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CHAPTER 1

INTRODUCTION

The results presented here deal with the optimization of
dynamical systems with random perturbations. First, a matﬁematical
model is developed, where we consider a family of stochastic processes,
with the same sample paths but different probability distributioﬁs.
These distributions depend on actions taken by a decision-maker, at
different points in time, using some information about the past of
the précess. One can therefore say that the family of stochastic

" that is rules for choosing a

processes is indexed by "control laws,
certain action, depending on time and available information. With
each stochastic process, there also corresponds a cost-function,

parameterized by the same control 1aw,vand which allows us to define

an optimal control law. Afterwards this mathematical model will be

shown to &ield significant theorems, for more specific stochastic
processes.

This model is different from the approach usually taken for
optimization of Markov processes, as described in'the review paper
by Fleming [13]. There, a probability space (Q,?}}i’) is given
a priori, and different processes have different sample paths defined
by having control-dependent coefficients in some differentiallequation.
This causes a number of problems. First, if the available observations

., ‘-?o) defined by

depend on the stochastic process (xt,?lt

dxt = f(t,xs,qit,u(t);n(t)) , ‘ 1)

where n(t) is the perturbation defined a priori, then a o-field

1ike§q:Z = o(g(xs),sgp) will depend on the control law u chosen,
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making variational analysis very difficult. Secondly, to derive
any criterion for optimality, one needs existence of a solution to
(1), which imposes strong continuity conditions on f. Since
optimal control laws are often discontinuous (e.g. bang-bang control)
this is unacceptable for optimal control. And third, while (1)
may be reinterpreted for discontinuous processes X, (see for
example Skorokhod [29]), this poses some mathematical problems.

| Quite a different description has been used by Blackwell [3],
Ross [27] among others, in p;oblems where (xt,QI;fJD) is a Markov
(or semi-Markov) chain. There it is assumed that at each time an
action is taken which specifies the transition probabilities, and
the éost associated with each type of jumps. If at each time only
a finite number of actions are possible, this leads to a dynamic
programming equation, with very nice properties. However, when the
action space is a continuum, more care must be taken. Then relations
between probability measures must be specified, which requires
knowledge of the Radon-Nikodym derivatives.

One case where this derivative is known is for translations in

Wiener space (Girsanov [17]). This led Stroock-Varadhan [31] to
the folloﬁing definition of the solution of an Ito differential

equation:

X, =X +5 f(x,s,u) ds + w, (2)
o

If (xt,QJ;,CIg) is a Wiener process, then under the measure Clﬁ,

4\'(



t ' t
u 1 2
-EC-—D—O— = exp S f(x,s,u) dv_ -3 j £7(x,s,u) ds)

(o] (o]

A(wt,QJ;,CFL) is a Brownian motion, and (xt,§1;,CI%) is a solution

to the differential equation (2). This solution exists without the
objectionable continuity conditions on f, and since the sample paths
of x, are unchanged the partial information G-fieldqzrz, will also be
unchanged if f depends on some parameter u. Thisiresult was used
almost immediately by Bene¥, [1], [2], Duncan-Varaiya [10] to prove
existence of an optimal solution if f(xs,s,u) depends on a control

law u, which also determines a cost J(u).

Davis-Varaiya [8], also used it to derive the principle of
optim#litz of dynamic programming. This takes roughly the following
form. The minimal expected cost after t is smaller than the expected
value, given the information at time t, of the.cost of using any
control law in [t,t+h) and thereafter returning to an optimal control
law. Using supermartingale decomposition theorems it is possible
to transform this into a necessary and sufficient condition for
optimality.

The model déscribed above is 6bviouély a special case of the
" model described in the first paragraph. It turns out consequently,
that gll the results mentioned‘so far, will hold for arbitrary
processes. This is shown in Chapter 2, except for the existence
resﬁlt which requires a more careful derivation. |

The results in §2 remain rather abstract, because it is difficult

, ap
to relate the Radon-Nikodym derivative Eﬁ7§£ ‘with the dynamics of
' o
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the system. From the results of van Schuppen-Wong [34] it follows
that this will be possible if all martingales on (QJZ,CFL) can be
represented as stochastic integrals with respect to some basic
process. In [4] it has been shown that this holds for o-fields ?3;
generated by processes that are piecewise constant, and have finitely
many totally inaccessible jumps, of different types, in a finite
interval. This includes many processes of practical interest, such
‘as point processes, branching processes, Margov chains, queueing

processes. This general class has been called jump processes. For

all properties on jump processes, used hereafter, the reader is
referred to [4] and [5].
For these jump processes, it is now possible, just as in the
- Brownian motion case, to bring the necessary and sufficient condition
for optimality into the form of a Hamilton-Jacobi equation. This
can be summarized as follows: there exists a function H(x,p,t,u),
the Hamiltonian, depending on the observations about the past of X.»
on a "costate" Pes which isgquvadapted:and can depend on u and on the
"dynamics" of the process. Then, u*(t,w) is optimal if and only if
min H(x,p,t,u) = H(x,p,t,u*) = 0.
u€U
Unfortunately, the result is not a Pontryagin maximum principle
because the costate (parameter) p does not satisfy a known equation.
This, togethef with the special cases of complete information and
of a Markov process, is discussed in Chapter 3.
Finally, in Chapter 4, it will be shown how the previous results

‘can be applied to practical problems. After a few theorems, useful

e
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for computational purposes, attention is given to the problem of
modeling a system as a jump process. First of all, a good probability
measure ciz has to be chosen on (Q,§;3. It has to be sufficiently
complicated, so that all reasonable probability measures CT; are
absolutely continuous with respect to it, while at the same time it
has to be mathematically tractable.‘ Also the way in which the control
law u influences the measure Cla'and the cost function J(u) has to

be described as simple as possible.

It will Be obvious from §4 that only for jump processes can one
hope to get an explicit, or evén approximate, optimal control law,
sinqe the criteria become much simpler. In [5], it has also been
ovserved that a number of detection and estimation problems can be
solved for jump processes. In fact, all the results of van Schuppen
[33] for Poisson processes, extend to jump processes. This indicates
~ the usefulness of jump processes in the study of discontinuous
stochastic processes.

This paper is a continuation of the work reported iﬁ‘[dl,v[SI.
The reader is therefore referred to these reports fof all the theory
on jump processes. In particular, the reader unfamiliar with the work
.of Meyer on stochastic integration,’[26], can find a summary of this
in §2 of {5]. Some of the notation used in §2-3 will be introduced

below:

Notation~Conventions

A stochastic process*(xt,gl;fj)), on a given probability space
(Q,?}?q)) will always be assumed right-continuous. For submartingales

{Xt}, such that Ext is right-continuous, one can always choose such

-5-



a version anyway.

A uniformly integrable martingale ge&llgqun is a martin-—-

gale such the sup Elmtl < ®, and m, = 0 a.s. SimilarlysM2 (CJ;,CP)
t .
denotes (uniformly) square integrable martingales; and J'l/lioc (ﬂt,CP),

,/Mi oc (?;;,Cp) require the boundedness condition only up to stopping
times 8 , 8 + ®ags n + &,
n’ "n

The family J4+(’ﬂ»’t,cp) contains all non-decreasing processes
a,» such that a, = 0 and szp E a, < o, that is processes of integrable
variation. u‘l =u4+ -(_;4+ and (‘Aloc is as usual obtained by a stopping
time. '

Also Ll(A,(l,u) = {x(a): A~ R, s |x(a)|u(da) < =} are called

A

integrable functions, for different measurable space (A,(1). This

should not be confused with LY (Q¥) = L} (®®) = L1 (%)

={f|f: zxix@ + R, £ predictable

Ef I |£(z,t) |P(dz,dt) < =}
zZ°1

Here predictable means that for fixed z € Z, f(z,*,*):I x @ ~ R is
measurable with respect to the o-field Cp generated by the left-

continuous real-valued functions g(tsw) on I x Q.

1%
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CHAPTER 2
OPTIMALITY CRITERIA: GENERAL CASE

In this section optimality criteria will be derived for a
system wherevthe control acts through a change of thé probability
“measure and of the cost. The structure of the underlying stochastic
process is completely unspecified. The price.éne pays for this
generality, is that all the criteria involve a process, defined
through a functional minimization, as difficult as the original

probiem.

2.1. . Mathematical framework

The following stochastic processes.are defined over a closed
subset I of the real line, usually [0,1] or [0,«] or the natural
numbers. All the results will be written in the notation of
continﬁous time (integrals, derivatives). Since the discrete time
results are simpler in most cases,‘tﬁe required changes are obvious

On the probability space (QJ;I:CFL) a stochastic process
(xt’QJ;’CFL)’ over I, is given. To simplify the notation, assume
the initial time is 0, and %"0 = {¢,0}, the trivial o-field. The
control action consists in changing this process, to a different
process (xt,Q;’,CFL), having the same sample paths, but a different
probébility measure Cph, absolutely continuous with respect to
CPB. Note that the requirement of absolutely continuity is very
restrictive when I = [0,»). With each such control action is
assoclated a cost J(u) > 0, which ié to be minimized. Th;s notation
requires that there exists one single parameter u, the control law,

which determines the probability measureq)u and the cost J(u).
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The following assumptions will be made about the control law
u. There is a given increasing family {CJ-’{} of sub—o—élgebras of
C.Ttﬁf}’{ Cc ’Jt, t € I). This expresses the fact that the decision-
maker does not have all the information ‘th, available. Hence,
the control law u is a function u(t,w): I x Q@ + U, with U a fixed
set of control values; this function is assumed qz—predictable.
u(t,w) is defined without reference to a probability me;sure. It
can then be used to define Cpu, which makes (u(t),qt,cpu) a stochastic
process on'(Q,c(:I;Cpu). It is always assumed that if A eqt then
CDu (A) depends only on the control law restricted to the interval

[0,t]. The class of admissible control laws,Cu, contains all

’;,(’{—predictable functions u : I x @ + U, such that CPu, << Cpo and

Cpu(Q) = 1. Throughout this paper the following assumption is made.

u(s)

Let u,v EC“, then (u,t,v) GCU where (u,t,v) (s){ 8
v(s) s

The following notation will also we used:

aP

L(u) = &?Fu , the Radon-Nikodym derivative and L' (u) = E_[L(u)|FF;]
o

Then (Lg (u),qt,‘:po) is a positive uniformly integable martingale

M &P

}
The influence of the control law u on the cost J (u) will be

described as follows:

J(u) = E“[j rz-c(s,u(s))dAu(s) + rcf’-'rf]' | )
I

lE denotes integration over @o. Similarly Eu will be used for
ingegration over u



' t
E [L(u) (Irj-c(s,u(s))-dA“(s) + rof-'rf)]
: I

or J: C]j >R

+
Here tf denotes the final time of the set I(usually 1 or «), and
the following functions are given:

(1) instantaneous cost function c(t,u,w) : I X U x @ > R

+
which for each fixed u, is ?;;-adapted andCI;I Gbgg?measurable on

IxQ 6131 the Borel sets on I). This is a measure of the increase
in cost in an infinitesimal time interval [t,t+At), given u éfll
takes the value u(t,w) = u and depending on the ﬁast of the proces
(Note that u is used for both the control law and its present value.
The exact meaning will always be obvious from the context).

(ii) an ;1;-adapted increasing process Ap(t,w), which can be
 continuous or discontinuous, allowiﬁg the Stieltjes in;egral in (1)
to be discontinuous. The most useful processes are:

a) Ap(t) = t; whenever Ap(s) is absolutely continuous
with respect to Lebesgues measure, this case can be obtained.

b) Ap(t) = E:l{tzxi}’ a counting process (Ti is an.g;;-
stopping time); here the cost increases only at certain random points
in time.

c) A"(t) is the predictable 1ncreasing.process associated
with the counting process in b), and which can‘replace the counting
prodess, if c(t,u,w) is predictable, since the values of the integrals
are equal (see Meyer [26]).

(111) discounting rate ro(w) : I x Ix @> R , s <t which for
each s is ?};

t
integrable (Eors < K).

-adapted, jointly(I}I 63‘;; measurable and uniformly



. 3_..2_73
Moreover: r, r rt2 a.s. Gq)o) for t1 j.tz §_t3

ft =1 a.s. GI{J

This function expresses the fact that future costs are weighed

differently (usually less heavily) than present costs. Also, if L

«.,

I= Et+, a discounting rate rz <1 for all t > s, is necessar& to
make the total cost finite.

(iv) final cost Jf(w) : Q- R.+, an g;?measurable fuﬁction.
This measures the cost incrrred at or after the final time tf.
If I = [0,») it is logical to take Jf = 0, since er = 0 anyway.
The optimization problem considered here, is: find a control law
u* € Q) such that

Ju*) = Jx = /A J(u) (2)
=

where J%, the infimum of {J(u)|u eqQly is well defined since J(u) > 0.

Remarks: 1. A random time interval [0,T] C I, with T an ?;;-stopping
time, can be considered by making c(t,u,w) = 0, t > T(w) or Ap(t,w)

= AP(T(w),w),'t > T(w). If the stopping time T is independent of the

processes 1nf1uencgd by the control, a discounting rate rg = CPL(TZF)

also transforms the stopped problem into an infinite time problem.

2. The discounting rate r:(w) is not allowed to depend
explicitly on the control law u. In an economic example this means :
that the decision-maker cannot decide on the interest rates. However
the distribution of r:(w) depends on CFL, and can thus be influenced.

3. Except for the special results with complete information -
or Markovian assumptions, the final cost Jf can de?end explicitly on

the control law u Ef}l.
-10-



4. The generalization, where the instantﬁaneoué cost
¢(t,u,w) depends on the control law u, used in [o,t] can be
ing:luded by letting u(t;w) € Ut’ a time-dependent set of control
values (functions [o,t] - U here). This would only burden the

notation.

2.2. Principle of optimality

From now on the classq,l of admissible control laws, will be
further restricted: it contains the previously defined control

laws u, such that

s p u
EO{L(u)[j rofc(s,u(s))dA (s) + Jf]} < @
I

We assume that this new class CU is non-empty (otherwise the
pfoblem is trivial J(u) = <,¥u). Then for all u,v Gfu the
following processes are well-defined and integrable:

te

t
¢(u,v,t) = EO[L(u,t,v)‘ (s- ri-c(s,v)dAv(s) + rff.Jf) g{]
. v

erleF.Py M

e

t
Y(u,v,t) = Eu,t,vU r:'c(s,v)dAv(s) + rtfdfgz]
t
' e L' @FLP) | )
related by

‘¢(u,v,t)

(S )

¥ (u,v, t) =

-11-



Remark 1: It is implicitly assumed here that CFL, restricted to
QJi, depends only on the values of the control law on the interval
[0,¢], Hence E [L(u,t,v) [F] = E_[L° ) [FV] = £ (L) £FTI.
Therefore the notation Li( 5;rZ,CFL) makes sense . This result will
be used repeatedly in the following definitions, and in lemma 2.1
and theorem 2.1.

The value of ¢ (u,v,t) (resp. Y(u,v,t) is the expected
unnormalized (resp. normalized) future cost, as evaluated at time
t, when control law u is used up to time t, and control law v is
| used thereafter. To evaluate the expected cost after time t,
evaluated at 0, given the information at t, one multiplies ¢ (u,v,t)
(resp. Y(u,v,t) by rg. Since Ll(QfEFZ,CF%) is a complete lattice
with the natural partial ordering for real-valued functions ([11],

IV-8-22), the following infima exist:

vi,t) = A eeu,v,t) €L @F,P)H | (5)
Ve]lt 1 t o

w(wt) = A v, = —SE e @FT,PHy (6
<, 7, 1 ()
Remark 2=‘C11t is obtained from‘ﬂl by restricting the domain I, in
the definition of the control laws, to [t,tf].

V(u,t) is the unnormalized value function, while W(u,t) is

the normalized value function. They represent the lowest possible

cost after the present time t, ;given the present information, and

depending on the control law u that has been used in the past.

Definition (see [8]1). The class Cll is called‘?fi—relatively completé

with respect to the unnormalized (resp. normalized) value function

-12-
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B

if for all u Ecll, all £t € I, all € > 0, there exists a v ECllt

such that:

#(u,v,t) < V(u,t) + ¢ a.s.(CpL)

(resp. Y(u,v,t) < W(u,t) + ¢ a.s.(ct)u)

Lemma 2.1: Cll isczrz-relatively complete w.r.t. both V(u,t) and

W(w,t), under the previously made assumptions.

proof: For V(u,t) see Davis-Varaiya [8], lemma 3.1
For W(u,t) the same proof can be used, since remark 1

eCcyy: = N
above implies that for any Mva qt’ Cpu,t’va (Mva) Cpu(Mva)

The following theorem gives necessary and sufficient conditions
for optimality, assuming V(u,t) (resp. W(u,t)) is known. The result
is in the form of a "dynamic programming" pfinciple of optimality.
Checking the conditions of the theorem directly however requirés

a minimization fﬁjt¢(u,v,t), as difficult as the original problem.
vE.

However the theorem can be used to prove better criteria later om.

Theorem 2.1: (Principle of optimality)

a) Forall t €T, allh >0 (s.t. t +h € 1), vu €U:

t+h
W(u,t) j_Eu(S ri-c(s,u(s))dAP(s)FErZ)+ Eu(rz+h.w(u;t+h)f;rZ) (7a)

t
W(u,tg) = E (g quf) | | 7%y

A control law u GCQJ is optimal if and only if equality holds in (7a)

b) The same statements hold, if (7a), (8a) are replaced by:

-13-



t+h
V(u,t) f.Eo [L(u)g . ri.c(s,u(s))dAp(s)ﬁgaj

t
t+h
+ E [r] - V(u,t+h) IQTZ] (8a)
V(u,tp) = E [Lu) I [TF] ] (8b)
£

proof: The equalities (8a), (8b) are obvious from the definitions
(3) - (6). The rest of the proof will be given in 4 steps.

i) (7a) is derived as follows: using (4) and (6)
_ t+h
W(u,t) < EuH rz-c(s,u(s))dA“(ngZ]
t

+ /\u Eu’t_'_h’v[rz"'hw(u,v,ta-h)gz]
W

It remains to prove that the infimum and conditional expectation

operators can be interchanged, i.e.

B e Pyt,v,em) [J01 = B0 A x5 yu,v, o) [

v.‘El’(t-l"h . E l‘t:'!'h 4 (9)

The inequality > in (9) is obvious since for all v'€<1‘t+h:

. t+h t+h -
: Eu[rt‘ w(u,v,t+h)m] _E r, Y (u,v,t+h) ITH]

[
"= U

The inequality < follows from the relative completeness, i.e. ¥¢ > 0

] ¢ ecut+h such that:

w(u,ve,t+h) < A Y(u,v,t+h) + ¢
Ve U4

or AE [rMy(u,vs,em) ) < B [rE™ A v, e 1 + e
eso @t t b Velk#h

~1h-

o
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The proof of (7b) is analogous.
ii) We now prove that u ECJX isvoptimal if and only if for all
t€I: V(u,t) = ¢(u,u,t) a.s. Gq)o)

Y(u,u,t) a.s. (CPu)

(resp. W(u,t)

If equality holds, then applying it at t = 0 shows optimality.

' Conversely, if u is optimal, then applying definition (6) gives

W(u,0) = J* = E“U ri’C(s,u(O))dAu(S)] + E [¥(u,u,t)]
0
while applying (7a) for t = 0, h = t§ gives
t

W(u,0) < Eu[s rj.c(s,u(s))dA“(s)] + E [W(u,t)]
0 :

Substracting gives Eu[w(u,u,t) - W(u,t)] <0
From definition (6) ¥(u,u,t) - W(u,t) is a positive random variable,
hence Y (u,u,t) = W(u,t) a.s. quu)

ii1) If u is optimal then equality in (7b) follows from ii) as

follows:
V(u,t) = ¢(u,u,t)

) t+h

= E_ LL(u) g ri.c(s,ucs))dA“gs)%’{] + Eo[rz+h¢(u,u,t+h) E;f’{]

. .

_ t+h |

= E_ L:'-h(u)s rf-c(sm(s))dA“(s)EH]
N t

+ Eo[rz+h-V(u,t-i-tl) 37

The proof of (7a) is even easier.

-15-



iv) If equality holds in (7b) then take t = 0, h = tf, ‘to get

V(u,0) = J* EO[L(u)qrf;-c(s,u(S))dA“(S) + V(u,tf))].

I

t
EO[L(u) (Irgac(s,u(s))dAu(s) + rofJf)]
I

by (8b).' Hence ¢ (u,u,0) = J* and u is optimal. The normalized

value function can be used in the same way. n
Corollary 2.1. For all u € Q) the process
, ¢ _
rgoV(u,t) + EO[L(u)s rzoc(s,u(s))dAu(s) F;Q’] (10a)
0
t
(resp. rz-w(u,t) + Eu[s. r:-c(s,u(s))dAu(s) F(T{] (10b)
0

is a CPO (resp. C'Pu) uniformly integrable sub-martingai.é. Any u €QJ

is optimal if and only if the processes defined in (10a), (10b) are

martingales.

t
proof: Add EO[L(u)s ri-c(s,u(s))dAu(s) |%]
0

t .
(resp. E“[S rz-c(s,u(s))dAu(s) g{l to both sides of (7a)
0 )

(resp (7b)), after multiplying by rgo
o .
Since E | L(u) Irs-c(s,u(s))dAu(S) +r f-J ﬁ}ry EJM 1(?}"’,5())
- o Lo o Y'Yt t* ‘o

. t 1
(resp. Eu[j‘lric (s,u(s))da’(s) + -rofJf &T{] € Ju (qf:’cpo)

=

the following processes will be supermartingales:

-16-.
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[[3

t

£
t Y
v (u,t) = EO[L(u)(f roec(s,u(s))da’(s) + rofJf)!gt;:’ZJ - T0eV(u,t)
t
(11a)

= 50 (u,u,8) - V,0) | |
. tf t
w(u,t) = Eu[f r:.c(s,u(s))dAu(s) + rofJfIQ’{] - rgow(u,t) o

. .

(11b)

r§(¢(u,u,t) - W(u,t))

Corollary 2.2: For all u 6511, the process v(u,t) (resp. w(u,t))

is a potential with respect to the o—fields(;rz, under the measure
~q)o(resp.<1)u). ur € is optimal if and only if v(u*,t) = 0 a.s.

(tFL) resp. w(u*,t) = 0 a.s. (CFL)

Remarks 3: Theorem 2.1 summarizes andlextends the results of Davis-
Varaiya [8, théorem 3.1 and 4.1].

4: Corollary 2.2 is implicit in the methods of proof used
in Kushner [20], for Markov processes. Also for a Markov process,
and b& Meyer's supermartingale decomposition theorem'pfébably.for
general processes, the potentials v(u,t) and w(u,ﬁ) could be used as
Lyapunov functions to prove stabilit&, if the assumption at the‘
beginning of this paragraph had not been made. This extension, to
allow control laws u that make the process unstable, has not been
pursued here. |

5. The submartingales defined in (10a) and (10b) have an
interesting heuristic interpretation. Their §a1ue is the expected
total cost, evaluated with the infomation gg availablé at time.t,
given control law u was used up to t, and an optimal control law is

used afterwards. The expected value will increase if the non-optimal
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control law u is used for a longer time, explaining the submartingale.
However if u is optimal this expected value will remain constant

on the average, leading to the martingale property.

6: The processes v(u,t) r§(¢(u,u,t) - V(u,t))

and w(u,t) = ro(P(u,u,t) - W(u,t))
express the loss incurred by using u after time t, compared with the
optimal control. |
7: Theorem 2.1 can be rederived from corollary 2.1. Hence,

the optional sampling theorem implies that t in (7a), (7b) can be
replaced by any qz-stopping time.

Since the instantaneous cost c(t,u) is always non-negative, it
follows that for an optimal control law u, V(u,t) (resp. W(u,t))
should decrease in expected value, i.e. be a supermartingale. This

also follows from (7a), (7b) with equality. This suggests the

following definition, first used by Davis-Varaiya [8].

Definition: A control law u GC]J is value-decfeasing if rz- V(u,t)

is anqz-supermartingale under Cpo. Then r;-W(u,t) is anqz-
supermartingale under CI%u’

To make the optimization éroblem non-trivial we reduce the class

of admissible control laws further to include value-decreasing control
laws only. If there exists an optimal control u*, it will be»incll
still. |

By the supermartingale decomposition theorem of Meyer ([24],VII

T 29) we therefore can assure the existence of a predictable

increasing, uniformly integrable process AEV(u) eng+G§;Z,CFL)
t + ~y '

(resp. AOW(U) eu‘t gt’cpu)

-18-
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n

(2

rgwu,t) J_ - Af;V(u) + m(t) | (12a)

]

t t
resp. r W(u,t) = J_ - A W(u) + m.:’(t) A (12b)
Then (7a), (7b) can be rewritten as:

t+h
EO[AE-H"V(U) - A;V(U)i( ’{] < EO[L(U) f ri'c(s’,u(s))dAu(S)!qz:l
-t '

(13a)
t+h
B NP - A 571 < B [ f rj-ccs,u('s))dA“(s)lC.T’t']
- (13b)

Obviously equality holds if and only if u GCI‘ is optimal.

To simplify the notation, for an increasing process Ag, we

denote A:

Az - A;. This corresponds to considering a positive

t
measure d o instead.

The following necessary and sufficient condition for optimality

does no longer require the advance knowledge of the value functionm,
énd is therefore easier to check than theorem 2.1. It is similar

to the Hamilton-Jacobi‘eQuation in deterministic optimal control.

Theorem 2.2: a) u* Ecll is optimal if and only if there exist

i) a constant Jo
t + y
ii) a process A _(u) € A (C*_Tt’cpo)
tf tf .
such that 1) EA_"(u) = J_ - E (L(wr, 1) ¥u el (13a)

2) for all t €I, all h > 0 (s.t. t + h €I)
t+h '
.Eo[— At"'h(u) + L(u) f ri‘c(s’u(s))dAu(S)‘C(T{]i 0 (14a)
t

with equality holding for u*

-19-



Then Jo = Jk = J(u*), the cost of the optimal control law, and

t
rEov(ut,t) = Eo(Atf(u*) + L) 3D

1
b) The same statements hold if A;(u) is replaced by A g(u)

€ ATCHL,P,) and (132), (14a), (15a) by

t t

1) EUA; fw =0 - 5y wedl
. t+h
2) Eu[-Att+h(u) + f ri-c(s,u(s))dAu(s)m{] >0
t
q o o oy o "t I
an roow(u ,t) = Eu*(At (u*) r, Jflg}t)

proof: The necessity part follows from equations (12) and (13)
by putting A;(u) = AEV(u). To prove sufficiency consider the

uniformly integrable process:
te y b~y
Z(u,t) = E (A" @[S + E (Ll "I [FD

and compare with
f

t
: t
rig(u,u,t) = EO[L(u)([ rS.c(s,u(s))da’(s) + rofJf)[CJz]
t

Substracting (16) from (17) gives

te

b (u,t) - Z 0t < 0 oy
o ¢ (usust) = Z(u,t) = E ¢ (u) + L(u) fro-c(s,u(s))dA (s) ﬂt]
t

r§-¢(u,u,t) - Z(u,t) >0 for allu Gcll by (14) and

r§'¢(u*,u*,t) - Z(u*,t) = 0

-20-
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{r

In particular ¢(u,u,0) > Z(u,0) = Jo = Z(u*,0) = ¢ (u*,u*,0)
This proves that u* is optimal, and
J* = J(u*) = ¢(u*,u*,0) = Jo.

Moreover: Z(u*,t) = ¢ (u¥*,u*,t) = W(u*,t) by ii) in the proof of

theorem 2.1. n

Remark 8: Even if the normalized value function W(u,t) were
independent of u (which is the case for a Markov process and for

the complete information case with an additional constraint on L(u))
' t+h

]
the equation inf E [-A TTPW + [ 15-c(s,u(s))da"(s) [ 7]
UEFL& u t A o t

. 1
is still dependent on u, since Att+hw depends on u through the

measure (Tzl. Hence it cannot be solved by the usual technique for
Hamilton-Jacobi equations. Better results will be obtained for

jump processes, in the next chapter.

2.3. Local optimality conditions

Some additional assuﬁptions will make it possible to derive
in this paragraph, results corresponding with h¥0 in theorem 2.2.
The results will be somewhat simpler.

The following lemma is very useful. It shows the existence for
some supermartingales, of an operator similar to the differential
generator for Markov processes,ias studied by Dynkin [12]. It has

previously been used in filtering problems (see [5] and [16]).

Lemma 2.2. Let ft be a supermartingale w.r.t. the increasing family
of c—fieldsgzt, on a probability space (g,g}q)). Let A% hf
E
=1
=4 [ft - E(fbH1K1)]' Suppose that for all n and for some ho >0

. g €
there exists a constant K.n such that lAt,hfl 5-Kh’ ¥h [O’ho]

-21-



¥t € [o,n]. Then A%f =w 1im AB £ exists, is integrable and

. heo CoF
gt—adapted.

proof: First, let I = [o,n]. Then {Ag’hf|h € [o,ho]} is a weakly
compact subset of LI(Q x I, Q ® CBI’ (p ® A) (A = Lebesgues
measure) because of the uniform boundedness ([11], IV-8-9 and 12).
Hence there exists a weakly convergent (o (Ll-Lw) sense) subsequence.
Since E(Ai’hf|gt) decreases, this weak limit must be unique, and
all convergent subsequences tend a.s. to the same limit A%f. For
1= [0,»), first construct limits on each finite interval [o,n].

By uniqueness these limits can be extended to [0,®). H

Remark 1: This proof is taken from Davis-Varaiya ([8], lemma 4.2).
The following assumptions are now made

a) Au(t) = t (or absolutely continuous w.r.t. Lebesgues measure).
b,)‘ c(t,u,w) € [0,K] Vt €I, VWw€EU, Yo € Q

¢) ro() €[0,1] ¥s,t €I, ¥u € Q.

t t+h
r

Then 0 _<_—h‘l V(u,t) - Eo(”:::+hv(“’t+h) {g{ f—iln' Eo[L(uy- ri-c(s,u(s))ds,( ?:]
| t

< K-E_[L0(w) [TF]]

t t+h
r
o t+h Yy 1 s . y
and O % W(u,t) - Eu(rt W(u,t+h)mt] ii[Eu f rooc(s,u(s)) dsl t]
t

<K

Lemma 2.2 is immediately applicable to the normalized value function
W(u,t). For the unnormalized case, the following stopping times,

together with uniqueness, will prove the existence of a limit

(-



AZ(rcy(u,-)) (where Ay stands for é;; ). Let T, be theng{-stopping

time: vt = inf {E (L, (u)F:Jy) >n}
t€l

. By the uniform integrability of {Lo(u)}, it is clear that T~ o wp.l.

By the proof of Meyer's decomposition theorem ([24], VII- T28

and 29)

. .
V) =w %,i?; f —tl;[rcs)V(u,s) - Eo(r§+hV(‘u,sv+h) CFD)1ds
A |

AZ (r V(u,*))ds ' (18a)
0

: where the interchange of weak limits (1n c(Ll,L ) topology) is.

Justified by the boundedness assumption b) and c¢) above and by an
argument given by Davis-Varaiya ([8], lemma 4.2). By the previous

arguments Ay(r V(u,*)) is integrable over (& X 1,‘17 A) similarly.
tho , o
t .
t . '
A W) = fAZ(rOW(u,-))ds ». ~ (18b)
0 .

Theorem 2.2 can then be rewritten as:

Theorem 2.3: a) u* Ecll is optimal if and only if there exist

i) a constant Jo

ii) for each u E(IX (value decréasing) a‘positivevprocess
A (), C} adapted
such that 1)_[. A (u) ds 1s uniformly integrable

t
2) E (Jr A _(u)ds) = - EO(L(u)rOfJf) . (19a)

3) for all t € I, all u €U

-23-



- A @) + E (LSl (t,ue)FY) > 0 (20a)

with eﬁuality holding for u*.

b) The normalized result is completely equivalent.

proof: From theorem 2.2 and the definition of weak limits one has
for all positive, bounded,ﬂ@fz-measurable random variables .

t+h

1 _ s Y |2
lim Eo[h / (=3 (u) + L(u)r -c(s,u(s)))ds [G5] ]— 0.
h-0
t
This is true if and only if (20a) is satisfied n

Remark 2: The fixed time t in the previous theoreﬁ can be replaced
by any(;¥{~stopping time T: use remark 7 in §2 and the fact that
Meyer's decomposition theorem for supermartingales ([24],VII T29) is
stated for any stopping time.

3: This oﬁtimality criterion has been derived before for
Markov processes (see Kushner [20]),for conditional Markov processes
by Stratonovich [30], and for pfocesses on a Wiener space by Davis-

Varaiya [8].

2.4, Markov controls.

In this section we will prove the intuitively obvious fact that
if (xtfafi,crz) is a Markov process, then a control depending on the

present value x_ only, should be optimal in the clgss of complete

t
information control laws. A first problem is that a control law
u(t,w) is assumed to be predictable, and can therefore not depend

on X (unless it is left-continuous). Therefore we consider control

X
laws v(t,xt_(m)) = u(t,w) and assume (xt_S;;t,CrL) to be Markovian.
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If {q:} is quasi-left continuous, then (xtSI:,CPO) being

X

. x .
Markovian implies (x__SF t’CPo) being Markovian (note: GJ

= o(xg,8 < t) = o(xs_,s < t)), for sufficiently‘smooth transition
functions. We now make the following assumptions:
X
i) (xt,’{;’t,cpo) is a Markov process.
X _ X _ =
11) CFi_ =CF; = o(xg_»s < t) = 0(xg,s < ¢) ¥t € 1.

L:;_(u)

1ii) Let L:-(u) , § < t and assume Lz-(u) depends

LY (w)
only on the values of the control law on [s,t).

iv) 0 < c(t,u,w) = E(t,y,xt_(m)) < K for some K and let Jf be
a bounded functiqn of xtf.

v) for fixed u GJM and t €I, (L;(u) ,‘?}:,oo) is Markovian
(i.e. L;(u) depends only on {xT,s <1 < th. Here JM =l

N {u(t,w) = v(t,xt'_(m)} = class of Markov controls. Assume U is a

separable metric space.

£17%
vi) Cpo(xl,tl;dxz,tz) — 5x £ VP- 1 for all t. (i.e.

172

X, = X, _ W.P. 1 for all t).

» i X X
Lemma 2.3. Under the previous assumptions (xt_g t,CPo), (xtg t,@u),

(xt_,’;}’:,(pu) are all Markov processes (for any u € JM ).

proof. Let £ : X + R be any bounded continuous function, let s < t,

then

E (£(x ) [CTo) = E (E(x) [T = E (E(x)]x)) (21)

and

= f E (f (xt_) lxs) -P(xs_é,s-e;dxs,s)
X

By (£(x. ) |x,_)

‘which for € + 0 gives :

-25-



E (£(x, )|x,) = E (£(x,)]x,) (22)
(by assumptiqn vi)). Putting (21) and (22) together:
E (£(x, ) [FF3) = B (FGx, ) [x ).

By the monotone class theorem, this result can be extended to any
measurable functional on'{xt_,s < 1}, which implies (xt_SZF:,CPL)
is a Markov process (see Meyer [25]).

For the 2nd part, consider (s < t again):

E [L)E (x,) (T3]

" (see Loave, [22],vp.344)
E,[L(w) [<F,]

E (£(x) [T =

E_[LE E(x,) (5]

E [LEEGx)|x ] since v EU

t
and EOILff W1 =1

te
Eo[LS (u)f(xt)|xs]
te
E L (u)lxs]

S
E_[L (u) Ixs]

s
E (LS (0) |x,]

E_[L(u)f(x,) |xs]
EO[L(u) xé]

(past and future are
conditionally independent)

E [£(x,)[x]

By the monotone class theorem this is sufficient to show that

(xt};fi,(FL) is a Markov process. -

Using the previous lemma, it becomes obvioug that:
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te

Euv[fr:.c(s,v(s))dA‘; + Jf[CT:j

t .

m(uavstaw)

te

E, [fr:-c(s,v(s))dA‘; + Jflxt_]'
t . v

¥ (Evax, @) for vEM

and U(t,xt_(w)) = A w'(t,v,xt_(w)), the Markovian value function
o ! S

is independent of u, the control law on [o,t).
We also note that, if assumption iii) above is satisfied, then

for any control u(t,w) which iS\;’x predictable, the complete

t_
information value function:
t
£
= S, v ~x ]
W‘(t,w) v€/>llEuv[.[rt C(s,v(s))dAs +J; |C.Tt ]
. t '

t

¢ ,

t .

= £ v iy X

Cﬁj EO[Lt ) ( J/”ri°c(s,v(s))dAs + Jf)iTlt] (25)
t

viS'also independent of the past control law u(on [o,t]). To prove
the statment that Markov controls aie optimai, one has to show
-W(t,w) = U(t,xt_) for all t (see ii) in proof of principlg of
optimality). To prove this, we need a principle of optimality.for
"the Markovian Qalue funciion. Since lemmsa 2.1 fequires increasing
o-fields, it is not applicable heré. Therefore a limiting argument,
starting with a discrete backward dynamic programming, will be used.
First we introduce thg concept of a discrete Markov céntrol:

u €>,&Ad, the class of discrete Markov controls, if u(t,w) is

constant except for jumps at t, = 0, tyse-ent = g and u(t,w) is
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a function of x,._ on the interval [t ot
i )
are constant times, not stopping times.

Note that the t.'s

i+1) * i

The following additional assumptions are now made:

vii) c(t,u,x) is uni'formly‘ continuous in u€ Uon I x X
and A: is independent of u.

viii) {L(u) : u Eﬂd} is dense in {L(u) : u GJM} in
the following sense;for each u € JM there exists a sequence of
u € M d. such that |

a) un(t,m) + u(t,w) pointwise

b) L(un) ¥ L(u) (weak convergence in Ll).

Lemma 2.4. If assumptions i) to viii) are satisfied, then for all
u G\/bl there exists a v € JU[ d such that: J(v) < J(u) + € (where

I=[0,1]).

. . |

: € ¥ .
proof: Let u JM such that u +u pointwise and L(un) L(u)
Then:

: 1
I(u) - J(u) = Eun( rsc(s,un(s))dAs +3.)
0

1 v
- E( ric(s,u(s))dAS +3.)
0

1
= EO[L(un) (frj-c(s,un(s))dAs + Jf)]
0

1
- EO[L(u)( ri-c(s,u(s.))dAs + Jf)]
o

[13



1
= EO[L(un)( rz(c(s,un(s)) - c(s,u(s))dAs + Jf) ]
0

1
+ Eo[(L(un) - L(u)){/;:zoc(s,u(s))dAS + Je) ]
0

+0 asn-*>® =1

Theorem 2.4. Under assumptions i) to viii), and for all u GJU(
for all t €I, a1l h > 0 (s.t. t + h € I)(where I = [0,11)

t+h |
Ut,x, ) < Eu[/t‘ r%-c(s,u(s))dA [x, ] + E_[r5™Mu(eth,x 00 [x, ]

(24)
U(tf’xtf-) = Jf ~ (25)
u GJUI is optimal if and only if equality holds in (24).

proof: The only part of the proof of theorem 2.1 that does not
carry over immediately is the fact that:

E [rt'l'h

¥ (u,v,t+h) |x__]
e, » " t

=E[ A rt+h1p(u,v,t+h)|xt_]

My,

t
= B[S Puetn,x %, )

Let J\An be the subclass of J[/(d, containing all discrete control
laws having no more than n jumps. Then Un(t,xt_) = vE/\ n P (u,v,t)
and by lemma 2.4: Un(t,xt_) + U(t,xt_) as n tends to ¥ t
infinity for I = [o,n], any bounded interval. (Note that in the

proof of lemma 2.4, no use is made of the fact that the initial
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state is fixed). We have

[rtﬂl"p (u,v,t+h) lxt_]

Eut-i-h 2V

= Eu[rtﬁun'(t*h’xt-lh-) |, 1 + e

since this operation involves only n minimizations and each infinum
can be approximated up to €/n. This argument can be repeated for

each n, with fixed €, so that there exists v € JM :-H\ such that

E

t+h t
u,t"'h,vlrt “l’(u’V, t""h) Ixt-] i Eu[rt%(t'l'h,xt_'_h_) 'xt_]-i- 28 .

by taking n > N such that: !

Un(t+h,xt+h_) - U(t+h,x ) < e.

t+h-

- The rest of the proof proceeds as in theorem 2.1.
If I = [0,0), then there has to be a T such that
o
Eu['[r‘rg‘c(t,u(t) ,xt_)dA:‘xt_] < € for all X, €X since J(u) <=
Note that r: = 0, by assumption r: < 1. Hence the result holds for
infinite time intervals too. o

Remark 1: Compare this proof with Davis-Varaiya [9].
2: Mg JM:, J‘/lt are derived fromdud, _jU[n, M in the same

way asq,lt from (u .

3: Eu in this theorem depends on the control values

between t and t+h, only.

As in §2, one can write

riU(e,x, ) = 3 - ASU(W) + my(e) (26)

-30-
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where mg is an ?I’t‘_ martingale (under the measure Cpu)‘, and

AEU(u) is an C}i‘_ predictable increasing process, which depends

on u through the measure ’-Pu. We can show that A:U(u) = A,EU(u)

S t .
- AOU(u) depends onlyronc,'\fs =o(x,T<T< t),as follows: by

Meyer's supermartingale decomposition theorem ([24])

AgU(u)

‘For each h the

W

We.

t
' X dt
lim [U('r,x_[_) - Eu(U('r+h,xT+h_XﬂT] x5
h->0 _
S
t
1 .
lin f & [UCt,x ) - E (U(tHh,x ) % )1t
0 J

‘integral depends of qt:-h and the limit depends on

ﬂ?f':'h =C,T: (straightforward from assumption ii) at the beginning

of the chapter). This result immediately implies that mUu(t) - muu(s)

depends only on q:, and hence the martingale is an additive functional

on the Markov process (xt_,q};,cpu) (for a definition see Kunita-

Watanabe [19])

The Markov versi_.on of theorem 2.2 is now obvious:

Theorem 2.5

i

such that

u* € _,M is optimal if and only if there exist

i)

i)

1)

2)

a constant JM

for each u GJM (value decreasing) a process

X
Ag(u) Gﬂ*(qt,CPu) such that A;(u) is ;—

measurable
t

t
£ £
=J - €
EA(u) = J - E (r "J;) ¥u M
for all t €I, all h > 0 (s.t. t+h € I), all
t+h kth s
u €U, E LA () +f rqoc(s,u(s),xs_)dAslxt_] >0

t
with equality holding for u*.
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Then J, = /\ J(u) = J(u*) and
uE
t t
_ £ £
rgU(t,xt_) = Eu*(At (u) + r, -Jflxt_)

Theorem 2.6: The optimal Markov control is also optimal in the

class of nonanticipative controlscll, i.e. /\ - Tk
uEiAAJ(u) J* (with

fa.

complete observation).

. t
proof: from theorem 2.5 and 2.2, since the Ao(u) and JM which
. Y _ ~pX
exist by (26), can also be used in theorem 2.2. Because qt —{—Tt,
the equation (14b) now only depends on the restriction of u to
[t,t+h), i.e. if (}= {u : [t,t+h) + U, Borel measurable}, then

(14b) can be written as (for sufficiently small h).

t+h
inf E [—Aﬁ'h(u) + rs°C(s,u(s))dAu(8)|qx] = 0.
ue(] u t (o] t
+ t
= = |}
Hence JM 'Jo ?*
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CHAPTER 3

OPTIMALITY CRITERIA: FUNDAMENTAL JUMP PROCESS

In this section, it will be shown how the martingale represen-
tation theorem for fgndamental jump processes, leads to simplified
versioné of the theorems obtéined in Chapter 2. 1In particular the
case of complete observation and the case of a Markov process, will
lead to é true Hamilﬁon—Jacobi equation, that can be used 'to prove
existence of solutions. | |

For most definitions and properties used below, see [5], §2.

3.1. Mathematical Model

The model of Chapter 2, section 1 is now used with a more

detailed structure for the stochastic process (xt;Q);,CTL). Let

(xtSEFf,CFL) be a fundamental jump process on the probability space
(Qf;Ix,CFL). Here Q is a space of piecewise constant functions

w: I~ Z;where (Z,%;) is a Blackwell space, with é finite number of
jumps in every finite time interval. Then x(t,w) = w(t) is the
evaluation functién. The o-field from now on is always<;r: = o(xs,sgt),
the generated g-fields(completed with respect to the measure CFL).

It is assumed that the time of occurrence of the nth jump Tn(w) is

a totally inaccessible l'7.;:‘::(--st:oppin'g t:ime.'. k'I‘his implies that the

family f;f:} is free of times of discontinuity ([4], lemma 3.1).

Remark: 1, When X, is a counting process, that is only jumps of size
+1 are allowed, then Chou and Meyer [6] have shown that the assumption
of total inaccessibility of Tn(w) is unnecessary for éll of the

following results(excluding continuity of P x(B,t)).
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X
To (xtf;;t,crz) one can associate a faﬁily of counting processes
’ .

. ,
PT(B,t) = ), I, x I_gg» for all B GQZ, and a family of
s<t s— '8 s

predictable increasing processes Pz(B,t) such that

Q*®,t) = P*8,1) - B¥3,0) € M2 EFT, P).

loc ™

This predictable increasing process can be written as:

- t
P*(B,t) =S S n::(dz,s) A:(ds). Then (nz(dz,s), A::(ds)) is called
B

o

the local description.
The change of probability measure (CI% to Cph)'can now be
described as follows: {Lg(u)} is a uniformly integrable<Ef§-martingale,

that is positive. By [5], theorem 3.1, there exists, for each u € U
1 ~ X

a real-valued, predictable function ¢(z,t,usw) *I{rer } € Liocl o)
i —"k
where Tk = inf {t: Lz(u) §;%}r . This function ¢ is called the
rate process.
t
Lg(u) = I [1+¢(x,su)] - exp[-s S $(z,s,u) P’;(dz,dS)] ¢))
X #x
s-'''8 o “Z
s<t
.t ,
s- X
=1 +-j Lo (u).’ $(z,8,u) Qo(dz,ds) (2)
o A

As in remark 4 of §2-1, it is only a small loss of generality to
assume that ¢(z,t,u) depends only on the present value u(t,w) of the
control law. Hence, fromnow on ¢: Z x I x U x Q » [-1,), which is

predictable for each fixed u. The lower bound -1, follows from
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L (u) > 0, hence 1 + ¢(z,s,u) > 0, ¥z,s,u.
From [5], §3-1, it follows that (x ;Tr <1)) is a fundamental
jump process with counting processes p* (B,t), associated predictable

increasing process

t

PX(B,t) = S S [1 + ¢(z,8,u)] PX(dz,ds). ' ®)
o B

and local description ([1 + ¢(z,s,u)] nﬁ(dz,s), Ai(ds)). This can
be interpreted as follows: the rate of jumps of type [z,z+dz) at time

t is changed from nj(dz,t) A(dt) to [1 + ¢(z,t,u)] ny (dz,t) A-(de).

For example, let there be 2 types of jumps, both occurring with rate

‘%; then_¢1 = %Q ¢2 = --%, changes this to a procéss with jumps of

'type 1 occurring with rate 1, and no jumps of type 2 (w.p.l). This

example shows that is is not always true that CI% << CIL.

Remarks: 2.This analysis can be reversed, by starting with a given
family of functions ¢(z,t,u), u € U, satisfying all requirements of

¢, imposed above. Then:
U = {possible control laws u: I x Q - U|EOL(u) =1},

and define CEL by L(u) = —fjfi It is difficult'then'to specifycll,
since no necessary and sufficient con&itions are known for EOL(u) =
The sufficient conditions in [5], §3-3 may be too restrictive for
some applications.

3. In this model only rates of transition are changed, corres-

ponding to CIL << CIL. A number of interesting problems, such as
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inventory control, seem therefore excluded. However by making CI%
sufficiently complicated, this can also be included (see example in
Chapter 4). Note that this problem does not occur in the finite
state Markovian problem, because optimality criteria can be written
directly in terms of transition probabilities (see Blackwéll [31,
Ross [27]).

In order to write the following optimality criteria in the
simplest possible form, the total cost J(u) is supposed to be of the

following form:

- t
J(u) = Eu[j j 2+ e(z,8,u(8)) + BX(dz,ds) + rof°Jf] (4)
Z

T

This does in fact. include most other reasonable cost structures:

i) if the cost increases only when a jump occurs then

t
J(u) = Eu[j,j rz * c(z,8,u(s)) P*(dz,ds) + rofJf]
172

t
= Eu[j ! 1 c(z,s,u(s)) P (dz,ds) + rofJf]
Iz

ii) if Lebesgues measure t is absolutely continuous with respect
to F(2,t) then

[

s -~ s' =~ ds - ~X
E r °* c(s,u(s)) ds = E s j r ¢ c(s,u(g)) —— * P (dz,ds)
u s; ° . u L Yy ° sz(Z,ds) u

This is not possible if.ii(z,t)‘rémains constant in a non-zero
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interval, .lb‘ut this corresponds to no jumps be‘ingipossible‘.,
and it is nof unreasonable not to assign any cost to this

~ trivial part of the process. |
Moreover the equations following are easily transformed to costs

involving integration over ds or f’:(dz,ds).

Remark 4. The results of Chou-Meyer [5] and Jacod [18] suggest the

‘followingAimprovement on the results of [4]): 1if

- 6,(¢t,B) = Cp(Tn+1-Tn <ty x, € Biq?;n)

n+l
then: !
T,~-T ' t-T
-x( ) Z si -1 Gn(ds,B) J n G’n(ds,B)
P (B,t) = ey )y T I PRGWA) (5)
i) GEODT) G5

v ' ‘ x x 8 Gn(dx,B)
To prove this, let Mg =P (Tn+s,B) - P (Tn,B) ‘j G ([8,2),2)
. o n

(s 6 (dx,B)
or (with S =T -T):u =1 I v—s’——'—"""".
“n n+l n SAS_ 8>S {xsneB} 5 Gn([x,co),z)

Let T > Tn be any stopping time, then by lemma 2.1 of [4], there
b4 :
- ; A = +
exists a randqm variable R,CJT measurable, s.t. TN T 1 (T R)l}T f1°

. n
The result will then be proven if

RAS
. : s n Gn(dx,B)
0= Bipns = Cp(Rlsn’stGB) - E C_([x,=),2) (&
o]

(since the process. defined by (5) is obwfiously a predictable, integrable

increasing process). (6) follows from:
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n Gn(d:;,B) 3 RAs 6 (ax,B)
E -2 jGn(ds,Z)I —n

G, ([x,%),2) ~ G, ([x,%),2)
(o] o o
R " G_(ds,2) Do |
=I Gn(dx,B) 5 W = ¢ (R_>_Sn,xsn€B).
o X

This result also shows that ﬁx(B,t) is absolutely continuous iff all
the conditional distributions Gn(dt,B) are absolutely continuous,

and Gn([O,t),B) < 1l for all t < =,

3.2, Optimality Conditions with Partial Information

The simplest way of defining the partiai observation field,
QIZ, is as follows: let (Y&%P be a Blackwell space, let vy ¢ Z + Y
be measurable. Then Y. = Y(xt) anchJ;’:v = o(ys,s_f_t) (completed for CPO)
define the observations available to the decisionmaker. The function
can be used to express that only some of the x-coordiﬁates are
observed (if Z = Rn, Y = [Rm, m < n) or are classified in a
finite or countable number of categories (if z=R"™ v={0,1,...,N}"
or N n), or any other noise-free functiqn of the present value of
the state. Note that y cannot be used to express randomness of the
measurements; all the randomness in the gystem has to be included
in the fundamental jump process {xtf;f:,cpg}. This can always be
achieved by extending the state space Z. Extension of the state space
may also be necessary if yt = Y(xs,sit). 'I'!hetnvincluding Y, as part
of the fundamental process, Xes is always possible, without changing
(Q,C(T,Cpo) (except a trivial change in (Q,q)strictly speaking, since

the range of the functions in Q is changed). This is illustrated by
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1

‘the following example: let x = (Ni,Ntz:), Nt’ Ni Poisson processes

independent of each other, let dyt = le - 1y >0 . sz then
x": = (Nt,Ni,yt) generates a probability space (Q' C}f" CD ) which is
isomorphic to (Q,‘(I t,CDo) obtained for the jump process X, . The

previous example is useful in the theory of queues.

It is obvious that (yt';r:pt,Qo) is again a fundamental Jump

‘process. For any C EQJ the counting process PY(C,t) can be written

as:

y =
P = 2 Ty ) € o)

st 1

) j vy ecy P(dz,t) - M
z

" To simplify the notation, form now in I (z) = {Y(Z) € ¢} Also,

assume P (B,t) = s 5 f(z,s) u(dz, ds) where u(B,t) isqy-predictable
for all B € Z (in many practical applications it will be deterministic),
and f(z,t) is gi-—predictable. For an arbitraryq}tc—adapted process

8> the notation ét = Eo(gt EIZ) will be used. Then

y _ o~ '
P ‘(C,t) Icf (z,8) u(dz,ds)

t .
=j J' I.(2) [P*(dz,ds) - f(z,s) u(dz,ds)]

t

—_— :
+j j [1,(2)E(z,8) - I (2)%(z,8)] u(dz,ds) € My, 6T, D).
o2
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By the uniqueness of the predictable increasing process associated

with PY(C,t):

t | |
P’ (C,t) =§ j @) u(dz,ds) (8)
o 2Z

Similarly one can prove

t
iz (C,t) =j I 1+ ‘b(z’s,ﬁ)) IC(Z) f(z’sx) u(dz,ds)
o 2

Remark 1. In some cases, the extension of the state spacé Z can be
avoided by defining
t

A =§ I h(z,s) P (dz,ds) where h: Z x I ~ R™
o 2

is anﬁ;rz-predictable process. All the results of this chapter
continue to hold if IC is replaced by h. However if Y is not a vector
space, this is not possible.

The argument used above, to find thegzrz-predictable increésing
process associated with Py(C,t) can also be applied to the increments
in cost in the time interval [t,t+h) as expressed by the right hand

side of (2.13b):

t+h

Eu[s s rz + c(z,8,u(s)) ii(dz,ds)|§}¥]
t “z
t+h
E“[s S roec(z,8,u(8)) 1+ (2,8,u(s)) £(z,8)u(dz,ds) [FF{1.
t 7z
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et :
= Eu[ffrc; « ¢+ (1+¢) * f(z,s,u) * u(dz,ds)lc}y]

Inequality (2.13b) can then be written as

t+h
0<EI- A§+hW(u) + f f?(;‘lew)-f(z,s,u)-_u(dz,ds) Iq’t'] 9)
t "z :

This implies that

t —_ T T
At = - Ao W) + /ro'c°(1+¢)'f(z.,s,u) p(dz,ds)
o Z '
is a submartingale under ':Pu. At the same time it is clearly gz—

predictable. Hence

= 'Y_ . .
At Cc + Bt + mt R Bt an gt predictable. increasing process,
C a constant, m_ an C‘Tz-martingale. Hence m_ is a predictable
martingale with respect to the family of o-fields g{ which is free

of times of &iscontinuity. This implies
a.s. P
u

m = D, a constant.

Therefore At is itself an increasing process and (9) can be replaced

by:

0< - At hw( ) + f fr’»c- (1+¢)f(z s,u) u(dz,ds) ,(10)
t Z

with equality holding if and only if u is optimal (this inequality
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holds a.s. Cpu).
Theorem 2.2b can now be rewritten as:
Theorem 3.1. u* €U is optimal if and only if there exist
i) a constant Jo
ii) a process K;(u) Gg‘l (qz,‘Du) for all u GCU (value decreasing)
iii) a family of processes n(z,t,u) € Ll(QZ)

such that: ¢

f
t t
a) J_ - T\of(u) +ff'n(z,s,u) P’ (dz,ds) = Eu(rofJfIC,TZf) (11)
o2

e
—t+h
- (u) + f f

b) - A [Ty + 7 O+ OF] (2o5,0)udz,de)
Z .
> 0 a.s. (Pu, Yu GCU, (12)
Then Jo = J% = J(u*) and
t
t _ <t ‘ y :
T, W(u*,t) = Jo + Ao(u*) +f[ n(z,s,u*) P’ (dz,ds)
' ov2

Proof Applying (2.12b) and the martingale representation theoren,
one obtains the existence of n(t,z,u) € Ll (Qz) for all value-decreasing

admissible u, and such that

t
r:; W(u,t) = Jo - A; W) + ffn(;,s,u) Qz(dz,ds)
o 2 '

t .
=J - 1\; W(u) - /f n(z,s,u) i:&mz,s,u) u(dz,ds)

..

W vz
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t .
+/fn(z,s,u) P’ (dz,ds) | (13)
o Z ‘

which implies the necessity" part of the theorem (after identifying

e —

A (w) = AW +f f n(z,8,u) L A+)E(z,5,u) 1(dz,ds).

The theorem then follows from theorem 2.2b.

Remarks:3. A local version of this theorem, corresponding to theorem
2.3, can easily be written down. This version will be stated in some

of the applications in Chapter 4.

3. The previous arguments do not apply to the unnormalized

case, because the. conditional expectation
t .
S ~
EO[L(u) f/ro c(z,s,u(s)) Pﬁ(dz,ds)l?}’{]
o Z

is not necessarily predictable. However, limiting arguments, as in

[8], theorem 4.3 lead to similar results.

4. The previous result is similar to the minimization of a
Hamiitonian in the deterministic optimal control problem, where Kg(u)
plays the role of a costate. However because of the closed loop
nature of the stochastic control problem, the costate now depends-on

the control applied in the past.

3.3 'Optimality Conditions with Complete Information

In this section it is assumed that Ve = %, iee. h(z,t) = z ¥t,

and then g{ =C(-T}t{ This is called the complete observation case,
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because the decision-maker knows the whole past of the process. The

results then are considerably simpler. Observe that

t
E [L (WL, (v)(‘/.f Sec(z, s,v(s))P (dz ds))rTx]

W(u,t) = /\

<, e (L, £ 5]

=V€Al E[LQV)(_[ f i'C(z,s,V(S)) f’z(dz,dS))IC.Tf)

= W(t), independent of u, the control law used before t.

t
Remark 1. L '(v) = L{&ata¥) Lv)
Lo(v) L, )

» independent of u.

Then the processes AE W(u) and n(z,t,u) in (13) can still depend

on u, because they are defined for each probability measure CPu.
i

However

rEW(t) n(z,s,ul) Q: (dz,ds)

1

. t .
t X
Jo - Ao W(uz) + ff n(z,s,uz) Quz(dz,ds)
o Z

Identifying the jumps (and using predictability of n(z,t,u)), gives:

t t '
ff n(z_,t,ul) Px(dz,ds) - ffn(z,t,uz) Px(dz,ds)
o 2 o "2

Uk

1]
o
|
=
=
F
A
+
’\
\



Therefore n(z,t,u) = VW(z,t), independent of u. Then -

t .
’Tx‘; W= A‘; W(u) + ff Vil (z; ) (1+4(z,5,u)) B (dz,ds)
ovZ

.18 also independent of u. Consequently theorem 3.1 can be simplified

to:

Theorem 3.2. u* Ecll is optimal if and only if there exist:

i) a constant‘J0
t X
ii) - a process Ko GL_A(qt,Cpo)
iii) a process n(z,t) € Ll(Qi)

such that

(14)

B*(dz,ds) > 0 (a.s. P ¥u€U a5

te
J T\tf‘+ [ P*(dz,d ~tf-J
a) o~ A | n(z,s) P (dz,ds) = T, £
' 0 Z
N t+h |
b) - T‘?h "‘f f [n(z,s) + ri'C(z,s,u(S))] [1+¢(z,s,u(s))]
t Yz
and
t+h

t

x Pz(dz,ds) =0 (a.s.cq)u*)

-L45-
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Then J°.= J* = J(u*) and

t
t =t
T, W) = J0 - Ao +[ /n(z,s) Px(dz,ds)
o 2%

Proof. Immediate by identifying 7\; = T\L"w and n(z,t) = W(z,t). H

Remark 3. This criterion now is a true Hamilton-Jacobi equationm,
since 7\; W and VW(z,t) are known explicitly as functions of W
(i.e. A and V are known operators), then an optimal u* can be

found as follows: solve the minimization problem (for some small h)

t+h
inf{- K:::-H\W + f f[VW(z,s) + r§°c(z,s,Y(Kw,W))).]
Y

t Z

x [1+6(z,s,Y(AW,VW,s))] P*(dz,ds)}

and obtain Y*(AW,VW,s). Replacing u* in (16) by Y*then glves a
complicated operator equation, to be solved for W. Finally u* is

obtained by replacing W by its value in Y¥*.

4. The method explained above would be considerably easier,
if an adjoint equation were known for the costate n(z,t) (as in
Pontryagin's maximum principle). In some very special cases, this

has been done by Fleming. [14], Kushner [21] and Sworder [32].

5. Since V(u,t) = Lg(u) w(t), deﬁends explicitly on u, no

genuine Hamiltonian can be obtained for the unnormalized value function.
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The following corollaries are easy consequences of theorem 3.2.

Corollary 3.1. Let §§(dz,ds) = nﬁ(dz,s)k(s) ds, and make assumptions

b) and c) of 2.3, then u¥* eU is optimal if and only if there exist

i) .a constant J
° t

ii) a.predictable process a(t) s.t../ra(s)ds Etjﬂé;itﬁjg)
o
iii) a family of processes n(z,t) € Llﬂlﬁ)-

such that:

t

t : '
f S . t
a) 3. —/" a(s) ds +[ [n(z,s) P*(dz,ds) = rofJf a7
o Z

o

b) - a(t) +/ [n(z,t) + rg'C(z,t,u)][lﬂkz,t,U)] nz(dz,t)
| 2 | (18)

x A(t) >0, ¥ €I, vu€U
with equality holding for u*(t).
Proof. This follows immediately from theorems 2.3 and 3.2, with

a(t) = Ai:( W) ~+'[ W(z,t) n};(dz,t) Ae) u
Z .

Remark 6. The importance of this theorem is, that it gives a

minimization over U instead of over a function spaceC]‘.

Corollary 3.2. Suppose at each time only n different.values of a

jump are possible (see [4], §4). Let Ai(t) be the rate for each of

these jumps under CF%, ¢i(t,u) the rate process for'jumpAtype i.
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Let c¢(z,8,u) = ci(s,u) for z a jump of the ith type. Assume the
conditions of corollary 3.1 are satisfied. Then u#* Eclj is optimal

if and only if there exist a constant J*, a process a(t) s.t.

. _
1, x
e ACTE. < €
Jg'a(s) ds _j((:;:,’i%) and n processes ni(t) L (Qo), such that

t t

n
Jo - /a(s) ds + 21 fni(s) pi(ds) = Jf (19)
i=

o o

and

n ‘
-a(®) + 3, [n () + xoec, (t,w)] [+, (£,w) 1A, (£) > 0
i=
(20)

¥t €I, WuE U

with equality holding for u*(t).

Remark 7. Corollary 3.1 and 3.2 could have been stated in the partial
information case but the expressions take a rather complicated form,

and are probably not very useful.

In some special cases, it will now be shown that the heuristic
method given in remark 3 to construct an optimal control law, leads
~to a formal proof of the existence of an optimal control law. The
method of proof is adapted from Davis [7].

The following assumptions are made throughout the rest of
this section:

i) I =‘[0,1] '

ii) U is a separable, metric spacefqgu is the class of all

Borél sets (i.e. the o-algebra generated by all sets in the

topology).
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iii)

iv)

v)

vi)

vii)

’EO exp(M P(Z,1)) < = for all M > 0 and ﬁ(z,t) < u(t) a.s.

where u(t): R + TR is an increasing deterministic

+
function.

¢(z,t,u,w): Z x I x Ux Q=+ R 1is jointly measurable (i.e.
with respect to %56%12[0,1]@9Clle;Ix) and ¢(*,*,u,*) is
;}i?predictable for each fixed u

é(z,t,*,w): U+ R is continuous on U.

c(z,t,u,w) is jointly measurable,‘;I:-predictable for fixed
u and continuous on U for fixed (z,t,w).

there exist o > 0, K, K1 < o guch that:

a) f 1+ ¢(z,t,u)]® n::(dz,t) < K + K [PX(zZ,t) + ﬁ:‘(z,t)l a.s.

Z

b) f|zn (1+6(z,t,u)) | P*(dz,t) < K + K P*(zZ,t) + i{.‘(z,t)] a.s.
Z

Condition iii) together with vii,a) implies that {Lt(u)} is a family

of uniformly integrable martingales, by proposition 3.4 in [5], while

1ii) and vii,b) imply L(u) > 0 for all u €EQl(since iii) implies

that all moments of P(Z,1) exist under the measure (Fg, and hence also

Eo[exp M(P(Z,l))z]). Condition vii) could be replaced by any other

condition insuring the above propérties.

Note that L(u) > o implies that CI% <<<1)u and hence the only

" probability measures CFL allowed are mutually absolutely continuous

with respect to CF%. This is a very strong condition (only 1 of

the examples in 8§84 satisfies it), but is seems unavoidable for both
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lemma 3.1 and theorem 3.3.

The following notation is now introduced:

¢ = {¢p(z,typ): Z x I x Q > R |¢ satisfies conditions iv), v) and vii)

(take a set U containing 1 point)}

oy = ([0 €0, - L+5< 0G0 <

s<t

xs-#xs

) t
1f ¢ € ¢ then L§(¢) = I [14+(x,,8)] exp[- ffdb(z,S)f’:(dz,dS)]
o 2Z

i.e. Lct,(u) = Lg(cb(',',u,-)) with the old notation. Let(])(®)

= {L1(9)|¢ € 0} and similarly defineD(ey.

Lemma 3.1. ([)(0) is convex and weakly compact (i.e. compact in

c(Ll,L”)-topology).

Proof. Convexity is immediate from Meyer's differentiation rule,
since for ¢1, %, € ¢

A L5 0.) ¢, + A, LE(6,)0

1 017 Y1 2 0'72°%2

( - - )
MLg(6)) + AL (4,)

_ _ . t t = t
Pp = Ay @ L(4y) + 2y L(9p) = I,
and the argument of the last Lg(') is obviously in ¢.

Furthermore by prop. 3.4 of [5],CI)(¢) is uniformly integrable

- and hence weakly sequentially compact. The lemma will then be

proven if we show that:T)(0) is stfongly closed. First consider

CI)(@N). Since
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t .
Lt(dD)2 = I [1+2¢(x_,s)] exp[- f/ 2¢(z,s) lzz(dz,dS)
[o] % #x 8
s=""s ov2
s <t
: t
+[ 1 ¢2(xs,8)] x exp[-/f2¢(z,5) f’z(dz,dwl
xs—*xs o%Z
s <t

< eu(t)+22n N - P(Z,1)

and hence E L;(¢)2_§ fo(N) (f° an increasing functiop). Therefore
CI)(<I>N) is Lz-bounded; Lz-closure is proven in the same way as lemma
3 of [10].

‘Now let {¢n} be a sequence in & such that

Lin L (6,) + o a.s. and L @SF,P)).
Then(t)(¢) will be L,~closed if p = Li(¢) for some ¢ € ¢. To show

this, let

¢n(z,t,w) if -1 +:§_§ ¢n(z,1,m)_i N for all z,

N all T <t
¢n(z’tsw) =

0 otherwise

Since.¢:'€<1)(¢N) is an L2—closed, bounded and therefore weakly

compact set (see theorem V-4-7 of [11]), there exists for each

N a ¢N€5¢N such that L§(¢N) =w * lim Li(¢:) where the weak limit is
taken along some subsequence. As in lemma 7 of [10] one can show that
¢N+l(z;t,w) = ¢N(z,t) whenever both are non-zero. Condition vii)

then implies that a ¢(z,t,w) € ¢ exists such that
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Loy _ . 1
Lo($) = w * Lim L (9 ) n

To prove the existence theorem we introduce the following

-Hamiltonian:

H(t’u’p,w) =f [p(z,w)+r§(w)°c(z,t,u,m')]['1+¢(.;.,t:,‘u,‘w)] X nz(dz9t)
z .

where p(z,0) Z x Q + R is in Ll(Qf;rxgrrz).

Remark 8. The Hamiltonian is defined above, assuming the conditions
of corollary 3.1 to simplify the notation in the following theorem.’

However theorem 3.3 still holds in the genéral case, with

t+h )
H(t’usp’w) = [ f [p(z)+r§°c(z,t,u)][1+¢(z,t,u)] ﬁz(dz’ds)
‘ t Z

for some h. However, then the minimization is'always over a function

space (funcfions [t,t+h] - U).

Theorem 3.3. Suppose that for each t, p, W the Hamiltonian H(t,u,p,w)

achieves its minimum over U, i..e.Huo € U such that:

(1) H(t,u sP’w) = /\ H(t’u’P’m) = (t,ps0).
| 0 €U e

Then an optimal admissible control law u*(t) exists.

Proof. By assumptions v) and vi) H(t,u,p,w) is continuous in U, and

for S a countable, dense (compact) subset of U one has:
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e, = N H(E,u,p,w)
uES
This implies thatCd4(t,p, w) is jointly measurable andﬂgr:-predictable,
such that by (H)

c(}}(fap, w) € H(t,U,p, w) .

By an extension of Filippov's lemma (see [1], lemma 1) there exists

a mapping y(t,p,w), jointly measurable and‘?;ﬁ-predictable, such that

%(tapsm) = H(taY(tspsw) sp’m)

In the comments preceding theorem 3.1, it is shown that there
exists a process VW(z,t), integrable for fixed t and(;r:—predictable.
Hence u*(t,w) = y(t,VW(z,t,w),w) is a well-defined predictable
process taking values in U, i.e. it ié an admiésible control. To
prove that u* is an optimal control law, it suffices to show (by

corollary 3.1):

t .
!-\g W= /B(s) ds - a.s. q)u*, for all t €I (22)
o ' ’

where é(t,w) = A(t,w) -;}J(t,vw(z,t,w),w)

= A(t,w) f[VW(z,t) + 1 - c(z,t,uk(s)) ][I (z, t,u¥ ()]
z

% nz(dz,t)

From corollary 3.1 it is now obvious that

1
J(u¥) - J* = E_, [f B(s) ds - K W]
¢}
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and J(u) - J*

1 .
Eu [.[ f[VW(Z,S) + rz'c(z,s,u(s))] f’z(dz,ds)—l-\i‘W]
o Z

|v

1
E, [f B8(s) ds - T\clj'wl
[o}

1)

By definition of J*, there exists a sequence of controls {un} such
that J(un) + J*, By assumption iv) and vii) {¢(un)} is a sequence

in ¢, hence there exists a ¢ € ¢ such that:

1 1
L () = W;_lmim L (¢(u)) '

Therefore, for each N:

1
Eo[Li(<1>)'((fB(s) ds - K:; W) N]
o

1
1im Eo[Li'(tb(un))((—[B(s) ds - Ki WAN)]
(o]

nre

Since Li'(tb) > 0 a.s. CPO (comment before lemma 3.1), and since (15)

t -
gives | B(s) ds - Ag W > 0, it follows that
o -
1
-1 )
B(s)ds-AOW=O -
o

t
Since fB(s) ds - Kg W is increasing, this is sufficient to prove
o

(22). n
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Remark 9. This proof, adapted from Davis [7], is very similar to

proofs of the existence of optimal controls on diffusion processes
(see Fleming [13]), but has the advaﬁtage that it does not make
continuity assumptions on the value functions. An alternative
proof can be given along the lines of Benes [2] and Dﬁngan—Varaiya

[10], if one assumes that ¢(z,t,U) is convex.

3.4. Markovian Jump Processes.

Suppose (x fT CP) is a Markov process, C(Ty C;{’t, and:

$(z,s8,u(s),w) = ¢(z,s,u(s),xs_(w)) (¢ denotes 2 different functions

really), and c(z,s,u(s),w) = c(z,s,u(s),xs_(w)). Then assumptions
i) to vi) of 82.4 are clearly satisfied. Moreover assume
c(z,t,u,xt_) and ¢(z,t,u,xt_) are uniformly continuous, on the
separable metric space U, fixed z,t,xt;. Since {L(u): u EvAA},
VAA the class of Markov controls, is uniformly integrable, there must

exist a sequence of stopping time T such that with :

t
un(t,w) = u(t,w) t < J/‘u(s,m)lz ds < n a.s.
(o)
= 0 t > T

(and for notational 31mplicity take $(z,t,0, X, _) = 0) then

L@™) > L(u) in L, (g,CIL).

By [23], VIII,2, lemma 1, there exists a sequence of discrete

control laws {unk}(discrete in sense of §2.4) such that

T
(s) (s) -
l];_j;:‘Eo/jlun | ds = 0
(o]
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n
2
and lim Eo“,p |¢(z,s,un(s),xs_) - ¢(z,s,unk(s),xs_)[ ds =0
ko

o

by uniform continuity. Hence L(unk) + L(u) in probability, which
together with uniform integrability and the Ll-convergence theorem

in [22], p. 163, shows that
n, koo
L(uw,) L(u) in Ll(Q,q)o)
So, condition viii) of §2.4 is satisfied too. All the results of

§2.4 now apply to Markovian jump processes as above.

Remark 1. The convergence argument above is taken from Davis-Varaiya [9].
The previous results can now be summarized in the following

optimality criterion. In agreement with most of the literature on

the optimization of Markov processes, it will be assumed that

traﬁsition densities exist (i.e. fﬁ(B,t) is absolutely continuous,

see remark 4 in §3.1).

Theorem 3.4. Assume (xtf;fz,CTL) is a Markovian jump process as

described above, and let

t
f’z(B,t) =ffnx(dz,s,xs_) . A(s,xs_) ds
o“B
Then
A J) = A_ J). : : (24)

M U

A Markovian control law u* Euu is optimal if and only if there exist:
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i) a constant Jo
ii) a function: a(t,xt_):I x Z » R such that

t

fa(s,xs_) is EAGTEP,)

o

iii) a family of functioms n(z,t,xt_): Z x I x Z > Z such that

t
E | n(z,s,x__) P*(dz,ds)| <
o 2SR ’

o2

which satisfy:

tf tf
a) J -[ a(s,x ) ds +[ fﬂ(z,s,xs_) P*(dz,ds) = Je (25)
o 0 Z

b) -a(t,x ) + /[n(z,t,xt_) + rg * c(z,t,u,x, )]
Z

x [1+(z,t,u,%, )] ny(dz,t,x, IA(E,x, ) 2 0 ¥t € I ¥u € T (26)

with equality holding for u*(t).

~ Proof. Immediate from corollary 3.3 and theorems 2.5 and 2.6,

except fo: the special form of n(z,t,w): this is obvious however
from thé remark that mg is an additive functional on the Markov

process (compare with Kunita-Watanabe, §5, [19])

Remark 2. a(t,xt_) can be identified as:

_5"{_



alt,x, ) = A U (x _,u) +fn(z,t,xt_)[1+¢(z,t,u,xt_)]
z

X
x no(dz,t) A(t,xt_)

where AtU is the differential generator corresponding to the procéss
U(t,xt_) on (Qf;IX,CfL). No expression is known for n(z,t,xt_)
for a general jump process, unlike the Wiener process where it
can be identified with a gradient if U(t,xt_) is sufficiently smooth.

However, the inequality (26) can be rewritten as:

- At U(xt_,u) +-J/.rg . c(z,t,u,xt_)[1+¢(z,t,u,xt_)]
z ,

X
X no(dz,t,xt_) . A(t,xt_) >0 27

with equality holding for u*(t). This equation will be used in the

next chapter to solve some examples.
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CHAPTER 4

APPLICATIONS

In this chapter, it will be shown how the results obtained in
Chapter 3, can be applied to some real problems. First, an explicit
form will be given for the increasing process, introduced in Chapter
2. This will then be used to prove some simple results on systems,
linear in the coqtrol. Finally a number of examples from varying

fields, will be modeled as jump processes, and explicit forms of the

.optimal control derived.

1. Infinitesimal Generators.

In [12], Dynkin shows that for a wide class of functions f(xt),
where xt is a Markov jump process, the following limit exists in
the weak topology on L :

w + lim %{f(xt)-E[f(xt_'.h) x,1} = A[f(xt)—ff(z) ™ (x, ,d2)]
10 A

where A is the rate at which jumps occur, while w(x,dz) is the
distribution of jumps starting from x, given a jump occurs. This
result can be rewritten for the time-dependent function U(t,xt), in
terms of ix(B,t):

t

Proposition 4.1. Let f’g(B,t) = f/ n:(dz,s) * A(s) - ds
oYB

Let U(t,z) < M, ¥ z € Z; let U(t,z) be differentiable in t.

Then:
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. 1 - G
Wl {uce,x, ) - E, [UCe+H,x o )T

BU(t,xt)

(1)

= - + A(t) x f[U(t,xt_)—U(t,z)][l+¢(z,t,u)]nx(dz,t)

at
Z

with boundary condition U(tf,x ) =J
tf— f

Proof.i Eu [U(t+h,xt+h_)|xt_]

= U(t+h,xt_) x CPU (no jump in [t,t+h)|xt_)

Z

+ fU(t+h,z) X Cpu ( jump from x, to

)

(z,z+dz) in [t,t+h)
+ f(M) x o(h)

=
Let t (Tn’Tn

_'_1],' then (G as in remark 4 of §3.1):

Gn(Z,[t,t+h))
B Gn(zs [t,=)

Cpu(no jump in [t,t+h)|xt_) =1

and
Cp Gn(dZ,[tst+h))
u(l jump: x_ to (z,z+dz) in [t,t+h)|xt_) = Gn(Z,[t,w))
which is (‘:}‘T measurable, and X._ = Xp for the w's considered.
n n

By remark 4 of §3.1, the result is then immediate.

Consider now a jump process (xt,g:,q)o), not necessarily
Markovian. By cor. 2.4 of [4],

W(t,w) = W(t,xTiAt,Til\t, i=1,2,...).

-
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Denote:

Wn(t,xTi,Ti;i=1,...,n) = W(t,le,...,xTn,xTﬁ,}..,Tl,...,Tn,Tn,...).

“Then on {w: T <t < T .} we have:

W(t,w) = Wn(t,x i; i=1,...,n).

7,27
i

The previous jump process can be made Markovian by imbedding
it into another process that has the whole past (xTIAt,TiAt) = x

as state. The extension of proposition 4.1 is now obvious:

t
Theorem 4.1. Let f’z:(B,t) = /f nz(dz,s) A(s) ds
o“B - ’

Let W(t,w) <M, ¥w € Q. Let W(*,w) be differentiable in t. Then

on the set w : T (w) <t < Tn+l(w)}.

W« lim HU(t,0) - B [W(e+h,0) [TFE1)

oW (t,w) i=
- _S-E’&)— + A (t,w) ,/-[wn(t’xTi’Tl’. .+ i=l...,n) )
Z

X
- Wn+1(t,xTi,z,Ti,t; i=1,...,n)] n_(dz,t)

with boundary condition W(t,w) = Jf.

Remark 1. The boundedness condition on the value function could

probably be replaced by an integrability condition. Since boundedness

does not seem to pose a problem for the finite state examples

below, this has not been done.

-61-



2. In the partial information case the result is:

w e lim = {(W(u,t,0) - B [Wu,t+h,0) [FF11)

oW
== (u,t,w) + A(t,m)‘Jl.[Wh(t,yT.,Ti) - Wn+l(t,yT.,y,Ti,t)]
1 1
YA

—

/ .
x [1+¢(z,t,u)] I,(z) £(z,t) u(dz,t)

where "~ denotes Eu(-IQJZ). This is too complicated to be very useful.

Theorem 4.2. Let the conditions of theorem 4.1 and corollary 3.1 be

‘satisfied. Then the optimal control law u*(t,w) can be found by

- solving:
drW(e, W] |
0= zég [————SE—————-+ ro.l(t)[;£}~wn(t,x i,Ti) + Wn+1(t,xTi,z,Tit)
v+ e(t,z,u)] [14+4(t,z,u)] nﬁ(dz,ti] (3)

Proof. Immediate by using remark 2 of §3.4 (which holds for non-

Markovian brocesses too). B

2. Bang—-Bang Control.

It is well known that, in deterministic optimal control, for
a cost linear in the control, the optimal control is bang-bang, i.e.
takes a finite number of values only, and jumps from one of these
values to another,a finite number of times. We now prove a similar

result in the stochastic case.

-62-

A



I

1%

Theorem 4.2. Let U be a compact subset of ﬁam, defined by

A+ u+ B >0, where A, B € Rnxm. Let either é(z,t,u,w) or
¢(z,t,u,w) be of the form Ac(z,t,w) «u+ Bc(z,t,w)(i.e. affine
function of u) and the other (c or ¢) independent of u. Then the
optimal control law u*(t,w) jumps a finite number of times (in every

finité time interval) between the vertices of U (finite in number).

Proof. The criterion of theorem 4.2 takes the form

0 = min [£(z,t,U(t,x, _),w) x u+ g(z,t,U(t,xt_),w)] (5)
U

This is a linear programming problem, so the optimal values of u

lie on one of the vertices of U. "

Remark 1. If the cost is of the form

t.
Eu[f(A(s) u + B(s)) ds + J]
0

then criterion (3) is transformed to:

S[rg Wit,w)]
0=min | —m——

t X
nin ve + r, A(t) [ (-Wn + Wn+1) (1+4) no(dz,t)

Z
+.A(t) u + B]

Hence, the optimal control law is bang-bang, if both ¢ and ¢ are affine
in u.
2. If ¢ and ¢ are more complicated functions of u, it may still

be possible to solve (5) for u, as a function of U(t,xt_) and then

-
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solve the highly non-linear partial differential equation. Then
an optimal control law will be constant, equal to the value of a
vertex, over some intervals, but can change continuously between

those intervals.

3. Examples

a. The simplest case imaginable is controlling the rate of a point
process (Nthff,CFL), with rate 1. The decision-maker can change the
rate to any value u € [a,b], b > a > 0. Since the process is
. N .
Markovian under CFL, and assummg(;rt is observed, the control u only
has to depend on t and the present value Nt of the jump process.
Observing that ¢(t,u) = u - 1, the optimality criterion can be

written as:

aU(t,Nt_)

0= min [ 5t

+ u(U(t,Nt_+l) - U(t,Nt_)) + c(t,u,Nt_)] (6)
a<u<b

together with U(tf,Ntf) = Jf(Ntf)
One possible cost structure suggested by D.Snyder, related to
minimizing damage to a sample in electron microscopy, is:

maxcp(N = k) =max E (I ).
ue/l/l u tf Lle/l‘ u {Ntf—k}

Then c(t,u,Nt_) =0 and Jg = I{N =k}’

The optimal control law is

u*(t)

b if U(t,Nt_+1) > U(t,Nt_)

uk(t) = a if U(L,N_+1 < U(e,N ).

-6l-

#



Note that (6) has to be maximized for this application. Equation

(6) becomes:

i aU(t,N )

‘0 = 5t + b * max (U(t,Nt_+1) - .U(t,Nt_),O)

+a * min (U(t,N__+1) - U(t,N, _),0)

which can easily be solved starting from

|
=
[
rh
2z

fl
=~

U(to,N, ) =
f tf_ £

0 otherwisef

Remark 1. Suppose there were a second, independent Poisson process
Mt which can neither be observed nor controlled, and one wants to
maximize.cil.(Nt + Mt = k). The problem now is one with partial
information. However because of the independence assumed everything

said above still works, if one replaces the final condition by:

k-i
“te g
U(tf,Ntf) = I{N =1} ‘e . ﬁ(.—_‘lv i=0,1,...,k (7))
t
£
= (0 otherwise.

This follows from

k
(TL(Nt +M_ =k = 225 P, =1) - Py, = k=d).

Note that this analysis fails as soon as Mt can either be controlled
or observed, or is not independent of Nt, since then the expression

replécing (7) depends explicitly on the control law u. Therefore, it seems
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that only an iterative solution can be hoped for. This illustrates

some of the problems of partial information optimization.

b. queues: An interesting class of problems is the optimization
of networks of queues, as occur in traffic control, management of a
time—sharihg combuter, etc. Only the simplest possible cases will
be considered here.

Consider the following simple queue: on a probability space
(Q,Q;;CIL) are defined 2 independent Poisson processes At (rate 1)
and Dt (rate 1), representing the arrivals up to time t, and the
potential departures up to time t. The queue-length Qt can then be

expressed by:

t
Qt = At -[ I{Qt_>0} d Dt
(o]

since no departure is possible if the system is empty. Then Qt is
a jump process, having jumps of size +1 with rate 1, jumps of size -1
with rate 1 if Qt- > 0, with rate 0 if Qt- = (0, This is a Markovian
jump process.

We now suppose the service rate of this system can be changed
from 1 to any integer u = 0,1,...,N, while the arrival rate is

unchanged. Then ¢1(t,u) = 0, ¢2(t,u,Qt_) =u -1 if Qt- > 0. If

t
f .
J() = Eu[/ﬂ c(s,u,QS) ds + f(Qt )] then the optimum is obtained by:
o f
aU(t,Q, )
0= min [e(t,u,Q. ) + ——— + A(U(£,Q,_+1) - U(t,Q,))

u=0’1,. L) ,N

*ue I Loy t(WCEQ 1) - U(e,Q )]

(Q,_
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with Ut_,Q ) = £(Q_).
f tf tf

If c(t,u,Qt_) =3 ¢ u+ Qt— (a>0) and'f(Qt ) = 0 then the

£
optimal solution is very easy between 0 and tf - a use

u*(t)

]

N if Qt- >0

u*(t) = 0 if Qt— =0

and in (tf—a,tf]: u*(t) 0 always. This corresponds to

(tgmt)”
U(t,Qt_) = (tg-t) Q _ +2—3 for.t € (t-a,ty).

It is not necessary to find U(t,Qt_) on [O,tf-a], since U(t,Qt_)
- U(t,Qt_-l) is clearly decreasing with increasing time, and hence
larger than a throughout the intervai.

A slightly more complicated problem is that of choosing between
serving one of 2 queues (e.g. traffic lights at an intersection).
Each of the queues Qi and Qi are described as above, and the control
values (ul,uz) possible are (1,0) and (0,1). Then the optimality
criterion becomes:

1 2
au(t,Q__,Q, )
L 1 2 t=2 g
0T (“1:“2;i§§g o St Gt °

.0)

1 2 1 2
+ A (U(e,Q;_+1,Q,_) - U(t,Q,_,Q;_))

1 2 1 2
+ 2, (U(t,Q,_,Q;_+1) - U(t,Q,_,Q;_))

2

+ ) (U(e,QL_-1,Q7 ) - U, Q7)) - T,
Qt- >0
1 2 2
+ uZ(U(t’Qt—’Qt--l) - U(t’Qt_’Qt_))'I 2
Qt- >0
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2

g, ) =0

with U(tf,Q1 ,Q
t £

f-

Assuming c is independent of the control value, one gets u*(t)=(1,0)

if
2

1 2
) - U(t»Q »Q ) I
t- t-’ "t~ Qi_ > 0

(U(t,Q5_-1,Q

< @,Q_,Q2 1) - U(e,qp,&2 ) - 1,

g > 0

i

c. Optimal investment. An example of a jump process with a large

(but finite) number of types of jumps, can be obtained by considering
the price wi(t) of some stocks (i=1,...,n). We assume each of the
prices ﬂi(t) can change by jumps over a fraction aij,j=l,...,mi‘and
aij > -1¥i, j, (i.e. ni(T+) = ﬂi(T-) + a4y ni(T-)) occurring at
random time Tij with rate kijét). Then, aécordiug to Merton [23],

if somebody has wealth W(t) ( > 0 always), and has invested a fraction

wi(t) of this in stock i, his wealth will also be a jump process,

described by:

dwi(t) n

n
dw_ = w,(t)W , w,(t) =1 (8)
t 2;“1 i t- oy (t-) i§l i

This is a jump process that has jumps of size aijwi(t) . Wt
" with rate Aij(t). Here, as before, the probability measure depends
on the choice of the fractions wi(t), which therefore are called the
controls. In this form, Varaiya [35] has shown that the problem

max Eu J(Wt ), with J(Wt ) the utility of the wealth at
ngi(t)g; f f

Zwi(t)=l
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the final time te, can be solved by a simple non-dynamical optimi-
zation.

By using the results of Chapter 2 it is possible to solve a
slightly more general problem: suppose fhe investor also has a wage
income Ve ° d t in [t,t,+dt) (beyond his control) and can consume
C. * dt of his wealth, in [t,t+dt), where Ct € [R+ can be chosen

t

freely, and is thus a new control variable. Then:

dﬂi(t)

n
W, = (y, - c.) dc + >, wi(c)-wt_-—-———"i(t_)

i=1
We want to maximize

t

£
E [f Ie,C,) At + T 0, )]
o

where J and Jf represen; the utility of cénsumption at t, resp. of
the final wealth. Now the probability measure CFL is determined by .
the control variablé Wi(t)’ i=1l,...,n and Ct’ In the present case
Wt is no longgr a jump process, because of J?kys—cs)ds. However if
we assume Aij(t) to depend only on the presezt value Wt_, then
(th;IZ’:TL) will be Markovian (CTL any Eifed choice of wi(t) and
Ct)' It is then easy to'calculate the infinitesimal generator of
the value function

t

£ .
U(t,Wt_) = inf Eu{}r J(s,C.) ds + Jf(Wt )IWt_]
wi(t) ’Ct t £
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as

1
w o lim 3 (U(t,W ) - E (UCt+h, W . ) |W )]

>0
QU(t,W,__) 3U(L,W,__)
=t e T ®
ii i
+ A (8) [U(e,W_ ) - U(t, (Q+w, (t)a, W )]
i=1 J-=1 ij t- i ij t

Remark 4. The above calculation can be extended to the case where

ni(t), i=1l,...,n includes a Brownian motion combonent, stochastically

independent of the jumps. See Merton [23].
Using criterion 2.3, the optimality criterion for the system

described above becomes:

(L, W,__) BU(E,W, )
0T cmt;g 3G, C) + =+ G -G
wi(t)zp
Zw; (t)=1
i (10)
an M
- igl j§1 Aij (t) (U(C,Wt_) - U(t,(l—!-wi (t)aﬁ)wt-))]
with U(t_,W,_ ) = J_(W_).
f te f te ,
€

= = = L4 Y
Assume Y, 0 and J(t,Ct) . Jf(wt ) =a Wt /v, with

'T
f £
a >0 and vy € (0,1], then one gets by inspection the following

solution of (10).
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Wy
U(t,Wt_) = f(t) - 2

Wt-

CF = ——r—
*
and wi(t) is obtained by the maximization:

m
n

i
max 3. % A (0 HEy Y, (e )Y - 10 = A,
w, (£)20 i=1 j=1 1 Y 't ‘
n

T w,(t)=1
i=1 T

t .-t

Here‘f(t)‘= [(1+a~y) exp(A - —;;—9+ Y - 1]1_Y

: *
This is a very easy structure for the optimum: Wi(t) is the same
' %
as in the simple case treated in {35], while Ct is proportional to

Wt—’ the constant of proportionality being a predetermined function

of time.
It should be noted that this simple solution depends very

heavily on the assumptions made about the utility functions (it can
o (a(e)C, + b (£)Y |
be extended to J(t,Ct) = Y and J(t,Ct) = R,n(a(t)Ct + b(t))

with Jf having the same form) and on the assumption that there is no

wage income. In all other cases it seems that (10) will be more

useful as a starting point for approximations.

Remark 5. One could try to model consumption and wage income as
jump. processes. However it is difficult then to find a reasonable
form for the utility of consumption. Moreover, it would then be

reasonable to let jumps occur at fixed times, which would violate

-71-



the assumption of total inaccessibility of the jump times.

d. Modeling problems: As mentioned in Chapter 2-3 it may be

necessary to choose a complicated probability measure CFL, to make
all physically realizable or approximately realizable CPL absolutely
continuous with respect to CFL. A simple example is given by
inventory problems (for a review, see Scarf [28]). Suppose an
inventory can contain Xt = —»,,,.,0,1,...,N items of one product.

The number of items decreases by 1 at ragd;mitimes Ti’ with a given
interarrival distribution. At some points in time Si, it is decided
to increase the inventory by some number Ki items. Those arrive s
time units after the decision is made, s also having a given
distribution. The problem then is:

t

£
L
min E_ [f L(1,X_)dT + 1z=1 f(Ki)+Jf(xtf)]
o .
Sp<ts

The controi here consists in choosing the times Si and the amounts
Ki to order. Note that Xt.g 0 is allowed because orders keep arriving
even if no item is available. This situation should be avoided,
therefore make L(s,Xs) very large for negative Xs.

Let Xt take all integer values < N. 1If X, = k, then it can
jump,.under the measure CFL, to values k-1,k+1,...,N with rate 1 for
each jump. Under measure‘qqu all but one of those jumps, have rate 0

(i.e. -1). The one jump allowed with rate 1, under‘J)u is

e =
from k to k-1 if one decides not to order (¢k k—1=0) or from
1]

X3i+§ to X81+P + Ki; if one decided to order Ki\items at time Si’

-T2-
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this jump will occur with rate pi(s) (where pi(s) is the density of

s, the time the order takes to arrive), at each time Si + s. Then

) , = p.(s) - 1.
XSi+dXSi+s4+ kR

The control problem then takes the form described in §2 and 3,
if pi(s) > 0, ¥s > 0. However it is usually reasonable to assume
that s bnly takes a discrete number of‘values (say arrive 1 or 2 or
3 days after ordering). Then the jump times of Xt are not all

totally inaccessible; therefore it is not known whether the theory

~of §3 applies to this case. Also, no case has been found where the

optimality criteria can be analytically solved or where the simple
(s,S)-ordering policy (see Scarf [28]) éaﬁ be rederived.

Another class of problems, which can be modeled as an optimi-
zation of the form considered in §2, are pptimal stopping problems.

Then, let ¢(t,t(w)) = - I{t>T(w)} where f(m) is any stopping time,

- which now plays the role of a control. The problem then is, to

find a 1(w) such that it maximizes:
ET J(t(w),w).

Application of theorem 2.3 unfortunately leads to a partial
differential-difference equation with moving boundary, which is

difficult to solve.
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CHAPTER 5

CONCLUSION

In this thesis a fairly general form oévthe stochastic optimal
control problem is discussed. It is shown ﬁhat the mathematical
framework chosen (absolutely continuous changes of the probability
measure) leads to some abstract necessary and sufficient conditions
for optimality. In the case of a jump process, these conditions are
simple enough, to be used in deriving some properties of the optimal
control, even though they do not give a computationally feasible
algorithm. Therefore, the thesis can be cosgidered as a study on

the application of jump processes.
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