

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AUGMENTATION PROBLEM

by

Kapall P. Eswaran and R. Endre Tarjan

Memorandum No. ERL-M441

January 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AUOIENTATION PROBLEMS *

Kapall P. Eswaran
IBM Research Laboratories

San Jose, California.

R. Endre Tarjan
Computer Science Division
University of California
Berkeley, California.

January, 1974.

ABSTRACT

This paper considers problems in which the object is to add a

minimum-weight set of edges to a graph so as to satisfy a given

connectivity condition. In particular, simple characterizations of

the minimum number of edges necessary to make a directed graph strongly

connected and to make an undirected graph bridge-connected are given.

Efficient algorithms for finding such minimum sets of edges are presented.

It is shown that the weighted versions of these problons are NP-

complete.

Keywords; algorithm, augmentation, bridge connectivity, connectivity,

graph, strong connectivity, polynomial completeness.

* This work was partially supported by the Naval Electronic Systems
Command, Contract NOOO 39-71-C-0255, by the National Science
Foundation, Contract No. NSF-GJ-35604X, and by a Miller Research
Fellowship.

AUGMENTATION PROBLEMS

Kapall P. Eswaran

and

R. Endre Tarjan

Introduction;

A common computational problem In graph theory is that of determining

how many vertices or edges must be r^oved from a graph in order to

satisfy some connectivity property. For instance, we might ask how

many vertices must be removed from a graph to disconnect it. If the

answer is zero, the graph itself is disconnected; if the answer is one

or more, the graph is connected; if the answer is two or more, the

graph is biconnected, and so on. Many good algorithms have been

developed for solving such problems [1,2,3].

We can turn this idea around and ask questions about how many edges must

be added to a graph to satisfy a given connectivity property. Several

well-known problems, and also several heretofore unstudied ones, may

be stated in this form. This paper proposes a theoretical framework for

studying such augmentation problems, gives well-known examples of such

problems, and analyses in detail the strong connectivity and bridge-

connectivity augmentation problems.

Definitions:

A (finite) graph G « (f,E) is a finite set of vertices 1/ and a

finite set of edges E. The edges of a graph are either ordered pairs

(v,w) of distinct vertices (the graph Is directed) or unordered

pairs (v,w) of distinct vertices (the graph Is undirected). A

directed edge (v,w) has head w and tall v, enters w, and

leaves v. V Is the number of vertices and E Is the number of

edges In G. If E contains all possible edges, then G Is

complete. A subgraph G^^ « (l/j^> E^) of G Is a graph such that

1/^ C t/ , E^ CE. Gj^ Is spanning If 1/^ = 1/.

A path p from v_ to v Is a sequence of edges
' ' 1 n

(v^, vp, (V2, vp, ... , %)•

A path Is closed If v^^ = v^.

A cycle Is a closed path such that v^, V2, ...»

are all distinct. A path may contain no vertices, but a cycle

must contain at least two vertices. A cycle Is Hamlltonlan

If It Isi-Bpannlng. An undirected graph Is connected If

there Is a path between every pair of vertices. If x Is a

vertex of G such that there are vertices v, w ^ x for which

every path from v to w contains x, and there Is a path

from V to w, then x Is a cutnode. If G Is connected and

contains no cutnodes. It Is blconnected. If (x,y) Is an edge

such that there are vertices v, w for which every path from v to

w passes through (x,y) and there Is a path from v to w, then

(x,y) Is a bridge. (An edge Is a. bridge If and only df It Is

contained In no cycles.) If ,G Is connected and contains no bridges.

It Is brIdge-connected. A directed graph Is strongly connected If,

-2-

for all pairs of vartices v and w, thare is a path from v to

w. Tha connactad (biconnactad, bridga-connactad, strongly connactad)

componants of a graph ara its maximal connactad (biconnactad, bridga-

connactad, strongly connactad) subgraphs.

A traa is an undiractad, connactad, acyclic graph. A spanning

traa of a graph G is a spanning subgraph which is a traa. An

arborascanca is an acyclic diractad graph with ona vart^, tha toojt,

having no antaring adgas, and all othar varticas having axactly ona

antaring adga. A spanning arborascanca of a diractad graph G is

a spanning subgraph which is an arborascanca.

Lat C ba a connectivity condition on either diractad or

undiractad graphs. We will assume: (A) if G^ is a subgraph of

and G^^ satisfies C, than so does G^; that is, adding extra adgas
to G^ cannot make C falsa if it is true in G^. Consider a sat of varticas

1/ and a raal-valuad cost function f(v,w) defined on all possible adgas between

varticas of I/. Wa will allow f to have value infinity on some adgas. Tha

(weighted) augmentation probJ^em with respect to C is tha problem of determining

a subgraph G of the complete graph on vertex sat 1/ such that G satisfies C

and tha total cost of G's edges is minimum. Because of condition

(A), wa may assume without loss of generality that f is nbn-

nagativa. Let G* ba tha graph with vertex sat V and all adgas

having finite cost. If G* satisfies C wa may restrict our

attention to G*; if not, every subgraph satisfying C has

infinite cost. If f is a 0-1 valued function, tha

augmentation problem is unweighted. In this case, if is tha

-3-

graph whose edges are those of cost zero, then the problem

Is to determine a graph with a minimum number of edges which contains

G and satisfies C.
o

One class of hard-to-solve problems deserves special attention.

This is the class of NP-complete problems, as studied by

Cook [4], Karp [5], and others. Let E* be the set of

all finite strings of 0*s and l*s. A subset of E* is a language.

Let ? (N P) be the class of languages recognizable in polynomial

time on one—tape deterministic (non—deterministic) Turing machines.

Let n be the class of functions from E* into E * computable in

polynomial time by deterministic one-tape Turing machines. If L and Mare

languages, we say L is reducible to M if there is a function

fen such that f (x) e M iff x e l. a language L is NP;^

complete if (1) L e WP and (2) every language in N P is

reducible to L.

Reducibility is transitive, so in order to show (2) for a

given language L we need only show that some known NP-

complete problem is reducible to L. The NP-complete

problems are computationally related in the sense that their time

bounds are polynomial functions of each other; that is, either all

these problems have polynomial-time algorithms, or none do. Such

famous problems as the tautology problem, the traveling salesman

problem, and the chromatic number problem are all NP-complete

[5].

-4-

Examples of Augmeatatlon Problems;

Several well-known problems are augmentation problems. For

instance, suppose we consider undirected graphs, and- C is

"a given vertex x is connected to a given vertex y." The

resulting augmentation problem asks for the minimum cost path in

G* between x and y. Efficient algorithms for solving this

problem are discussed in [6]. If C is "G is connected ,

the augmentation problem asks for the minimum-cost spanning tree in

G*. Various researchers have developed algorithms to find minimum-

cost spanning trees [7].

An analogous problem for directed graphs uses as Cj

"all vertices in G are reachable from some single vertex". The

augmentation problan then asks for a minimum-cost spanning arborescence

in the graph G*. Edmonds [8] has proposed an algorithm for this problem;

the algorithm is quite efficient if implemented properly [9].

Eswaran [10] has considered the problem of adding a minimum-cost

set of edges to a directed graph G^ so that there is a cycle which

contains all the edges of G^. He gives efficient algorithms for solving

both the weighted and the unweighted version of this problem.

Not all augmentation problems have efficient algorithms. Consider

undirected graphs: let S C (/ , and suppose C is ' there is a path

in G between any two vertices in S." This augmentation problem is the

Steiner tree problem, it asks for the minimum-cost tree containing all

vertices in S; other vertices may or may not be included. Karp [5] has

shown that the Steiner tree problem is NP-complete.

-5-

A much more general kind of augmentation problem has been

studied by Frank and Chou [12]. Given a V x v symmetric

matrix with r^^ = 0 for all i, they ask for a

graph with fewest edges such that there are r^^ edge-disjoint

paths between vertices i and j. They provide an efficient

algorithm for solving this version of the augmentation problem,

but they give no time bound. The weighted version of this problem

is polynomial complete (as we shall see). They do not discuss

what happens in the unweighted problem when some of the edges are

predetermined; presumably the problem becomes much harder. Here

we shall consider the special case when r^^ = 2 for all i 9^ j
and some of the edges are predetermined.

-5a-

Strong Connectivity

Let us now look at a few augmentation problems which have not

been studied before. Consider directed graphs and suppose C is

"G is strongly connected." This augmentation problem is intermediate

in difficulty between the minimum spanning tree problem and the

Steiner tree problem; its weighted version is polynomial complete,

but its unweighted version has a nice solution.

Theorem 1;

Let 1/ be a set of vertices, f a cost function on ordered

pairs of distinct vertices, and F a total cost. The problem of

determining whether there exists a set of edges with cost F or

less which strongly connect the vertices of 1/ is polynomial

complete.

Proof;

(1) It is easy to construct a non-deterministic Turing machine

which will guess a set of edges of cost F or less and check whether

it strongly connects the vertices of 1/ in polynomial time. Thus,

the strong connectivity augmentation problem is solvable on a

non-deterministic polynomial-time-bounded Turing machine.

(2) We prove that the directed Hamiltonian cycle problem (which

is polynomial complete [5]) is reducible to the strong connectivity

augmentation problem. Let G = be a directed graph. Construct

a strong connectivity augmentation problem on vertex set V with

-6-

costs f(v,w) = 1 if (v,w) G E, f(v,w) = 2 otherwise, and

F = V. This augmentation problem has a solution with cost F or

less if and only if G contains a Hamiltonian cycle. This

construction is obviously computable in polynomial time, so the

weighted strong connectivity augmentation problem is complete. Q.E.D.

It should be noted that only the most general version of this

problem ^is complete. For instance, if has the property that

some vertex x can be reached from every vertex, then the strong

connectivity augmentation problem reduces to that of finding a

minimum weight spanning arborescence with root x, which is

efficiently solvable using Edmond's algorithm [8,9].

Let's restrict our attention to the unweighted version of the

strong connectivity augmentation problem. We are given a graph G^

to which we want to add a minimum number of edges to form a graph

G which is strongly connected. We may reduce this problem by

converting G^ into a simplified directed graph G^ which contains one

vertex for each strongly connected component of G^. Two vertices

representing components are joined by an edge in G^ if there is an

edge from one component to the other in G . The reduced graph G'
o o

is well-defined, acyclic, and may be constructed in 0(V+E) time by

using depth-first search [1] to find the strongly connected

components of G^.

Lemma 2;

If A is a set of edges which when added to G strongly connects G ,
o . o

-7-

Let A' = {(X,Y)|(v,w) ^ A , X is the strong component of

containing v, and Y is the strong component of containing w}.

Then A' strongly connects G\ Conversely, if A' is a set of edges

which strongly connect G^, form a set Acontaining one edge (v,w) such

that V G X and w ^ Y for each edge (X,Y) in A', where X and Y are strong

components of G^. Then A strongly connects G^.

Proof: Obvious.

Because of Lemma 2 we can restrict our attention to the acyclic

graph G^ . This graph contains zero or more sources (vertices with no
entering edges and one or more exiting edges), zero or more sinks

(vertices with no exiting edges and one or more entering edges), and

zero or more isolated vertices (no entering or exiting edges). The

following theorem gives a lower bound on the number of augmenting

edges needed to make G^ strongly connected.

Theorem 3:

Let G' be an acyclic directed graph with s sources, t sinks,
o

and q isolated vertices. Then at least max(s,t) + q edges are

needed to make G^ strongly connected.

Proof:

After G* is made strongly connected, each source and each
o

isolated vertex must have at least one entering edge. Thus, at

least s + q edges must be added. Similarly, each sink and each

isolated vertex must have at least one exiting edge. Thus, at least

t + q edges must be added. Combining these two results gives the

theorem.

-8-

The bound in Theorem 3 is attainable; the rest of this section

gives an efficient algorithm for finding a set of max(s,t) + q

edges which will strongly connect G^. First, we simplify the graph

still further. We construct a graph which contains only the

sources, sinks, and isolated vertices of G^ and which only has edges

from the sources to the sinks. To construct G*^, we explore G^, moving

out from the sources, and label each vertex with the name of one source

from which it is reachable. (The isolated vertices never get labeled.)

Then we explore G^ moving backward along edges from the sinks, labelling

each vertex with the name of one sink reachable from it. G^ contains

as edges all (v ,w) such that source v is labeled with sink w or sink

w is labeled with source v. The total time required to construct G^

is 0(V+E) using any search method.

Lemma 4;

Let Abe an augmenting set of edges which strongly connects G|̂ .

Then A strongly connects G\

Proof:

Let V and w be any vertices in G*. If neither v nor w is isolated,
o

there is a path in G^ from v to some sink x, and a path in G^ from some

source y to w. Every edge in G^ corresponds to a path in G^. Hence,

since A strongly connects Gj^, there is a path from x to y consisting

of edges in A and edges in Gjj. Thus, there is a path from v to wwhen

the edges Aare added to G^. Similar arguments work if either v or w

is an isolated vertex. Thus, A strongly connects G^.

-9-

Since 6" has the same number of sources, sinks, and isolated
o

vertices as G', we may concentrate on G". To strongly connect G" ,
o o o

we apply a reduction rule:

(R) Pick any source v such that any vertex x with (v,x) an edge has

two or more entering edges. . Pick any sink w such that any vertex y with

(y,w) an edge has two or more exiting edges. Add (w,v) as an augmenting

edge and discard v, w, and all incident edges from G^ to form a smaller
graph GJJ.

Graph G"* has one less sink, one less source, and the same isolated
o .

vertices as G"*. Furthermore;
o

Lemma 5:

If A is a set of edges which strongly connects G'̂ * , then

AU{(w,v)} strongly connects GJJ.

Proof:

Let the edges A {(w,v)} be added to G*\ Since v has two or

more outgoing edges in G'̂ , one of them must lead to a vertex other

than w. Thus, there is a path from v to some vertex in G '̂ and hence

to any vertex in G^* when set Ais added. Similarly there is a path from any

vertex in G"V to w when set A is added. Finally, the edge (w,v) gives a path
o

from w to V. It follows that A^ {(w,v)} strongly connects G^.

We continue applying(R)to smaller and smaller graphs, building

up a set of augmenting edges, until(R)is no longer applicable. Then either

each source v has an edge (v,x) to a sink with only one entering- edge or each

sink w has an edge (y,w) from a source with only one exiting edge. The two

situations are symmetric; let's consider the latter. In this case the

number of sinks must be no greater than the number of sources, and we can

-10-

find a set of edges (s,,tJ,...,(s ,t) in the remaining graph such
11 n n

that t, ... t are all the remaining sinks and ... s are all distinct.
I n

Suppose m - n + q ^ 1, and ... the remaining sources

and isolated vertices. We can strongly connect the remaining graph by

adding the m+ q edges for 1 £ i < n, (t^,

n + l< i <m-n + q, and (v t-). If m - n + q = 0, we can
— m—ttt^i 1

strongly connect the graph by adding the m edges ®i+l^

1 < i < n and (t , s,). Combining the appropriate one of these sets
— n 1

of edges with the set of edges found using (R), we get a minimum

augmenting set of edges for > which by Theorem 3 flhd Lemma 4 also

augments G' minimally. If n > m, a corresponding construction works,
o

Using Lenma 2 we can transform this set into a set of edges which minimally

augments G^, and we are done. The entire augmentation algorithm is

presented below in Algolic notation.^

Procedure SCONNECT begin

SI: Use depth-first search to find strong components of graph G^.

Construct acyclic graph G^ with one vertex representing

each component of G^. Label each vertex of G^ with the

name of some vertex in G contained in the corresponding
o

component. Find sources, sinks, and isolated vertices in G^ ;

S2: Search graph G* forward from sources, labeling each vertex
° o

reached with the name of one source from which it is reachable.

Search G' backward from sinks, labeling each vertex reached
o

with the name of one sink reachable from it. Construct graph

G" with sources, sinks, and isolated vertices of G* as its
o o

vertices, having as edges all (v,w) such that v is labeled

with sink w or w is labeled with source v;

-11-

Count number of edges DI(v) entering and DO(v) leaving each vertex

V In G" ;
o

Put all sources v such that (v,x) an edge Implies DI(x) ^ 2 on list LS ;

Put all sources w such that (yfW) an edge Implies DO(y) ^ 2 on list LT ;

A:= 0 ;

while LS 0 and LT 9^ 0 ^ begin

delete a vertex v from LS and a vertex w from LT;

add (w,v) to A;

for each edge (v,x) with DI(x) = 2 do begin

let (Z,x) be an edge with z 9* v;

delete z from LS If It Is there;

end;

for each edge (yfW) with DO(y) - 2 do begin

let (y,z) be an edge with z w;

delete z from LT If It Is there;

end;

delete v,w, and all Incident edges from GJJ, updating DO and DI;

end;

If G" contains an Isolated vertex then
— o

let X be some Isolated vertex In G" else x:=0;
o ——

y:=x ;

If LS « 0 then while some source s exists In G^ ^ begin

find some edge (s,t) In GJJ with DI(t) » 1;

add (y,B) to A;

delete s, t, and all Incident edges from G||;
yr^t;

end else while some sink t exists In G|̂ ^ begin
find some edge (s,t) In Gjj with DO(s) = 1;

-12-

end;

add (y,s) to A;

delete s, t, and all incident edges from G||;
y:=t;

end;

for each remaining vertex v in ^ begin

add (y,v) to A;

delete v from G";
o

y:=v;

end;

comment if x =0 we must delete a fictitious edge in A;

if X ^ 0 then add (y,x) to A else begin

find the (unique) edge (0,z) € A;

delete (0,z) from A;

add (y»z) to A;

end;comment set A is a minimum set of augmenting edges;

Theorem 6;

SCONNECT requires 0(V+E) time and storage space (if G^ has V vertices

and E edges)» to correctly find a minimum set of augmenting edges.

Proof;

Theorems 1 and 3, and Lemmas 2, 4, and 5 imply that SCONNECT

correctly finds a minimum set of edges. To represent the problem

graphi we use two lists A(v), and B(v), for each vertex v. List

A(v) contains all vertices w such that (v,w) is an edge, and list

B(v) contains all vertices u such that (u,v) is an edge. These

representations require 0(V+E) storage space. Storage space for

DI, DO, A, LS, LT, and other variables is also 0(V+E). Step SI

may be carried out in 0(V+E) time using depth-first search applied

-13-

to A(v) [1]. Step 82 may also be carried out in 0(V+E) time using

any kind of search applied to A(v) and B(v).

The remaining steps, which actually construct A, require time

proportional to the number of vertices and edges in since each

vertex and edge in is exanined a fixed number of times and each

examination causes the program to perform a fixed number of steps,

independent of Since Gjj contains no more than V edges, the

time to construct A is 0(V). The total time required by SCONNECT

is thus 0(V+E).

Figures 1-3 show the application of this algorithm to a

directed graph.

-14-

Bridge Connectivity

We might ask whether there are undirected graph problems

similar to the strong connectivity augmentation problem. Indeed

there are. Let be "G is bridge connected" and let C2 be "G is

biconnected". Both of the corresponding weighted augmentation

problems are NP-complete, while their unweighted version have

0(V+£) algorithms.

Theorem 7;

Let 1/ be a set of vertices, f a cost function on unordered

pairs of distinct vertices ,and let F be a total cost. The problem

of determining whether there exists a set of edges with cost F or

less which bridge connect the vertices of 1/ is NP-complete.

Proof;

(1) It is easy to construct a non-deterministic Turing machine

which solves the bridge connectivity augmentation problem in poly

nomial time.

(2) We prove that the undirected Hamiltonian cycle problem,

which is NP-complete [5], is reducible to the bridge

connectivity augmentation problem. Let G = (l/,E) be an undirected

graph. Construct a bridge connectivity augmentation problem on vertex

set (/ with costs f(v,w) = 1 if (v,w) € E, f(v,w) = 2 if (v,w) ^ E,

and F ° V. This augmentation problem has a solution with cost F

or less if and only if G has a Hamiltonian cycle. This construction

is obviously polynomial-time, so the weighted bridge connectivity

problem is NP-complete.

-15-

Theorem 8;

Let (/ be a set of vertices, f a cost function on unordered pairs of

distinct vertices and let F be a total cost. The problem of determining

whether there exists a set of edges with cost F or less which biconnect

the vertices of 1/ is NP-complete.

Proof;

The undirected Hamiltonian cycle problem is reducible to the weighted

biconnectivity augmentation problea using the same transformation as in the

Proof of Theorem 7.

These constructions can be improved to show that even if the graph is

connected, both the bridge connectivity and biconnectivity augmenation

problems are NP-complete. Thus, these weighted augmentation problems

are different from the weighted strong connectivity augmentation problem,

for which an interesting special case has an efficient algorithm. However,

the unweighted bridge connectivity and biconnectivity problems both have good

algorithms. We consider the bridge connectivity problem here. Pecherer and

Rosenthal have developed an algorithm for the biconnectivity problem [12].

Consider the bridge connectivity augmentation problem. A graph G of

exactly two vertices cannot be made bridge connected unless we allow multiple

edges in the augmented graph. Thus, for the moment, let's allow multiple

edges in the augmented graph. We shall see later that we can eliminate multiple

edges in all but the case when G^ has exactly two vertices.

To solve the bridge connectivity problem, we first find the bridge-

connected components of G^ and shrink each to a single vertex to form a

graph G^. This may be done in 0(V+E) time using depth-first search to identify
the bridges of G . G' is a set of trees; each edge in G' corresponds to a

o o

bridge of G^ and each vertex corresponds to a bridge component of G^. Any set

of edges which bridge connects G^ corresponds to a set of edges which bridge

• -16-

connects G' In an obvious way; thus we have:
fto

Lennna 9:

If A is a set of edges which bridge connect G^, let

A* = {(X,Y) 1 (v,w) e A, Xis the bridge component containing v,

and Y is the bridge component containing w} • Then set A* bridge connects

G* • Conversely, if set A' bridge connects G*, foim a set A containing
o

one edge (v,w) such that v e Xand we Yfor each edge (X,Y) in G^,
where Xand Yare bridge components of G^. Then Abridge connects

G*.
o

Proof:

Obvious.

Because of Lemma 9 we can concentrate on G\ Gj^ contains zero

or more vertices with exactly one incident edge, called pendants,

and zero or more vertices with no incident edges, called isolat^

vertices. The following theorem gives a lower bound on the number of

edges needed to make G^ bridge connected.

Theorem 10:

Let G* contain p pendants and q isolated vertices. Then at
o

least rp/2n + q edges are needed to make G^ bridge connected, where

Tx"! denotes the smallest integer greater than or equal to x.

Proof:

After G' is bridge connected, each pendant will have at least

one new Incident edge, and each isolated vertex will have at least

two new incident edges. Each new edge can satisfy at most two of

these requirements. Thus, at least Tp/ZH + q edges are needed to

bridge connect G^.

-17-

The bound in Theorem 10 is attainable. There are in fact

several different ways to efficiently find a set of rp/2"l + q edges

to bridge connect G\ One is a direct method of pairing pendants

analogous to our solution of the strong connectivity augmentation

problem. Another more elegant approach is to convert the problem

into a strong .connectivity augmentation problem and use our

already-formulated algorithm.

We need to add edges to so that every edge is in a cycle.

Suppose we direct the edges of G^ so that each pendant becomes either

a source or a sink,every other non-isolated vertex is neither a source

or a sink, and the number of sinks is Tp/al. Let Abe a minimum set

of augmenting edges which strongly connects the resulting directed

graph GJJ. Then Awill have rp/2"l +qedges, and every edge in GJJ
will be in a directed cycle. If we now ignore the directions on all

the edges, Agives a set of edges which when added to Gj^ cause every

edge to be in an undirected cycle, so Ais a minimum augmenting set

for G*. Now all we need is a method to direct the edges of G^ in a
o

suitable way. We use the following algorithm:

Procedure DIRECT begin

Choose a set P of pendants of G^, with at least one

-pendant from each(non-trivial)connected component of G^ and so

that 1/ - P contains at least one pendant from each(non-trivial)

connected component of G^;

-18-

Direct the edges incident to P into P;

while some edge is undirected do begin

if some non-pendant vertex v has one undirected incident edge e

and all other incident edges are directed out of v, then begin

direct e into v ;

comment this is called a forced move;

end else begin if some non-pendant vertex v has an undirected

incident edge e and there exists some edge directed out of v then

direct e into v;

cQTmiiAnh this is called an unforced move;

end; end; end;

Lemma 11;

When procedure DIRECT is applied to a set of trees with P

pendants all the edges in become directed. Furthermore, the

resulting directed graph G|̂ has r~p/2"~l sinks and p —r'p/2"~l sources.

Proof:

A satisfactory set P of pendants can always be chosen because any non-

trivial tree contains at least two pendants. Pick any tree T in G^ .

Initially some edge in T is directed. Suppose DIRECT stops without

directing all the edges in T. Let e - (v,w) be an edge remaining undirected,

From w there is an (undirected) path p in T to some pendant whose incident

edge was initially directed. Let e' = (v',w*) be the last edge on

this path remaining undirected (if there is no such edge let e* = e).

Some edge incident to w' is directed. Because of the rules of

-19-

DIRECT, the first edge incident to a vertex (excluding the initial

pendants) which becomes directed must be directed outward. Thus,

some edge incident to w* is directed outward, a move is

possible, and DIRECT is not finished. This contradiction guarantees

that all the edges in eventually become directed.

Since every non-isolated vertex except the initial pendants

has at least one outwardly directed edge, contains exactly r'p/2"l

sinks and at least p - rp/2"l sources (the non-initial pendants). We

must prove that GJJ contains no sources which are not pendant. Suppose

to the contrary that vertex v is a non-pendant source in Gj|. Vertex

V must have become a source because some edge (v, w) was directed into

w. Just before edge (v,w) was directed, at least two forced moves

were possible, directing edge (v,w) in either direction. No non—forced

move could take place before edge (v,w) was directed, since then either

(v,w) would be directed the other way or vertex v would not become a

source. Thus, all moves performed by DIRECT up to the time of

directing (v,w) are forced.

At the time of directing (v,w), the already directed edges form an

arborescence with root w, another aborescence with root v, and possibly some

other arborescences. No undirected edges can be incident to any of the vertices

in the aborescences containing v and w, since all moves forming them were

forced. But the connected component of G^ containing v and walso contains

at least, one pendant x in V - P whose incident edge is in neither of the

arborescences Qon1;aining v and w. There is some (undirected) path in. T from

X to w, and some edge on this path must be undirected but incident to one of

the arborescences containing v and w. This is impossible. Thus, Gj| can

contain no source except a pendant, and the Lemma is proved.

-20-

6^ contains 0(V) edges since it is a set of trees, and

direct can be easily implemented to run in 0(V) time by keeping

track of the number of directed and undirected edges incident to

each vertex. The entire bridge connectivity augmentation algorithm

is sketched below in Algolic notation.

procedure BRCONNECT begin

BRl; use depth-first search to find bridge components of graph G^.

Shrink each to a single vertex, labeled with the name of some

vertex in the corresponding bridge component. Let the resulting

set of trees be G^, containing p pendants;

BR2: choose a set P of Pp/2n pendants of G', with at least one in
o

each non-trivial tree of G* and such that 1/ - P contains at
o

least one pendant in each non-trivial tree of Direct each

edge incident to a pendant of P into that pendant;

for each vertex v let U(v) be a list of the undirected edges

incident to v;

comment MARK(v) « 0 means no edge is directed out of v,

KARK(v) ~ 1 means some edge is directed out of v,

MARK^v) "2 means some edge is directed out of v and some

edge is directed into v,

MARK(v) increases as edges become directed;

for V €*t/ do MARK(v) :"0;

for (v,w) such that w ^ P ^ MARK(v):=l;

Let Lj^ be a list of vertices with MAElK(v) = 1 and |u(v)| = 1;

Let L2 be a list of vertices with MARK(v) > 1 and U(v) ^ tl

Comment Step BR3 executes all possible forced and unforced moves;

-21-

BR3: while some U(v) 0 ^

if 9^ 0 then begin let v ^ and (w,v) ^ U(v);

conmient this is a forced move;

Li = Li - {v};
end else begin let v € L2 and (w,v) ^ U(v);

end; comment this is an unforced move;

comment update MARK, U, L^, L^;

MARK(v):=2;

^ MARK(w) = 0 then MARK(w):=l;

U(v);=U(v) - {(w,v)>;

U(w):«U(w) - {(w,v)};

direct (w,v) from w to v;

if MARK(w) 1 and |u(w)| « 1 then L^:=L^ ^ {w};

if U(v) "0 then ^2 " ^2 '

U(w) = 0 then ^2 ^2 "
end;

let the resulting directed graph be Gjj ;

BR4: apply SCONNECT to to find a minimum. set .A* of; edges

which strongly connect Gjj;

Let A be the set of undirected edges corresponding to the directed

edges in A*;

end comment A is a minimum set of edges which bridge connect G^

and hence G ;
o .

Figures 4<-5 show the application of this graph to an example.

-22-

Theorem 12:

BRCONNECT requires 0(V+E) time and storage space to find a minimum

set of edges which bridge connect a graph 6^.

Proof;

The results in Lemmas 9 and 11 and Theorem 10 guarantee that BRCONNECT

correctly finds a minimum augmenting set of edges* Step BRl requires 0(V+E)

time [1,2]. Step BR2 obviously requires 0(V) time Since graph has 0(V)

edges. Initialization for the process which constructs GJJ also requires

0(V) time. Ohly a fixed time is required before some edge is directed in

Step BR3, so the time to construct G^ is 0(V). Step BR4 requires 0(V) time

by the results in the previous section. Thus the total time required by

BRCONNECT is 0(V+E). BRCONNECT obviously requires 0(V+E) storage space.

The augmenting set A produced by BRCONNECT may contain edges which

are already in G^; we want to eliminate such duplicate edges if possible.
An inspection of SCONNECT reveals that; when it is used to solve the bridge

connectivity Bugmentation problem, it. only produces duplicate edges when G^

has exactly two vertices. If G^ has exactly two vertices and G^ also has

exactly two vertices, then G^ cannot be made bridge connected without using

duplicate edges. If G^ has more than two vertices, one of the vertices in

G^ corresponds to two or more vertices in G^, and we can easily modify the
set A (which consists of either one or two edges) so that it doesn't duplicate

edges in G . This trivial modification takes care of the problem of multiple edges,
o

It is also possible to construct an 0(V+E) algorithm for finding a

minimum set of edges to biconnect a graph, though the present authors know

of no way to reduce this problem to the strong connectivity augmentation

problem. A nice algorithm for solving the biconnectivity augmentation

problem has been developed by Pecherer and Rosenthal [12].

-23-

REFERENCES

[1] R. Tarjan, "Depth-first search and linear graph algorithms",
SIAM J. Comput., Vol. 1, No. 2, (June 1972), 146-160.

[2] J. Hopcroft and R. Tarjan, "Efficient algorithms for graph
manipulation," Comm. A.C.M., Vol. 16, No. 6 (June 1973), 372—378.

[3] R. Tarjan,"Testing graph connectivity", to beepresented at 5th Annual
ACM Symposium on the Theory of Computing,Seattle,Washington,(May 1974)

[4] S. Cook, "The complexity of theorem-proving procedures". Proceedings
Third Annual A.C.M. Symposium on the Theory of Computing, Shaker
Heightsj Ohio, (1971) 151-158.

[5] R. Karp, "Reducibility among combinatorial problems". Complexity of
Computer Computations, R.E. Miller and J.W. Thatcher, eds. Plenum
Press, New York (1972), 85-104.

[6] D.B. Johnson, "Algorithms for shortest paths". Report TR 73-169,
Department of Computer Science, Cornell University, (May 1973).

[7] A. Kershenbaum and R. Van Slyke,"Computing minimum spanning trees
efficiently", Proceedings? 25th Annual Conference of the A.C.M.
(1972), 518-527.

[8] J. Edmonds, "Optimum branchings", J. Res. Nat. Bur. Standards, Sect. B,
Vol. 71, (1967), 233-240.

[9] R. Tarjan, "Analysis of algorithms for finding minimum spanning trees
and optimum branchings", presented at the VIII International
Symposium on Mathematical Programming, Stanford University (August
1973).

[10] K. Eswaran, "Representation of graphs and minimally augmented Eulerian
graphs with applications in data base management". Report RJ 1305,
IBM Research, Yorktown Heights, New York (November 1973).

[11] H. Frank and W. Chou, "Connectivity considerations in the design of
survivable networks", IEEE Trans, on Circuit Theory, Vol. CT-17,
No. 4 (November 1970),' 486-490.

[12] R. Pecherer and A. Rosenthal, private communication. Computer Science
Division, University of California, Berkeley (March 1973).

Figure 1: A directed graph which we wish to make strongly connected.

Strongly connected components are circled.

13

Figure 2; Aeyciic directed graph corresponding to graph in Figure 1.
Numbers are those of arbitrary vertices in the corresponding

. strongly connected components.

Figure 3! Source-sink graph generated from graph In Figure 2.
Graph has one source, two sinks, and one Isolated vertex.
Dotted edges give a minimum strongly connecting augmentation,
which also works for graph In Figure 1.

Figure 4I Undirected graph we wish to make bridge-connected
Bridge components are circled.

Figure 5: Set of trees corresponding to graph in Figure 4.
Graph has three pendants and one Isolated vertex.
Arrows on edges are directions given by DIRECT.
When directions on dotted edges are ignored, they
give a minimum bridge connecting augmentation of
this graph and the one in Figure 4.

