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1. Introduction

It has been shown by Pshenichnyi [6] and Robinson [7] that Newton's
method can be extended to the solution of systems of equations and
inequalities, where the number of variables may be larger than the number
of equations and inequalities. These extensions of Newton's methoa
éonverge.quadratically when started from a good initial gueés, but,
just like Newton's method, may diverg; when started from a poor initial
guess. In a recent, as yet.unpublished paper, Huang [2'] described a
locally convergent modification of Robinson's algorithm.

Our paper presents an alternative stabilized version of Robinson's
algorithm which has a greater rate of convergence and requires less
strict assumptions than Huang's algorithm. In addition, we present an
"iterated" version which is more efficient. The stabilization is
accomplished by using an Armijo-type gradient method [1] until a
battery of tests indicates that one is close enough to a solﬁtion for
Robinson's extensidn of Newton's method to converge. Thus we obtain
algorithms which are globally convergent and have root rate of conver-

gence r € (1,2] depending on the choice of parameters. We
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show, following Brent [2], that there is a choice of parameters which
maximizes the efficiency of the algorithm. Our computational experience

has been most encouraging.

2. The Algorithm: Convergence

The algorithm we are about to state solves problems of the form:

find z € R® such that
<
g(z) =0 - f(z) =0 (1)

where g: R® » Rm, £: R® > RY are continuously differentiable
functiohs. We use superscripts to denote components of £, g, z, etc.

For some b >> 1 and [+l denoting the Euclidean norm, we define

F: R™ 5 R 4y

fj(Z)

.
I

= 1,...59 (2)

'f'j(z)él
q+1

1202 - p 3

We shall use the following notation:

g(2)
h(z) 2 [ i ] nEe) & ) 3
£(z)
o(z) 22BEL | F(p £ 2R | )
fj“(z) 8 max(0,#(2)} j=1,2,...,q+l : 5)

We also define a cost function £: R® » Rl by

222 2 2 lg@)1? + 3 IF @17 6)



It is not difficult to see that f° jig continuously differentiable

and

v£%(2) = 6(2)" g(2) + F(2)'F (2) o
Finally, given any z; € R®

Czp) 2 {z|£°(2) < £z} | - ®)

We now state assumptions which ensure that our algorithm is globally

convergent.

Assumption 1: The derivative matrices G(*) and F(°) are Lipschitz

continuous. n

Assumption 2: The pair (F(z), G(z)) satisfies the Robinson LI condition

[7] for all z € C(zo), where z, is the initial guess to a solution for

(1) and b is sufficiently large to ensure that the set C(zo)

contains at least one such solution; i.e. for all z € C(zo)

ul F(z) + v G(z) = 0 (9)
and u 2 0, implies that u= 0 and v = 0. "
Algorithm

Data: z, € R?, b >> ﬂzoﬂz, a € (0,1/2), BE€ (O,1), £ > 1, Y € (0,1),
kEN.
Step 0: Set i=0, j=0,8=1, p=0.

Comment: i is the iteration index,, the Jacobians F and G are evaluated
at zj, s=1-j + 1 is the number of times the same Jacobians have

been used.



Step 1: Compute g(z), E(z;), £°(z;), G(zy), and F(z,). Stop if

£2(z5) = 0. o
Comment: When actually programming this algorithm, compute G(zj) and
F(z ) only as necessary (i.e. every k steps)
Step 2: Compute a vector v, which solves the problem
] V-<_*g§oimize{ﬂvﬂmlg(z ) + G(z W = 0, f(zi) + F(zj)v s o0 (10)
where . h o
Ivl_ & max|v'| o

r

Comment: Due to Assumption 2, the linearized problem (10)

always has a solution, obtainable by linear programming techniques.

Step 3: 1f “vi“°° < yP and z, +v, € C(zy), set z; ., =z, +v,, set

P; = P set p=p+ 1, set 1 =i+ 1 and go to step 14; else go to

ste? 4‘ G

Steg 4: Set wi = vi, ¢(z )= - 2£° (zi)

Step 5. If j i go to step 113 else go to step 6.

o e it e e e o = ¢ —— e e ——

Step 6: Set % = 0.

%
Step 7: Compute fo(zi + B Wi)‘

Step 8: 1If
f°(zi + Bp“wi) - f°(z1) < Bza¢ (z) (12)

L
i
set ki = %, set Zi41 = 24 + 8 Vs set 1 = 1 + 1 and go to step 1l4;

else go to step 9.‘

Step 9 If 2 <Lset #=2+1and go to step 7; else go to step 10.

.[.
Step 10: Compute vi° (z ), set w; = - ve°© (z ) and set ¢(zi) - lvg® (z i)ﬂz-
. o N

When the solution of (10) is not costly, replace step 10 with:
Compute G(zi), F(zi), set j =1, set s = 1 and go to step 2.

44—



Step 11: Set 2 = 0.

o ')
Step 12: Compute fo(zi + B Wi)' .

Step 13: If (12) is satisfied, set 2, = 2, set z. . =z, + B lwi,

i+l
set 1 =1+ 1 and go to step 14; else set & = 2 + lrandwgg_gg_step 12.

Step 14: If s <k, set s = s + 1 and go to step 1; else, set s = 1,

j = 1 and go to step 1. o)

We shall now establish the convergencé properties of the algorithm

in four stages. First we shall show that if {z;}, , is constructed

by the algorithm, then it contains a subsequence which converges to a

solution. Next we shall show that the relation zi+l =2z + Vys i.e.

P ‘ :
“viﬂm <y i, zg + L € C(zo), holds an infinite number of times. Next
P,
we shall show that if there is an i' such that the test “vi"w‘i_y o

z, t vy € C(zo) in step 3 is satisfied for all i > i' and “viﬂ is

sufficiently small, then z, -+ z , a solution of (1). This result

i

takes the form of a local convergence theorem. We shall complete the

proof by exhibiting the existence of an i' such that 2y = 24 + v, for
all i > i'.
Proposition 1: Let \ be computed by the algorithm at Zgs from (10).

Then ¢(z;) = 0 if and only if w, = 0 if and only if V£°(z)) = 0,

i.e. if and only if 21 solves (1). ' -

Lemma 1: Suppose that z € R™ is such that $(z) < 0, where ¢(z) was
defined in the algorithm (step 4 or step 10). Then there exists an

integer % > 0, finite, and an €(z) > O such that
£2(z" + Bzw') - £%(2") §.Bza¢(z') : (13)

for all z' € B(z, e(z)) g {z'|lz' - 2zl < e(2)}, for all w' satisfying



for some Q < =

o'l <q and (9£9(z'), w') < ¢(z") (14)

Proof: Because of Assumption 1, v£%(+) is continuous. Hence $(-)

is continuous and there exists an €(z) > 0 such that ¢(z') < ¢(2)/2 < 0
for all z' € B(z,e(z)). Since B(z,e(z)) is compact, V£%(+) is uniformly
Lipschitz continuous on this set, with constant L, say, and hence, for

any A > 0, and w' satisfying (14),
v fo(z'+Aw') - fo(z') -2 (Vfo(z'),w')

1
| 2

= S (VE° (2" +saw') - V£2(2'),A w' Dds 5%—— b 82 (15)
0

Consequently,

P - 2@ < da (06D, v +a[a- (1°En), W)

LA 2
+ B 1w1?] <00 +3 100 42) + 1A% (16)
Let % > 0 be the smallest integer~such that (1-o) ¢(z) + LBR'Q2 < 0.
Then, clearly % satisfies (13) for all z' € B(z,e(z)),'for all w'

satisfying (14) and the lemma is proved. _ ' o

Corollary 1: The algorithm is well defined, i.e., it doés not jam up

between steps 12 and 13.

Proof: We know from Proposition 1 that it is not possible to reach
step 11 with ¢(zi) < 0 and w, = 0. Next, since f°(z) contains. the

term ((ﬂzll2 - b)+)2, it is clear that C(zo) is compact and hence

—-6-



there exists an M < « such that max{ﬂVfo(z)"m, ﬂ1’1(2)“‘,‘,} <M

for all z € C(z 0). Hence, making use of (56) and the equivalence of
n

norms in R , we conclude that there exists a Q € [M,®), such that

"wi“ < Q for any z; constructed by the algorithm. Next, if w, = Vv, we have

from (10) that < Vfo(zi), v, > < —2f°(zj;) = ¢(zi), whereas if

w, = -Vfo(z i) the same result follows from the definition in Step 10.

i
Hence by Lemma 1 there exists an R.i < » satisfying (12). o

Lemma 2: Suppose that the algorithm has constructed an infinite

o0 }m
i=0" i i=0
which solves (1), i.e. g(2) = 0, E(2) < 0.

sequence {zi} Then {z has at least one accumulation point z

Proof: First, suppose that there is an 1 iisuch that for all 1 > i,

Zin is constructed according to the formula in steps 8 or 13
A

i .
(z-i_!_1 =z + B wi). Then it follows directly from Lemma 1,

and theorem 1.3.9 in [5] that every accumulation point Z of {z i}:=0
satisfies Vfo(ﬁ) = 0 and hence, from Assumption 2, is a solution of (1).
Furthermore, since the set C(zi) = {z|f°(z) < fo(zi)} is compact, and

z; € C(zi) for all i > i, it follows that {z i} has at least one accumu-

lation point 2 which solves (1).
A

i+ = zi + B iwi for all

i> i. Then there must exist an infinite subset K C {0,1,2,...} such

Next, suppose there is no i such that z

P .
that “vium <y 1 for all i € X, and py >~ as i, ;e K. Consequently,

v, 0as i+, 1i €K. This implies that g(zi) + 0, f(zi) > :f <0

as 1+, 1 € K since the Jacobians G(-) and F(-) are bounded over c(zo).

Since {z :I.}:IEK is compact, there exists an infinite subset K' C K and a

z € C(Zo) such that z, + z as 1 + », i € K', and therefore g(z) = 0,

i

f@z) = £ 20, i.e. {zi};;o has an accumulation point z which solves (1). &



Corollary 2: Suppose that {z }1_0 is a sequence constructed by the
algorithm and suppose that z 1s an accumulation point of

{zi}i =0 which solves (1). If K<€ {0,1,2...} is an index set

identifying a subsequence of {zi}i"o which converges to z, i.e. z i z

+>0as i~+» i€K,

as i » o, i €K, thenvi

Proof: Note that

ol < v, & mm{uvn I8z + GG v = 0,F(zp) + Feap) v 2 So} an

and v, > 0 as i+», i € Kby (56) and Lemma 2. Hence

vi+0asi+°°,i€l(. o o

Corollary 3: Suppose that {zi}:=0 is a seqpence constructed by the
algorithm, and suppose that {zi} i€K is a subsequence converging to a

~ solution z of (1), where K C {0,1,2,...}. Then there is an infinite

t C = '
subset K K such that 21 = 24 + ] for all 1 €K',

Proof: By Corollary 2, v, 0 as 1+ », 1 € K. Hence, since
fo(zi) >0as i—+», 1 €K, and £2¢+) is uniformly continuous on {zi}iel(’

there exists an integer i" such that for all i €K, i > i", ﬂvifloo < v,

fo(zi) < — £ (z o . (18)

'f(z ) - f(z)<—f(z) | (19)

i.e,zy + vy € C(z ) for all i > 1", 1 € K ; moreover the construction

e "
Zi4q = + Vis i € K, must occur at least once, so that p i is well

defined. Now let Py» i €K, 1 > i" be an arbitrary integer. Then,

since vi+ 0 as i+ o , i €K, there exists a j such that i + j Gl(and.
p.+l

"v._';." <y i , which together with (18), (19) implies that z

ir] ® — i+j+].

-8~



i+j 1+ Thus there exists an infinite subset K' C K such that

= : '
41 © %4 + vy for all i CK"'. L]

Theorem 1 (Local Convergence): Let g: R™ > R™ and £: R™ + R be

differentiable functions, with G(+), F(*) uniformly Lipschitz continuous
with constant L. Let b > 0, vy € (0,1) and an integer k > 1 be given.
Suppose there exists a y, € R™ such that the pair [T?(yo), G(yo)]

satisfies the LI condition and (see also (58))

* * -
héu L n 5y-y2, u > sup u[F(y), G(y)]
Y
Y=dylly -y <1 §=%-\/r-n @0)

and

0 Amin{lvl_|g(y)) + 6lyy) v =0, E(yy) + Flyp) v 50} (21)

For i = 0,1,2,..., let j(i) g k[i/k], where [i/k] denotes the integer

part of i/k. Then the iterative process

Yigy € Arg min{ly -y, 0 |g(rp) + 60y, 3 -y =0,

By +Foyq)) G-y 200 1=01,2,.., (22)



results in well defined sequences {yi}:=0 such that any such sequence

converges to some §j satisfying g(y) = 0, E(y) < 0.

Proof: TFirst suppose that the process (22) results in a well defined
sequence {yi}z=0 CY. For i=0,1,2,... , consider the following

associated linear system:

8(yy) + 60y (1)) 0-yy) = (8O3 1) + 6053 4)) O3y )1 =0 (23)

E(yy) + FOy () O0-yp) = (B ) + Flyy ) 0y P11 200 (28)

. Since, by inspection, any solution to (23)-(24) is a feasible point for .

(22), we obtain the following bound from (3),' (56) and the Lagrange formula:

| A

1
uj(i)fo My, _,+ sy - v, 4)) - H(yj(i-n)“‘” dsly -y, ,H=

IA

H5(4) L[“”i—l Yy (1—1)_[?9 + Uy, - Yi—l"«»] by, - yi—l“w

i-1

cun | 2 by -vlofly -yl
= H@ =) w1 v 1 i-1 (25)

h=68-6 <8 <vy- , (26)

-10-



We shall now show by induction that the process (22) is well defined for

i=0,1,2,...,that yie Y for i = 0,1,2,..., and that

Note that a Yy satisfying (22) for i = 0 exists by hypothesis, and

that Y, €Y. Next, let i=1. If k > 1, then j(1) = OIand, by hypothesis,
the Jacobians satisfy the LI condition at Yo Consequently, by

Theorem 5, there is at least one Yo satisfying (22) for i = 1. If, on

the other hand, k = 1, then because of the Lipschitz continuity of the

Jacobians we have ) o , e e

. *
uoli@yy) - By I c<uglly, -yl <w n=h<1 (28)

and hence by Theorem 5, the LI condition is satisfied for i = 1 and
there exists at least one Yy satisfying (22) for i = 1. It now follows

from (25) that, whether k = 1 or k > 1,

lyy = vyle < wyyLllyy - yolad byy -y b, < 8ly, -yl (29)

the last part of (29) holding because of (20) and (26). Also,

Uyz - yd““ < [Iyz' - ylﬂm + []yl - yoﬂeo < (1+8)n f_l—ign , i.e., Yy € v.

Thus the sequence is well defined for i=0,1,2, it is contained in Y , and

(27) holds for i = 1. We proceed with the inductive step:

for i = N + 1, either j(¥1) = j(N) or (W) = N+ 1. If j(WL) = j(N),
then, since the matrices in the linear programming problem (22) satisfy

the LI condition at i = N, they also satisfy it at i = N+1 and Y2 is

-11~



well defined. If j(N+1) # j(N), then, because of the uniform Lipschitz

continuity of the Jacobians,

"j(N)"H(yN+1) - H(yj(u))llm 5-“j(N) L "yN+1 - yj(N)[leo

. N‘ . N
<L 2y -yl swin X 8 < w8 =5 (30
v=j (N) =j(N) :

where the last line follows from (26). Hence by Theorem 5, the LI
condition is satisfied for i = N+l and thug Yo 18 well defined. It

now follows from (25) and (26) that

| ll°° (31)

Pywta = Yurrle < 8y - vy

i.e., (27) holds for i = N+1. Thus, the sequence {yi}:=0 is well defined,
it satisfies (27) and is contained in Y. It must converge to a §
bécause (27) holds for all i. It now follows from the continuity of

g, G, f and f, and the fact that v, = (yi+1 - yi) converges to zero as

i > », that g(&) = 0, f(&) S 0. This completes our proof. u

Theorem 2: Suppose that b in the algorithm is sufficientlyllargé S0

that {z|g(z) = 0, f(z) S0} # ¢, and suppose that Assumptions

1l and 2 are satisfied. Suppose that the algorithm has constructed an

}

i°i=0"
+ v, for all i > Nand (ii) z; > z as 1 +» = with g(z) = 0,

infinite sequence {z Then (i) there exists an N > 0 such that

2y T %4

£(z) = 0.

A

Proof: According to Lemma 2, there exists an infinite sequence {zi}iEK

-12-



such that z, > z, and fo(zi) > fo(ﬁ) =0, as i > », i € K, with z a

solution of (1). By corollaries 2 and 3 there is
an infinite subset K' C K, such that v, 0 as i > », i €K' and

z =2z, + vi, for all i € K'.

i+l i
Next, let €, = fo(zo)/2. Then, since £°(-) is uniformly continuous

on the compact set C(zo), there exists a 61 > 0 such that

[£2(z) - £2¢z")| < ¢ (32)

1

for all lz' - z"@.i 61. Now, since fo(zi) >0, v, >0as i+, i€EK',

i
thére exists an i' € K' such that

fo(zi,) 28, "vi'"w-i (Y-Yz)/uﬁL . : (33)

and

’ "vi,"w

—_—m < §
1, /1 _ = -1
Ly [1- 37,0,

A (34)

W

Then the conditions of Theorem 1 are satisfied at Yo = 2 and any

i'
sequence {yj};;o constructed according to (22) must converge to a ;,

which solves (1). Purthermore, from (27), ﬂyj - Yoam.i w< 8 for

all j = 1,2,..., and hence, from (32) and (33),

£20;) < £20) + ey < £z | (35)

i.e. yj € Q(zo) for j = 0,1,2,... . Hence, we must have Z3141= ¥p°
Now making use of (27) and (26) we obtain

B+l p-v+
Wyogle = 19y =yl < Syl sabyl <yt =" 36)

-13-



and hence Zirgg = Ype Proceeding by induction, we now conclude that
zi'+j = yj, j=0,1,2,..., and consequently z; *ya solution of (1).

This completes our proof. n

3. Rate of Convergence and Efficiency
We derive now the root rate of convergence of the algorithm in
Section 2 (see [4] sec. 9.1 for a definition and discussion of root
rate). We shall show that the root rate of the iterative process (22),
k
and hence of the process defined in Section 2, is > r A Vktl . The
proof will proceed in three steps. We shall first show that the sequence
{sik}i 0 of step lengths (sik‘“ ﬂyik+1 ﬂ ,,) associated with the
k-step process obtained from (22) has an R-rate > k+l. (Compare with
results of Traub [10] and Shamanskii [9] for multistep methods.) Next
we shall obtain a relation between the rate of convergence of the sub-
0 .
sequence {sik}i=0 and that of the sequence {si}i o+ Finally, we shall
show that the R-rate of the process (22) is the same as the R-rate of the
sequence {si}i=0 .
. Define
RS AN (37)
Then we have the following

Lemma 3: Let gt R® 5> R™ ang £: R » R4 be differentiable functioms,

with G(*) and F(*) uniformly Lipschitz continuous with constant L.

+ .
Let b > 0, vy € (0,1), k€ N be given. Suppose there exists a Yo € R"

such that the pair [f(yo), G(yo)] satisfies the LI condition and
1 Y-Yz (38)
< min 1
o+ > * ’ ’
hak( skl L } '

14—



where a, is defined by the recursive relation

L

2 4 a
g+l " % & %10 P

= 1 2: = 0,1,00‘»0 ,k-l 9 (39)

e —————— e o ——

and p* satisfies (20).

(The existence of a v solving (22) is ensured by the hypothesis).
Under these conditions, the sequence {si}z;o associated with the
process (22) converges to 0 with root rate of at least r A 5E+1.+A

Proof: From the local convergence theorem, the iterative process (22)
constructs a well-defined sequence {yi}:=0. Moreover, this sequence is

Cauchy, and hence the sequence {si}:=o converges to O.

e e e e -

We begin by showing that for any 2 € {1,2,...k} and for any

{i=10,1,...., we can bound sj(i)+2 by

L 2+l (40)
Sicay+e < 2 (W )7 sy “0

with a, as above. The proof will be by induction on 2. From (25) we
obtain, by replacing i with j(i) +1 and using (20) and the defini-

tion (37):

2
*
Sj(1)+1 < WL 8§y (41)
‘which proves (40) for the case when £ = 1. Assume next that (40) holds

for £ = 1,2,...,k, with E.§ k - 1. Making again use of (25) and the inductive

hypothesis, we obtain successively: -

e et e o - i e —_

+ | '
By theorem 9.2.7 in [4], r is the root rate of the sequence {si}: 0
1 : -
only if 0 < lim siri < 1.

13

-15-



J()+k

Sy 1)+ S W L V§i) Sy | 85(1)+k

_ _ k
k+l  k+2

5(1)

ag (u* L) a, (u* L s, (i))\’

v=0

k1 k+2
(u* L) j (1) (42)

|/\

where the last line follows from (38) and the:fact that the

sequence {si}izo is a monotone decreasing sequencé. The bound in (40)
thus holds for any % € {1,2,...,k} and, since i was arbitrary, it also

holds for any i €N .

A simple calculation will lead now to the desired result. Noting
that s

j(i)+k 85 (1+k) and applying repeatedly (40) with 2=k, we obtain

- I

(k#1)V
k ktl 3 (i+k)
Sj(amg < 200D i {a 0 L’} 53 S O

Observe next that for any i € N+ and for any integer k > 1,

i
L 1@ 4y i, ,

k
2 )’ =D =L gy K (44
v:

Without loss of generality, we can assume-that ak(u* L)k > 1 (since if

it is not, we can choose a largerbLipschitz constant). We can then
bound (43) using the inequality (44) by:

ei&ll +2)
k}(k+1) k rj(i+k)

S

84 (1+k) = {ak("* L) 0

i+k j

{ta 000"

-16-
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Since we can express any i = 1,2,... as i = j(i-1) + £ for some

2 €{1,2,...,k}, we can combine (40) and (45) to obtain:

1
2im s, 2im [az(u* L)
1o 1o

1
L s9,+1 ri
j(i-1)

| A

31 (2+1) 2+1
- j-1) 2 )
< %m o7 To=e" <1, (46)

i

Hence the. sequence {si}:=0 has a root-rate of convergence > r (by Theorem

9.2.7 in [4]), and this completes the proof of the lemma. u

‘Corollary 4: Under the conditions of the preceding lemma,.ihe following

bound holds for s

1
1
s, <A for i=1,2,... 47)

= L

k
where A Aa (W*L)° and _A_min{"—"'l- | ¢ € {1,2,...,k}} <1 =
r

Theorem 3: Assume the conditions of Lemma 3 hold. Then the root-rate
k
of any sequence defined by (22) is at least r.= vktl.

Proof: According to Theorem 9.2.7 in [4], we only need to ghow that

1
_— ri ,
2im ||yi—y“w <1 (48)
i
Obviously,
= o i © v 1
v
e, Aly -y“mf_zs <2A9Ar =A9“Ee}‘(r'r)
i= 71 v —
. B v=i v=1i v=i
1 i, v '
LD DI G (49)
v=0

-17-



The series appearing in the last line of (49) converges for any i € ﬁ+,

since it satisfies the root test for series. Moreover, denoting the

infinite series in (49) by bi’ we observe that {bi}i =0 is a decreasing

Ar:l+1 lri
sequence (since 6 < 6" ). Therefore, the bound in (49) becomes:
Ari
e; <Ab, @ (50)
which is equivalent to (48). . -]

Thus we have proved the following:

Theorem 4: Suppose that b in the algorithm is sufficiently large so that

{z]|g(z) = 0, £(z) < 0} # ¢, and suppose that Assumptions 1 and 2

are satisfied. Suppose that the algorithm has constructed an infinite

sequence {zi};=0' Then (i) zif% as i+, with g(z) =0, £(2) <0,
' 1

—

i
and (ii) %im ﬂzi-iﬂwr < 1 where r Q‘§k+ . ‘ n

10

We now show how to choose an optimal value of k. Brent [2] defined

the efficiency of an algoritim as:

E A'Qn r
= w

(51)
where r is the root rate of convergence of the algorithm and w is the
average amount of work per iteration (e.g. number of function evaluationms,

CPU time, etc).

For the algorithm in Section 2 we have, by Theorem 4

= in (ktl)
k =k wik) | (32)
It can be easily seen that using any reasonable definitiom for w, Ek
will attain a maximum value for some k € N'. The value of the maximizer,

kbpt’ can be obtained either by experimentally evaluating w(k), or by
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making use of an explicit expression for w(k) when available. For
example, if the number of function evaluatidns is the dominant factor

in an iteration (as is the case in boundary value problems), then Ek has

the form:
E e 2n(kt+l) - 2n(ktl) ‘ (53)
k Kk (m+q) (ntk) (m+q) (n+k)
k

can be determined a priori.

and the value of k.opt

Conclusion

A limited amounf of.experimental evidence indicates that the
algorithm works well even when the LI condition, which is sufficient to
énsure global convergence of the algorithm, is not satisfied at all
points of C(zo).

Finélly, it should be observed that the algorithm can be easily"
adapted for solving boundary value problems with ordinary differential

equations.

Appendix

We present below a summary of the results concerning the solufion of
mixed systems of equations and inequalities which have been used in this
paper. |

Consider the system

Az < b Cz =d (54)

@ +1)xn n

. mx g+l m : .
where A€E R ,CGR ,beER ,dER,andletqbetheset

of right-hand side vectors for which (54) has at least one solution:

n &
gg{(g)lazek s.t. Az < b, Cz = d} (55)
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It has been shown (e.g. [8]) that u(A,C) defined by:
u(A,C) A max{min{lzl_|Az < b, Cz = d}l":“, <1, (:) € h (56)

is finite.

Theorem 5 [7]: Assume that the pair (A',C') satisfies the LI condition (see
(q+1)*n mxn
Assumption 2), and let p = u(A',C'). Let AAE R , ACER
N ‘
- with § A | ACllw. If u8 < 1, then the system (54), with A = A' + AA,

C = C' + AC, has a solution for any right-hand side (g). Moreover,

u(A,C) gf}u—g . .om (57)
(q+1) xn mxn +
Proposition 2: Let n:®R x R + IR be defined by (56). Then
y is an upper-semicontinuous function. L
n _ @+1l)xn
Theorem 6: Let X be a compact subset of R . Let F : X + .
mxn

G: X~»> R be continuous functions. Assume that for all z € X, the

pair (F(z), G(z)) satisfies the LI condition. Then

p* A max u[F(z), G(z)] (58)
zEX )

exists and u* > 0.
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