
 

 

 

 

 

 

 

 

 

Copyright © 1974, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



OPTIMAL CONTROL OF JUMP PROCESSES

hy

Rene Kamiel Boel

Memorandum No. ERt~M448

3 July 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering'
University of California, Berkeley

94720



ACKNOWLEDGEMENT

The author expresses his sincere thanks to Professor

P. Varaiya. Without his enthusiasm during countless enlightening

discussions, this work would have been impossible. Sincere thanks

are also due for the many interesting conversations with Professor

E. Wong. Finally, I thank J. van Schuppen, with whom I extensively

discussed the research reported here.

Financial support for this work was provided by an ESRO-NASA

International Fellowship in 1971-73 and in 1973-74 by a research

assistantship at the Electronics Research Laboratory, the funds

coming from NSF-10656X3 and AFOSR-F44620-71-C-0087.

-iii-



TABLE OF CONTENTS

CHAPTER 1, Introduction

CHAPTER 2. Optimality criteria: general case

2.1 Mathematical framework

2.2 Principle of optimality

2.3 Local optimality conditions

o /

2.4 Markov controls

CHAPTER 3. Optimality criteria: fundamental jump process 33

3.1 Mathematical model

3.2 Optimality conditions with partial information 38

3.3 Optimality conditions with complete information ^3

3.4 Markovian jump processes

CHAPTER 4. Applications

1

7

7

11

21

55

59

4.1 Infinitesimal generators

4.2 Bang-bang control

4.3 Ex^ples

CHAPTER 5. Conclusions

REFERENCES

-iv-

62

64

74

75



cri

CHAPTER 1

INTRODUCTION

The results presented here deal with the optimization of

dynamical systems with random perturbations. First, a mathematical

model is developed, where we consider a family of stochastic processes,

with the same sample paths but different probability distributions.

These distributions depend on actions taken by a decision-maker, at

different points in time, using some information about the past of

the process. One can therefore say that the family of stochastic

processes is indexed by "control laws," that is rules for choosing a

certain action, depending on time and available information. With

each stochastic process, there also corresponds a cost-function,

parameterized by the same control law, and which allows us to define

an optimal control law. Afterwards this mathematical model will be

shown to yield significant theorems, for more specific stochastic

processes.

This model is different from the approach usually taken for

optimization of Markov processes, as described in the review paper

by Fleming [13]. There, a probability space is given

a priori, and different processes have different sample paths defined

by having control-dependent coefficients in some differential equation.

This causes a number of problems. First, if the available observations

depend on the stochastic process '7^^) defined by

dx^ = f(t,Xg,s£t,u(t),n(t)) (1)

where n(t) is the perturbation defined a priori, then a a-field

like 97^ = a(g(x ) ,s_<t) will depend on the control law u chosen,
w S
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making variational analysis very difficult. Secondly, to derive

any criterion for optimality, one needs existence of a solution to

(1), which imposes strong continuity conditions on f. Since

optimal control laws are often discontinuous (e.g. bang-bang control)

this is unacceptable for optimal control. And third, while (1)

may be reinterpreted for discontinuous processes x^ (see for

example Skorokhod [29]), this poses some mathematical problems.

Quite a different description has been used by Blackwell [3],

Ross [27] among others, in problems where (x^,9y^,'̂ ) is a Markov
(or semi-Markov) chain. There it is assumed that at each time an

action is taken which specifies the transition probabilities, and

the cost associated with each type of jumps. If at each time only

a finite number of actions are possible, this leads to a dynamic

programming equation, with very nice properties. However, when the

action space is a continuum, more care must be taken. Then relations

between probability measures must be specified, which requires

knowledge of the kadon-Nikodjnn derivatives.

One case where this derivative is known is for translations in

Wiener space (Girsanov [17]). This led Stroock-Varadhan [31] to

the following definition of the solution of an Ito differential

equation:

t

x^ = x^ + 1 f(x,s,u) ds + w^ (2)

If ® Wiener process, then under the measure
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U

= expidCD
I f(x,s,u) dWg -^ f^(x,s,u) ds^

(w ,Y^ ) is a Brownian motion, and (x ,9]^» is a solution•» V • y' C t U

to the differential equation (2). This solution exists without the

objectionable continuity conditions on f, and since the sample paths

of x^ are unchanged the partial information cy-field^^^* will also be
unchanged if f depends on some parameter u. This result was used

almost immediately by BeneS, [1], [2], Duncan—Varaiya [10] to prove

existence of an optimal solution if f(x ,s,u) depends on a control

law u, which also determines a cost J(u).

Davis-Varaiya [8], also used it to derive the principle of

opt^^^lity of dynamic programming. This takes roughly the following

form. The minimal expected cost after t is smaller than the expected

value, given the information at time t, of the cost of using any

control law in [t,t+h) and thereafter returning to an optimal control

law. Using supermartingale decomposition theorems it is possible

to transform this into a necessary and sufficient condition for

optimality.

The model described above is obviously a special case of the

model described in the first paragraph. It turns out consequently,

that all the results mentioned so far, will hold for arbitrary

processes. This is shown in Chapter 2, except for the existence

result which requires a more careful derivation.

The results in §2 remain rather abstract, because it is difficult

to relate the Radon-Nikodym derivative with the dynamics of
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the system. From the results of van Schuppen-Wong [34] it follows

that this will be possible if all martingales on

represented as stochastic integrals with respect to some basic

process. In [4] it has been shown that this holds for a-fields 93^

generated by processes that are piecewise constant, and have finitely

many totally inaccessible jumps, of different types, in a finite

interval. This includes many processes of practical interest, such

as point processes, branching processes, Markov chains, queueing

processes. This general class has been called jximp processes. For

all properties on jump processes, used hereafter, the reader is

referred to [4] and [5].

For these jump processes, it is now possible, just as in the

Brownian motion case, to bring the necessary and sufficient condition

for optimality into the form of a Hamilton-Jacobi equation. This

can be summarized as follows: there exists a function H(x,p,t,u),

the Hamiltonian, depending on the observations about the past of x^,

on a "costate" p^, which is^^T '̂̂ adapted and can depend on u and on the

"dynamics" of the process. Then, u*(t,u)) is optimal if and only if

min H(x,p,t,u) = H(x,p,t,u*) = 0.
uEu

Unfortunately, the result is not a Pontryagin maximum principle

because the costate (parameter) p does not satisfy a known equation.

This, together with the special cases of complete information and

of a Markov process, is discussed in Chapter 3.

Finally, in Chapter 4, it will be shown how the previous results

can be applied to practical problems. After a few theorems, useful
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for computational purposes, attention is given to the problem of

modeling a system as a jump process. First of all, a good probability

measure has to be chosen on It has to be sufficiently

complicated, so that all reasonable probability measures are

absolutely continuous with respect to it, while at the same time it

has to be mathematically tractable. Also the way in which the control

law u influences the measure and the cost function J(u) has to

be described as simple as possible.

It will be obvious from §4 that only for jump processes can one

hope to get an explicit, or even approximate, optimal control law,

since the criteria become much simpler. In [5], it has also been

ovserved that a number of detection and estimation problems can be

solved for jump processes. In fact, all the results of van Schuppen

[33] for Poisson processes, extend to jump processes. This indicates

the usefulness of jump processes in the study of discontinuous

stochastic processes.

This paper is a continuation of the work reported in [4], [5].

The reader is therefore referred to these reports for all the theory

on jump processes. In particular, the reader unfamiliar with the work

of Meyer on stochastic integration, [26], can find a summary of this

in §2 of [5]. Some of the notation used in §2-3 will be introduced

below;

Notation-Conventions

A stochastic process on a given probability space

will always be assumed right-continuous. For submartingales

{X^}, such that EX^ is right-continuous, one can always choose such
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a version anyway.

A uniformly integrable martingale ,y)) is a martin

gale such the sup E|m | < and m = 0 a.s. Simllarly,^lA^(9^ »^)
t

denotes (uniformly) square Integrable martingales: and>

require the boundedness condition only up to stopping

times s , s + «» as n +
n n

The family Jk contains all non-decreasing processes

a^, such that a^ = 0 and sup E a^ < ~, that Is processes of Integrable

variation. and Is as usual obtained by a stopping

time.

Also L^(A,rt,p) = {x(a): A-»• IR , I lx(a)|y(da) <«} are called
A

Integrable functions, for different measurable space (A,r(). This

should not be confused with L^(Q*) = L^(P*) « L^(P*)

={f|f: Zxlxjj -»• IR , f predictable

EJ I |f (2,t) |P(dz,dt) <"}
•'z •'i

Here predictable means that for fixed z ^ Z, f(z,•,•): I x ^ IR is

measurable with respect to the o-fleld ^ generated by the left-

continuous real-valued functions gCtjU) on I x q.

-6-



CHAPTER 2

OPTIMALITY CRITERIA; GENERAL CASE

In this section optimality criteria will be derived for a

system where the control acts through a change of the probability

measure and of the cost. The structure of the underlying stochastic

process is completely unspecified. The price one pays for this

generality, is that all the criteria involve a process, defined

through a functional minimization, as difficult as the original

problem.

2.1. Mathematical framework

The following stochastic processes are defined over a closed

subset I of the real line, usually [0,1] or [0,"] or the natural

numbers. All the results will be written in the notation of

continuous time (integrals, derivatives). Since the discrete time

results are simpler in most cases, the required changes are obvious

On the probability space a stochastic process

over I, is given. To simplify the notation, assume

the initial time is 0, and the trivial a-field. The

control action consists in changing this process, to a different

process » having the same sample paths, but a different

probability measure absolutely continuous with respect to

Note that the requirement of absolutely continuity is very

restrictive when I = [O,®). With each such control action is

associated a cost J(u) 2l which is to be minimized. This notation

requires that there exists one single parameter u, the control law,

which determines the probability measure and the cost J(u).
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The following assumptions will be made about the control law

u. There is a given increasing family } of sub-o-algebras of

t € I). This expresses the fact that the decision-

maker does not have all the information 9?^, available. Hence,
the control law u is a function u(t,b))* Ixn-»-U, with U a fixed

set of control values; this function is assumed^^T^-predictable.
u(t,(D) is defined without reference to a probability measure. It

can then be used to define which makes (u(t) a stochastic

process on ). It is always assumed that if A^ 9T then
u ^

depends only on the control law restricted to the interval

[0,t]. The class of admissible control laws,Qi, contains all

T^^-predictable functions u : I x U, such that and
Cp^(j2) « 1. Throu^out this paper the following assumption is made.

Let u,v eQI, then (u,t,v) where (u,t,v)(s), = u(s) s <t
= v(s) s > t

/

The following notation will also we used:

d^
L(u) = , the Radon-Nikod^ derivative and L^(u) =E^lL(u)|9|̂ ]

Then (L^ (u) ^ ) is a positive uniformly integrable martingale
o to

;

The influence of the control law u on the cost J(u) will be

described as follows:

J(u) = j r®.c(9,u(8))aA"(s) + (1)

denotes integration over Similarly E^ will be used for
in?egration over
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E
o

j^L(u)(Jr®'c(s,u(s))*dA"(s) +

or J ; Q^(

Here denotes the final time of the set I(usually 1 or "), and

the following functions are given:

(i) instantaneous cost function c(t,u,(o) : I x u x

which for each fixed u, is 93^^-adapted and^^ measurable on
I X Q the Borel sets on I). This is a measure of the increase

in cost in an infinitesimal time interval [t,t+At), given u

takes the value u(t,o)) = u and depending on the past of the proces

(Note that u is used for both the control law and its present value.

The escact meaning will always be obvious from the context).

(ii) an 9?^-adapted increasing process A"(t,iu), which can be
continuous or discontinuous, allowing the Stieltjes integral in (1)

to be discontinuous. The most useful processes are:

a) A"(t) = t; whenever a"(s) is absolutely continuous

with respect to Lebesgues measure, this case can be obtained.

b) A"(t) =Sl{t>T.}' ®counting process (t^ is an
stopping time); here the cost increasles only at certain random points

in time.

c) A"(t) is the predictable increasing process associated

with the counting process in b), and which can replace the counting

process, if c(t,u,uj) is predictable, since the values of the integrals

are equal (see Meyer [26]).

(iii) discounting rate ^ ^ s^t which for

each s is 9y^-adapted, jointly ®^ measurable and uniformly
integrable (E r^ < K).

o s
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^3 ^2 ^3
Moreover= V = V^t 'l - *^2 i '3^1 ^1 ^2

r^. =1 a.s. (Cp^)

This function expresses the fact that future costs are weighed

differently (usually less heavily) than present costs. Also, if

I = a discounting rate 1 t > s, is necessary to

make the total cost finite.

(iv) final cost J^^Cu)) : fi R an ^ measurable function.
This measures the cost incrrred at or after the final time t^.

^f
If I = [0,«) it is logical to take = 0, since = 0 anyway.

The optimization problem considered here, is: find a control law

u* G01 such that

J(u*) - J* = A J(u) (2)

where J*, the infimum of {J(u) |u Is well defined since J(u) ^ 0.

Remarks: 1. Arandom time interval [0,T] Ci, with Tan tT^-stopping
time, can be considered by making c(t,u,(D) = 0, t ^ T(m) or A"(t,a))

= A"(T(a)),aj), t ^ T((d). If the stopping time T is independent of the

processes influenced by the control, a discounting rate r^ =O^^(T^t)
also transforms the stopped problem into an infinite time problem.

2. The discounting rate r^((o) is not allowed to depend

explicitly on the control law u. In an economic example this means

that the decision-maker cannot decide on the interest rates. However

the distribution of r^Cm) depends on ^ , and can thus be influenced.
s u

3. Except for the special results with complete information

or Markovian assumptions, the final cost can defend explicitly on

the control law u ^
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4. The generalization, where the instantaneous cost

c(t,u,u)) depends on the control law u, used in [o,t] can be

included by letting u(t,a)) ^ U^, a time-dependent set of control

values (functions [o,t] ->• U here). This would only burden the

notation.

2.2. Principle of optimality

From now on the class of admissible control laws, will be

further restricted: it contains the previously defined control

laws u, such that

E^IlCu)!^!* r®»c(s,u(s))dA"(s) + <

We assume that this new class is non-empty (otherwise the

problem is trivial J(u) = «»,Vu). Then for all u,v the

following processes are well—defined and integrable:

^f • t n(|,(u,v,t) =EgjL(u,t,v) (j r®-c(s,v)dA'(s) +

e (3)

iKu.v.t) = r®-c(s.v)dA''(8) +

related by

(l)(u.v,t)
il>(u,v,t) =

E
o

-11-



Remark 1: It Is implicitly assumed here that restricted to

95^» depends only on the values of the control law on the Interval
[0,t], Hence E^[L(u,t,v) 193^] =E^[L^^(u) |9J^] =E^[L(u) .
Therefore the notation L^( snakes sense , This result will

be used repeatedly In the following definitions, and In lemma 2.1

and theorem 2.1.

The value of (|>(u,v,t) (resp. i|>(u,v,t) Is the expected

unnormallzed (resp. normalized) future cost, as evaluated at time

t, when control law u Is used up to time t, and control law v Is

used thereafter. To evaluate the expected cost after time t,

evaluated at 0, given the Information at t, one multiplies (t>(u,v,t)

(resp. i|;(u,v,t) by r^. Since Is a complete lattice
with the natural partial ordering for real-valued functions ([11],

IV-8-22), the following Inflma exist:

v(u,t) = <l>(u,v,t) e L,) (5)

E^[L^(u)r3:yi ^ "

Remark 2: Is obtained fromQ/ by restricting the domain I, In

the definition of the control laws, to [t,t^].

V(u,t) Is the unnormallzed value function, while W(u,t) Is

the normalized value function. They represent the lowest possible

cost after the present time t, ;glven the present Information, and

depending on the control law u that has been used In the past.

Definition (see [8]). The class Is called 9J'̂ -relatlvely complete
with respect to the unnormallzed (resp. normalized) value function

-12-



if for all u all t ^ I, all e > 0, there exists a v

such that:

<|)(u,v,t) £ V(u,t) + e a.s.(<^^)

(resp. i|;(u,v,t) _< W(u,t) + e a.s.(^ )

Lemma 2.1: is^T^-relatively complete w.r.t. both V(u,t). and

W(w,t), under the previously made assumptions.

proof: For V(u,t) see Davis-Varaiya [8], lemma 3.1

For W(u,t) the same proof can be used, since remark 1

above implies that for any M ^ ^ ) " ^u^^v ^
a * * a a ct

n

The following theorem gives necessary and sufficient conditions

for optimality, assuming V(u,t) (resp. W(u,t)) is known. The result

is in the form of a "dynamic programming" principle of optimality.

Checking the conditions of the theorem directly however requires

a minimization A <|)(u,v,t), as difficult as the original problem.

However the theorem can be used to prove better criteria later on.

Theorem 2.1: (Principle of optimality)

a) For all t G i, all h ^ 0 (s.t. t + h^ 1), Vu S :

W(u,t) £E u(s))dA"(s)rdf^)+ (7a)

W(u,tj) =

A control law u is optimal if and only if equality holds in (7a)

b) The same statements hold, if (7a), (8a) are replaced by:

-13-



V(u,t) _< E^rL(u)J r®.c(s,u(s))dA"(s)
t

+Eo[r '̂̂ ^-V(u,t+h) |?J^]

V(u,t^) = E^[L(u) ]

(8a)

(8b)

proof; The equalities (8a), (8b) are obvious from the definitions

(3) - (6). The rest of the proof will be given in 4 steps.

i) (7a) is derived as follows; using (4) and (6)

t+h

W(u,t)_<E^rf r®-c(s,u(s))dA"(s)
t

t+h

It remains to prove that the infimum and conditional expectation

operators can be interchanged, i.e.

A E[r '̂'̂ i/;(u,v,t+h)ffj^] = {) r '̂̂ i|j(u,v,t+h) |9I^]-If u t t " ve|( ^ ^v^K
t+h t+h

(9)

The inequality ^ in (9) is obvious since for all v t+h

: E[r^"^%(u,v,t+h) |rj^] _ E[ A r '̂̂ ^i|>(u,v,t+h) [V^]
-^Wt+h

The inequality £ follows from the relative completeness, i.e. ¥e > 0

3 v^ ^^^t+h that:

if;(u,v^,t-rti) £ A i|>(u,v,t4h) + e
t-Hi

or AE^[r^"^i|i(u,v^,t+h)|ry^] <. 'l'(u,v,t+h) frT^] +e
e>0
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The proof of (7b) is analogous.

11) We now prove that u Is optimal If and only If for all

t € I : V(u,t) = (I)(u,u,t) a.s. C^^)

(resp. W(u,t) = i|;(u,u,t) a.s.

If equality holds, then applying It at t = 0 shows optlmallty.

Conversely, If u Is optimal, then applying definition (6) gives

W(u,0) = J* =̂ u[J r^*c(s,u(o))dA^ (s)
o

while applying (7a) for t = 0, h - t, gives

t

+ E [W(u,t)]
o j

0

+ E^[i|/(u,u,t)]

W(u,0) _< E^j^J r®.c(s,u(s))dA"(s)
u

Substractlng gives E^[i|i(u,u,t) - W(u,t)] £ 0

From definition (6) i|;(u,u,t) - W(u,t) Is a positive random variable,

hence i|;(u,u,t) = W(u,t) a.s. C^^)

111) If u Is optimal then equality In (7b) follows from 11) as

follows:

V(u,t) = (j)(u,u,t)

= E

= E

t+h -j

fl-Cu) ^ r®-c(s,u(s))dA"(s)TT^ +E^[r'''*+(u.u,t+h) frj^]

rt+h, XLq (u)

t-rti -J
C r®-c(s,u(8))dA"(s) fj5^J

+ E [r''̂ -V(u.t-H>) frH]
o t • t

The proof of (7a) Is even easier.
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iv) If equality holds in (7b) then take t = 0, h = t^, to get

V(u.O) =J* =E^rL(u)(| r®-c(s,u(s))dA"(s) +V(u,tj))

=E„[l(u)(| "(s) +r/j )r •c(s,u(s))dA
o

by (8b). Hence (()(u,u,0) = J* and u is optimal. The normalized

value function can be used in the same way. °

Corollary 2.1. For all u ^ Qj the process
t -l

r*^»V(u,t) +E rL(u)f r®'c(s,u(s))dA"(s)
o ® J -

t

(resp. r^*W(u,t) +E| f r®*c(s,u(s))dA^(s) PjT?
o J

(10a)

(10b)

is a ^^(resp. ^^) uniformly integrable sub-martingale. Any u^ QJ
is optimal if and only if the processes defined in (10a), (10b) are

martingales.

proof: Add E |̂L(u)j* r®•c(s,u(s))dA^(s)

(resp. E r®«c(s,u(s))dA*^(s)

(resp (7b)), after multiplying by r^-

to both sides of (7a)

i^j^L(u) j"r®'c(s,u(s))dA"(s) + ^
(resp. r®c(s,u(s))dA"(s) + r^ ^

the following processes will be supermartingales:

Since E

-l6-



v(u,t) = E
o

L(u)(J r®-c(s,u(s))dA"(s) + - r^V(u,t)
(11a)

= r^(({)(u,u,t) - V(u,t))

if

o

t,

w(u,t) = r®.c(s,u(s))dA"(s) + - r^»W(u,t)
o

^ (lib)

= r^(i|)(u,u,t) - W(u,t))
o

Corollary 2.2; For all u the process v(u,t) (resp. w(u,t))

is a potential with respect to the a-fields ^7^^, under the measure
^^(resp. u* sQj is optimal if and only if v(u*,t) =0a.s.

(^q) resp. w(u*,t) =0a.s.

Remarks 3: Theorem 2.1 summarizes and extends the results of Davis-

Varaiya [8, theorem 3.1 and 4.1].

4: Corollary 2.2 is implicit in the methods of proof used

in Kushner [20], for Markov processes. Also for a Markov process,

and by Meyer's supermartingale decomposition theorem probably for

general processes, the potentials v(u,t) and w(u,t) could be used as
1

Lyapunov functions to prove stability, if the assumption at the

beginning of this paragraph had not been made. This extension, to

allow control laws u that make the process unstable, has not been

pursued here.

5. The submartingales defined in (10a) and (10b) have an

interesting heuristic interpretation. Their value is the expected

total cost, evaluated with the information'̂ ^ available at time t,
given control law u was used up to t, and an optimal control law is

used afterwards. The expected value will increase if the non-optimal

-17-



control law u Is used for a longer time, explaining the submartingale.

However if u is optimal this expected value will remain constant

on the average, leading to the martingale property.

6: The processes v(u,t) = r^((J)(u,u, t) - V(u,t)) .
and w(u,t) = r^(i|;(u,u,t) - W(u,t))

O T

express the loss incurred by using u after time t, compared with the

optimal control.

7; Theorem 2.1 can be rederived from corollary 2.1. Hence,

the optional sampling theorem implies that t in (7a), (7b) can be

replaced by any^J^-stopping time.
Since the instantaneous cost c(t,u) is always non-negative, it

follows that for an optimal control law u, V(u,t) (resp. W(u,t))

should decrease in expected value, i.e. be a supermartingale. This

also follows from (7a), (7b) with equality. This suggests the

following definition, first used by Davis-Varaiya [8].

Definition; Acontrol law u is value-decreasing if r^ •V(u,t)
is under Then r^»W(u,t) is an 9^^"
supermartingale under

To make the optimization problem non-trivial we reduce the class

of admissible control laws further to include value-decreasing control

laws only. If there exists an optimal control u*, it will be in<^A ^ .

still.

By the supermartingale decomposition theorem of Meyer ([24],VII ♦

T 29) we therefore can assure the existence of a predictable

increasing, uniformly integrable process A^V(u)
(resp. A%(u)
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r^V(u,t) = - A^V(u) + (12a)

reap. r*W(u,t) = - a'w(u) +mJlCt) (12b)

Then (7a), (7b) can be rewritten as:

t-Hi

Eo[Aq^(u) - A^V(u)|̂ '̂ ] £ L(u) y r®-c(s,u(s))dA"(s)
t

(13a)

t+h

E^[A '̂*"\(u) - A%(u)lC5f'p - [ / ro-c(s,u(s))dA''(s)|qry
t

(13b)

Obviously equality holds if and only if u is optimal.

t
To simplify the notation, for an increasing process A^, we

denote A® = A® - A^. This corresponds to considering a positive
too

t
measure d instead,

o

The following necessary and sufficient condition for optimality

does no longer require the advance knowledge of the value function,

and is therefore easier to check than theorem 2.1. It is similar

to the Hamilton-Jacobi equation in deterministic optimal control.

Theorem 2.2: a) u* gQ.! is optimal if and only if there exist

i) a constant J
o

ii) a process A^(u) G

such that 1) EA^(u) = J - E (L(u)r^j£) ¥u (13a)
o o o or

2) for all t e I, all h > 0 (s.t. t + h ^ I)

t+h

E^j^- A^"^(u) +L(u) y r®-c(s,u(s))dA^(s) j^ 0 (14a)
with equality holding for u*
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Then = J* = J(u*), the cost of the optimal control law, and

r^-V(u*,t) =E^(A|.^(u*) +L(u*)Jj|C]['p

t *tb) The same statements hold if A^(u) is replaced by A ^(u)

e and (13a), (14a), (15a) by

t t

1) ^") =Jo - V'̂ o V
t+h

2) +y r®.c(s,u(s))dA"(s)

*t. t-

and r^.W(u*,t) =E^*(A^ (u*) +

> 0

proof; The necessity part follows from equations (12) and (13)

t tby putting = AqV(u). To prove sufficiency consider the

uniformly integrable process:

Z(u,t) =E^(A^^(u)|q('p +E^(L(u)r%j|qy) ,

and compare with

r^(|>(u,u,t) = L(u)(^ r®«c(s,u(s))dA"(s) +

Substracting (16) from (17) gives

(15a)

(13b)

(14b)

(15b)

(16)

(17)

r^'(j)(u,u,t) - Z(u,t) = E

- t ^
- A^^(u) +L(u) y r®-c(s,u(s))dA"(s)

r^-4>(u,u,t) - Z(u,t) ^ 0 for all u by (14) and

r^*(j)(u*,u*,t) - Z(u*,t) == 0
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In particular (()(u,u,0) 2l Z(u,0) = = Z(u*,0) = (j)(u*,u*,0)

This proves that u* is optimal, and

J* = J(u*) = <|>(u*,u*,0) ~

Jforeover: Z(u*,t) = <j)(u*,u*,t) = W(u*,t) by ii) in the proof of

theorem 2.1. °

Remark 8: Even if the normalized value function W(u,t) were

independent of u (which is the case for a Markov process and for

the complete information case with an additional constraint on L(u))
, , t+h

the equation Irtf ^ c(s,u(s))dA^(s)

is still dependent on u, since Wdepends on u through the

measure Hp . Hence it cannot be solved by the usual technique for
' u

Hamilton-Jacobi equations. Better results will be obtained for

jump processes, in the next chapter.

2.3. Local optimality conditions

Some additional assumptions will make it possible to derive

in this paragraph, results corresponding with h+O in theorem 2.2.

The results will be somewhat simpler.

The following lemma is very useful. It shows the existence for

some supermartingales, of an operator similar to the differential

generator for Markov processes, as studied by Dynkin [12]. It has

previously been used in filtering problems (see [5] and [16]).

2.2. Let f^ be a supermartingale w.r.t. the increasing family

of a-fieldsQ^, on a probability space (S2,g,^). Let
=^ [f^ - E(f^^l!Q^)]. Suppose that for all n and for some >0
there exists a constant such that |A® ^^f ] ^ K^» Vh ^ [0,h^]
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*t e [o,n]. Then A®f = w llm A® ,f exists, is Integrable and
^ h-K)
y^-adapted.

proofI First, let I = [o,n]. Then {A® ^f|h e [o,h^]} is a weakly
compact subset of ^ I, 9 ® ^ ® (^ = Lebesgues

measure) because of the uniform boundedness ([11], IV-8-9 and 12).

Hence there exists a weakly convergent (a(L^-L^) sense)subsequence.

Since E(A® . f|g ) decreases, this weak limit must be unique, and
^ £1 t

a

all convergent subsequences tend a.s. to the same limit

I = [0,«»), first construct limits on each finite interval [o,n].

By uniqueness these limits can be extended to [0,«»). ^

Remark 1; This proof is taken from Davis-Varaiya ([8], lemma 4.2).

The following assumptions are now made

a) A^(t) = t (or absolutely continuous w.r.t. Lebesgues measure).

b) c(t,u,a)) e [0,K] Vt G I, Vu e u, Vo) e

c) r*^(a)) G [0,1] Vs,t G I, Voj G
s

r^ r 'Then 0<-^ V(u,t) - E^(r^"*"N(u,t+h) ^~E |̂L(uy^ r®-c(s,u(s))ds
t

<K.Eo[L^(u)|9y]

r^ rand 0<-^ M(u,t) - E^(r'"*^W(u,t-H») 19 '̂̂ ] y r®-c(s,u(s))-ds| ^

< K

Lemma 2.2 is immediately applicable to the normalized value function

W(u,t). For the unnormalized case, the following stopping times,

together with uniqueness, will prove the existence of a limit



A^(rlx(u,')) (where stands for A^^). Let t be the^T^-stopping
^ o t t n . ^

time: t = inf (E (L^(u)
n tGi ® °

By the uniform integrability of {L^(u)}, it is clear that -> «> w.p.l.
By the proof of Meyer's decomposition theorem ([24], VII- T28

and 29)

t

^V(u) =wlim r^[^oV(u,s) - E^(r®'̂ V(u,s+h) j^^)]ds
h-K)

t

A^(r V(u,*))ds (18a)
so

where the interchange of weak limits (in o(L^,L^) topology) is

justified by the boundedness assumption b) and c) above and by an

argument given by Davis—Varaiya ([8], lemma 4.2). By the previous

arguments A^(r^V(u,-)) is integrable over (fi x l, ® A) similarly.

ÂW(u) =^g(r^W(u, •))ds (18b)
0

Theorem 2.2 can then be rewritten as:

Theorem 2.3: a) u* is optimal if and only if there exist

i) a constant J
• o

ii) for each u (value decreasing) a positive process

rt
such that 1) I X (u) ds is uniformly integrable

Jo \
2) E (I X (u)ds) = J - E (L(u)r Jj (19a)O Jq s o O u i

3) for all t ^ I, all u sQi
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- X^(u) +E^(L^(u)r^.c(t,u(t))|9Jp ^ 0 (20a)

with equality holding for u*.

b) The normalized result is completely equivalent.

proof; From theorem 2.2 and the definition of weak limits one has

for all positive, bounded, 95^^-measurable random variables .
t+h

lim E

h->0 °
i (-Xg(u) +L(u)r®.c(s,u(s)))ds

t

= 0.

This is true if and only if (20a) is satisfied °

RCTaark__2: The fixed time t in the previous theorem can be replaced

by any "TJ'̂ -stopping time x: use remark 7 in §2 and the fact that
Meyer's decomposition theorem for supermartingales ([24],VII T29) is

stated for any stopping time.

3: This optimality criterion has been derived before for

Markov processes (see Kushner [20]),for conditional Markov processes

by Stratonovich [30], and for processes on a Wiener space by Davis-

Varaiya [8].

2.4. Markov controls.

In this section we will prove the intuitively obvious fact that

if (X|.»T3-t*^ Markov process, then a control depending on the

present value x^ only, should be optimal in the class of complete

information control laws. A first problem is that a control law

u(t,co) is assumed to be predictable, and can therefore not depend

on x^ (unless it is left-continuous). Therefore we consider control
laws v(t,x^_(u))) = u(t,u)) and assume Markovian.
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If quasi-left continuous, then heing

Markovian implies being Markovian (note: 9^^

= a(x ,s £ t) = a(x ,s £ t)), for sufficiently smooth transition
s

functions. We now make the following assumptions:

i) ^ Markov process.

li) 9ft_ ° ° 1 ^ I-
Lf(u)

iii) Let L (u) = , s t and assume L (u) depends
s Ts—/ \ ®Lq (u)

only on the values of the control law on [s,t).

iv) 0 £ c(t,u,a)) = c(t,y,x^_(a))) £ Kfor some Kand let be

a bounded function of x .

v) for fixed u ^ J[l( and t Gl, (Lg(u) is Markovian

(i.e. L*'(u) depends only on {x ,s £ x < t}). Here vjW
s ^

n {u(t,a3) = v(t,x^ (w)} = class of Markov controls. Assume Uis a

separable metric space.
ti->t

vi) ^^(x^,tj^;dx2,t2) > ^ w.p. 1 for all t. (i.e.

x^ = x^_ w.p. 1 for all t).

Lemma 2.3. Under the previous assumptions ^^t'̂ t*^u^*
are all Markov processes (for any u ^J{j\ ).

proof. Let f : X -»• R be any bounded continuous function, let s < t,

then

and

Eo(£(x^_)lxs.^) "f Eo(f(x^_)|Xg)-P(Xg_^.s-e;dXg.s)
X

which for £ + 0 gives :
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E^(f(X|._)|Xg_) = E^(f(Xj._)|Xg) (22)

(by assumption vi)). Putting (21) and (22) together:

E„(f(x,_)|9*) - E^(£(x^_)|x^_).

By the monotone class theorem, this result can be extended to any

measurable functional on {x ,s < t}, which implies (x^ )
T— t"~ ^ t O

is a Markov process (see Meyer [25]),

For the 2nd part, consider (s < t again):

E iL(u)f (x) nr ]
E (f(x )|9?^) = ;;—— (see Lofeve, [22], p.344)
" ' E„[L(u)|qf^]

=E^[L^(u)f(x^)iq^]

= E [L^(u)f (x. ) |x ] since vOS t ' s ^

and E^[L^^(u) |91f^] =1

V rr^'f/ 1 ^ [L®(u)|x ]

E [L(u)f(x^)|xg]
=3 — - , >—^ (past and future are

o *s conditionally independent)

= E„[f(x^)|x^]

By the monotone class theorem this is sufficient to show that

(x^,9y*»n\) ®Markov process.

Using the previous lemma, it becomes obviouf that:
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i{j(u,v,t,(0) =Euviy r®.c(s,v(s))dAg +
t

t.

=ii>'(t,v,x^_(w)) for V€jU

and U(t,x ((d)) = A ij;'(t,v,x ((d)), the Markovian value function
vGj/l

is independent of u, the control law on [o,t.).

We also note that, if assinnption iii) above is satisfied, then

for any control u(t,(D) which is9^^_ predictable, the complete

information value function;

w(t,(i)) = f '̂ t-c(s,v(s))dAg +JfKTt]
^ t

^f
= A ErL^(v)( /"r®'c(s,v(s))dA' +J,) lY?*] (25)
vsqj ' y ' s t tj

is also independent of the past control law u(on Io,t]). To prove

the statment that Markov controls are optimal, one has to show

W(t,(D) = U(t,x^_) for all t (see ii) in proof of principle of

optimality). To prove this, we need a principle of optimality for

the Markovian value function. Since lemma 2.1 requires increasing

a-fields, it is not applicable here. Therefore a limiting argument,

starting with a discrete backward dynamic programming, will be used.

First we introduce the concept of a discrete Markov control:

u the class of discrete Markov controls, if u(t,(D) is

constant except for jumps at t^ = 0, t^,...,t^ = t^, and u(t,(D) is
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a function of on the interval Note that the t^'s

are constant times, not stopping times.

The following additional assumptions are now made:

vii) c(t,u,x) is uniformly continuous in u ^ U on I x X

and Ag is independent of u.

viii) {L(u) : u is dense in {L(u) : u in

the following sense:for each u ^J[l( there exists a sequence of

u^ ^^\j\^ such that
a) u (t,(i}) u(t,w) pointwise

n

w \
b) L(u ) -»• L(u) (weak convergence in L-).

n -L

Lemma 2.4. If assumptions i) to viii) are satisfied, then for all

u there exists a v such that: J(v) ^ J(u) + e (where

I =[0,1]).

proof: Let u ^ such that u -> u pointwise and L(u ) ^ L(u).jz n ^ n n

Then:

J(u^) - J(u) = ( rr®c(s,u^(s))dAg +J^)
n

- E ( /r®c(s,u(s))dA + J^)
u / o St

0

1

=ErL(u )( /r®.c(s,u (s))dA +J^)l
o[n^o n s i-j

- E^[^L(u)(yr®-c(s,u(s))dAg +J^)j



=E^[l(u^)(yr®(c(s,u^(s)) - c(s,u(s))dAg +J^) j
0

1

+ E [(L(u ) - L(u))(/r®-c(s,u(s))dA + J.) 1
o n J ^ & i.

0

0 as n ^

Theorem 2.4. Under asstanptions i) to viii), and for all u ^j\)\

for all t ^ I, all h > 0 (s.t. t + h ^ I)(where I = [0,1])

U(t,x^_) 1E^[y r®.c(s,u(s))dAg(x^_] +

^f
f

(24)

(25)

u ^J[J( is optimal if and only if equality holds in (24).'

proof: The only part of the proof of theorem 2.1 that does not

carry over Immediately is the fact that:

t+h

= E [ A r'''̂ i)i(u,v,t+h)lx ]

Let be the subclass of containing all discrete control

laws having no more than n jumps. Then U (t,x ) =
v^jw:

and by lemma 2.4: u"(t,x^_) 4- U(t,x^._) as n tends to t
infinity for I = [o,n], any bounded Interval. (Note that in the

proof of lemma 2.4, no use is made of the fact that the Initial
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state is fixed). We have

t-Hi

since this operation involves only n minimizations and each infinum

can be approximated up to e/n. This argument can be repeated for

each n, with fixed e, so that there exists v t4h

|x,J 1 |x^J+ 2e

by taking n > N such that: •

U^(t+h,x^^_) - U(t+h,x^^_) 1 e.

The rest of the proof proceeds as in theorem 2.1.

If I = [0,"), then there has to be a T such that

00

E^[^r^»c(t,u(t) ,x^_)dA"|x^_] £efor all x^_ ^Xsince J(u) <»
00 t

Note that r = 0, by assumption r <1. Hence the result holds for
o s

infinite time intervals too. °

Remark 1: Conqpare this proof with Davis-Varaiya t9].

2* ^^t* derived from^U^* j\j\^^ the same
way as from .

E in this theorem depends on the control values
u

between t and t+h, only.

As in §2, one can write

r^U(t,Xj._) =Jjj - A^U(u) +mja) (26)
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where is an martingale (under the measure

A^U(u) is an9J*_ predictable increasing process, which depends
on u through the measure We can show that A^U(u) =A^U(u)
- A®U(u) depends only on = a(x^,T £ t < t), as follows: by

O S T

Meyer's supermartingale decomposition theorem ([24])

t

A^U(u) =w. lim ^[U(t,x^_) - E^(U(T+h,x^_^_)lv5^^] ^
h-»-0 g

t

= w. •* "lim [U(t.x ) - E (U(T-Hi,x^_)lx:^_)]dT
h-M) y

For each h the integral depends of limit depends on
s

n (straightforward from assumption ii) at the beginning
^ s ^ s

of the chapter). This result immediately implies that ™JJ(t) -
depends only on^^^* hence the martingale is an additive functional

s

on the Markov process ® definition see Kunita-

Watanabe [19]).

The Markov version of theorem 2.2 is now obvious:

Theorem 2.5 u* ^ j\I[ is optimal if and only if there exist

i) a constant Jj^

ii) for each u ^J(H (value decreasing) a process

A^(u) ^ such that A^(u) is
O t U o o

measurable

t^ t-
such that 1) E^A^^(u) = J„ - ¥u S

2) for all t G I, all h > 0 (s.t. t+h ^ I), all
t-fh

ue, E^[(-A^"^(u) +J r®-c(s,u(s),Xg_)dAg|x^_] >0
with equality holding for u*.
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Then Jw = /\ J(u) = J(u*) and

Hence Jw ® ~
M o

Theorem 2.6: The optimal Markov control is also optimal in the

class of nonanticipative controls^, i.e. =J* (with

complete observation).

proof: frfflfl theorem 2.5 and 2.2, since the Aq(u) and which

exist by (26), can also be used in theorem 2.2. Because~^t'

the equation (14b) now only depends on the restriction of u to

[t,t-tti), i.e. if C= • [t,t+h) -»• U, Borel measurable}, then

(14b) can be written as (for sufficiently small h).

t+h

inf Er-A'''̂ (u) + f r®*c(s,u(8))dA"(8) =0.
uSC "I ' ^ •'
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CHAPTER 3

OPTIMALITY CRITERIA: FUNDAMENTAL JUMP PROCESS

In this section, it will be shown how the martingale represen

tation theorem for fundamental jump processes, leads to simplified

versions of the theorems obtained in Chapter 2. In particular the

case of complete observation and the case of a Markov process, will

lead to a true Hamilton-Jacobi equation, that can be used 'to prove

existence of solutions.

For most definitions and properties used below, see [5], §2.

3.1. Mathematical Model

The model of Chapter 2, section 1 is now used with a more

detailed structure for the stochastic process ~T^q) •
be a fundamental jump process on the probability space

Here is a space of piecewise constant functions

w: I -»• Z,where (Z,^) is a Blackwell space, with a finite number of

jumps in every finite time interval. Then x(t,(i)) = mCt) is the

evaluation function. The a-field from now on is always = cr(x ,s<^t),
US

the generated a-fields(completed with respect to the measure

It is assumed that the time of occurrence of the nth jump is

a totally inaccessible vT!!~stopping time. This implies that the
^ c

family 67*} is free of times of discontinuity ([A], lemma 3.1).

Remark: 1. When x^ is a counting process, that is only jumps of size

+1 are allowed, then Chou and Meyer [6] have shown that the assumption

of total inaccessibility of Is unnecessary for all of the

following results(excluding continuity of P (B,t)).

-33-



) one can associate a fairly of counting processes

P*(B,t) = £ ® ^ family of
s<^t s- s s ^

"'xpredictable Increasing processes P^(B,t) such that

Q*(B,t) = P''(B,t) - P*(B,t)

This predictable Increasing process can be written as:

P*(B,t) ~f ( n*(dz,s) A*(ds). Then (n*(dz,s), A*(ds)) Is called
Jo •'b

the local description.

The change of probability measure to can now be

described as follows: {L^(u)} Is a uniformly lntegrable93r*~niartlngale,
that Is positive. By [5], theorem 3.1, there exists, for each u^ U

1 "* X
a real-valued, predictable function <I'(z,t,u,a)) * ^ ^loc^ o^'

t 1 ^
where T. = Inf {t: L (u) <7-}. , This function d) Is called the

k o — k

rate process.

j C<"> (

L^(u) = n [1 +(|>(Xg,s,u)] • exp -I I (j)(z,s,u) P*(dz,ds)
'-•'o *^Z

s<t

(1)

= 1 + \ (u) I <(>(z,s,u) Q*(dz,ds) (2)

As In remark 4 of §2-1, It Is only a small loss of generality to

assume that (|)(z,t,u) depends only on the present value u(t,a)) of the

control law. Hence, from now on<l>: ZxlxUxJ2->- [-1,«»), which Is

predictable for each fixed u. The lower bound -1, follows from
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L^(u) 0, hence 1+ <})(z,s,u) ^ 0, Vz,s,u.
From [5], §3-1, it follows that is a fundamental

jump process with counting processes P (B,t), associated predictable

increasing process

o *^8

P^(B,t) = 11 [1 + <|>(z,s,u)] P^(dz,ds). (3)

and local description ([1 + <|)(z,s,u)] n*(dz,s), A*(ds)). This can

be interpreted as follows: the rate of jumps of type [z,z+dz) at time

t is changed from n*(dz,t) A*(dt) to [1 + <J)(z,t,u)] n*(dz,t) A*(dt).

For example, let there be 2 types of jumps, both occurring with rate

y; then ^2 " ~ changes this to a process with jumps of

type 1 occurring with rate 1, and no jumps of type 2 (w.p.l). This

example shows that is is not always true that « %

Remarks: 2»This analysis can be reversed, by starting with a given

family of functions <f)(z,t,u), u G U, satisfying all requirements of

((>, imposed above. Then:

'Qj ={possible control laws u: I x -> U|E^L(u) =1},

and define by L(u) = is difficult then to specify

since no necessary and sufficient conditions are known for E^L(u) = 1.

The sufficient conditions in [5], §3-3 may be too restrictive for

some applications.

3. In this model only rates of transition are changed, corres

ponding to A number of interesting problems, such as
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inventory control, seem therefore excluded. However by making ^
sufficiently complicated, this can also be included (see example in

Chapter 4). Note that this problem does not occur in the finite

state Karkovian problem, because optimality criteria can be written

1

directly in terms of transition probabilities (see Blackwell [3],

Ross [27]).

In order to write the following optimality criteria in the

simplest possible form, the total cost J(u) is supposed to be of the

following form;

J(u) ®E^[f (* r® • c(2,s,u(s)) • P*(d2,ds) + W
Jrj,

This does in fact include most other reasonable cost structures:

i) if the cost increases only when a jump occurs then

J(u) = f f r® • c(z,s,u(s)) P*(dz,ds) +

= f f 'o •
•'i "'z

t^
c(z,s,u(s)) P^(dz,ds) + r^ J^^]

ii) if Lebesgues measure t is absolutely continuous with respect

to P*(Z,t) then
u

E f r® • c(s,u(s)) ds "El 1 r® • c(s,u(s)) *P*(dz,ds)
^ Jj. ° \ \ dP^(Z,ds) "

This is not possible if P^(Z,t) remains constant in a non-zero

-36-



interval, but this corresponds to no jumps being possible,

and it is not unreasonable not to assign any cost to this

trivial part of the process.

Moreover the equations following are easily transformed to costs

involving integration over ds or P^(dz,ds).

Remark 4. The results of Chou-Meyer [5] and Jacod [18] suggest the

following improvement on the results of [4]: if

n+1 n

then:
!

T.-T. . t-T

p G<ds,B) f " G_(ds.B)
°^ J Gr8,»),Z) *J G([s,"),Z)

i— o o

r8 G (dx,B)
To prove this, let =P*(T^+s,B) - P*(T^,B) - I g a8.»),Z)

•' o n

^s G^(dx,B)
or (with - T^): y = I g ([x,"),Z) *

n —n s •'on
n

Let T > be any stopping time, then by le»ma 2.1 of [4], there

exists a random variable R,^^^ -measurable, s.t. T ^n+1 ~ ^^n^^^^n+1'
n

The result will then be proven if

RAS

r ^ G^(dx,B)
J G^([x,"),:0= gg) - E) G([x.~).Z)

n n ' n

(since the process defined by (5) is obviously a predictable, integrable

increasing process). (6) follows from:
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G^(dx,B) ( G (dx,B)
j G^([x,»),Z) °j <5„W®»Z) j G^([x,»),Z

f G (ds,Z)=J Gj^(dx,B) J G^([x,<«),Z) °T^CRiSjj.Xg^es)

This result also shows that P (B,t) is absolutely continuous iff all

the conditional distributions G^(dt,B) are absolutely continuous,

and G^([0,t),B) < 1 for all t < ".

3.2. Optimality Conditions with Partial Information

The simplest way of defining the partial observation field,

is as follows: let (Y,Qj) be a Blackwell space, let y : Z Y

be measurable. Then y^ = yCx^.) = <J(yg»s£t) (completed for

define the observations available to the decisionmaker. The function

can be used to express that only some of the x-coordinates are

observed (if Z = Y = m < n) or are classified in a

finite or countable number of categories (if Z = R Y = {0,1,...,N}^

or , or any other noise-free function of the present value of

the state. Note that y cannot be used to express randomness of the

measurements; all the randomness in the system has to be included

in the fimdamental jump process This can always be

achieved by extending the state space Z. Extension of the state space

may also be necessary if y = yCx. ,s^t). Then including y as part

of the fundamental process, x^, is always possible, without changing

(fi,9J, ^7^) (except a trivial change in (0,95*)strictly speaking, since
the range of the functions in is changed). This is illustrated by
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12 12the following example: let x^ = (N^,N^), N^, Poisson processes
1 2

independent of each other, let dy^ = dN^ - 1 then-'t t y^o t

*t ° ^^t'^t'^t^ generates a probability space which is
isomorphic to (^^,95^,*^^) obtained for the jump process x^. The
previous example is useful in the theory of queues.

It is obvious that is again a fundamental jump

process. For any C the counting process P^(C,t) can be written

as:

~S ^{y(x,^ )€c}
i- i

=) ^{Y(s) e c} • ">
z

To simplify the notation, form now in I (z) = Ir / s /= «i. Also,
^ ' iyiz) G c} '

assume P*(B,t) = i I f(z,s) y(dz,ds) where y(B,t) is^-predictable
Jo Jb ^

for all B ^ Z (in many practical applications it will be deterministic),

and f(z,t) is 93r*-predictable. For an arbitrary^*-adapted process

g^, the notation g^ = E^(g^l9yt^ will be used. Then

P^(C,t) "^J (z»s) y(dz,ds)

u. Ij,(z) [P*(dz,ds) - f(z,s) y(dz,ds)]

t

J [I^(z)f(z,s) - I^(z)f(z,s)] y(dz,ds)
o Z
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By the uniqueness of the predictable increasing process associated

with P^(C,t);

Pq (C,t) =J y(dz,ds) (8)

Similarly one can prove

P^ (C,t) =j* (1 +<|)(z,s,u)) Ij,(z) f(z,s) y(dz,ds)

Remark 1. In some cases, the extension of the state space Z can be

avoided by defining

y^ = I I h(z,s) P*(dz,ds) where h: Zx I iR"
o *^Z

is an^^-predictable process. All the results of this chapter

continue to hold if is replaced by h. However if Y is not a vector

space, this is not possible.

The argument used above, to find the^^-predictable increasing
y

process associated with P (C,t) can also be applied to the increments

in cost in the time interval [t,t+h) as expressed by the right hand

side of (2.13b):

Eu[\ I r® • c(z,s,u(s)) P*(dz,ds) 19 '̂̂ ]
t *^Z

Eu[l I r®*c(z,s,u(s))(l+(J>(z,s,u(s)) f (z,s)u(dz,ds)
"^t



t+h

~ f / ^' (!+<!>) • f(z,s,u) • p(dz,ds) I
t Z

Inequality (2.13b) can then be written as

t+h

0£E^[ - A^^^(u) +J* Jr '̂C (l+<l))*f (z,s,u)*y (dz,ds) |9J^] (9)
t Z

This implies that

t

W(u) + f f (l+<|))»f (z,s,u) y(dz,ds)
o Z

is a submartingale under At the same time it is clearly 9^^-
predictable. Hence

A=C + B+m , B^an Q."^-predictable. increasing process,
t t t t ^ t

Ca constant, m^ an^y^^^artingale. Hence m^ is a predictable
martingale with respect to the family of a-fields 9?^^ which is free
of times of discontinuity. This implies

a.s.'^̂
u

m^ = D, a constant.

Therefore A^ is itself an increasing process and (9) can be replaced

by:

t+h

0<-Af^(U) +J* r^ c» (l+<|))f (z,s,u) y(dz,ds) (10)

with equality holding if and only if u is optimal (this inequality
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holds a.s. ^ ).
u

Theorem 2.2b can now be rewritten as:

Theorem 3.1. u* is optimal if and only if there exist

i) a constant J
o

ii) a process A^(u) all a (value decreasing)
iii) a family of processes n(Zft,u) ^ L^(Q^)

such that:

f

) Jq - +J y n(z,s,u) P^(dz,ds) « ^
o "Z

t+h

b) - A^"*^^(u) ^J J '̂ o *<=^1 +<(>)f j (2,s,u)y(dz,ds)
t Z

> 0 a.s. ^ , Vu ^01, (12)
— ' u

Then = J* = J(u*) and

r*^ W(u*,t) = J +
o o

c

A^(u*) +a n(z,s,u*) P^(dz,ds)
o Z

Proof Applying (2.12b) and the martingale representation theorem,

one obtains the existence of Ti(t,z,u) ^ L^(Q^) for all value-decreasing
admissible u, and such that

t

r^ W(u,t) = W(u) + j j T)(z»s,u) (^^(dz,ds)
0-4

- A^ W(u) -If. n(z,8,u) 1^(1+^)1(258,0) y(d2,ds)
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t

•//n(z,s,u) P^(dz,ds) (13)
o Z

which implies the "necessity" part of the theorem (after identifying
tA^(u) =A^W(u) id ri(z,s,u) lYCL+<i>)f (z,s,u) y(dz,ds).

The theorem then follows from theorem 2.2b.

Remarks;3. A local version of this theorem, corresponding to theorem

2.3, can easily be written down. This version will be stated in some

of the applications in Chapter 4.

3. The previous arguments do not apply to the unnormalized

case, because the conditional expectation

t

E
o

^L(u) f f <^(z,s,u(s)) P*(dz,ds) I j
o Z

is not necessarily predictable. However, limiting arguments, as in

[8], theorem 4.3 lead to similar results.

4. The previous result is similar to the minimization of a

Hamiltonian in the deterministic optimal control problem, where A^(u)
plays the role of a costate. However because of the closed loop

nature of the stochastic control problem, the costate now depends on

the control applied in the past.

3.3 Optimality Conditions with Complete Information

In this section it is assumed that y = x , i.e. h(z,t) = z Vt,

and then 9^^ =yT** This is called the complete observation case.
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because the decision-maker knows the whole past of the process. The

results then are considerably simpler. Observe that

tE^[l'(u)L^^(v)^ f r®-c(z,s,v(s))P*(dz,ds))|'7y*]
W(u.t) = A ^ —

= A E(L^v)(/" f r®'c(z,s,v(s)) P*(dz,ds)) |Cy*)
t Z

= W(t), independent of u, the control law used before t.

Remark 1. L. ^(v) = =—tixl ^ independent of u.
' l'̂ cv) l;(v)

o o

Then the processes W(u) and n(z,t,u) in (13) can still depend

on u, because they are defined for each probability measure
i

However

t

r^W(t) = f f
•^o ^

t

= - A^ W(u2) J J n(z,s,U2) Q* (dz,ds)
o Z

Identifying the jumps (and using predictability of n(z,t,u)), gives:

t t

// n(z,t,u^) P*(d2,ds) ^j Jn(z,t,U2) P*(dz,ds)
o Z o Z
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Therefore n(z,t,u) « VW(z,t), independent of u. Then •

t

^ f̂ J P*(dz,ds)
o Z

is also independent of u. Consequently theorem 3.1 can be simplified

to:

Theorem 3.2. u* sQA is optimal if and only if there exist:

i) a constant J
o

ii) a process

iii) a process n(z,t) ^ L^CQ^)
such that

'f
a) +J J* n(z,s) P*(dz,ds) =r^^ • (lA)

o Z

t+h

b) - ^ f f [1-N>(z,s,u(s))]
/: Z

and

t+h

P*(dz,ds) > 0 (a.s. Vu eQl (15)

- A^"*"^ +J* J* [n(z,s) +r®-c(z,s,u*(s))] [l+<j)(z,s,u*(s)]
t -^z

XP*(dz,ds) = 0 (a.s. (16)
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Then J « J* « J(u*) and
o

t

•M(t) = Jr](.z,s) P*(dz,ds)
o Z

Proof. Immediate by identifying Wand n(z>t) = VW(z,t). "

Remark 3. This criterion now is a true Hamilton-Jacobi equation,

since A^ Wand VW(z,t) are known explicitly as functions of W
o

(i.e. A and V are known operators), then an optimal u* can be

found as follows: solve the minimization problem (for some small h)

t+h

inf{- +If [VW(z,s) +r®«c(z,s,Y(AW,VW)))]

X [l-H»(z,s,Y(AW,VW,s))] P*(dz,ds)}

and obtain Y*(AW,VW,s). Replacing u* in (16) by Y*then gives a

complicated operator equation, to be solved for W. Finally u* is

obtained by replacing W by its value in Y*.

4. The method explained above would be considerably easier,

if an adjoint equation were known for the costate n(z9t) (as in

Pontryagin*s maximum principle). In some very special cases, this

has been done by Fleming [14], Kushner [21] and Sworder [32].

5. Since V(u,t) - L^(u) W(t), depends explicitly on u, no
genuine Hamiltonian can be obtained for the unnormalized value function.
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The following corollaries are easy consequences of theorem 3.2.

Corollary 3.1. Let P*(dz,ds) = n*(dz,s)A(s) ds, and make assumptions

b) and c) of 2.3, then u* is optimal if and only if there exist

i) a constant J
° t ^

ii) a.predictable process a(t) s.t. f a(s)ds
Jo

I zamxxy ox prooesstso ^

such that:

iii) a family of processes n(z,t) ^ L-'-CQ^).

a) ^o ' J J* J* P*(dz,ds) =
o o Z

b) -a(t) +J" [n(z,t) +r^-c(z,t,u)][1-H>(z,t,u)] n*(dz,t)

(17)

(18)

X X(t) 0, Vt e I, Vu e U

with equality holding for u*(t).

Proof. This follows immediately from theorems 2.3 and 3.2, with

a(t)= A* W(u) + f VW(z,t) n*(dz,t) X(t) °
*^Z

Remark 6. The importance of this theorem is, that it gives a

minimization over Uinstead of over a function spaceQI.

Corollary 3.2. Suppose at each time only n different values of a

jump are possible (see [4], §4). Let X^(t) be the rate for each of

these jumps under <|>^(t,u) the rate process for jump type i.
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Let c(z,s,u) = c^(8,u) for z a jump of the ^th type. Assume the

conditions of corollary 3.1 are satisfied. Then u* is optimal

if and only if there exist a constant a process a(t) s.t.

t ^/a(s) ds and nprocesses ri.(t) ^L(Q*)» such that

and

t ^ t

J*n^(s) p^(ds) = (19)

n

-a(t) + X) [n.(t) + r^'c. (t,u)][l+<{» (t,u)]X. (t) >0
i=l

(20)

vt e I, vu e u

1

with equality holding for u*(t).

Remark 7. Corollary 3.1 and 3.2 could have been stated in the partial

information case but the expressions take a rather complicated form,

and are probably not very useful.

In some special cases, it will now be shown that the heuristic

method given in remark 3 to construct an optimal control law, leads

to a formal proof of the existence of an optimal control law. The

method of proof is adapted from Davis [7].

The following assumptions are made throughout the rest of

this section:

i) I = [0.1]

ii) Uis a separable, metric space,^^ is the class of all
Borel sets (i.e. the a-algebra generated by all sets in the

topology).
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iix) exp(M P(Z,1)) < «» for all M > 0 and P(Z,t) < p(t) a.s.

where ij(t): R ^ R is an increasing deterministic

function.

iv) (J)(z, t,u,a)): ZxixUxfi->R is jointly measurable (i.e.

with respect to ^0^(0,1] 0^( 09?-*) and (|>(»,*,u,*) is
9^*-predictable for each fixed u

v) (j>(z,t,', (o) : U -• R is continuous on U.

vi) c(z,t,u,w) is jointly measurable, 9y*-predictable for fixed

u and continuous on U for fixed (z,t,w).

vii) there exist a > 0, K, < " such that:

a) y [1 +(Kz.t.u)]" n*(dz,t) <K+K-^[P*(Z,t) +P*(Z.t)l a.s.lr.»X

b) J Un (H-(|»(z,t,u))| P*(dz,t) <K+K^[P*(Z,t) +P*(Z,t)] a.s.

t
Condition iii) together with vii,a) iii5)lies that {L (u)} is a family

of uniformly integrable martingales, by proposition 3.4 in [5], while

iii) and vii,b) imply L(u) > 0 for all u €Q|(since iii) implies

that all moments of P(Z,1) exist under the measure and hence also

2E^[exp M(P(Z,1)) ]), Condition vii) could be replaced by any other

condition insuring the above properties.

Note that L(u) > o implies that hence the only

probability measures allowed are mutually absolutely continuous

with respect to This is a very strong condition (only 1 of

the examples in §4 satisfies it), but is seems unavoidable for both
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lemma 3.1 and theorem 3.3.

The following notation Is now Introduced:

$ = {<|>(z,t,(o)i ZxIxJ2-i-R|(j) satisfies conditions Iv), v) and vll)

(take a set U containing 1 point)}

%= ^ 1 ^£ <j)(z,t,a)) £ N)
t.

If <j) G$ then = n [l"N>(X-»s)] exp[- I I<j)(z,s)P*(dz,ds)]
° s<t JJ^

/ O ^
X fx
s- s

I.e. L^(u) = L*'((J)(», •,u, •)) with the old notation. Let^^($)
o o

={L^(<|))|<1> ^ and similarly deflne^($jj).

Lemma 3.1. ($) Is convex and weakly compact (i.e. compact In

a(L^,L^)-topology).

Proof. Convexity Is Immediate from Meyer's differentiation rule,

since for (})2 ^ ^

f 'f'l + ^7P = X • l'w ) + X l'w,) = t 1 )

and the argument of the last Lq(») Is obviously In $.

Furthermore by prop. 3.4 of [5],^^($) Is uniformly Integrable

and hence weakly sequentially compact. The lemma will then be

proven if we show that^(^) Is strongly closed. First consider

(:[)($jj). Since
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= n [l+2<KXg,s)] exp[- f f 24i(z,s) P*(dz,ds)
X J J„
s- s o Z

s < t

+[ n (fi^CXg.s)] Xexp[- j f 2i(i(z,s) P*(dz,ds)]
^s>s -^o •'z

s < t

^ ^\x(t)+2Zn N • P(Z,1)

t 2
and hence E increasing function). Therefore

is L2-bounded; L2-closure is proven in the s^e way as lenima

3 of [10].

Now let he a sequence in $ such that

lim P a.8. and ).
n-x» °

Then^T)(<l>) will be L^^-closed if p=L^(<l>) for some (J> € To show
this, let

((> (z,t,(D) if -1 + -^ < ({> (z,T,a>) < Nfor all z,
n JN — n —

all T < t

^0 otherwise

N - ^Since. <J)^ is an L2-closed, bounded and therefore weakly

compact set (see theorem V-4-7 of [11]), there exists for each

Na (J) such that L^(<I)^) = w• lim L^((|>^) where the weak limit is
" o on

taken along some subsequence. As in lemma 7 of [10] one can show that

^Nfi. X N, ^
9 (z, t, w; = (j) (z,t) whenever both are non-zero. Condition vii)

then implies that a (J)(z,t,a)) ^ $ exists such that
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L^(<(>) = w• llm L^((|) )
o o^n

To prove the existence theorem we introduce the following

Hamiltonian:

;,u,p,a)) =J' t ^ * XH(t,u,p,a)) = / [p(z,a})+r^(a>)«c(z,t,u,a))] [l+<{»(z,t,u,a))] x n^(dz,t)

where p(z,a)) Z x R is in •

Remark 8« The Hamiltonian is defined above, assuming the conditions

of corollary 3.1 to simplify the notation in the following theorem.'

However theorem 3.3 still holds in the general case, with

t+h

H(t,u,p,w) ° f f [p(z)+rQ'c(z,t,u)] [l+(|)(z,t,u)] P*(dz,ds)

for some h. However, then the minimization is always over a function

space (functions [t,t+h] ^ U).

Theorem 3.3. Suppose that for each t, p, w the Hamiltonian H(t,u,p,a))

achieves its minimum over U, i.e.^u ^ U such that:

(H) H(t,u ,p,w) = A H(t,u,p,a)) =^(t,p,'(o).
° u^U

Then an optimal admissible control law u*(t) exists.

Proof. By assumptions v) and vi) H(t,u,p,a)) is continuous in U, and

for S a countable, dense (compact) subset of U one has:
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, oj) = A H(t,u,p, a})
ii^S

corollary 3.1):

t

A^W =y 8(s) ds for all t^I (22)
o

This implies that^3^(t,p, tu) is jointly measurable and '̂̂ -predictable,
such that by (H)

,0)) G H(t,U,p,u)).

By an extension of Filippov's lemma (see [1], lemma 1) there exists

a mapping y(t,p,aj), jointly measurable and such that

g^Kt.P ,0j) = H(t,y(t,p,w),p,a))

In the comments preceding theorem 3.1, it is shown that there

exists a process VW(z,t), integrable for fixed t andpredictable.

Hence u*(t,(ii)) = y(t,VW(z,t,a)) ,a)) is a well-defined predictable

process taking values in U, i.e. it is an admissible control. To

prove that u* is an optimal control law, it suffices to show (by

where 3(t,(i)) = A(t,a)) •^^J^(t,VW(z,t,(D),0))

=X(t,a)) J [VW(z,t) +r® •c(z,t,u*(s))]•[l+<j)(z, t,u*(t)) ]

X n*(dz,t)
o

From corollary 3.1 it is now obvious that

1

J(u*) - J* = E.^ [ / 3(s) ds - W]•V i/
O

-53-



1

"'iiand J(u) J* = E [/ / [VW(z,s) + r®*c(z,s,u(s))] P*(dz,ds)--A^W]
" • • o u o

i'.l/ 3(s) ds - W]

By definition of J*, there exists a sequence of controls such

that J*' By assumption iv) and vii) {<|>(u^)} is a sequence

in (f>, hence there exists a ^ $ such that:

Lq(<|>) = wlim L^((|)(u^)) I
n-H»

Therefore, for each N:

X

E^[L^(4)-(( I B(s) ds - l} W) N)]

X

.^ (♦(»„))((J= Itm e_[l;'(4>(u ))(( I 6(8) ds - aJ; w)an)]^ o o n I o

= 0

1 ^

Since L (<J)) > 0 a.s. ^ (comment before lemma 3.1), and since (15)
o o

-tgives I 3(s) ds - A^ W 0, it follows that
n

X

/ 3(s) ds - A^ W= 0
o

h -tSince / 3(s) ds - A W is increasing, this is sufficient to prove
Jo

(22). °
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Remark 9. This proof, adapted from Davis [7], is very similar to

proofs of the existence of optimal controls on diffusion processes

(see Fleming [13]), but has the advantage that it does not make

continuity assumptions on the value functions. An alternative

proof can be given along the lines of Benes [2] and Duncan—Varaiya

[10], if one assumes that (J)(z,t,U) is convex.

3.4. Markovian Jump Processes.

Suppose (x is a Markov process, ~
t t O t u

<J>(z,s,u(s),(d) = (|)(z,s,u(s),x _(a))) (<|> denotes 2 different functions

really), and c(z,s,u(s),a)) = c(z,s,u(s),x (o))). Then assumptions

i) to vi) of §2.4 are clearly satisfied. Moreover assume

c(z,t,u,x ) and <|)(z,t,u,x ) are uniformly continuous, on the
t

separable metric space U, fixed z,t,x^^. Since {L(u): u

J[I[ the class of Markov controls, is uniformly integrable, there must

exist a sequence of stopping time such that with i

2 12|u(s,u)) I ds 1 n a.s.

= 0 t > T
n

(and for notational simplicity take i()(z,t,0,x^_) = 0) then

L(u'̂ ) ^ L(u) in (fl,^).

By [23], VIII,2, lemma 1, there exists a sequence of discrete

control laws {u^j^}(discrete in sense of §2.4) such that

h'i" -<lim E„ / |u^" - u^f^l ds = 0
o

-55-



T

r" 2and 11m / |<{>(z,s,u^(s),x^_) - (J>(z,s,u^j^(s),Xg_) | ds = 0
o

by uniform continuity. Hence L(u^j^) ->• L(u) In probability, which

together with uniform Integrablllty and the L^-convergence theorem

In [22], p. 163, shows that

n,k-x»
L(u^^) + L(u) In

So, condition vlll) of §2.4 Is satisfied too. All the results of

§2.4 now apply to Markovlan jump processes as above.

Remark 1. The convergence argument above Is taken from Davls-Varalya [9]

The previous results can now be summarized In the following

optlmallty criterion. In agreement with most of the literature on

the optimization of Markov processes. It will be assumed that

transition densities exist (I.e. P^(B,t) Is absolutely continuous,

see remark 4 In §3.1).

Theorem 3.4. Assume Is a Markovlan jump process as

described above, and let

t

Then

P(B,t) =j f n*(dz,s,Xg_) • A(s,Xg_) ds
o •'B

A J(u) = A J(u). (24)

A Markovlan control law u* Is optimal If and only If there exist
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i) a constant J
o

ii) a function; a(t,x^_):I x z R such that

L.

y ds

ill) a family of functions n(z»t,x^_): Z x I x Z Z such that

t

E
o
yy n(z,s,Xg_) P^(dz,ds)| <"

o Z

which satisfy:

t, t
f f

0 a(s,x^_)d8 +y y n(z,s,Xg_) P*(dz,ds) =
o Z

Jf (25)

b) -a(t,x ) + I [n(z,t,x ) + • c(z,t,u,x )]
S— / t"~ o c—

Z

X[1-H)(z,t,u,x^_)] n*(dz,t,x^_)X(t,x^_) ^ 0 Vt ^ I Vu ^ U(26)

with equality holding for u*(t).

Proof. Immediate from corollary 3.3 and theorems 2.5 and 2.6,

except for the special form of ri(z,t,a)): this is obvious however

from the remark that m^ is an additive functional on the Markov
process (compare with Kunita-Watanabe, §5, [19])

Remark 2. a(t,x^^) can be identified as:
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a(t,x^_) = U(x^_,u) +J' n(z,t,x^_) [1-H»(z,t,u,x^_)]

Xn*(dz,t) A(t,x^_)

where A^U is the differential generator corresponding to the process

U(t,x^ ) on • No expression is known for n(z,t,x^_)

for a general jump process, unlike the Wiener process where it

can be identified with a gradient if U(t,x^_) is sufficiently smooth.

However, the inequality (26) can be rewritten as:

- A^ U(x^_,u) + / *c(z,t,u,x^_) [l+<{)(z,t,u,x^_)]

Xn*(dz,t,x^_) • X(t,x^_) ^ 0 (27)

with equality holding for u*(t). This equation will be used in the

next chapter to solve some examples.
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CHAPTER 4

APPLICATIONS

In this chapter, it will be shown how the results obtained in

Chapter 3, can be applied to some real problems. First, an explicit

form will be given for the increasing process, introduced in Chapter

2. This will then be used to prove some simple results on systems,

linear in the control. Finally a number of examples from varying

fields, will be modeled as jump processes, and explicit forms of the

optimal control derived.

1. Infinitesimal Generators.

In [12], Dynkin shows that for a wide class of functions f(x^),

where x^ is a Markov jump process, the following limit exists in

the weak topology on L^:

w• lim ^{f(x )-E[f(x ,, ) X]} =X[f(x )- / f(z) Tr(x ,dz)]h^ h t t+h t t y t

where X is the rate at which jumps occur, while iT(x,dz) is the

distribution of jumps starting from x, given a jump occurs. This

result can be rewritten for the time-dependent function U(t,x^), in

terms of P*(B,t)i

Proposition 4.1. Let P*(B,t) ~ f f i*q(<1z,s) • X(s) • ds
Jq *^B

Let U(t,z) ^ M, V z ^ Z; let U(t,z) be differentiable in t.

Then:
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w' lim i {U(t.Xj._) - [U(t+h,x^^j^_) IQ:*]
hr>-0

(1)

3U(t,x ) f
+ X(t) XJ [U(t,x^__)-U(t,z)][!+<})(z,t,u)]n (dz,t)

3t

with boundary condition U(t^,x^ _) =

Proof. [U(t+h,x^^j^_) |x^_]

= U(t+h,x^_) X (no jump in [t,t+h)lx^_)

+J U(t+h,z) X

+ f(M) X o(h)

jump from x^ to

(z,z+dz) in [t,t+h)

Let t ^ (T ,T then (G as in remark 4 of §3.1):
n' n+1^' ^ n

G (Z,[t,t+h))
•TJ^Cno jump In [t,t+h)|x^_) =1 - g

n

and

G^(dz,[t,t+h))
r^(l jump: x^ to (z,z+dz) in [t,t+h)|x^_) = q (z,[t,«))

which is 9?-^ measurable, and x^_ = x^ for the a)*s considered.
n n

By remark 4 of §3.1, the result is then Immediate. °

Consider now a jump process necessarily

Markovian. By cor. 2.4 of [4],

W(t,(i)) = W(t,x^ At*'̂ i'̂ ^* i=l,2,...).
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Denote:

W^(t,x,j, ,ji—1 j•••jn) ~ W(tjX,p y•••)x^ ,x,j, . jT^j.•«•».)
i Inn

Then on (o); T <t<T,-}we have:
n — n+1

W(t,(D) = W^(t,x^ ,T^; i=l,...,n).
i

The previous jump process can be made Markovian by imbedding

it into another process that has the whole past ~ *t

as state. The extension of proposition 4.1 is now obvious:

t

Theorem 4.1. Let P*(B,t) = / / n"(dz,s) X(s) ds
o "B

Let W(t,a)) ^ M, Vo) ^ fi. Let W(*,a)) be differentiable in t. Then

on the set w : T (oi) < t < T ,. (w)}
n — n+1

w•lim^W(t,w) - E^[W(t+h,a))|91^^]}

8W(t
d
^ +X(t.(0) y [Wj,(t,x^ i=l...,n) (2)

- Wn^l(t,XT ,z,T^,t; i=l,... ,n) ]n^(dz,t)

with boundary condition W(t,a)) = J^.

Remark 1. The boundedness condition on the value function could

probably be replaced by an integrability condition. Since boundedness

does not seem to pose a problem for the finite state examples

below, this has not been done.
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2. In the partial infonnation case the result is:

w• lim{W(u,t,a)) - E^[W(u,t+h,a)) 19 '̂̂ ] >

=- If (U.t.o)) +X(t.<>i) / [W (t,y ,T ) - V .y.T^.t)]
„ i 1

X [l+<|)(z,t,u)] I(,(z) f(z,t) y(dz,t)

where " denotes This is too complicated to be very useful.

Theorem 4«2. Let the conditions of theorem 4.1 and corollary 3.1 be

satisfied. Then the optimal control law u*(t,a)) can be found by

solving:

3[r'w(t,a.)] t rr
0=min [—25^ +r^X(t) /[-W^(t.xj .T^) + .z.T^t)

uQJ !_:« i 1

, + c(t,z,u)] [l+(|>(t,z,u)] n*(dz,t) (3)

Proof. Immediate by using remark 2 of §3.4 (which holds for non-

Markovian processes too). °

2. Bang-Bang Control.

It is well known that, in deterministic optimal control, for

a cost linear in the control, the optimal control is bang-bang, i.e.

takes a finite number of values only, and jumps from one of these

values to another, a finite number of times. We now prove a similar

result in the stochastic case.
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Theorem 4,2. Let U be a compact subset of defined by

A • u + B > 0, where A, B ^ Let either c(z,t,u,a)) or

<I)(z,t,u,u)) be of the form A^(z,t,w) • u + B^(z, t,u)) (i.e. affine

function of u) and the other (c or <{>) independent of u. Then the

optimal control law u*(t,u)) jumps a finite number of times (in every

finite time interval) between the vertices of U (finite in number).

Proof. The criterion of theorem 4.2 takes the form

0 = min [f(z,t,U(t,x ),a)) x u + g(z,t,U(t,x ),u))] (5)
u^U

This is a linear programming problem, so the optimal values of u

lie on one of the vertices of U. ^

Remark 1. If the cost is of the form

t

E^[ J' (A(s) u+B(s)) ds +J]
o

then criterion (3) is transformed to:

3[r' W(t,(D)] ^ r X
0 = min ( X(t) / (-W^ + n^(dz,t)

n6u

+ A(t) u + B]

Hence, the optimal control law is bang-bang, if both c and (j) are affine

in u.

2. If c and <|) are more complicated functions of u, it may still

be possible to solve (5) for u, as a function of U(t,x^_) and then
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solve the highly non-linear partial differential equation. Then

an optimal control law will be constant, equal to the value of a

vertex, over some intervals, but can change continuously between

those intervals.

3. Examples

a. The simplest case imaginable is controlling the rate of a point

process » with rate 1. The decision-maker can change the

rate to any value u ^ [a,b], b > a ^ 0. Since the process is

Markovian under and assuming is observed, the control u only

has to depend on t and the present value of the jump process.

Observing that <{>(t,u) = u - 1, the optimality criterion can be

written as:

3U(t,N )
0 = min [ ^ + u(U(t,N^ +1) - U(t,N )) + c(t,u,N )] (6)

a<u<b '

together with U(t£,N ) = )r tf I tf

One possible cost structure suggested by D, Snyder, related to

minimizing damage to a sample in electron microscopy, is:

max r (N^ k) =max E (If„ .

Then c(t,u,N^_) = 0 and

The optimal control law is

u*(t) = b if U(t,N^_+l) > U(t,N^_)

u*(t) = a if U(t,N^_+l < U(t,N^_).
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Note that (6) has to be maximized for this application. Equation

(6) becomes:

au(t,N )
0 = —— + b • max (U(t,N^_+l) - U(t,N^_),0)

+ a • min (U(t,N^_+l) - U(t,N^_),0)

which can easily be solved starting from

U(t.,N. ) = 1 if N = k
^ ^f- f

= 0 otherwise.

Remark 1. Suppose there were a second, independent Poisson process

M which can neither be observed nor controlled, and one wants to
t

maximize (N^ + = k). The problem now is one with partial

information. However because of the independence assumed everything

said above still works, if one replaces the final condition by:

-t t^-^U(tf.N ) = •e ^• -(frilT a)

= 0 otherwise.

This follows from

Note that this analysis fails as soon as can either be controlled

or observed, or is not independent of N^, since then the expression

replacing (7) depends explicitly on the control law u. Therefore, it seems
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that only an iterative solution can be hoped for. This illustrates

some of the problems of partial information optimization.

b. queues; An interesting class of problems is the optimization

of networks of queues, as occur in traffic control, management of a

time-sharing computer, etc. Only the simplest possible cases will

be considered here.

Consider the following simple queue: on a probability space

are defined 2 independent Poisson processes (rate X)

and (rate 1), representing the arrivals up to time t, and the

potential departures up to time t. The queue-length can then be

expressed by:

^t "^t "y ^

since no departure is possible if the system is empty. Then is

a jump process, having jumps of size +1 with rate 1, jumps of size -1

with rate 1 if >0, with rate 0 if =0. This is a Markovian
t- t-

jump process.

We now suppose the service rate of this system can be changed

from 1 to any integer u = 0,1,...,N, while the arrival rate is

unchanged. Then ((>j^(t,u) = 0, <I>2(t,u,Q^_) = u - 1 if Q^_ > 0. If

J(u) = E [I c(s,u,Q ) ds + f(Q^ )] then the optimum is obtained by:

3U(t,Q. )
0 = min [c(t,u,Q ) + + X(U(t,Q _+l) - U(t.Q ))

fK[

•*" u • I{Q >0}
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with U(t.,Q. ) = f(Q. ).
f

If c(t,u,Q^ ) = a • u + (a>0) and f(Q^. ) = 0 then the

optimal solution is very easy between 0 and t^ - a use

u*(t) = N if > 0

u*(t) = 0 if Q^_ = 0

and in (t^-a,t^]: u*(t) = 0 always. This corresponds to

(t.-t)
U(t,Q^_) = (t^-t) +X—2 for.t^ (t-a,t^).

It is not necessary to find U(t,Q^_) on [0,t^-a], since U(t,Q^_)

- U(t,Q^_-l) is clearly decreasing with increasing time, and hence

larger than a throughout the interval.

A slightly more complicated problem is that of choosing between

serving one of 2 queues (e.g. traffic lights at an intersection).

1 2
Each of the queues and are described as above, and the control

values (u^,U2) possible are (1,0) and (0,1). Then the optimality

criterion becomes:

0 =

+ X^(U(t,Q

+ XjCUCt.Q

+ Uj^(U(t,Q

+ UjCUCt.Q

1 ^2

- U(t,Q

- U(t,Q

- 0(t.Q
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with U(t-,Q]; ,Q^ ) =0

Assuming c is independent of the control value, one gets u*(t)=(l,0)

if

(U(t,Qj: -1,qJ ) - U(t,Qj:_,Q^^)) • I .
^ i: c > 0

<(U(t,Qj_,Q^__-l) - U(t,Qj_,Q^_)) . I 2
Qt- > 0

c. Opt'tn'al investment. An example of a jump process with a large

(but finite) number of types of jumps, can be obtained by considering

the price Tr^(t) of some stocks (i=l,...,n). We assume each of the

prices Tr^(t) can change by jumps over a fraction , j=l,... ,m^ and

^ -1 Vi, j, (i.e. Trj|̂ (T+) = Tr^(T-) + a^j it^(T-)) occurring at

random time T with rate .«(t). Then, according to Merton [23],
ij ijx-

if somebody has wealth W(t) ( 2. ® always), and has invested a fraction

w^(t) of this in stock i, his wealth will also be a jump process,

described by:

n dir. (t) n
dW^ - E w^(t) =1 (8)

This is a jump process that has jumps of size a^jW^(t) • W^

with rate A^j(t). Here, as before, the probability measure depends

on the choice of the fractions w^(t), which therefore are called the

controls. In this form, Varaiya [35] has shown that the problem

max E J(W ), with J(W ) the utility of the wealth at
Olw (t)<l " f f
Ew^(t)=l
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the final time t^, can be solved by a simple non-dynamical optimi

zation.

By using the results of Chapter 2 it is possible to solve a

slightly more general problem: suppose the investor also has a wage

income y^ • d t in [t,t,+dt) (beyond his control) and can consume

* dt of his wealth, in [t,t+dt), where ^ chosen

freely, and is thus a new control variable. Then:

n diT.(t)

dw^ = (y^ - c^) dt +

We want to maximize

\ (J J(t,C^) dt +Jj(W|. )]
O

where J and represent the utility of consumption at t, resp. of

the final wealth. Now the probability measure is determined by

the control variable w.(t), i=l,...,n and C . In the present case
J.

W is no longer a jump process, because of / (y^-Cg)ds. However if
Jo

we assume (t) to depend only on the present value then

(W^CJ'̂ ,^7^) will be Markovian any fixed choice of w^(t) and
C^). It is then easy to calculate the infinitesimal generator of

the value function

^f
U(t,W. ) = inf E [/ J(s,Cj ds + J.CW. )|W ]

w.(t),C^ ® t t^ t
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as

(U{t.Wj._) - E^(n(t+h.W^^jj_)|W|._)]

3U(t,W^ ) 3U(t.W^ )

at ^

n i

+ S S [U(t,W ) - u(t,(l+w. (t)a .)w )]
i=l j=l ^ 1 ij t

Remark 4. The above calculation can be extended to the case where

Tr^(t), 1=1,...,n includes a Brownian motion component, stochastically

independent of the jumps. See Merton [23].

Using criterion 2.3, the optimality criterion for the system

described above becomes:

9U(t,W ) 9U(t,W )

° ° 3t 3W
t—

w^(t)^0
(t)=l

n i

-EE ^.(t)(n(t,w ) - u(t,(i+w. (t)o )w^ ))]1=1 j=l ^ 1 U C-

wlth U(t,,W^ ) •= J,(W^ )
^ ^f- ^f
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Assume y. = 0 and J(t,C^) = — , J^CW^ ) ®a • w]^ /y, with•^t t Y f^ t^ t^

a 0 and y ^ (0,1], then one gets by inspection the following

solution of (10).

(10)



U(t,W|._) = £(t) • <-

ic

and w^(t) is obtained by the maximization:

n i

w (t)iO i=l j=l Y t- 1 10
n

Z w (t)=l
i=l

1-
Here f(t) = [(l+a-y) exp(A • —-—)+ y - 1] ^

*This is a very easy structure for the optimum: w^(t) is the same
*as in the simple case treated in [35], while is proportional to

W^_, the constant of proportionality being a predetermined function

of time.

It should be noted that this simple solution depends very

heavily on the assumptions made about the utility functions (it can
(a(t)C +b(t))^

be extended to J(t,C^) = and J(t,C^) = jln(a(t)C^ + b(t))

with having the same form) and on the assumption that there is no

wage income. In all other cases it seems that (10) will be more

useful as a starting point for approximations.

Remark 5. One could try to model consumption and wage income as

jump processes. However it is difficult then to find a reasonable

form for the utility of consumption. Moreover, it would then be

reasonable to let jumps occur at fixed times, which would violate
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the assumption of total inaccessibility of the jump times.

d. Modeling problems; As mentioned in Chapter 2-3 it may be

necessary to choose a complicated probability measure to make

all physically realizable or approximately realizable absolutely

continuous with respect to A simple example is given by

inventory problems (for a review, see Scarf [28]). Suppose an

inventory can contain ,0,1,...,N items of one product.

The number of items decreases by 1 at random times T^, with a given

interarrival distribution. At some points in time S^, it is decided

to increase the inventory by some number items. Those arrive s

time units after the decision is made, s also having a given

distribution. The problem then is:

)mln E [ / L(T,X^)dT + f(K ) + JiX )]a J T 1=1 ^

The control here consists in choosing the times S^ and the amounts

to order. Note that £ 0 is allowed because orders keep arriving

even if no item is available. This situation should be avoided,

therefore make L(s,X ) very large for negative X .
s s

Let X take all integer values £ N. If x = k, then it can
t t

jump, under the measure 1° values k-l,k+l,...,N with rate 1 for

each jump. Under measure all but one of those jumps, have rate 0

(i.e. = -1). The one jump allowed with rate 1, under is

from k to k-1 if one decides not to order ((i>j^ from

X . to X^ , + K. ; if oAe decided to order Kj items at time S.,
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this jump will occur with rate p^Cs) (where p^(s) is the density of

s, the time the order takes to arrive), at each time + s. Then

Ky =' p (s) - 1.
S^+^S^+s + K

The control problem then takes the form described in §2 and 3,

if p^(s) > 0, Vs ^ 0. However it is usually reasonable to assume

that s only takes a discrete number of values (say arrive 1 or 2 or

3 days after ordering). Then the jump times of are not all

totally inaccessible; therefore it is not known whether the theory

of §3 applies to this case. Also, no case has been found where the

optimality criteria can be analytically solved or where the simple

(s,S)-ordering policy (see Scarf [28]) can be rederived.

Another class of problems, which can be modeled as an optimi

zation of the form considered in §2, are optimal stopping problems.

Then, let <|)(t,T(a))) = - ^{t>T(a))} stopping time,

which now plays the role of a control. The problem then is, to

find a t((o) such that it maximizes;

J(T(a)),u)).

Application of theorem 2.3 unfortunately leads to a partial

differential-difference equation with moving boundary, which is

difficult to solve.
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CHAPTER 5

CONCLUSION

In this thesis a fairly general form of the stochastic optimal

control problem is discussed. It is shown that the mathematical

framework chosen (absolutely continuous changes of the probability

measure) leads to some abstract necessary asd sufficient conditions

for optimality. In the case of a jump process, these conditions are

simple enough, to be used in deriving some properties of the optimal

control, even though they do not give a comg^utationally feasible

algorithm. Therefore, the thesis can be coti^idered as a study on

the application of jump processes.
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