, and isblated Qertices in Gé H

S2: Search graph.Gé forward from sources,.labeling éach vertex
reached with the name of one source frcm which it is reachable.
Search G; backward ffom sinks, labeling each vertex reached
with the name of one sink“rgachable from it. Comstruct graph
G: with sources, siﬁks, and isolated vertices of G; as its
vertices, having as edges all (v,w) such that v is labeled

with sink w or w is labeled with source v;

~11-~-



Count number of edges DI(v) entering and DO(v) leaving each vertex
v in G; H A
Put all sourées v such that (v,x) an edge implies DI(x) > 2 om list LS
Put all sourceé w such that (y,w) an edge implies pO(y) > 2 on list LT
A= P ; |
while LS # § and LT # @ do begin
delete a vertex v from LS and a vertex w from LT;
add (w,v) to A;
for eachvvedge (v,x) with DI(x) = 2 do begin
let (2,x) be an edge with z # v;
delete z from LS if it is there;
end;
for each e&ge (y,w) with DO(y) = 2 do begin
let (y,é) be an edge with z # w;
delete z from LT if it is there;
end; |
deleteyv,w; and all incident edges from Gg, updafing DO and DI;
end; |
1£.G; contains an isolated vertex then
let x be sdme‘isolated vertex in G; else x:=0;
yi=x j
1f LS = @ then while some source s exists in G do begin
find some‘edge (s,t) in Gg with DI(t) = 1; |
add (y.s) to A; ' |

delete 8, t, and all incident edges from Gg;
yi=t;

end else while some sink t exists in G gg_?egin
find some edge (s,t) in Gg with DO(s) = 13

_12-



add (y,s) to A;
delete s, t, and all incident edges from G";

y:=t;
end}
for each remaining vertex v in Gg do begin

add (y,v) to A;
delete v from G";
o

yi=v;

end;

comment if x =0 wemust delete a fictitious edge in A;
Af x # 0 then add (y,x) to A else begin '

find the (unique) edge (0,z) € A;
delete (0,z) from Aj; |

add (y,z) to A;

end;coﬁment set A is a minimum set of augmenting edges;

Theorem 6:

SCONNECT-fequires O(V+E) time and storage spacé‘(if Go has V vertices
and E edges), to correctly find a minimum set of augﬁenting edges.

Theoféﬁs 1 and 3, and Lemmas 2, 4, and 5 imply that SCONNECT
correctly finds a minimum set of édges. To represént.the problem
graph, we use two lists A(v), and B(v), for each verﬁex v. List
A(v) contains all vertices w such that (v,w) is an edge, and list
B(v) contains all vertices u such that (u,v) is an edge. These
representatibns require O(V4E);storage space. Storage space for
DI, DO, A, LS, LT, and otherv§ariables is also 0(V+E). Step S1

may be carried out in O(V4+E) time using depth—firét search applied

-13- .



to A(v) [1]). Step S2 may alsd be carried out in 0(V+E) time using
. any kind of éearch applied to A(v) and B(v). |
The remaining steps, which actually comstruct A, require time
proportional to‘the number of vertices and edges in @g, since each
vertex and édge in Gg is examined a fixed number of times and each
examination causes the program to perform a fixed number of steps,
independent of Gg. Since Gg contains no more than V edges, the
time to construct A is 0(V). The totalAtime required’by SCONNECT -
is thus 0(V+E); |
Figurép 1 - 3 sghow the application of this algorithm to a

directed graph.

-14-



~ Bridge Connéétivity

We might ask whether there are undirected graph problems
similai to the strong connectivity augmentation problém. Indeed
there are. Let C1 be "G is bridge connected“ and let 02 be "G is
biconnected". Both of the corresponding weighted augmentation
problems are NP-complete, whilé.their unweighted version have
0(V+E) algorithms.

Theorem 7:

Let V-be a set of vertices, f a cost function on unordered
pgirs of distinct vertices,and let F be a total cost. The problem
of determining whether there exists a set of edges with cost F or
less which bri&ge connect the vertices of U is NP-complete.

Proof:

(1) It is easy to conmstruct a non-deterministic Turing machine
which solves the bridge connectivity augmentation probi@n in poly-
nomial time.

(2) Wé.prove that the undirected Hamiltonian cycle problem,
which is NP-complete [51, is reducible to the bridge |
connectivity augmentation problem. Let G = (V,E) be anvundirected'
graph. Conatfuct a bridge connectivity aﬁgmentation problem on vertex
get U with costs f(vo,w) =1 if (v,w) € E, f(v,w) = Z'if v,w) € E,
and F = V. This augmentatioﬁ problem has a solution with cost F
or less if and only if G has a Hamiltonian cycle. This comstruction
is obviously polynomial-time, so the weighted bridge connectivity

problem is NP-complete.

-15-



Theorem 8:

Let V be a set of vertices, f a cost function on unordered pairs of
distinct vertices and let F be a total cost. The problem of determining
whether there exists a set of edges with cost F or less which biconnect
the vertices»of‘V is NP-complete.

Proof:

The unﬁirected Hamiltonian cycle problem is reducible to the weighted
biconnectivity augmentation problem using the samevtransformation as in the
Proof of Theorem 7.

These gonstructions can be improved to show that even if the graph Go is
connected, both the bridge connectivity and biconmnectivity augmenation
problems are NP-complete. Thus, these weighted angmentation problems
are different from the weighted strong connectivity augmentation problem,
for which an 1nteresting special case has.an efficiént algorithp. However,
the unweighted bridge connectivity and biconnectivity problems both have good
algorithms. We consider the bridge connectivity problem here. Pecherer and
Rosenthal hévé developed an algorithm for the biconnectivity problem [12].

Consider the bridge connectivity augmentation problem.b A graph G of
exactly two vertices cannot be made bridge connected unless we allow multiple
edges in the augmented graph. Thus, for the moment, let's allow mulpiple
edges in the augmented graph. We shall see later that’we can eliminate multiple
edges in all but the case when Go has exactly two vertices.

To solve the bridge connectivity problem, we first find the bridge-
connected components of G° and'shripk each to a single vertex to form a
graph G;. This may be done in O(V+E) time using deéth—firét search to identify
the bridges of Go. G; is a set of trees; each edge in,G; corresponds to a
bridge of 66 and each verﬁex corresponds to a bridge component of Go. Any set

of edges which bridge connects Go corresponds to a_set~of'edges which bridge-

-1:6~



connects G; in an obvious way; thus we have:
Lemma 9: |

If A is a set of edges which bridge connect Go,'let
A' ='{(X,Y)_| (v,w) € A, X is the bridge component containing v,
and Y is the bfidge component containing w}. Then set A' bridge connects
G; . Conversely, if set A' bridge connects Gé, form a set A containing
one edge (ﬁ,w) such that v € X and w € Y for each edge (X,Y) in G;,

where X and Y'ére bridge components of Go' Then A bridge connects

G'.
o
Proof:
Obvious«
Because of Lemma 9 we can concentrate on G;. 'G; contains zero
or more vertices with exactly one incident edge, called endants,

and zero or more vertices with no incident edges, called isolated
vertices. Ihe following theorem gives a lower bound on the number of
edges needed to make G; bridge connected.

Thgoremlloﬁ

Leth; contain p pendants and q isolated vertices. Then at
least p/271 + q edges are needed to make G; bridge connected, where-
Mx1 denotes tﬁe smallest integer greater than or_equal to xX.

Proof:

After G; is bridge connected, each pendant will have at 1e5st.
one new incident édge, and eaéh igolated vertex will have at least
two mew incideﬁt edges. Each new edge can satisfy at most two of
these requirements. Thus, at least [ p/271+ q edges are needed to

bridge connect G;.
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The bound in Theorem 10 is attainable. There are in fact
several different ways to efficiently find a set of Mp/21+ q edges
to bridge connect G;. One is a direct method of pairing pendants
analogous cé our solution of the strong connectivity augmentation
problem. Anotyer more elegant approach is-tovconvert,the,pfoblém’
into a strong;connectivity-augmentation problem aﬁd use our

already-formulated algorithm.

We need to add edges to G; so that every edge is in a cycle.
Suppose we direct the edges of G; so that each pendgnt becomes either
a source or avaink,every other non-isolated vertex 13 neither a source
or a sink, and the number of sinks is MP/27. Let A be a minimum set
of augmenting e@ges which strongly connects the fgsﬁlting directed
graph Gg. Then A will have P/21+ q edges, and every edge in Gg
will be in a directed cycle. If we now ignore the directions on all
the edges, A gives a set of edges which when added to G; cause every .
edge to be in an undirected éycle, so A is a minimum augmenting set
for G;. Now all we need is a method to direct the edges of G; in a
suitéble way. We use the following algorithm:

Procedure DIRECT begin

Choose a set P of T p27]1 pendants of G;, with at ieast one

—pendgnt:from each (non-trivial)connected compdngnt of Gé and so

that\V - P contains at least one pendant fromieach(non-trivial)

connected component of G';
o
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.Direct the edges incident to P into P}
while somé‘edge is undirected do begin
if some non-pendant vertex v has one undirecte@ ihcident edge e
and all other incident edges are directed out'éf v, then begin
direct e into v ; |

comment this is called a forced move;

end else begin if some non-pendant vertex v has an undirected

ipcident edge e and there exists some edge directed out of v then

‘direct e into v;

comment this is called an unforced move;

end; end; énd;’

Lémma 11:

When ﬁrocedure DIRECT is applied to a set of trees Gé with p
pendants all the edges in G; becdmé directed. Furthermore, the
resulting directed graph Gg has [(p/27] sinks and p -l_p/Z7 sources.
Proof: -

A satiafactory set P of pendancs can always be chosen because any non-
trivial tree contains at least two pendants. Pick any tree T in G; .
Initially some edge in T is directed. Suppose DIRECT s£opa without
directing all the edges in T. Let e = (v,w) be an edge remainingundirected.
From w there is an (undirected) path p in T to some @endant whose incident
edge was initially directed. Let e' = (v',w') be the last edge on
this path remaining undirected (if there is no such edge let e' = e).

Some edge incident to w' is directed. Because of the rules of

-19-



DIRECT, the first edge incident to a vertex (excluding the initial
pendants) whiéh becomes directed must be directed'outwérd. ‘Thus,
some edge inCidgnt to w' is directed outward, a move is
possible, an& DIRECT is not finished. This contradiction guarantees
that all the e&ges in Gé eventually become directed.

Since every non-isolated vertex except the initial pendants
has at least'oﬁé outwardly directed edge, Gg contains exactly p/271
sinks and at least p - [P/27] sources (the non-initial pendants). We
must prove that Gg contains no sources which are npt péndant. Suppose
to the contrary that vertex v is a non-pendant source in ng ’Vertex
v must have become a source because some edge (v, w) was directed into
w. Just before edge (v,w) was directed, at least two’forced moves
were possible, directing edge (v,w) in either direction. No non-forced
move could take place before edge (v,w) was directed, since then either
(v,w) would'Be directed the other way or vertex v would not become a
source. Thus, all moves performed by DIRECT up to the time of
directing (v,w) are forced.

At the time of direcfing (v,w), the already dirgcted edges form an
, arborescenée wifh root w, another aborescence with root v, and possibly some
other arborescences. No undirected edges can be incidént to any of the vertices
in the aborescences containing v and w, since all moves forming them were
forced. But thg connected component of G; containing v and w also contains
at least one pendant x in V - P whose incident edge is in neither of the
arbofescenceg containing v.and w. There is some (undirected) path in T from
X to w, and'some edge on this path must be undirectéd but incident to one of
the arborescences containing v and w. This is 1mpossib1§. Thus, ~Gg can
contain no source except a pendant, and the Lemma is proved.
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G"a contains 0(V) edges since it is a set of tfges, and
DIRECT can be easily implemented to run in O0(V) t:‘l,me. by keeping
track of thé. number of directed and undirected edges incident to
each vertex. The entire bridge connectivity augmentation algorithm

is sketched below in Algolic notationm.

procedure ];RQONNECT begin

BR1l: use dept;h-first éearch to find bridge components of graph Go"
Shrink; each to a singleh vertex, labeled with the name of some
vertex in the corresponding bridge component; Let the resulting
set of trees be G;, containing p pendants_;_

BR2: choose a set P of 'p/271 pendants of Gc',, with at least one in
each non-trivial treev of G:) and such that / ~ P contains at
least one pendant in each non-trivial tree of Gé. - Direct each
edge incident to a pendant of P into tha; pendant;

for each vertex v let U(v) be a list of the undireéted edges
incident to v;
comment MARK(v) = 0 means no edge is directed out of v,

MARK (v)

1 means some edge is d:_Lrect.ed out of v,
' MARK(V) = 2 means some edge is dirgctéd out of v énd some
edge 1s directed into v,
| MARK(v) increases as edges becomg' directed;
for v GU do MARK(v) :=0;
for (v,“v)»' such that w € P do MARK(v):=1; ‘
‘Let L, be a list of vertices with MARK(V) =1 ané low)| = 1;
Let L, be a"list of vertices with MARK(v) > lhand u(v) #+ 0;

Comment ‘S‘tep BR3 executes all possible forced and unforced moves;
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BR3: while some U(v) # 0 do
if L, # @ then begin let v € L, and (w,v) G u(v);
comment this is a forced move;

1= Ll - {v};
end else begin let v € L, and (w,v) SRIIH

end; comment this is an unforced move;

comment update MARK, U, Ll, Lz;
MARK(V)"—‘-Z’

if MARK(w) =0 then MARK(w):=1;
UW):=U0() - {(w,v)};

U(w) :=u(w) = {(w,v)};
difect (w,v) from w to v;
if MARK(w) = 1and |[U(W)| =1 then L: =L u {w};

if U(v) = { then L2 L, - {v};
j._f_U(w) = @ then I..2 = L2 - {w};

end;

let the resulting directed graph be Gg :

BR4: ‘a§p1y:.éc§mcm to G:; .to find a min:lmum.sét;;.A" of ; edges
whicﬂ,‘s!;;ongly connect Gg; '
Let A'_bé ‘the set’ of undirected edges corresponding to the directed
| e;lgeé in A';
end comment . A is a minimum set of edges which b;idge connect G("

" and hence G s

Figures 4-5 show the application of this graph to an example.
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Theorem 12&[
BRCONNECT'requires’O(V+E) time and storage space to find a minimum
set of edges which bridge connect a graph G .

Proof: )
 The retults in Lemmas 9 and 11 and Theorem 10'guarantee that BRCONNECT

correctly,finds a minimum augmenting set of edges. Step BR1 reqnires 0(V+E)
time [1,2]. Step BR2 obviously requires 0(V) time. since graph G' has O(V)
edges.. Initialization for the process which constructs G" also requires
0(V) time. <0n1y a fixed time is required before some edge is directed in
Step BR3, 80 the time to comstruct G" is 0(V). Step BR4 requires O(V) time
by the reaults in the previous section. Thus the total time required by
BRCONNECT is»O(V+E). BRCONNECT obviously requires_O(V+E) storage space.
The augmenting set A produced by BRCONNECT may contain edges which
are already in‘Go; we want to eliminate such duplicate edges if possible.-
An inspection‘of SCONNECT reveals that,when it is uaed,to solve the bridge
connectivity<sugmentation problem, it only produces duplicate edges when Gé
haa exactly two vertices. 1f G' has exactly two vertices and G also has
exactly two vertices, then G cannot be made bridge connected without using
duplicate edgea. If G has more‘than two vertices, one of the vertices in
G' corresponda to two or more vertices in G » and we can easily modify the
set A (which consiats of either one or two edges) so that it doesn't duplicate
edges in G,- Thia trivial modification takes care of the .problem of multiple edges.
It is also possible to construct an 0(V+E) algorithm for finding a
minimum set of edges to bicomnmect a graph, though the present‘authors know
of no way to'reduce'this problem to the strong connectivity augmentation
problen. A nice algorithm for solving the biconnectivity angmentation

problem has been developed by Pecherer and Rosenthal. [12].
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Figure 1: - A directed graph Go. which we wish to make strongly conmnected.
_Strougly connected components are circled.
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: Figure 2. Aeyeidic directed graph corresponding to graph in Figure 1.
; -Numbers are those of arbitrary vertices in the corresponding

. ‘strongly connected components.



Figure 3:

Source-sink graph generated from graph in Figure 2.
‘Graph has one source, two sinks, and one igolated vertex.

" Dotted edges give a minimum strongly connecting augmentation,
which also works for graph in Figure 1. ,



Figgré 4: Undirected graph we wish to make bridge-connected.
‘ Bridge components are circled. '



Figure 5:

Set of trees corresponding to graph in Figure 4.
Graph has three pendants and one isolated vertex.,

‘Arrows on edges are directions given by DIRECT.

When directions on dotted edges are ignored, they
give a minimum bridge connecting augmentation of
this graph and the one in Figure 4,



