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Abstract

The usual definition of a periodic sequence is made more general,

e.g. the sequence 1,1,2,2,3,3,... will have a "generalized period" of

2. A simple programming, dubbed ORVA, has been devised to generate

sequences of numbers, and will be used as a basis for defining the

generalized periodicity of a sequence. It is shown that a sequence

with period p has generalized period p, and that basic properties

of periodic sequences carry over to the generalized case. It is con

cluded that this new definition is a reasonable extension of the tra

ditional notion of periodicity.

Research sponsored by National Science Foundation Grant GJ-35604X1,



Introduction

We are going to extend the traditional definition of a periodic

sequence to include sequences which (intuitively) behave in periodic

fashion, but are not periodic. For example, the sequences

1,0,2,0,3,0,...

and

1,1,4,2,9,4,16,8,...

will have generalized period 2, and

1»2,3,2,3,4,3,4,5,...

has generalized period 3. A sequence like

1,1,2,1,2,3,2,1,2,3,4,3,2,1,...

does not have a generalized period.

The ORVA Language

In order to make precise the notion of generalized periodicity we

have devised a very simple programming language, called ORVA, which

generates sequences of numbers. ORVA stands for ORdered VAriable —

each variable introduced into a program has a unique positive integer

rank. This defines a strict total ordering of all variables, which will

limit the way in which variable assignments are made. For most purposes

the numerical rank of a variable is unimportant and only its order rela

tive to other variables is considered.

The ORVA language has only three types of statements — assignment,

output, and an unconditional "goto". An assignment has the form



X :=cx + c ,x - + ••• + CtX-+c
n n n n-1 n-1 11 o

where the variables x, to x , must have a lower rank than that of
1 n-1

X , and c, to c are real numbers. The leading coefficient c
n' 1 n ® n

must be non-negative. An output statement has the form "PRINT

outputting only a single value per statement. The "goto" has the fqrm

"GO L" where L is a label attached to some preceding statement.

Unless otherwise specified, a subscript for a variable x^ denotes

its rank relative to other variables x^, but says nothing about its

relation to a variable w^, i.e., i < j implies rank(x^) < rank(Xj)
but possibly rank(x^) > rank(Wj) for some w^.

Sample program:

x^ := 1

*2 := 0

L: X2 :=

*1

PRINT x^

GO L

The resulting output is the sequence 1,4,9,16,25,... . Typically the

first statements initialize variables and the rest of the code is an

infinite loop.

Definition of Generalized Periodicity

Definition. Suppose an ORVA program generates some sequence S. A

reduced ORVA program is one which generates S with the minimal number

of "PRINT" statements in its loop.



Definition. The generalized period (abbreviated g.p.) of a sequence that

can be generated by an ORVA program is defined to be the number of "PRINT"

statements in the loop of a reduced ORVA program for that sequence. We

say that a sequence is generally periodic if and only if it can be

generated by an ORVA program.

The idea of generalized periodicity and this formulation of its defi

nition is due to Manuel Blum.

We will now describe a construction which allows us to put ORVA

programs into a form which is easy to work with.

Definition. The normal form for a loop allows only one assignment to

each variable, zero or one print statements for each variable, and places

the assignment statements first, followed by the output statements,

followed by a goto. The assignments are made to variables in order of

rank, with the highest ranking variable being assigned first.

Example.

L; X :=c x+»**+c .x^ + c
n n,n n n,l 1 n,o

X 1 :=c - X .+ ***+c ..X. + c T
n-1 n-l,n n-1 n-1,1 1 n-l,o

x_ ;= c- _x. + c
1 1,1 1 o

PRINT X

: ^1

PRINT X.
1

m

GO L

We require i. = i, iff j = k, and m _< n.



Theorem 1. Every ORVA loop can be put into normal form, without altering

the number of "PRINT" statements.

Proof. Given a loop of code, we will produce an equivalent loop in normal

form which generates the same output for each cycle of the loop.

First we move all PRINT statements to the end of the loop and

eliminate multiple printing of the same variable. For each statement

"PRINT x^" we introduce a previously unused variable w^ with

rank(Wj) > rank(x^). Delete the statement "PRINT x^" and insert the

code "Wj := x^^; PRINT Wj"'. If "PRINT x^" occurs in more than one

place in the loop a different w^ must be used in each instance. Each

"PRINT Wj" can be moved toward the end of the loop without altering the

value of Vy Hence, we can now move all PRINT statements to the end

of the loop so that they form a block of output statements which imme

diately preceeds the "GO" statement. If we don't shuffle the original

order of the PRINT statements then the result is a program which pro

duces the same output as before.

We now have a loop consisting of a block of assignment statements,

followed by a block of output statements, followed by a goto. We must

show how to convert an arbitrary block of assignment statements into an

equivalent one where the assignments are to variables of successively

decreasing rank. The proof is by induction on n, the highest rank of

any variable in the block.

Base. For n = 1 all assignments are to the same variable, so we have

a block



X- := a^x-+ a
1 1 1 o

X- := b-x- + b
1 1 1 o

X. := m-x- + m
1 1 1 o

We can combine the first two assignments into the single statement

so we can delete the first two statements and insert this one in their

place. If we continue to combine the first two assignments of each new

block we will eventually be left with one statement (e.g. x. := c-x-+ c )
1 1 1 o

which is equivalent to the entire original block of statements. This

statement is in the desired form.

Induction Step. By hypothesis assume that any block of statements all

of whose variables have rank less than n can be converted into a block

where assignments are to variables of successively decreasing rank,

n > 1, Let rank(x^) = i.

Consider the statements

(1) X := a.x.+ a. ^x. ^ + *'*+a
i i i i-1 i-1 o

(2) X := b X + b ,x T+ »** + b
n n n n-1 n-1 o

and the statement

(3) .= b^x^+ ... + (a^x^+-. .+a^) + + ' **+l>o

1+1*1+1 ''iVl ^''l^l-l'^''l-l^*l-l *
+ (biaj^+bi)Xi + (biao+b^)) .



If (1) and (2) occur successively in a block and 1 = n then we

can delete them and Insert (3) in their place. If i < n then we insert

(3), followed by (1). Using this method, we find the last assignment in

a block to and move it upwards to the top of the block (by combining

or switching with the immediately preceding assignment and making

necessary changes in the scalars). When we reach the top the block will

consist of an assignment to x^, followed by assignments to variables

of lower rank. By the induction hypothesis these can be converted into

a block of decreasingly ranked assignments, so that the whole block has

the required form. Q.E.D.

We will henceforth assume that all ORVA loops initially are in

normal form.

Properties of Generally Periodic Sequences

We will now prove some theorems which describe the properties of

sequences which are generated by ORVA programs.

Convention. We denote the value of a variable x after t iterations

of the loop by x(t). x(0) is the value of x as the loop is about

to be entered for the first time. Hence, each variable x in an ORVA

loop is associated with a function x(t) over the non-negative integers.

Theorem 2 (Monotonicity Theorem). For any variable x in an ORVA loop

there is an integer t such that for all t > t , x(t) is either
o — o

constant or strictly monotonic. We call such a function ultimately

monotonic (abbreviated u.m.).



Proof. The proof is an Induction on n, the highest rank of any variable

in an ORVA loop normal form.

Base, n = 1. Let x have rank 1. Then the loop has one assignment:

X := ax+ b (a ^ 0) .

Case 1. a = 0. Then x(t) = b for all t, hence it is constant

and therefore a.m.

Case 2. a = 1. An easy induction proves that x(t) = bt + x(0),

so x(t) is constant if b = 0 and strictly monotonic otherwise.

Case 3. a > 0, a 9^ 1.

Claim. x(t) » a^(x(0) +— .

Proof of Claim by induction on t:

If t = 0 then a°(x(0) ~ = x(0). /

Assuming that the claim holds for x(t-l) we have

x(t) = ax(t-l) + b by definition

= a(a*" ^(x(0) +— + b by inducti-«re hypothesis
Am 3^-L

= a*^(x(0) +-^) + b -

=a'(x(0)+^)
= /

so the claim is true. Since a function f of the form f(t) = a^k^+k2
is strictly monotonic when a > 0, x(t) is u.m.

Induction Step, n > 1. Assume by hypothesis that all variables in a

loop with rank < n are u.m.

First we will need a



Lemma. Fix n. Assume that if a variable has rank < n then it is u.m.

Let w have rank n and let x^,X2»... have ranks 1 through n-1

respectively (so they are u.m. by assumption). Define the function w(t)

by

where the c^ are arbitrary constants. Then we claim that w(t) is

u.m.

Proof of Lemma. We will produce a variable z with rank n-1 such that

w(t) = z(t) for all t ^ 0. Then since z(t) is u.m. by assumption,

w(t) will also be u.m.

Consider a loop in normal form containing two variables x and y

with n > rank(y) > rank(x). Let their assignments in the loop be

y := ay + bx + f (x^^,... ,x^)

X:« cx + g(x^,..•»Xj)

where we are using "f" and "g" as a shorthand to denote a sum of

other lower ranking variables. Then we can write

y(t+l) = ay(t) + bx(t) + f(t)

x(t+l) = cx(t) + g(t) .

We wish to show that z(t) = py(t) + qx(t) is u.m. For any scalars p

and q. Without loss of generality assume z(0) = py(0) + qx(0). At

the beginning of the loop containing x and y insert the assignment

(4) z := az + (pb+qc-qa)x + pf(x^,... ,x^) + qg(x^,... ,x^)



Claim. z(t) = py(t) + q(t)

Proof by induction on t: For t = 0 the claim is true bj' assumption.

Assume the claim holds for z(t-l), so that

z(t) = az(t-l) + (pb+qc-qa)x(t-l) + pf(t-1) + qg(t-l)

= a(py(t-l)+qx(t-l)) + (pb+qc-qa)x(t-l) + pf(t-l) + qg(t-l)

by induction hjrpothesis

= p(ay(t-l)+bx(t-l) + f(t-l)) + q(cx(t-l) + g(t-l))

= py(t) + qx(t)

so the claim is true.

Now observe that z does not depend upon the variable y. Hence

we can eliminate the variable y and its assignment statement, let

rank(z) have the value rank(y), and leave (4) in the loop. Then since

rank(z) < n the assumption tells us that z(t) is u.m,, and hence

py(t) + qx(t) is u.m.

Observe that using this method we can successively produce

^1*1 *^2*2' ^^1*1**^^2*2^ ^3*3» ^̂ ^l*l"'"^2*2^ ^3*3^ **" ^4*4»
each sum being u.m. Therefore we can produce a variable z such that

z(t) = "'"^2*2^*'̂ ^ *** ^ ^n-l^n-l^*"^ rank(z) '= n-1. This

proves the lemma.

Now we wish to show that if

w := a w+a^ ,x , + ••• + aTX +a
n n—1 n—1 1 o o

is the first statement in a loop in normal form and rank(w) = n then

w(t) is u.m.

10



Case 1. = 0. Then the lennna can be applied to show w(t) is

u.m.

Case 2. a > 0. Let f(t) = a ,x , (t) + • • • +a^x, (t) + a . Because
"""""""" n n—i n—± ± i o

the variables x^^ to have rank < n the lemma again applies to

tell us that f(t) is u.m.

A. Suppose for all t > t^ we have f(t) ^ f(t-l). Fix some t > t^.

Then if w(t) > w(t-l) we get w(t+l) = a^w(t)+f(t) > a^w(t-l) + f (t)

> a w(t-l)+f(t-1) « w(t) hence
n

(i) w(t) > w(t-l) w(t+l) > w(t)

Similarly w(t) ^ w(t-l) w(t+l) ^ w(t) .

j|. Suppose for all t > t^ we have f(t) £ f(t-l). Fix some t > t^

Then if w(t) < w(t-l) we have w(t+l) = a^w(t)+f(t) < a^w(t-l) +f (t)

£ a^w(t-l)+f(t-1) = w(t) giving

(ii) w(t) < w(t-l) w(t+l) < w(t)

Similarly w(t) £ w(t-l) w(t+l) £ w(t).

Now it is easy to show that w(t) is u.m. First determine if A or

^ holds for f(t). Suppose A is true. Then after t^ steps we inspect

w(t). If w(t+l) > w(t) for any t > t^ we know that w(t) is strictly

monotone increasing, by (i). Otherwise if w(t+l) £ w(t) for all t > t^

but, for some t > t^, w(t+l) ^w(t), then w(t) is constant from then

on, again using (i). Lastly, it can happen that w(t+l) < w(t) for

all t > t^, so that w(t) is strictly monotone decreasing.

Similarly, if B holds then we use (ii) to get an equivalent result.

This proves the induction step. Q.E.D.

11



Corollary. If a sequence has generalized period one then it is ultimately

monotonic.

The Monotonicity Theorem is a useful tool in proving properties of

generally periodic sequences. It forms the basis for an easy proof of

the next theorem.

Theorem 3. A sequence of period p has generalized period p.

Proof. Let ^o*^l** **'̂ p-l'̂ p*^p+l'* ** ^ sequence with p as its

smallest period (a^ = ^i+p^ * generate this sequence with an ORVA

loop that uses p variables equal to constants a ....,0 ,, and has
o p—1

p PRINT statements.

Let us assume that an ORVA program exists which generates

using m < p PRINT statements in its loop. Assuming

that the loop is in normal form, then there are m different variables

z,..., z^ which are printed at the end of each cycle in the loop.

Consider any z^. By the Monotonicity Theorem z^(t) is u.m. If

z^(t) was ultimately strictly increasing or decreasing it would take on

more than p different values» and hence could not be printing correct

values for the sequence . We conclude that for all i = l,...,m,

z (t) is constant (ultimately). Hence the sequence z.(0),z«(0),...,z (0),
i 1 z m

'*** period m because z^(t) = z^(t+l) for all t > t^.
But m < p and we assumed that we were generating a sequence of period

p. Contradiction. Q.E.D.

It is clearly desirable that Theorem 3 be true, if our definition

for a generalized period is to be a good one. We can now see why certain

12



constraints were placed upon the ORVA language:

Remark, If we allow the leading coefficient of the general assignment

statement to be negative then Theorems 2 and 3 don*t hold. Example:

X := 1

L: X := -x+1

PRINT X

GO L

This program outputs the period two sequence 0,1,0,1,.., with

only one PRINT statement In Its loop. x(t) Is not u.m.

Remark. If we eliminate the rankings we again can find a counterexample

to Theorems 2 and 3. Example:

X :« 1

y := 2

L: z := X

X := y

y := z

PRINT z

GO L

This program outputs 1,2,1,2,... with only one PRINT statement

Definition. For any numerical sequence S = 0^,0^902* **• sequence

of differences Is AS =» 0^-0^,02-0^^,02-02* •• • •

Theorem 4. If a sequence S has generalized period p then the

corresponding sequence of differences AS has g.p. p. Conversely, If

13



a sequence T with g.p. p is considered a sequence of differences, then

any sequence S such that AS = T must have g.p, p.

Proof. Suppose we are considering a sequence where the (reduced) ORVA

loop prints successively the variables in each iteration.

Suppose is assigned in the loop by the statement

^1 ^^1%*n^o w.l.o.g.

assume that Zj^,...,2p are initialized before entering the loop.

Case 1. p = 1. We construct an ORVA loop to generate successive

differences as follows: Add the statement "w :=

loop, where w is a new variable. Insert "w := w+z^j^" directly before

"PRINT z^", and change "PRINT z^" to "PRINT w". The loop now outputs

w(t) = z^(t) - Zj^(t-l), as desired.

Case 2. p > 1. Create p new variables w ^w and at the
1 * p

beginning of the loop add

"2 == ^3"^2

w T := z -z ,
p-1 p p-1

w := cz, + CX + c -X , + ***+c - z
p Inn n-1 n-1 o p

Delete all PRINT statements and insert "PRINT w^;...;PRINT w^" at the

end of the loop. This prints the sequence of differences.

Note that we have shown that g.p.(AS) £ g.p.(S).

Now assume that a sequence of differences AS is generated by a

reduced ORVA loop printing the variables original

14



sequence S started with o . Before the loop insert "z_. := a : PRINT z,".
o 1 o 1

Let z.be new variables. Delete all "PRINT w^" statements,
i m 1

Case 1. m=» 1. At the end of the loop insert "z^ := z^+w^^; PRINT z^",

Case 2. m > 1. At the end of the loop add

z ;= z T+w 1
m m-1 m-1

Zt := z,+w +• • -fWi
1 1 m 1

PRINT z^

PRINT z
m

PRINT z^

This new loop outputs the original sequence S. We see g.p.(S) £ m - g.p.(AS).

Hence g.p.(S) = g.p.(AS). Q.E.D.

Definition. Let S = • Then -S = ** * *

T = To ,Ti,T2 ,... . Then S+T = ,a^+T^ ,02+12,... .

Theorem 5. g.p.(S) « g.p.(-S) .

Proof. In the program generating S replace each statement "PRINT x^"

by "w^ := -x^; PRINT w^", where w^ is a new variable. Then

g.p.(-S) £g.p.(S). But then g.p.(S) = g.p.(-(-S)) £g.p.(-S) _< g.p.(S).

Q.E.D.

Theorem 6. If g.p.(S) « g.p.(T) = p then g.p.(S+T) £ p.

Proof. Assume w.l.o.g. that the programs for S and T do not have any

variables in common. Form a new loop consisting of all code from the loop

15



for S and the loop for T, Assuming that variables s,,..,,s and
1 P

tj^,.,,>tp are printed, delete all PRINT statements and In place of

each PRINT s^ and PRINT t^ we Insert "w^ := s^+t^; PRINT w." where

Is a new variable.

Similarly altering the Initial code (before the loop) leads to a

program for S+T with p print statements. Q.E.D.

Note that g.p.(S+(-S)) = 1 for all sequences S. We will show

later that g.p.(S+T) divides p when g.p.(S) = g.p.(T) = p.

Corollary 6. If g.p.(S) = g.p.(T) = p then g.p.(S-T) < p.

Theorem 7. If Is a variable In an ORVA program then there exist

positive real constants and polynomials p^(t)

that x^(t) =P2(t)A^+ ***"*• Pjj^(*-)^^* numbers correspond
to non-zero leading coefficients In the assignment statements.

Proof. Let x(t) denote the vector <x.(t),...,x (t)> where x, to x
J- n In

are variables In an ORVA loop In normal form (rank(x^) <• rank(x^^j^)).

Each Iteration of the loop Is equivalent to a matrix transformation

x(t+l) = A*x(t), where A Is an nxn lower triangular matrix. Induction

will prove that A -x(0) = x(t).

The diagonal elements of A are also Its eigenvalues, and since a

diagonal element corresponds to the non—negative leading coefficient of

an assignment, the eigenvalues are non-negative. There exist matrices E

and T such that A= T ^ET and E Is In Jordan-canonical form, with

the eigenvalues of A being the diagonal elements of E. Then

x(t) = t"^E^Tx(0).

16



Then

Suppose E Is a strictly diagonal matrix, say

E =

x^(t)

o

O ••
n

and E^ =

<0. ,0,1,0,...,0>t'^E^Tx(0)

i^^ place

r, t

o

o
n

= <a-,...,a >*E^*<b-,...,b^> for some a.'s and b.'s
1 ' n 1' ' h j j

a-b-Xi + • • • + a b
111 n n n

which is in the proper form.

Next take the case that E is a Jordan block, say

E = J =

X 1
X 1

O

o

X 1
X

Using the binomial identity (^) = interpreting (^)
as 0 if m > t we can prove by induction that

x^ tx^"^
t-i

tx

J^ =

17

(^)X^-
f t .,t-(n-l)



Then

x^(t) =<a^,...,a^>«J^*<b^,,..,b^>
n-1 ^ f- ^ f *. 4

= <a .....a >•< I b 5; b,.,(px''"^,...,b AS
i=0 i=0 "

= p(t)X^ for some poljmomial p(t) .

Finally, in the most general case where E contains several Jordan

sub-blocks, a variable is the sum of elements of the first two types,

t tso p^ (t)A, + • • •+p (t)X = X. (t) for some p.'s and X. *s. Q.E.D.
x± mmi 3^

The outline for this proof comes from another presented by Pravin

Varaiya.

Theorem 8. Given any function of t of the form p, (t)X?+ •••+d (t)X^
^ '^I'-'l *^m m

where X^ > 0 for i = l,...,m, we can produce an ORVA program contain

ing a variable w such that w(t) is that function for t _> 0.

k tProof, We will prove the theorem for the case w(t) = t X . The more

general case follows easily. Proof by induction on k:

Base, k = 0. Let w(0) = 1 and place "w := Xw" in the loop. Then we

have w(t) = X^.

Induction Step, k > 0. Assume we have variables *o'*****k-l that
1 1lx^(t) = t X for i < k. Let w(0) =0. At the top of the loop contain-

Ic k,ing the x^ add the statement w := Xw + (^)Xxj^_^ + ••• +(j^)Xx^.

Claim. w(t) = t^X^.

Proof of Claim by induction on t: If t = 0 then w(0) = 0 = 0^X°. /

18



Assume the claim true for the first t values of w.

w(t+l) = (Q)Xt''x'̂ + (^)Xt''"^x' +••• + (^)Xt°x' by hypothesis
=x''̂ ^[(Q)t'' + + ••• +
= X'̂ '''̂ (t+1)'' . /

This proves the claim and hence the theorem. Q.E.D.

For the following definitions let R = Po*Pi*P2***'

S = a^,a^,a2,... be generally periodic sequencesb

Definition. R and S are equivalent (R E S) if there exist constants

i and i such that
o o

^i +i +i all i > 0 .
o -^o

For example, suppose R = 0,1,2,3,... and S = 2,3,A,... . Then

RES.

Definition. R is contained in S (R C S) if there exist constants i^

and j such that = a. and an increasing function f such that
o o

f(0) = 0 and +f(i)*

Example: If R= 1,2,4,8,... and S - 1,2,3,... then R C S.

Definition. If the function f above can be represented as f(t) = mt

where m 1 then we say that R is an m~section of S. Alternatively,

we can say that S Is m-times as dense as R (D(S/R) = m).

Example: Let R = 1,4,16,64,... and 8 = 1,2,4,8,16,... . Then

19



R is a 2-section of S, D(S/R) = 2.

Notation. Let (r(t))"^Q denote the sequence r(0),r(1),r(2),...
generated by a variable r.

Suppose R« r(t)"^Q and S= (s(t))~^Q. If R is an m-section
of S then we have r(i +t) = s(i +mt) for all t > 0. We note a

o o —

corollary to Theorem 7.

00Corollary 7. If S = (s(t))^_Q has g.p. 1 then there exist constants

^1>••.»^n and polynomials p^(t),...,p^(t) such that

s(t) =P3^(t)xJ+ •••+p^(t)X^.

Using Theorem 8 we can derive another result.

Corollary 8. Let S have g.p. 1. Then given an integer m 1, each

m-section of 8 has g.p. 1.

Proof. Let S= (s(t))~_Q and suppose R= (r(t))"_Q is an m-section
of S with r(i +t) = s(j -hnt) for all t > 0. Then for t > i

o o — — o

r(t) = s(j^+ m(t-i^)). By Corollary 7 there exist X^,...,X^ and

P-|^(t),... ,p^(t) such that

(j-+m(t-i )) (j +m(t-i ))
r(t) = p^ (j +m(t-i ))X. +*"+p (j •hii(t-i ))X ° °

J. o o 1 n o o n

=pi(t)X'' +---+p;(t)X '̂= ,

so R has g.p. 1 by Theorem 8. Q.E.D.

Theorem 9. Let R be a sequence with generalized period 1. For each

integer m ^ 1 there exists a unique (up to equivalence) sequence S

with g.p. 1 such that R is an m-section of S (D(S/R) = m).
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Example. If a sequence 1,1^,9,12>25,1^)... is known to have g.p. 1

then the sequence ••• must be equivalent to the sequence

4,16,36,... .

00Proof. Let R = (r(t))^^Q. By Theorem 7 there exist constants
t tand polynomials P^(t) ,... ,p^(t) such that r(t) = PjL(t)Xj^ + ***+p^(t)X^.

Existence: Fix m ^ 1. By Theorem 8 there exists a sequence

s =(Pi(i)xj^°'++ with g.p. 1. Then D(S/R) =m.
00 COUniqueness: Suppose S = (s(t))^_Q and S* = (s*(t))^_Q both

have g.p. 1 and D(S/R) = D(SVR) = m. By definition there exist

constants i^, j^, and such that r(i^+im) = s(j^+im) = s'(j^+im)

for all i 0. Consider the sequence S-S*. By the corollary to

f'h
Theorem 6 S-S* has g.p. 1. Every m term of this sequence is zero.

Since it is ultimately monotonic, it must be equivalent to the sequence

0,0,0 Hence S = S*. Q.E.D.

Before we prove our final theorem we need a lemma.

Lemma. Let R, S, and W be sequences with g.p. 1, such that W£ R

and WC s. Suppose W is a p-section of R and W is a q-section of

S (D(R/W) = p and D(S/W) = q). Then p divides q implies R£ S.

Proof. Let q = mp where m is a positive integer. By Theorem 7 W

is equivalent to a sequence (pj^(t)X^+ ***"*• Pii^**^^n^t=0* Theorem 8

there exist sequences R* =

S* = (Pi (—)X?^^ +•••+p (—^ each having g.p. 1. Since^^^l^q' 1 "^n q n t=0

S' = + observe that R* is an m-

section. of S*, hence R* Cs*.
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By construction D(RVW) = p = D(R/W) and D(SVW) = q = D(s/W)

so by Theorem 9 we have R = R' and S = S*. But then R C s. Q.E.D.

We may refer to a generalized period of a sequence to mean the number

of print statements In the loop of a (possibly) unreduced ORVA program

for that sequence. The next theorem shows that all generalized periods

of a sequence must be Integral multiples of the fundamental (or smallest)

generalized period. This Is in accord with the similar result for periodic

sequences) and hence strengthens our belief that we have a good definition

for the generalized period of a sequence.

Theorem 10. Let X have a g.p. of p and let Y have ag.p. of q.

Let d be the greatest common divisor of p and q. If X = Y then

there exists a sequence Z with a g.p. of d such that Z E X E Y.

Proof. We will assume that X = Y and find an appropriate Z such that

Z = X = Y. The result for equivalence follows.

Let X= ^ ^1

(x^(t))^_Q and Yj = (yj(t))^_Q, so that each X^ Is a p-sectlon of
X, and Yj Is a q-sectlon of Y. For convenience let y(0) ,ij(l),]i(2),...

denote the sequence *^(0),x^(0),...,Xp_^(0),x^(l),x^(l),... =X= Y.
Note that

(t) = y(pt+l) for all 1 > 0
and

= y(qt+l) for all 1 > 0

Next define a sequence with a^(t) = x^(qt) = y(pqt)

~ y_(pt) for all t > 0. Intuitively, we chose points where X and Y
" o o

"Intersect". We have A Cx with D(X /A ) = q and A Cy with
o—o oo ^ o— o
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D(Y /A ) = p. Corollary 8 tells us that X and Y , and hence A ,
o o o o o

all have g.p. 1. We now use Theorem 9 to find the unique sequence with

g.p. 1 Z = (z (t)) which is ^ times as dense as A , D(Z /A ) =
O O t—U a O O O d

Because p and q both divide the preceding lemma tells us that

X C Z and Y ^ Z^. We would like to show that X. C z whenever d
0 — o o— o i—o

divides i, i = 0,...,p-l.

Pick any such i, setting i = cd. There exist constants a* and

b* such that d = a*p + b*q. Either a* < 0 < b* or b* < 0 < a*. W.l.o.g.

assume the former inequality holds, so we set a = -ca', b = cb* to

get ap + i = bq with a and b non-negative.

We now look at points where X. and Y "intersect". Define
i o

Bq = ° YoCB+tp) = y(bq+tpq) = y(ap+i+tqp) = x^(a+tq).

Using the lemma freely we have

D(Y^/A^) = p and D(Z^/Aq) =^ implies D(Z^/Y^) =^

D(Y^/B^) = p and D(Z^/Y^) =^ implies D(Z^/B^) =

D(X^/B^) = q and D(Z^/B^) .= implies D(Z^/X^) =^ .

This requires that X. C Z , as desired.
1 •— o

We now know that X^ C z^ for i = 0,d,2d,...,p-d. For each such

X., D(Z_/X.) = and there are ^ different such X.*s, hence
1 o i a a i

Z^ « X^(0),X^(0),X2^(0),...,Xp_^(0),X^(1),...,

= y(0),y(d),y(2d),... .

Therefore the sequence ii(0),y(d),y(2d),... has g.p. 1.

In a similar manner we can define a sequence A^ with

a^(t) = x^(qt) = y^Cpt), construct Z^ such that D(Z^/Aj^) = and
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eventually conclude that the sequence p(l),y(d+1),y(2d+l),... has g.p. 1.

Continuing In this fashion we will eventually have sequences

Zo>Zi,...,Zd_i each with g.p. 1 such that Z = ^ Q.E.D,

Corollary 10.1. If a sequence has a generalized period of q and Its

fundamental period Is p then p divides q.

Corollary 10.2. Let S and T be sequences with g.p.(S) = g.p.(T) = p.

Then g.p.(S+T) divides p.

Proof. In Theorem 6 we produced a program for S+T which had p PRINT

statements In Its loop. By Theorem 10 g.p.(S+T) divides p. Q.E.D.

Conclusion

A significant number of properties of periodic sequences carry over

to the generalized case. We feel that they constitute a good justification

for choosing our particular definition of a generalized period. The ORVA

language has proved to be a useful tool for dealing with generally periodic

sequences.

There are sequences, such as the factorial sequence 1,2,6,24,...,

which are not generally periodic but are not particularly complex. Hence,

It would be nice to further extend the present definition to cover a

broader class of sequences. However, a little research revealed that a

"natural" attempt to extend the definition resulted In a huge Increase In

complexity, so that further generalization constitutes a non-trlvlal

problem.
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