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Summary; In this paper several theorems related to the necessary and

sufficient conditions for the characteristic roots (eigenvalues) of

a matrix A to lie inside the unit circle are presented. In particular,

the following conditions are proved: (i) Linear combinations b^^ of the

coefficients of in (-1)" |a-XI| should be positive and (ii) The

coefficients of y^(i»0,l,2,...,m-l) in (-1)™ |k-mI|, m= n(n-l) should

be positive, where K A A-I, and A is the bialtemate product of A by

itself, i.e. A*A.

A simple method for generating A* A from the Lyapunov matrix

associated with A is indicated.

The formulation of the critical constraints for stability limit

in terms of the A matrix and its bialtemate product is also discussed.

Research sponsored by the National Science Foundation Grant GK—33347.



Introduction; In a recent paper. Fuller [1] had presented comprehensive

methods for testing the stability matrix A for characteristic roots

(eigenvalues) in the left half plane. This represents the stability

condition for linear continuous systems. Also in this paper. Fuller

suggested the need for obtaining such stability criteria for linear

discrete systems. Mathematically, this is equivalent for the conditions

for the characteristic roots of A to have magnitude less than unity.

In a parallel work, Bamett and Storey [2] and Barnett [3] have suggested

a solution to the latter problem by applying the bilinear transformation

to the A-matrix. This transformation on the A-matrix whose characteristic

A+Iroots inside the unit circle is presented in terms of A = -r—^ whose
C A* JL

characteristic roots in the left half plane are to be tested. By this

bilinear transformation one can apply Fuller's results already established

for the continuous case. This bilinear transformation represents a

computational burden which unnecessarily complicates the final constraints.

In this paper we avoid this bilinear transformation on the A matrix

and obtain the equivalent of Fuller's several theorems directly from the

given A matrix. This represents significant computational simplification

and also shed some light on certain characteristic matrices associated

for characteristic roots inside the unit circle. The number of the final

constraints are [n(n+l)]. This number can be reduced to "n" which

yields the recently obtained stability criterion [4,5].

Main Results: In the following we present a few theorems which are the

discrete analog of Fuller's representation for the continuous case.

Some of these theorems are new and thus proofs will be supplied.
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Theorem 1: Let,

? x" + c ,X°'̂ +...+? = 0, c >0
n-1 n

have real coefficients. Let,

m . m-1 .
s y + s_ ^y + .

m m-1
. + S = 0, S > 0

o m

have the following m®^ n(n--l) roots:

y ~ ^"1, (i ~ 2,3,... ,n> j 1,2,...i""l)

(1)

(2)

(3)

where A^, A^, ...» A^ are the roots of eqn. (1).

For the roots of (1) to lie inside the unit circle, it is necessary

and sufficient that:

(i) The linear combinations of are all positive, where:

2s-l

r+i-j+1n-odd, b^ =^ ^ (̂-1
r=0

2s

n-even• '.=S z
r=0

'2s-1h:\

1

''j II i-J

n = 2s-l (4)

, n = 2s (5)

In a recent paper [6] a simple combinatorial method for generating

the b^ from is presented.
\

(ii) The coefficients s^, s^, ..., s^_^ should all be positive.

Proof: It is wellknown that (i) represents a bilinear transformation

on the coefficients of (X) and thus assures that (1) has no real roots
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outside the unit circle [4]. Condition (ii) covers the complex conjugate

roots of (1): It represents the condition that eqn. (2) has all its

real roots in the open left half plane [1]• In eqn (3) there are

"I n(n-l) combinations of i and j, and in particular, the combination of
each with its own conjugate exists.

These particular combinations have the interesting property that

each of them appears as a real root of eqn. (2).

To show the above, suppose eqn. (1) has r pairs of complex conjugate
it

roots. Let X^^ (k = l,2,...,r) be one member of each pair and Xj^

(k = l,2,...,r) be the conjugate of Xj^, Let,

*

Using eqn. (6) in eqn, (3) we obtain

* j— ^ k k' , (j\P = e - 1 (7)

Since = 2Tr, V k = l,2,...,r and = C V k = l,2,...,r,

hence

y = 5^-1 (8)

Since y are the real roots of eqn. (2), conditions (i) and (ii) are

necessary and sufficient that:

y = -1 < 0, or (9)

k| < 1
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since Eqns. (4,5) and (8) include all the roots of (1), i.e. real

and complex, hence ecjn. (1) has all its roots inside the unit circle.

Remarks;

1. Theorem 1 is the discrete analog of the theorems of Routh

[7] proved in his celebrated treatise of June 1877.

2. The stability conditions of Theorem 1 are y n(n+l). Hence a

certain redundancy appears. This was also conjectured by Fuller for

the continuous case. Now if we eliminate these redundancy conditions

and obtain only "n" conditions we necessarily obtained the conditions

recently derived by Anderson—Jury [8,4]. In a similar fashion one

obtains the Li€nard-Chipart criterion [9,10] for the continuous case.

This can be readily deduced because of eqh. (4) and (5).

3. In later theorems methods for obtaining the polynomial of eqn.

(2) will be indicated. In particular this polynomial will be obtained

from the given matrix A,

Theorem 2; Let

n-1

be a real polynomial. Also let

I . l-l3^M + +.».+ Sq = 9, q > 0

1 . ,. I .
have the following i = y roots:

y — 1, (i —1,2,...,n, j 1,2,...,i),

where At, A«, ...A are the roots of eqn. (11).
12- n.
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For the roots of (1) or (11) to lie inside the unit circle, it is

necessary and sufficient that the coefficients

Sq, s^, s^, ... be all positive (14)

Proof: The proof is similar to that of theorem 1 for the complex

conjugate roots. The only difference lies in the fact that eqn. (13)

includes the values while eqn. (3) does not. Now if X is real

so is p, thus the positivity of s^, s^, ... is also necessary

and sufficient for Xj -1 < 0 X. < 1 V A. real. Combining this with
i 1 i

the proof of theorem 1 for complex conjugate roots, theorem 2 follows.

Definition: Let A* P A - P = - Q (15)

be the Lyaptinov equation associated with the difference equation

^+1 = ^
(16)

Let

p = col. [pj^j^,p^2» P22* ^13* ^23* ^33'

and

q = col.Iq^j^, q^2» ^22' ^13' ^23* ^33' ***^

be vectors framed from P & Q respectively.

The solution of eqn. (15) is given by [11].

P = (I-K)~\ (19)

We designate the matrix K as "The Lyapunov Matrix" of dimension

•j n(n+l) associated with A. The matrix Kis formed from A* as shown
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below:

For n « 2

K =

For n = 3

2

ll

"11

12

^^11^21

^11^12 ^11^22"*'

^12^21

'12 ^®12®22
K =

®11®13 ^11^23*'

^21^13

^12^13 ^12^23*^

^22^13

13 ^^13^23

^®11®21 21

®11®22'''®12®21 ®21®22

^®12®22 22

^21

^22

^1

2

®22

^^11^31

^11^32*^

®12^31

^®12^32

®21^23 ^11^33"''

®13®31

^22^23 ^12^33''"

^13^32

'23 ^^13^33

^^21^31

^21^32"^

^22^31

^^22^32

^21^33"^

^23^31

^22^33'*'

^23^32

^^23^33

(20)

31

^31^32

32

(21)

^31^33

^32^33

33

Remarks;

(1) The matrix K for any "n" includes along its principle minors arrays

all the K's for n = 1,2,... .

(2) Rows (columns) in K numbered 1, 3, 6, 10, ... -j n(n+l), are formed

entirely by row (columns) in A' numbered 1, 2, 3, ... n respectively.

Their entiries are obtained by cyclic multiplication of each row (column)
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with itself. Entries in the above rows of K that are not in places 1, 3,

6, ... "I" n(n+l) have factor "2".

(3) The rest of the entries of Kare formed from A* similar to the

bialternate product [1] except that the value of the subdeterminant is

in summation form.

Theorem 3;^ The characteristic roots of the Lyapunov matrix Kassociated

with the Lyapunov stability equation A*PA-P= -Q, are the n(n+l)

values: , (i = 1,2,3,...,n; j = 1,2,3,...i) where the X '̂s are the

characteristic roots of A.

Proof: We construct a matrix whose characteristic roots are

XiX . (i =1,2,...,n, i =1,2,...i) (22)

We know the solution of = Ax^^ is

X. « A^x (23)
*k 0

Hence, any component x^ is a linear combination of X^ (i =l,2,...,n),
and so XX is a linear combination of xV = (X.X.)^, (i =l,2,...n,p q 1 j -L j

j = l,2,...i).

In order to construct the desired matrix we define a new column

vector w, such that w = x x , (p = l,...,n, q = l,.**p)> and:pq p q

w=col.(x^, X2*l> *2* *n*l' *n*2'****n^

Using eqn. (23), we find;

^This theorem might have appeared elsewhere, but we were not able to find
a reference to it.
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n n

k+1 P ^ k+1 P k+1 ^ k+1 • I v«. E
i=l i=l

a .X.
qi 1

or;

1

1

1

w a

pq
1

1

k+1

= (a -X- + a «x« +...+ a x ) (a -X- + a «x«pi 1 p2 2 p^ n ql 1 q2 2

+...+ a X )
qn n

° ®pAi*1 <%l®q2^p2V^ ®p2V2

(25)

+ (a -a - + a „a ,)x-X- + (a «a _ + a ,a «)x x + a „a x +.
pi q3 p3 ql 3 1 p2 q3 p3 q2 3 2 p3 q3 3

a^aTCa^a^ + a^a.) a«a« (a^a «+a i) (a 'a „+a «)-1 \ -o «•? -1/ p2 q2 ^ pi q3 p3 qi' ^ p2 q3 p3 q2''pl'ql ^ pi q2 " "p2'^ql
I I

' I
' I

a oa qp3 qJ
1

w

pq
I

I

(26)

It Is noticed from the above that eqns. (26) and (21) for any "n"

are identical, except that eqn. (21) is associated with the matrix A, and

is formed directly from A'; while eqn. (26) is associated with A* and is

formed directly from A. Since the matrix in (26) has the desired roots

of eqn. (22), so is the matrix K in eqn. (21).

Corollary 3.1: The matrix (K-I) has the characteristic roots

U= A^X^-l, (i = 1,2,...n, j = 1,2,...1) (27)

Proof: Assume that the similarity transformation of K to the Jordan
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Canonical fonn is given by the matrix T. Then,

KT - I = T~^(K-I)T (28)

Since the L.H.S of eqn. (28) has eqn. (27) as its characteristic

roots, it follows that the R.H.S of eqn. (28) has the same roots.

Theorem 4 (Stephanos [12]): The matrix A* A has the characteristic

roots:

(i = 2,3,...,n, j = l,2,...,i-l) (29)

where the (•) denotes the bialternate product.

Corollary 4.1: The matrix (A*A-I) has the characteristic roots:

y = -1, (i - 2,3,...,n; j - l,2,...,i-l) (30)

The proof is similar to corollary 3.1.

Remarks: The matrix A*A is formed from K*by the following process:

(1) Delete rows and columns of K'numbered: 1,3,6,10,..., y n(n+l).

(2) Each entry of the remaining matrix which is of dimension ^ n(n-l)
must be written as subtraction of the two terms rather than

summation.

The above procedure is similar to that of Barnett and Storey [2]

for the continuous case.

After presenting the above four theorems we can present the main

results of the paper in the following two theorems.
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Theorem 5; Let A be a real square matrix of dimension nxn. Let A be the

blalternate product of A by Itself, which can be generated directly from

the Lyapunov matrix K as remarked earlier. Then, for the characteristic

roots (eigenvalues) of A to lie Inside the unit circle. It Is necessary

and sufficient that In

(i) (-1)"|A-\I| (31)

(ii) (-D^lk-pll. m=i n(n-l) , K= A-I, (32)

the coefficients of b^, 1 = 0, 1, ..., n, and the coefficients of

(1 = 0, 1, ..., m-1) should all be positive. Note that the b^^ '̂s are

given In eqns. (4) and (5).

Proof; Direct proof of theorem 1 and corollary 4.1. Note that eqns.

(1) and (2) are the characteristic polynomials given In eqns. (31) and

(32).

Theoremb: Let A be a real square matrix of dimension nxn. Let K be

the lyapunov matrix of dimension ^ ~ n(n+l) associated with A. Then,

for the characteristic roots of A to lie Inside the unit circle. It Is

necessary and sufficient that In

(-1)^|k- yl|, where K= K-I (33)

The coefficients of (1 « 0,1,...,A-1) should all be positive.

Proof: Direct result of theorem 2 and corollary 3.1.

Critical constraints [13]: In many application of discrete system

design It Is known that Initially for a certain parameter the system
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is stable. Hence, one would find the maximum value of this parameter

for which the system becomes unstable. The constraints for such a

situation are much simplified and are given by the following critical

values. If we denote the real polynomial in eqn. (1) as F(X), then

the constraints are [13].

F(l) > 0, (-1)" F(-l) > 0 (34)

4 , > 0 (35)
n-1 —

where A" , is the determinant of an innerwise matrix of dimension (n-1) x
n-1

(n-1) obtained from the coefficients of eqn. (1). The equivalent of the

critical constraints of eqns. (34) and (35) in terms of theorem 5 are

as follows:

|i-a| ^ 0, |i+a| ^ 0 (36)

and

(-1)°|k| = (-1)"|A-A-i| >0, m=I n(n-l) (37)

The proof of eqn. (37) can be readily ascertained from the following

identity.

(-D^lKl = (38)

where \ i «
l...n l...n

A^_J^ = n (l-Zj^Zj) =(-1)°^ n (z^z^-l) =(-1)° |̂k| (39)
j < i j < 1 •

The numbers z. and z. are the roots of eqn. (1) or the characteristic
J

roots of the A matrix. Equation (38) can be readily verified.
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Remark: From theorem 6, the critical constrains are given in one

equation as follows:

(-1) |̂k| = (-1) |̂k-i1 ^0, A=~n(n+l) (40)

also, we can readily verify that

(-i)^|k| = |i+a1-|i-a|(:-i)"|k| (41)

From eqns. (40) and (41) we can obtain the critical constraints as

presented in eqns. (36) and (37).

Conclusion; In this paper several theorems related to stability of the

A matrix as well as to its characteristic eqn. are given. Of importance

are theorems 5 and 6. In theorem (5) the dimension of the highest matrix

Kis n(n-l) while that of theorem (6) is i n(n+l). The number of
constraints for stability in both cases is n(n+l). This number can be

reduced to "n" at the expense of more complicated relationships involving

the elements of A. This reduction identically yield the constraint ob

tained by Anderson-Jury [4] from the characteristic polynomial in equation

(1).

In many practical design problems the critical constraints are of

importance. These constraints are presented in this paper in terms of the

element of the matrix A. They are identical to the critical constraints

[13] obtained from the polynomial in equation (1). by obtaining the

stability within the unit circle directly simplifies considerably the

use of the bilinear transformation on the A-matrix.

Finally, it may be mentioned that theorem 1 represents an alternate

form of the stability criteria within the unit circle than those earlier
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obtained. It represents the discrete version of the classical results

of Routh obtained for the continuous case.

The computational aspects of the various theorems presented will

be an interesting topic for future research.
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