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1. Introduction

It has been shown by Fshenlchnyl [6] and Robinson [7] that Newton's

method can be extended to the solution of systems of equations and

Inequalities, where the number of variables may be larger than the number

of equations and Inequalities. These extensions of Newton's method

converge quadratlcally when started f^om a good Initial guess, but,

just like Newton's method, may diverge when started from a poor Initial

guess. In a recent, as yet unpublished paper, Huang [2'] described a

locally convergent modification of Robinson's algorithm.

Our paper presents an alternative stabilized version of Robinson's

algorithm which has a greater rate of convergence and requires less

strict assumptions than Huang's algorithm. In addition, we present an

"Iterated" version which Is more efficient. The stabilization Is

accomplished by using an Armljo-type gradient method [1] until a

battery of tests Indicates that one Is close enough to a solution for

Robinson's extension of Newton's method to converge. Thus we obtain

algorithms which are globally convergent and have root rate of conver

gence r € (1>2] depending on the choice of parameters. We
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show, following Brent [2], that there is a choice of parameters which

maximizes the efficiency of the algorithm. Our computational experience

has been most encouraging.

2. The Algorithm: Convergence

The algorithm we are about to state solves problems of the form:

find z ^ IR such that

g(z) = 0 f(z) = 0 (1)

where g: f: are continuously differentiable

functions. We use superscripts to denote components of f, g, z, etc.

For some b » 1 and II *11 denoting the Euclidean norm, we define

f: IR^ •> by

f^(z) =
f^(z) 3 = (2)

BzD^ - b j = q + 1

We shall use the following notation:

A[8(^)1h(z) M . I H(z) &̂ (3)

G(z)^^ , (A)

f^^z) = iiiax{0,f^(z)} j=1.2 q+1 (5)

We also define a cost function f°: IR,^ by

f°(z) =Yllg(z)II^ + Hf**"(z)ll^ (6)

-2-



It is not difficult to see that f° is continuously differentiable

and

7f°(z) = G(z)'̂ g(z) + F(z)'̂ f*(z) (7)

Finally, given any Zq ^ IR^

C(Z(,) ^ {z|£°(z) <f°(zQ)} (8)

We now state assumptions which ensure that our algorithm is globally

convergent.

Assumption 1; The derivative matrices G(*) and F(«) are Lipschitz

continuous. °

Assumption 2; The pair (F(z), G(z)) satisfies the Robinson LI condition

[7] for all z ^ C(Zq), where z^ is the initial guess to a solution for

(1) and b is sufficiently large to ensure that the set Q(zq)

contains at least one such solution; i.e. for all z ^

u^ F(z) + v^ G(z) « 0 (9)

and u = 0, implies that u = 0 and v = 0. °

Algorithm

Data; z e R», b » a e (0,1/2), BS (0,1), 1 > 1, y € (0,1),

k e n"*".

Step 0; Set i = 0, j = 0, s = 1, p = 0.

Co^nnAnt-; i is the iteration index,, the Jacobians F and G are evaluated

atz., s=i-i+lis the number of times the same Jacobians have
3

been used.
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Step 1; Compute g(z^), f(z^), f (z^), G(Zj), and F(z^). Stop if

f°(z^) = 0 .

Connnent: When actually programming this algorithm, compute ^(Zj) and

F(Zj) only as necessary (i.e. every k steps).

Step 2: Compute a vector v^ which solves the problem

_iiitoimlze{B»llJg(zp +G(Zj)v =0, ICz^^) +f(z.)v =0} (10)

where

IvO = maxIv^ I (11)
r

Comment; Due to Assumption 2, the linearized problem (10)

always has a solutiod, obtainable by linear programming techniques.

Step 3: If llv^ll^ £ and ^ ^i+1 ^i'

p^ = p, set p = p + 1, set i = i + 1 and go to step 14; else go to

step 4.

Set w^ =v^, <|>(z^) =- 2f°(z^).

If j = i go to step 11; else go to step 6.

Step 4: Set w^ =

Step 5: If j = d

Step 6: Set Z =

Step 7: Compute

Step 8: If

f°(z^ + i 6 0i4>(zj^) (12)

set = 4, set = z^^ + B set i = i + 1 and go to step lA;

else go to step 9.

Step 9: If X, < i set i = £. + 1 and go to step 7; else go to step 10.

0 2*^Step 101 Compute Vf*^(z^), set w^^ =- Vf*^(z^) and set <{>(Zj^) =- Hvf (z^)B .

^When the solution of (10) is not costly, replace step 10 with;
Compute G(Zji^), F(z^), set j = i, set s = 1 and go to step 2.
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Step 11; Set Jl = 0.

o A
Step 12: Compute f (z,. + 3 w^).

a.
Step 13: If (12) is satisfied, set £. = £. set z.,- = z. + ft ,

1 1+1 1 i'

set i = i + 1 and go to step 14; else set £ = Jl + 1 and go_to step 12.

Step 14: If s < k, set s = s + 1 and go to step 1; else, set s = 1,

j = i and go to step 1. °

We shall now establish the convergence properties of the algorithm

00

in four stages. First we shall show that if is constructed

by the algorithm, then it contains a subsequence which converges to a

solution. Next we shall show that the relation !•©•

ilv.il < Y z. + V. € C(Zrt), holds an infinite number of times. Next
i<»— ii 0

p.

we shall show that if there is an i' such that the test Hv.ii < y
X 00 — ' *

z^ + v^ ^ step 3 is satisfied for all i ^ i* and Hvj^il is
A

sufficiently small, then z^ z , a solution of (1). This result

takes the form of a local convergence theorem. We shall complete the

proof by exhibiting the existence of an i* such that ~ ^i ^i

all i i*.

Proposition 1: Let v^ be computed by the algorithm at z^, from (10).

Then <{>(z^) = 0 if and only if w^ = 0 if and only if Vf°(z^) = 0,
i.e. if and only if solves (1). n

Lomma 1; Suppose that z G IR^ is such that <{t(z) < 0, where 4>(z) was

defined in the algorithm (step 4 or step 10). Then there exists an

integer £ ^ 0, finite, and an e(z) > 0 such that

f®(z' + eV) - f°(z») < 6%(z») (13)

for all z' ^ B(z, e(z)) = {z*|Iiz* - zH £ e(z)}, for all w* satisfying
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for some Q < »

llw* II and (Vf*^(z*), w*)^((>(z*) (14)

Proof; Because of Assumption 1, Vf°(*) is continuous. Hence (}>(•)

is continuous and there exists an e(z) >0 such that <Kz*) £ <|>(z)/2 < 0

for all z* ^ B(z,e(z)). Since B(z,e(z)) is compact, 7f°(-) is uniformly

Lipschitz continuous on this set, with constant L, say, and hence, for

any X > 0, and w* satisfying (14),

f®(z'+Xw') - f®(z') - X(Vf°(z'),w'>

2=I <Vf°(z*+sXw') - Vf°(z'),X w' >ds <^ (15)
0

Consequently,

f°(z'+Xw') - f°(z') <Xo <vf°(2'), w'> +x|(l-a) <7f°(z'), w* >

+Mllw* 1)^1 <Xo4.(z') +1 [(l-c.) ♦(z) +UQ^] (16)

I 2
Let £ >; 0 be the smallest integer such that (1-a) <j)(z) + LB Q £ 0.

Then, clearly I satisfies (13) for all z* G B(z,e(z)), for all w'

satisfying (14) and the lemma is proved. °

Corollary 1: The algorithm is well defined, i.e., it does not jam up

between steps 12 and 13.

Proof; We know from Proposition 1 that it is not possible to reach

step 11 with <|)(z^) <0 and w^ = 0. Next, since f°(z) contains the
2 4" 2term ((HzH - b) ) , it is clear that C(Zq) is compact and hence
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there exists an M< <» such that max{l'vf^(z)ll^, ^h(2)fl^} £ M

for all z ^ C(Zq). Hence, making use of (56) and the equivalence of
n

norms in IR , we conclude that there exists a Q G such that

for any z^ constructed by the algorithm. Next, if we have

from (10) that <Vf°(z^), >£ -2f°(z^) = <l)(z^), whereas if
w^ =-7f°(z^) the same result follows from the definition in Step 10.
Hence by Lemma 1 there exists an < °° satisfying (12) • **

LAirnna 2t Suppose that the algorithm has constructed an infinite

00 00 . ^

sequence {z.}. Then {z.}. ^ has at least one accumulation point z
1 1=0 1 i=u

which solves (1), i.e. g(z) = 0, f(z) £ 0.

A

Proof: First, suppose that there is an i'such that for all i £ i»

z.is constructed according to the formula in steps 8 or 13

(z^^^ = z^ + 8 w^). Then it follows directly from Lemma 1,
00

and theorem 1.3.9 in [5] that every accumulation point 2 of

satisfies Vf°(z) = 0 and hence, from Assumption 2, is a solution of (1).

Furthermore, since the set C(zj^) ={z|f°(z) £ f°(zj)} is compact, and
z^ G C(zj) for all i £ i, it follows that {z^} has at least one accumu

lation point 2 which solves (1).

^iNext, suppose there is no i such that = z^ + 8 w^ for all

i £ i. Then there must exist an infinite subset K ^ {0,1,2,...} such
p.

that "v^ll^ £ Y^ all i ^ K, and p^ -»• ®as i -»• », i GK. Consequently,
A

v^ 0 as i i G K. This implies that g(z^) 0, f(z^) f £ 0

as i ®, i G Ksince the Jacobians G(-) and F(-) are bounded over c(2q) •

Since is compact, there exists an infinite subset K* C k and a

z G ^^^0^ such that z^ z as i ®, i ^ K*, and therefore g(z) = 0,

f (z) = f = 0, i.e. has an accumulation point z which solves (1). n
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Corollary 2; Suppose that ^ sequence constructed by the

algorithm and suppose that z is an accumulation point of

{z^}^_Q which solves (1). If KC{0,1,2...} is an index set
00 *

identifying a subsequence of which converges to z, i.e. z^ z

as i ^ i G K, then v^ -• 0 as i -> <», i G K.

Proof: Note that

|flvll„|g(z^) +G(Zj) V=0, f'*'(Zj|̂ ) +F(Zj) V=o| (17)Iv.II < V. = mini 00 — i

and 0 as i i ^ K by (56) and Lemma 2. Hence

v^ 0 as i i ^ K.

00

Corollary 3; Suppose that is a sequence constructed by the

algorithm, and suppose that is a subsequence converging to a

solution z of (1), where KC {0,1,2,...}. Then there is an infinite

subset K* C Ksuch that z^^^ " ^i ^i i ^ K'.

Proof; By Corollary 2, v^ 0 as i -»• «>, i ^ K. Hence, since

f°(z^) 0 as i ^ i ^ K, and f '̂C*) is uniformly continuous on
there exists an integer i" such that for all i S K, i ^ i", Ov^H® £ y»

f°(Zi) l| f°(Zo) <18)

- f°(Zi) if f°(Zo) <19)
i.e., z^ + v^ ^ ^^^0^ ^ i ^ K; moreover the construction

z.., =z. + v., i^K, must occur at least once, so that p." is well
1+1 i 1 i

defined. Now let p^, i ^ K, i ^ i" be an arbitrary integer. Then,

since v 0 as i ^ ® , i G K, there exists a j such that i + j € K and
p.+l

llv^^^ "oo —̂ »which together with (18), (19) implies that =
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. Thus there exists an infinite subset K* C k such that

= z^ + tor all i C k*. n

Theorem 1 (Local Convergence); Let g: IR^ R™ and f; R** -»• be

differentiable functions, with G(-), F(-) uniformly Lipschitz continuous

with constant L. Let b > 0, y ^ (0,1) and an integer k ^ 1 be given.

Suppose there exists a ^ such that the pair [P(yQ), ®(yo)^

satisfies the LI condition and (see also (58))

and

A ^ It —
h=p Ln\<Y~Y > P > sup y[F(y), G(y))

yey

*=(yliiy - yo"-! 1^}' (20)

nAmin{IlvII |̂g(yQ) + G(yQ) v =0, f(yo) ^^yQ^ (21)

For i = 0,1,2,..., let j(i) = k[i/k], where [i/k] denotes the integer

part of i/k. Then the iterative process

^ Arg min{lly - y^i^i'̂ lg(yi) + ®(yj(i))^y '

f(yi) + ^(yj(i)) (y - yi) = 0} i =0,1,2,..., (22)
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00

results in well defined sequences such that any such sequence

converges to some y satisfying g(y) = 0, f(y) <0.

Proof: First suppose that the process (22) results in a well defined

00

sequence ^ Y* For i = 0,1,2,... , consider the following

associated linear system:

g(yi) + <5(yj(i))(y-yi) - tg(yi_i) + ° °

f(yi) +F(yj(i))(y-yi) - [f(yi_i) +^<yj(i-i))(yryi-i)i i« (24)

Since, by inspection, any solution to (23)-(24) is a feasible point for

(22), we obtain the following bound from (3), (56) and the Lagrange formula:

'yi+i - - *^^1(1-1)^^^1 - ^1 -1^"°

-"kd I ®"<yi-i-^ ®^yi" ^ '̂'yryi-i®'
(1) ^['̂ 1-1 "''j(i-l)"- '*1 "^1-1°-] '̂ 1 "^1-1°-< V.

1-1

^>*1(1) \i=j (1-1)
'yv+i - yV 00 lyi - yi-i' (25)

Next, from (20) it follows that 6 is real for any y ^ (0,1) and

h=6-6 <6<y (26)
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We shall now show by induction that the process (22) is well defined for

i = 0,1,2,...jthat y. S Y for i = 0,1,2,..., and that
1

" yi'̂ «» - ^"^i " ^i-l"-' ^ ^27)

Note that a y^ satisfying (22) for i = 0 exists by hypothesis, and

that S Y. Next, let 1 = 1. If k > 1, then j (1) = 0 and, by hypothesis,

the Jacoblans satisfy the LI condition at y^. Consequently, by

Theorem 5, there is at least one y2 satisfying (22) for i « 1. If, on

the other hand, k = 1, then because of the Lipschltz continuity of the

Jacoblans we have -

« 1 »'o " ^0°" If Ln = h <1 (28)

and hence by Theorem 5, the LI condition is satisfied for i = 1 and

there exists at least one y2 satisfying (22) for 1=1. It now follows

from (25) that, whether k = 1 or k > 1,

«y2 - yi"» 1 fj(i)i'i''yi - yo"»i - ^0°- - " ^o" -

the last part of (29) holding because of (20) and (26). Also,

"^2" yo°» - "^2" "^1" yo"- - -1^" • ^2 ^
Thus the sequence is well defined for 1=0,1,2, it is contained in Y , and

(27) holds for 1=1. We proceed with the inductive step:

for i = N + 1, either j (N+1) = j (N) or j (Nfl) = N + 1. If j (Nfl) = j(N),

then, since the matrices in the linear programming problem (22) satisfy

the LI condition at i = N, they also satisfy it at i = N+1 and yjj^2
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well defined. If j(N+l) j(N), then, because of the uniform Lipschitz

continuity of the Jacobians,

(N)>" - i "jCN) ^ "ym-i - yj(N)"-

* ^ . N
1 y L 23 "• yJoa 1 Ln 23 ^ i h/(i-6) = «. oo)

v=j(N) v«j(N)

where the last line follows from (2^. Hence by Theorem 5, the LI

condition is satisfied for i = N+1 and thu^ y«.o is well defined. It

now follows from (25) and (26) that

"ym-2 - %+!"- i - ^n"-
00

i.e., (27) holds for i = N+1. Thus, the sequence is well defined,

A

it satisfies (27) and is contained in Y. It must converge to a y

because (27) holds for all i. It now follows from the continuity of

g, G, f and F, and the fact that - y^^) converges to zero as
A •• A ^

i -*• ", that g(y) = 0, f(y) = 0. This completes our proof. ®

Theorem 2; Suppose that b in the algorithm is sufficiently large so

that {z|g(z) = 0, f(z) = 0} ?^ <{), and suppose that Assumptions

1 and 2 are satisfied. Suppose that the algorithm has constructed an

GO

infinite sequence Then (i) there exists an N ^ 0 such that
A

z^^^ ~ ^i ^i i ^ Nand (ii) z^ ->• z as i -> «> with g(z) = 0,

f(z) =0.

Proof: According to Lemma 2, there exists an infinite sequence
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such that -»• z, and f°(z^) ^ f°(z) = 0, as i -> », i GK, with z a
solution of (1). By corollaries 2 and 3 there is

an infinite subset K* C k, such that 0 as i -»-«>, i ^ K' and

z..- = z. + v., for all i ^ K*.
i+1 i 1

Next, let Then, since f^(') is uniformly continuous

on the compact set C(Zq), there exists a 6^ > 0 such that

|f°(z) - f°(z')| < (32)

for all Bz' - zB^ ^ 6.. Now, since f°(zj^) -»• 0, v, -»• 0 as i •» ">, 1S K',
there exists an i* G K* such that

and

f°(z^,)<ej^. Bvj^.B^ _< (y-y^)/A <33)

A "v. ,11A i' » , ^ (34)0) = , .] ^ 1

i y 4- °«

Then the conditions of Theorem 1 are satisfied at Yq ® and any
GO ^

sequence {y.}._.« constructed according to (22) must converge to a y,
3 1

which solves (1). Furthermore, from (27), Dy^ - y^^J^ £

all 3 = 1,2,..., and hence, from (32) and (33),

f**(yj) 1 1 ^^(2:^) (35)

i.e. y^ GC(Zq) for j = 0,1,2,... . Hence, we must have

Now making use of (27) and (26) we obtain

"'I'+l"" ° "^2 " yi"- i i vBv |̂„ < Y (36)

-13-



and hence ~ y2* Proceeding by induction, we now conclude that

~ consequently ^ y a solution of (1) •

This completes our proof.

3. Rate of Convergence and Efficiency

We derive now the root rate of convergence of the algorithm in

Section 2 (see [4] sec. 9.1 for a definition and discussion of root

rate). We shall show that the root rate of the iterative process (22),
k

and hence of the process defined in Section 2, is ^ r A /fcfl . The

proof will proceed in three steps. We shall first show that the sequence

^®ik^i=0 step lengths (s^j^ A ~ associated with the
k-step process obtained from (22) has an R-rate ^ kfl. (Compare with

results of Traub [10] and Shamanskii [9] for multistep methods.) Next

we shall obtain a relation between the rate of convergence of the sub-

00 ,.00

sequence and that of the sequence Finally, we shall

show that the R-rate of the process (22) is the same as the R-rate of the

sequence .

Define

®i ^ "^i+i"

Then we have the following

Lemma 3; Let g: and f; -»• be differentiable functions,

with 6(*) and F(*) uniformly Lipschitz continuous with constant L.

Let b >0, Ŷ (0»1)» k^ be given. Suppose there exists a y^ ^ R**

such that the pair [5(7^), G(yQ)] satisfies the LI condition and

. l|. <38)s. < min<
0 r / *TN^k+l ' y*LJa^(y*L) ]
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where is defined by the recursive relation

a^^j^ —a^ ^^ ^i' ^0 ^ ®0,l,».j.,k—1 » (39)

and y* satisfies (20).

(The existence of a solving (22) is ensured by the hypothesis)

Under these conditions» the sequence with the

process (22) converges to 0 with root rate of at least r

Proof: From the local convergence theorem, the iterative process (22)

00

constructs a well-defined sequence Moreover, this sequence is

00

Cauchy, and hence the sequence converges to 0.

We begin by showing that for any 1 ^ {l,2,...k} and for any

i = 0,1,...., we can bound s./.... by
j(i)+*

- / + T\ ^ ^"*"1 (40)
«j(i)

with as above. The proof will be by induction on Z. From (25) we

obtain, by replacing i with j (1) +1 and using (20) and the defini

tion (37):

®5(i) (Ai)
which proves (40) for the case when A = 1. Assume next that (4o) holds

for Z = l,2,...,k, with k _< k - 1. Making again use of (25) and the inductive

hypothesis, we obtain successively:

By theorem 9.2.7 in [4], r is the root rate of the sequence {s._
1 i i=0

only if 0 < lim < 1.
i-+<o
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3 (l)+k

(i)+fc4-l - ^ ^̂ v^i)
k

/ A T\ ^"^2 \ ^ /at \V=ag(ii L) ^ a^(y La^^j)
v=u

<aj^l(y*L) (42)

where the last line follows from (38) and the fact that the

sequence is a monotone decreasing sequencd. The bound in (AO)

thus holds for any I G {1,2,...,k} and, since i was arbitrary, it also

holds for any i ^ N^,

A simple calculation will lead now to the desired result. Noting

that ®®j(i+k) applying repeatedly (40) with Jl=k, we obtain
j(i)/k

E (k+l)^ J(i+k)
'1 (i«, i v* »'• •"!> M*'"* "T •« •

Observe next that for any i S N and for any Integer k ^ 1,

liil^ jm +i jm+2
(k+l)" = ; — < (k+l) ^ (44)s

Without loss of generality, we can assume that a^(P* L) ^1 (since if

it is not, we can choose a larger Lipschitz constant). We can then

bound (43) using the inequality (44) by:

(j + 2)
f k-l(fcfl) ^

fcfl 1rJ<l+W .r k k+l- |[a^(u*L)n'' ^Sq| 40

-16-
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Since we can express any i = 1,2,... as 1 = j(i-1) + £ for some

£ G {l,2,...,k}, we can combine (40) and (45) to obtain:

1_ i_
i r o 1 i

It 'i' - It 'Ta-i)Y
r^ £+1
j(i-1) £ £

r'' r « r
•<£lm9 =0 <1. (46)

i-H»

00

Hence the sequence ® root-rate of convergence ^ r (by Theorem

9.2.7 in [4]), and this completes the proof of the lemma. n

Corollary 4: Under the conditions of the preceding lemma, the following

bound holds for s^^

Ar^s < A 0^ for i«l,2,... (47)
1 —

where A 4 A4min,^^ | £̂ {1,2,... ,k}^ <1

Theorems: Assume the conditions of Lemma 3 hold* Then the root-rate
k

of any sequence defined by (22) is at least r.= /k+1.

Proof: According to Theorem 9.2.7 in [4], we only need to show that

i
£im lly. - y < 1 (^®)
i-xa

Obviously,

®i = ^i ~ y
v=i v=i v=i

(49)= A 0

v=0
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The series appearing in the last line of (A9) converges for any i € ,

since it satisfies the root test for series. Moreover, denoting the
00

infinite series in (49) by b^, we observe that ®decreasing
, i+1 , i

sequence (since 0 ^ < 0 ^ ). Therefore, the bound in (49) becomes:

Xr^e^ < Ab^ 0 (50)

which is equivalent to (48). "

Thus we have proved the following:

Theorem 4: Suppose that b in the algorithm is sufficiently large so that

{zlg(2) = 0, f(z) 40} ^ (|)^ and suppose that Assumptions 1 and 2

are satisfied. Suppose that the algorithm has constructed an infinite

sequence ^i^^ ~
1

'^ti r"
i

and (ii) Aim lIz.-zD^ < 1 where
i-H»

r A^hrfl.

We now show how to choose an optimal value of k. Brent [2] defined

the efficiency of an algorithm as:

EA^ (51)
=

where r is the root rate of convergence of the algorithm and w is the

average amount of work per iteration (e.g. number of function evaluations,

CPU time, etc).

For the algorithm in Section 2 we have, by Theorem 4

(5«

It can be easily seen that using any reasonable definition for w,

+
will attain a maximum value for some k ^ N . The value of the maximizer,

k , can be obtained either by experimentally evaluating w(k), or by
opt
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making use of an explicit egression for w(k) when available. For

example. If the ntimber of function evaluations Is the dominant factor

In an Iteration (as is tShe Case In boundary value problems), then has

the form:

- ^ &n(1cfl) ^ &n(kfl)
k . (m+q) (ttfk) (m+q)(n+k)

^ k

and the value of k ^ can be determined a priori,
opt

Conclusion

A limited amount of experimental evidence Indicates that the

algorithm works well even when the LI condition, which Is sufficient to

ensure global convergence of the algorithm. Is not satisfied at all

points of C(Zq).

Finally, It should be observed that the algorithm can be easily

adapted for solving boundary value problems with ordinary differential

equations.

Appendix

We present below a summary of the results concerning the solution of

mixed systems of equations and Inequalities which have been used In this

paper.

Consider the system

Az ^ b Cz = d (54)

(*14*1) xn mxn q+1 m
where A^IR ,c€R ,b€R ,d€R, and let ^ be the set

of right-hand side vectors for which (54) has at least one solution:

9^4 <(^)| 3 ze IF?" Az <b. Cz =d} (55)
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It has been shown (e.g. [8]) that y(A,C) defined by:

y(A,C) Amax{min{ I1z!1 |̂Az 4 b, Cz « "^"00 ^ *9^^ ^56)

is finite.

Theorem 5 T?]: Assume that the pair (A*,C*) satisfies the LI condition (see
(q+l)xn mxn

Assumption 2), and let y = y(A*,C*). Let AA G R , AC € R

with 6 A the system (54), with A « A' + AA,

C= C' + Ac, has a solution for any right-hand side (5). Moreover,
d

tJ(A,C) 1 . n (57)

(q+l)xn mxn +
Proposition 2: Let y:lR x fR •> R be defined by (56). Then

y is an upper-semicontinuous function. °

n _ (q+l)xn
Theoran 6: Let X be a compact subset of R . Let F : X -»• R ,

mxn

6 : X R. be continuous functions. Assume that for all z ^ X, the

pair (F(z), G(z)) satisfies the LI condition. Then

y* A max y[F(z), G(z)] (58)
zQC

exists and y* > 0.
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