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ABSTRACT

Proceeding from first principles and making

no use of existing PDE theory, this paper gives a

direct and elementary proof that the value of Wendell

Fleming's 1964 randomized mixed-strategy game exists

and satisfies his parabolic PDE. Fleming required the

terminal function to have Lipschitzian first and second

partial derivatives? this paper requires only that

the terminal function and its gradient be Lipschitzian.

The solution is given a new representation, which

allows precise Lipschitz and Hblder estimates to

be made. A trick of Fleming allows the deduction of

a uniqueness and existence theorem for a class of

parabolic equations with Laplacian operator under

the lightened terminal conditions.
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1. Introduction

In 1964 Wendell Fleming, in his paper [5] which

we shall call Convergence II, made a quite remarkable

contribution to the theory of differential games. He

showed that if the game were "randomized" by the

superposition of a Brownian motion onto the deliberate

moves of the players and a certain notion of value

adopted, that value would exist and satisfy a certain

partial differential equation of parabolic type.

Fleming was considering N-stage games of

prescribed duration, with mixed strategies at each stage.

For his randomization he supposed that the position vector

was displaced at each stage, just before the choices of

the players, by a random variable drawn from a certain

probability distribution with expectation at the origin

h kand of standard deviation 0 (I'-t) VN , J9 being a ffixed

positive number and (1-t) being the duration of the game.

BT.eming knew, from results of Friedman and his

"student Kaplan [9], and of Oleinik and Kru^kov [10],

that the parabolic PDE in question had a sufficiently



smooth solution provided that the data, which in

differential games mean the terminal function, had ^

Lipschitzian first and second partial spatial derivatives.

By "sufficiently smooth" here we mean that there exists

a p<l such that the first and second spatial derivatives,

and the first time derivative, of the solution satisfy

uniform Httlder conditions wiun exponent p relative to

the space variable x and exponent 3/2 relative to the

time t. Using these facts, he proved (Lemma 1 of

Convergence II) that the values of the N-stage

randomized games converge uniformly to the solution of

the PDE.

Fleming's objective in Convergence II was to

prove the convergence of the value of his unrandomized

mixed-strategy game. He accomplished this by

proving, in a special case whichwas adequate to his

needs, that the values of the N-stage unrandomized

and randomized games differ by less than C9, where C

is an absolute constant. This was his Lenma 2 in

Convergence II. It follows from this and his Lemma 1

that there is an N(0) such that if N, N' >N(9) the



values of the N-stage and N'-stage unrandomized

games differ by less than (2C+l)e. Since this is

true for any positive 0, the values of the N-stage

unrandomized games form a uniform Cauchy sequence and

so converge uniformly to a limit, the Fleming mixed-

strateov value of the unrandomized game.

The parabolic equation when applied to other

values, such as Fleming's upper perfect-information

value of [41 or Friedman's upper perfect-information

value of [8J# or to their own values defined in terms

of "relaxed controls", has been a powerful tool in the

hands of Robert Elliott and Nigel Kalton, who in a series

of papers, particularly [2] and [3], have used it to

prove a number of existence and equality results.

The Fleming randomization, and the parabolic PDE

associated with it, appear therefore to be important

objects in themselves.

4r 4r :flr 4nllr ^ * * 4r ^ *

our objective in the present paper is to turn

Fleming's approach, as it applies to his randomized



game, around. First we prove (Theorem I) in §§4,5,

without mentioning any PDE, that the value of Fleming's ^

N-stage randomized mixed-strategy game converges

uniformly to a limit, the Fleming mixed-stratecrv value

of the randomized game. The techniques here are the

Kolmogorov inequality for partial sums of independently

distributed random variables, the ^-construction from

Chapter IV of the author's book [1], and a simple

observation (§3) on the effect of a Gaussian smoothing

of a Lipschitzian function, used earlier in Chapter

V of [ll in proving the existence of the Q-value.

Although it must be admitted that the e-construction

is complicated, all three of these tools are directly

accessible without special theory and may be accounted

elementary.

In 66 there is a diversion; for completeness we

give a now very easy proof of Fleming's theorem from 0

Convergence II of the uniform convergence of the value of

his N-stage unrandomized mixed-strategy game to a limit.

This is our Theorem II. We gave a different elementary

proof in Chapter V, §10.



Next we consider a particular decomposition,

(2.11), of the N-stage randomized value function into

the sum of a smoothing of the terminal function and

components t^(t,x) which are smoothings of the increments

t^(t,x), given by (2.9), resulting from the play.

By a rather lengthy calculation, taking up §§7-15,

we estimate Lipschitz and Hblder coefficients for

the first and second spatial derivatives of the ilfj^(t,x),

and thus obtain Lipschitz and Hblder estimates for the

first and second spatial derivatives of ^ t|fjj(t,x)
a

and thus of ^X^(t,x) . The calculation in question

mostly amounts to estimating a determinant, given

by (9.3), and is entirely elementary. These results

are summarized in Theorems III and V.

o

The Lipschitz and Hblder estimates on <&X^(t,x)

and its first and second spatial derivatives persist

in the limit; this is Theorem VI in §16. In §17

we directly calculate the time derivative, and thus

show that the limiting value function <&X (t,x) satisfies

Fleming's parabolic PDE. That is the main result of

this paper. Theorem VIII.



In §19 we present an integral equation which

is a generalization of the parabolic equation: any

uniformly Lipschitzian solution of the latter which

has bounded generalized second spatial partial

derivatives satisfies the former. We then show

in §20 that (t,x) is the only uniformly Lipschitzian

solution of the integral equation (Theorem XI) .

Our methods, combined with a trick of

Fleming which exhibits certain parabolic equations

as the Fleming equation of a randomized game, allow

us in §22 to prove an existence and uniqueness theorem

for a special class of parabolic equations with

Laplacian operators, under light conditions on the

terminal data. This is Theorem XIII.

Our randomization is different from Fleming's;

we show that this makes no difference in the limit

in §18. This is Theorem IX.



(S

If the terminal data are of Holder class

2+a# i-e if in addition to the hypothesis of §2 that

the terminal function cp and its gradient vcp are

uniformly Lipschitzian we assume that the second

partial derivatives d cp/BXj^BXj exist everywhere
and satisfy a Holder condition with exponent a€(0,l],

we retrieve *) HOlder estimates on (t,x) which

*) Interim-tdraft note; Approximately;

see the note on page 139.

were already known for a much more general parabolic

equation; see Theorem XIV in Oleinik-Kru&kov [10],

Our versions of these facts appear in Theorems IV,

V, VII, VIII, and XIII.

Other values are discussed in §21.

Except where explicitly stated, we stick to

one set of hypotheses, stated in the second paragraph

of the following §2.
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2. Assumptions. Definition of Fleming's

randomized value function <&^^(t,x)

We shall have to refer frequently to the book

[1]. References to it will be given in the form:

abbreviated title, chapter number, section number.

E. g., secion 2 of Chapter I becomes Value , I, §2.

Section references to the present paper will be given

simply by a § followed by the section number; this

section is §2.
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^6 elements of the randomized differential

are U, V, T, cp, 0. Hie game is of prescribed

duration, played on the interval rt,l), starting at

the starting point x = € R^. U and V are arbitrary

compact topological spaces, called the control spaces

for the maximizer and miniraizer respectively. The

control function T(x,t,u#u) is continuous and bounded

by |a on R^x[0,1]xUxV, and Lipschitzian in x and t

with constants A and a respectively. The terminal

function cp(x) is uniformly Lipschitzian throughout

with constant L. It has a gradient 7cp(x) everywhere,

which is uniformly Lipschitzian in R^ with constant X.

0, the standard deviation of the randomization. is a

fixed positive nximber. There is no integrand function

*) **)

*) For the classical elimination of the

integrand function in the deterministic problem by

passing to p+1 dimensions, see e.g. Value. I, §12.

The reader will easily see how to eliminate the integrand

in the present randomized problem by passing to p+2

dimensions.



**) In Value, I, §2, we assumed that f=0

for X outside some compact box B; this assumption

is not needed here. Also, we assumed there only that

cp(x) was uniformly Lipschitzian in x with constant L;

here we add the assumption that vcp(x) is uniformly

Lipschitzian with constant X, an assumption which

we do not need before §7. Otherwise the hypotheses

concerning U, V, T, and cp are the same as those

stated in Value. I, §2, and adhered to in the first

five chapters there.

Except where explicitly noted, we do not

make any other hypotheses concerning U, V, f, or cp.

When we use the expression "Under the hypotheses of

the second paragraph of 62" in the statement of a

theorem, this is what we mean.
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In the following definition we use a Gaussian

distribution for the shocks, while Fleming in

Convergence II used a particular discrete distribution.

As we show (Theorem IX) in §18, this makes no difference

in the limit.

We denote by the spherically symmetric

Gaussian distribution in given by the density

(h/2„)P/2 ... + z2)/2 . (2.1)

The expectation of this distribution is at the origin.

and its standard deviation is -/p/k .

We put

= pN/n9^(l-t) , (2.2)

n=l,...,N. Until we reach formula (2.10) we are

f 1) 2only concerned with =pN/9 (1-t); the standard
^ (i) itf 3<

deviation of the distribution 3 is then 0 (1-t) vN^ *)
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*) The reason for the factor 1-t in (2.2)

is that we wish the total variance of the shocks in

a game of duration 1-t to be proportional to 1-t.

Because Fleming in Convergence II referred his

time-subdivision to a fixed time interval [0,Tq],

this factor did not enter explicitly there.

In the present formulation, the shocks occur

at the times (l-t)n/N, n=0,...,N-l. At time

the first thing that occurs is a shock, i.e. the

position vector x_ is displaced to a new point x = x + z ,
n nn n

the diock being drawn from ^'^t . Then the players

choose controls and respectively. The position

vector p(t), starting at time at x^, now follows

the differential equation

Ht) = f (t(T),TM^,«n) (2.3)

across the interval reaching a point
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x_.T at time We shall denote this
n+ ± n+ ± n+1

last point by ^n^ ' n+l<N, there is

now a shock, and the game proceeds. When the point

%-l^ is reached at time Tj^=1. the
game terminates without a shock, and the payoff

is cp(Xjj) .

We define the value of this randomized game in

terms of before and after position functions, as follows

We write

(t,Xjj, Tjj) cp(Xjg) , (2.4)

0
and call cpXj^ (t,Xjj, Tjj) the before position function

at time Tjj=1- There is no after position function at

this time, there being no shock. Now suppose that

0<n<N-l and that the before position function

6cpXjj (t,x^^^, has been defined and is continuous

in x„. ,. Let x^€R^. Put
n+i n

•^n ^*n'^n'"n^ ^N^^'^n+1 ^*n'̂ n'"n '̂""^n+l^ * (2.5)
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The function defines a continuous game over

UyV at x^. Put

V ' '2.6)

the notation Value denoting the operation of taking
UxV

the ordinary mixed-strategy value of the continuous

game at x^^. We call '''n^ after position

function at time t^. By the Principle of the Transmission
ft

of Continuity (Value, II, §3), is continuous

in X . We then put
n

This is the before position function at time

We carry this process down to time Tq=0. We

then put

(t,x) =C(A^(t,x, Tq) . (2.8)

This is the value of the N-staae Fleming randomized

0
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game, starting at time t at the point x. Evidently

0 . 00^Xjj(t,x) is a C function of x. Also, by Lemma A

in Value. II, §4, as it applies to randomized games,
0

4^Xjj(t,x) and all the before and after position functions

defined above are Lipschitzian in the position variables,

A
with constant Le .

In what follows we shall need another representation
0

for <&X^(t,x). For n=l,...,N put

(t,x) =$X® (t,x, - cpX^(t,x, T^) . (2.9)

Then put

(n)
=J'tjj(t,x+2)da'*-t (2) , (2.10)

n=l,...,N. The reader will then easily verify that

e ^ Xr<&Xjj(t,x) =Jcp(x+z)d3 t (z) + ^ * (2.11)
n=l

This decomposition, and its generalization at (8.2),

constitute the key to our method.
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3. Notes on t3ie normal distribution

Let X^ function in with Lipschitz

constant i, and put

Hx) =Jx(x+z)d3'̂ (z) , (3.1)

the distribution ^ being the one defined at (2.1).

Evidently ^ is c'**. We are interested in the Lipschitz

constants of its first and second partial derivatives.

We did this easy calculation for the first derivative

in Value. V, §2; the Lipschitz constant of Vij; turned

out to be i .

If i 7^ j we calculate

= >c2(k/2,t)P/2 J-y(x+z)z.z
i j ^

dz,••-dz . (3.2)
1 p

2

The Lipschitz constant of ^ ig therefore not

more than
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l.K2(H/2n)P/2 J-lz.llz I g-K(Zi+...+Zp)/2

dz ^•••dz = 2k I/tt . (3.2)

For the case i=j the constant is somewhat different;

2 2we find that 3 ij; (x)/dx. has the Lipschitz constant
22k I. Thus in any case ^x^^x^ Lipschitz

1 J
constant 2x1.

Next suppose that x(x,t) is measurable in x

and Lipschitzian in t with constant T , and put

il;(x,t) =J , t)d3^(z) . (3.4)

Then in just the same way as above we see that the

Lipschitz constant of v\lf(x,t) in t does not exceed

^2K-p/-n T , and that the Lipschitz constant of ^
ÔX . OX .

~ 13
in t does not exceed 2xi.

These trivial principles extend to Hblder

coefficients as well, and they are applied extensively

in that form in §15.
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4. The special MP-stage game

We must assume at this point that the reader

is thoroughly familiar with Chapter IV of Value,

particularly §§12,13.

We index the stages of the MP-stage game by

double subscripts (m,r), m=0,...,M-l, r=0,...,P-l.

The special MP-stage game differs from the

Fleming MP-stage game of §2 in that there are only

kM shocks, of standard deviation 0/M^ each, at the

times Q= t + (m/M) (1-t) , m=0,... ,M-1. The shocks

are Gaussian and spherically symmetric as before. The

reader will readily see how to define the value (t,x)
MP

of the special game in analogy with §2; or see Value,

II, 65, where we did it for general shocks (though there

we had no shock at the outset). We shall denote the

various position functions for this game by using a star

where with Fleming's game we had a 0. We wish to

g
compare (t,x) with (t,x); this is accomplished

at (4.29).
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The shocks in the Fleming MP-stage game will

be denoted by m=0,...,M-l, r=0,...,P-l. We will
xn^

denote a succession of these shocks by C=(z« « ,);
^ 0,0 M-l,P-r

this is a sample point for the MP-stage Fleming game. For

each m we define the partial siuns

-r ~ n ' (4-1)r HIf 0 in 0 ic

r=0,...,P-l. Each sample point C in this way uniquely

determines a sample point Z(C) = (Zq^p-i'- ••

for the special game. The shocks m=0,..-,M-l,

applied in the special gcime at the times t are

evidently spherically symmetric Gaussian and of standard

hdeviation Q/Mr, as required for the special game. With

this understanding, we may take the underlying sample

space for the two games to be the same, the space of

the C-

We wish to say what we mean by a "good" sample

point Q. First we consider a group (z^ q,...,z^ p-l^

of shocks in Q. This group is said to be good if the

partial sums ^ given by (4.1) all satisfy the inequality
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Z I < . (4.2)

Otherwise the group is said to be bad. Since the

-V
standard deviation of _ , is 0M it follows from

m,p-i

the Kolmogorov inequality (see e.g. Value, IV, 63) that

the probability, calculated over the space of the P-tuples

P-1^' group is bad, does not exceed

The sample point ^ is now said to be good if the

number of groups (z^^ q,...,z^ p-l^ which are bad
5 /6

does not exceed M . Otherwise ^ is said to be bad.

Since the expected number of bad groups, calculated over
_ 1/3

the sample space of all the does not exceed M*M =

2/3 . .
=M , the probability that ^ is bad does not exceed

We first suppose that ^ is good, and that the

controls chosen by the players are u., n „ ,
0,0 M-1, P-1

and Uq o'**''^^-1 P-1 • W® wish in this

case to calculate the deviation of the terminal point

of the trajectory of the special game from that of the

Fleming game.
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We now carry out a calculation somewhat analogous

to that in Value, IV, §6. This time p will denote the

trajectory for the special game, j:' the trajectory for

the Fleming game, and p" a trajectory running parallel

to p, but taking the shocks of the Fleming game. More

precisely;

(i) the trajectory p, starting at p(tq q) =

at time Tq q ~ displaced at each time q ,

m=0,...,M-l, by the shock given by (4.1)

with r=P-l. Otherwise it follows on the stage (m,r),

m=0, ,M-1, r=0, ,P-1, the differential equation

r (t) = T(p (t) , j,) . (4.3)

(ii) the traiectorv p', starting at p' (tq q) =

at time Tq q ~ displaced at each time ^ »

m=0,...,M-l, r=iO,... ,P-1, by the. component z
111f 1l

of Q. otherwise it follows on the stage (m,r) ,

m=0,...,M-l, r=0,...,P-l, the differential equation

p' (t) = ? (P' (t) , T,u , u ) . (4.4)
m, r m, r
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(iii) the trajectory p", starting at p"(tq q) =
' \

at time t« « = t, is displaced at each time t ,
^ m, r

m=0,...,M-l, r=0,...,p-l, by the component z
m, r

of Q. Otherwise it follows on the stage (m,r),

m=0,...,M-l, r=0,...,p-l. the differential equation

r'(T) = (4.5)

Put

6 (t) = 1F' (t) - F" (t) ! . (4.6)

Clearly 6(t) is absolutely continuous on [t,l], and

6 (tq q) =0- Our task is to estimate 6(1) .

Suppose that (z^ q,...,z^ p-l^ ^ good group

in C/ so that all the partial sums Z given by (4.1)
m, r

satisfy (4.2). Now the before-shock positions of p"

and F at time coincide: f"(t~ q) =V

Hence for all t€(t^ n'i n) we have
m,u m+1,0

Ir" (t) - r (t) 1 ^ . (4.7)
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It follows that

|r'(t) - t (t) I < 6 (t) + 9M (4.8)

there. Hence from (4.4) and (4.5) we have

6 (t) < Ir'(t) - f" (t) I < A[6 (t) + . (4.9)

***^ (T " T )
By making the substitution ri(T) =6(T)e ni,0 ,

we deduce immediately from (4.9) that

^ C6(V0)

On the other hand, if (z^ .,z ,) is a
m,0 m,p-i

bad group we have the crude estimate

It follows that for any m=0,...,M-l

« ^ »<Vo' ' (4.12)

—4/3 A/Mwhere tjUj^ = A6M e if the group is good, and
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uUn^ = 2|a/M if the group is bad. By induction we now

deduce from (4.12) that

c/ N -(m-l)A/M -(m-2)A/M
6(Tm^0^—^0^ ^1® ^ ^m-1 '

m=l,...,M. Hence in particular

6 (1) = 6 q) < (u)q+. . . (4.14)

5 /6Now since r, is good, at most M ^ groups are bad.

Hence it follows from the definition of the m that
m

6(1) < (Apm"^^^ 2uM" '̂̂ ^) e^. (4.16)

For typographical convenience we replace this by the

cruder estimate

6(1) < (A0M~ '̂̂ ^ + 2^M"^/^)e^^ . (4.16)

Now observing that p"(l) =):(!)# we get

lp(l)-r'(l)| < (A9M"^/^+. (4.17)
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For a good Q and the successions Uq P-1

and Uq P-1 ' this is the desired estimate

of the deviation between the terminal points of the

special and Fleming games.

If C is bad, (4.17) is replaced by the crude

estimate

Ir(1) - r' (1) I < 2u , (4.18)

holding for any pair of successions Uq o'***'^M-1 P-1

"o.o '^-l.P-l •

In order to assemble the above estimates we

now make use of an e-construction similar to the one

we used in Value. IV, §§12,13 in comparing the value

of the unrandomized Fleming mixed-strategy game with

that of a general randomized Fleming mixed-strategy

game. Here we have two randomizations of his game

to compare. We will have the maximizer play the

special randomized MP-stage game and the minimizer

play the Fleming randomized MP-stage game; this

is our present version of the "skew play" of Value. IV.
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With N=MP and with this new understanding of

the skew play, everything goes through here just as it

did in Value, IV, §§12, 13, up to the formula (IV. 13.1)-

(IV.13.2) for the C"Expectation to the maximizing player,

which for us now reads

E^iC t)

(4.19)

where p(t^^) and f' (t^) # n=0,... ,N-1, denote respectively

the after-shock positions of the maximizer's trajectory p

in the special game, with the M shocks, and the

minimizer's trajectory p' in the Fleming game, with

the N=MP shocks, so that in particular p(tq) =x^+Zq

and p' (tq) =x^+Zq q. The formula for the ^-expectation

E^(C#x^,x^,t) to the minimizing player is obtained by

replacing cp(p(l)) by cd(p'(1)) in the right side of (4.3 9).
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•flie formula for the difference of the C^sxp^ctations

is thus gotten from (4.19) by replacing the cp(^(l))

in its right side by the expression cp(r(l)) -co(r' (1)).

Now, just as at (IV.13.3) in Value, the integral

in the right hand side of (4.19) is in fact a finite sum.

To each term of this sum there corrjesponds a definite pair

of successions ^q, 0" *" ^M-1,P-1 ^0,0'* *" ^M-1,P-1

of controls for the maximizing and minimizing players

respectively, and corresponding definite terminal points

p(1) and r'(l), satisfying (4.17) or (4.18) depending

on whether Q is good or bad. Hence if Q is good we have

lEjj(C»Xt,Xt,t) - EjJj(C,x^,x^,t) I

< (A9m"* '̂̂ ^ f , (4.20)

and if Q is bad

|Ejj(C,Xj.,x^.,t) - E^(C,Xj.,x^,t) I <2uL. (4.21)

Now we denote by the distribution of

the Q= (Zq o'""^M-1 P-1^ Fleming N=MP-stage
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game. By the analogue to Proposition 2° in Value.

IV, §12, we have the formula

Ej,(x^.,Xt,t) =jEjj(C,x^.,x^,t) <311^,3 (£) (4.22)

for the overall expectation to the maximizing player,

playing the special MP-stage in the e-construction.

Here the shocks in that special game at the times

= t+(l-t)m/M, m=0,...,M-l are understood to be

given by the formula ^ n + • • • „ t as
m,P-l m,0 m,P-l

we indicated above following (4.1). For the minimizing

player, playing the Fleming N=MP-stage game in the

e-construction, we have the formula

E^(Xj.,x^,t) =jE^(C,x^,x^,t)dn^a (C) . (4.23)

the component shocks z^ o'***'^M-l P-1 ^ this time

being applied just before each move. Since, as we saw

above in the paragraph following (4.2), the probability

—1/6
that Q is bad does not exceed M , it follows from

(4.20), (4.21), (4.22) and (4.23) that
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jEjj t) - E^(x^,x^,t) I

< {AeM"^/^+4iiM~^^®)Le^^ . (4.24)

Now because the maximizer in the e-construction

is always maximizing to accuracy no worse than e/N= e/MP,

we have in analogy to Proposition 3® of Value (formula

(IV.12.32)) that

Ejj(Xt,Xt,t) ^X*p(t,x^) - e . (4.25)

Similarly, in analogy to Value. (IV.12.33), we have

Ej^(x^,x^,t) < ^>X^p(t,x^) +s . (4.26)

Hence from (4.24)

$\^(t,x^) - $X.®p(t,x^) <(AeM"^/®+4|jyi" '̂̂ ®)Le^^+2e

(4.27)
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Since the left side of (4.27) does not depend on e

and since e is arbitrary, it follows that

4.X*p(t.x) - 4X^p(t,x) < +4^M

(4.28)

for any x=x^€R^. By reversing the rbles of the
players in the ©-construction we obtain the opposite

inequality. Hence

|$X* (t.x) - $X® (t,x) 1< (AeM"^/^ f 4|iM"^/®)

(4.29)

for all X^ R^. This -is the desired comparison of the

value of the special MP-stage randomized game with that

of the Fleming MP-stage randomized game.
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0
5. Convergence of ^Xj^(t,x) N->». Theorem I

The first thing we have to do is to find an
0

estimate of the difference between dsX.^(t,x) and $Xj^(t,x)

Put

«m = ' (5.1)
xCrP

where t n ~ ~ ^ (l"t)m/M, m=0, ... ,M. We suppose
m 0 \j III

that 0<m<M-l and that 6 ., is known to be finite, as
— — m+i

is surely the case when m=M-l. We seem an estimate

for 6„.
m

Consider the problem of the P stages of the

special MP-stage game starting after the shock at the

time T ri the point x. The terminal function for
m, 0

these P stages is *P^mp ^m+1 0^' Using the Principle

of the Transmission of Continuity as it applies to mixed-

strategy games without random shocks lvalue, II, §3) ,

and recalling that the Lipschitz constant of

cpX^ (t,x, Tm^.1 0^ X is Le , we may replace the
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control function over [t n) Hu, u) =
^ m, u m+i,u

= T (x, T_ with an error no greater than
rn 0 w

A 2
(|aA+a)Le /M . Using that Principle once again,

we may replace the terminal function cpX* (t,x,T «)
MP m+1,0

for the P stages of the special MP-stage game by
g

cpXj^(t, X, Tm^.i) with a further error not exceeding
Q ASince ''̂ m+1^ Lipschitz constant Le in x

and = J'»X^(t,x+z, j^)(z) with
2

x=pM/9 (1-t), it follows from the result noted in the

flfirst paragraph of §3 that ^m+1^

Lipschitz constant >y2xp/iT Le = v(t,9)Le 'M , where

v(t,9) = p72/rr/9yi-t . (5.2)

When we wish later to emphasize the dependence of v(t,9)

on t and 9, we shall write it out; otherwise we shall

simply write v. In this section both t and 9 are fixed,

and v=v(t,9) may be regarded as fixed.

We now follow the argument of Value. V, §3; the

reader should note that the definitions of v here and

there are different. For any x€R^ we have from the Law
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of the Mean that

''"iiH-1^ t ''"in+i^ * ' (5.3)

where x' is on the segment [x,x]. Since any point x

accessible during the P stages starting at x must

satisfy |x-x|<|j/M, (5.3) implies that for such a point

cp\^(t,x, +VCPX® (t.X.T^j^) . (x-x)

+ V|a^M~^/^Le^O (1) . (5.4)

where 0(1) here and throughout this paper denotes a

scalar satisfying |o(l)|<l. It now follows by a

third application of the Principle of the Transmission

flof Continuity that the terminal function

may be replaced by the first two terms in the right

side of (5.4) with a further error not exceeding

Vu i'fi M ^ .
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We are now in the situation of the "simplest

linear (mixed-strategy) game" treated in Value. Ill,

§8. According to the (quite trivial) analysis presented

there, the value of the P-stage game starting at x with

the control function f (u» u) = T(x, t ritUfv) and the
Itl 0 I./

teminal function given by the first two terms of (5.4)

B —
is c+v/M, where ^ ~

V=value Vcp\®(t.x.T^^j^).T(x,T^ o,u,u) . (5.5)
UyV

We have therefore proved the formula

= c + v/M

+ C(uA+o)/M^ +Vu^/M '̂̂ ^]Le^O(l) + . (5.6)

For the single stage of the Fleming M-stage game

starting after the schock at the time t =t « from the
m m, u

point X, we obtain similarly

<6X^(t,x,Tj||) = c + v/M

+ [(MA+a)/M^ + vn^/M^/^jLe^Od) . (5.7)
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the only transition in terminal functions having this

time been the linearization. Hence, uniformly in x€R^,

<6^1 + 2[(pA+o)/M^ +vuVM^/^]Le^ , (5.8)

Evidently this same inequality persists for the before

position functions at the same time t n = t • Hence
m, u m

6 is finite and
m

^ni-^m+l 2[(uA+a)/M^ +V|i^/M^^^]Le^. (5.9)

On concatenating the inequalities (5.9) and recalling

that 6j^^=0, we find that

5. fig <2[(^A+a)/M +vuVia'̂ lLe^ , (5.10)

uniformly on [0,l]xR^. This is the desired relationship
g

between (t,x) and $X„(t,x) mentioned in the first
MP M

sentence of this section.
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We now combine (5.10) with (4.29), letting

a further term into the former. The result is:

|$X^(t.x) - AX® (t,x) l/Le^^

:< +2(mA+o)M~^+ 2vu^m"'̂ . (5.11)

By interchanging the roles of the M and P in these

last two sections, we obtain the corresponding

inequality for |$X^(t,x) - (t,x) j/Le , with
the M's in the right hand side of (5.11) replaced

by P's. Hence

|̂ X^(t,x) - ^»Xp(t,x)

< AG (M~^/^ +P" '̂̂ ^) + 4^(M"^/^+ P" '̂̂ ^)

+ 2(^A+a) (m""^+P""^) + 2vu^ (m'"'̂ +P"^) . (5.12)

It follows that [4'X^(t,x)} is a Cauchy sequence,
uniformly in t and x. We have thus proved the



36

following theorem, which is essentially due, in

a slightly weaker version, to Wendell Fleming, as

a consequence of his Lemma 1 in Convergence II;

THEOREM I (Fleming). 4>\®(t,x) converges

uniformly for (t,x) f [0,l]xR^ to a limit (t,x)

as N eo ,

In our proof of this theorem we have not

used the hypothesis stated in the second paragraph

of §2 about the Lipschitzian character of 7cp(x).

Nor have we mentioned any PDF.

The function (t,x) is called the Fleming

mixed-strategy value of the randomized game.

We thus have the first part of our objective,

which is existence by elementary means of (t,x).

We will now set out, in §§7-17, to prove by elementary

means that ^X® (t,x) in fact does satisfy Fleming's

parabolic PDE. But first, in §6, we run off the

easy completion of the proof of the existence of his

unrandomized mixed-strategy value, promised in ^1.
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6. convergence of $Xjj(t,x) N-k». Theorem II

Fleming's unrandomized N-stage mixed-strategy
0

vaiue function ^Xjj(t,x) is obtained from $Xjj(t,x) by

putting 0=0, i.e. eliminating the shocks; or see

Value, I, §8.

TEIEOREM II (Fleming) . Let B be a bounded set in

R^. Then aX^^(t,x) converges uniformly for (t,x) €f 0, l]xB
to a limit $X(t,x) ^ N-^oo.

PROOF. Since the position vector for the

deterministic game must remain within a jj-neighborhood
A ^

B of B, we may, by altering cp if necessary outside B,

assume that there is a constant K such that |cp(x) | < K

throughout R^.

Though now we have a shock at the beginning

and not at the end as in Value, IV, §13, and our

game is played over [t,l] instead of [0,1], Lemma

D ot Value has the same form as it did there, and

we have in analogy with Value. (IV.13.9) the inequality

l^X®(t,x) - ^Xjj(t,x) I<(l+Ae^)XsL.+2K/X^ . (6.1)
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Here s is the standard deviation of the sum

Zq + ... + of the shocks, and \ is any

number larger than 1. Since each of the shocks

h h.
has standard deviation 9(1-t) /N , we have

!< -1/3
s=0 (1-t) . Now suppose 9 6(0,1) and put >=9

(6.1) now becomes

|<E>X® (t,x) I < , (6.2)

where C= (l+Ae^)L+2K. Now suppose e>0. Choose 0

so that 00 '̂̂ ^ < e/3; this is the only point in this
paper at which 9 is regarded as anything but a fixed

constant given a priori. By Theorem I there is an

Ng such that if N,N'̂ Ng then

|<i)X^(t,x) - , (t,x) I < p/3 (6.3)

for all (t,x)6[0,1]xR^. On combining this with (6.2)

we see that if N,N'>Ng then

|$Xjj(t,x) - $Xj^, (t,x) I < e (6.4)
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for all (t,x)€[0,l]xB. Hence [(t,x)) is a

uniform Cauchy sequence for those (t,x), and

the theorem is proved. •

Except for the minor point that his

control function did not involve time, Fleming

proved this theorem in Convergence II. The

present author has given a different elementary

proof in Value. Chapter V, §10. In all three

proofs the basic idea was randomization. No

proof is known for which this is not so.

We now return, for the rest of this

paper, to the randomized game with a fixed

positive 0.

7. The Lipschitz constants

In this section we begin a detailed study of

the structure of the position functions for the

N-stage Fleming randomized game.
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Let l<n:^. We denote by the Lipschitz

constant in x of the increment function % (t,x)

defined at (2.9). We denote by the Lipschitz
0

constant in x of the gradient vcpX^ (t,x, of the
0before position function "^X^Ct^x^T^) at time t^. We

wish in this section to find a relation between y

and -f. .
n

n

Put

^n-l^ '̂"n-l'̂ n-l^ - ^n-l ^ '̂̂ n-1'"n-1^ - cpX^ (t,x, t^)

(7.1)

being given by (2.5) with n replaced by n-1.

Let X and x' be two points with |x-x'| = n-

Denote by x the trajectory over [Tn-i''''n^

differential equation f (t) = ? (r (t) , T/

starting at x. Similarly we define p'. Next we

(tenote by F" a path starting at x' and running parallel

to r. Put 6(t) = If" (t) - r'(t) I , "^nl '
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6{t„ t) = 0 and
n- i

6 (t) :iA|r (t) - r' (t) I =A|r" (T)-r' (t)+x-x' | ^A[6 (T)+n]

(7.2)

Hence by a standard calculation like that at (4.9)-

(4.10), we get

6(t^) < [(l-t)/N]e^/® <Ti(l-t)eVN , (7.3)

I.e.

T|(l-t)LeVN . (7.4)

Now put 8= ^n-l^ "^ ~^n ^ '̂̂ n-1'̂ n-1^

Then we may rewrite (7.4) as

!«-«'! < ri(l-t)e^/N - (7.5)

0
Since, as we noted following (2.8), co\°(t.x.T„) has
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Lipschitz constant Le , we therefore have

cpX^(t,x'+«', - cpX^(t,x', Tj^)

= cpX® (t»x'+8,T„) - cpX® (t,x*, T„)

+ [(l-t)Le^VN]0(l) . (7.6)

Now, using first the integral form of the Law of

the Mean and then noting that ] (x'+(ju«) - (x+ujg) | = <f]

for any real and that |«] <u(i"t)/N, we get

cpX® (t,x'+8,Tj,) - cpX® (t,x' ,Tj^)

= [ J ycpX^(t,x'l-(u«/ Tjj) dm] •«
0

1 c
= [ J 7cpXjjj(t,x+me,Tj^)dm] •«

+ [Ti(l-t)Mij^/N]d(l) . (7.7)



43

Hence we finally have the formula

i 0
° t J vcpXjj(t,x+u)8.Tjj)du)] .«

0

+ [nd-t) (Le^^ +Mtj^)/N]0(l) . (7.8)

Now, directly from the integral form of the Law

of the Mean, we have

1 0
"n-l' ^ t J 7cpXjj(t,x+u)«, t^)dm] •8

(7.9)

Hence

" ''n-l"h-1'"n-l"

^ Ti(l-t) (Le^^+u/,j^)/N . (7.10)

We may now apply the second part of the Principle

of the Transmission of Continuity as it applies to games

with mixed strategies (Value, II, §3). Because the
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estimate (7.10) holds for all u -if v then
n / X n*" JL

<7n-l"n-1'"n-l>

2A< Ti(l-t) (Le'"+ ut^)/N . (7.11)

But from (7.1) and (2.6)

UyV

= value - cpl„(t,x', t„)
UyV

N n

= cflX?,(t,X' , Tj^_;l) - CpX® (t,X' , Tjj)
N

= ij^(t,X')/ (7.12)

ana similarly at x. Hence (7.11) may be rewritten as

2Ai^(t,x') - ij^(t,x)| <Ti(l-t)(Le +1^^^^)^ ,

(7.13)

a formula called by the author the "double-difference
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formula". It follows that

< (1-t) (Le^^+u.t^)/N , (7.14)

n=l,...,N. This is the desired relation between

and
' n n

8. An inequality for the

We have so that

Yj, < (1-t) (|aX +he^^)/l3 . (8.1)

Now suppose that 0<n;^N-l, and consider the

fiinction cpX^(t,x, . If the reader has derived
(2.11) from a formal induction, he will have proved

the formula

^^N'''n^

(N-n) (q)
=J cp(x+z)dg'*'t (z) + ^ J i^^g(t,x+z)dg'*'t (z)

q=l

(8.2)
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of which (2.11) is the case n=0. The idea of

representing cpX^^ (t,x, in the form (8.2) is the

principal new idea of this paper.

Now fix attention on a term

\I;(x)=J i^^g(x+z)d3^t (z) in (8.2). Since
has Lipschitz constant Yj^+q in x, it follows from the

f n ^

first paragraph of §3 and the formula (2.2) for k

that Vij; (x) has Lipschitz coefficientV2?t|̂ ^P/^ •
(vN /q^)Y . / where v was defined at (5.2). Hence

from (8.2)

N-n

<X+vn'̂ ^ <l'\+q ' '̂ -3)
q=l

n=0,...,N-1. Now put

^n+q

A(t) = (1-t) (Le '̂̂ +MX) (8.4)

and

y(t,6) = (l-t)^v/N^= (^p/9)V2 (l-t)/TTN . (8.5)



47

We will write simply A or y when we are not dealing

explicitly with the dependence on t, or on t and 0 . We

then combine (8.3) with (7.14), which requires n^l. The

result is;

N-n

Yn < A/N +y^ Yn+q • (8.6)
q=l

n=l,...,N-l. We see from (8.1) that (8.6) is valid

also for n=N. This inequality, holding then for

n=l,...,N, is the desired one.

We shall spend §§9-13 estimating the from

(8.6); the result is stated at (13.9).

9. The determinants

Consider the system of N equations, n=l,...,N:

N-n

Y* =A/N+y ^ q"'® Y*+q . (9-1)
q=l
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in the variables » Y A being given

by (8.4) and (8.5) respectively. Using (8.1) at

n=N and working backward using (8.6), one proves

trivially that —yJJ ' n=l,...,N. From now

until the end of §13, we shall be seeking to estimate

the Yn •

For each n, consider the system of N-n+1

equations

N-n'

-35
a ^ \

n+qYS- - y I ^ . (9-2)
q=l

n'=n,...,N, in the N-n+1 unknowns •

The determinant of this system is unity. By

Cramer's rule, is therefore gotten by replacing

the first column in that determinant by the entries

on the right hand side of (9.2), i.e.



V * =
^ n

^ ^ ^ . . .
1-h 2-^2N

^ 1

A
N

N

N

0 0

0

t • •

• • •

• • •

• • •

(N-n-1)^
ZY

(N-n-2)^ (N-n-1)^
Z2L

(N-n-3)'̂ (N-n-2)^

-V r'

(N-n)^
=Y_

ZIY.
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. (9.3)

We will refer to a path across this, or

any other determinant, which has a non-zero

product, as a non-zero path .

Let i>l. Any non-zero path starting at the

A— in the i row of (9.3) must go down the diagonal

.thafter the i column has been passed. Hence the
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cofactor of that ^ is the determinant made up
of rows l,...,i-l and columns 2,...,i in (9.3),

prefixed in sign as follows. Consider a non-zero

path in (9.3) involving that ^ , which passes
through rows ±,±2* - --,as j=2,...,i. The sign

of its product is then that of the permutation

i2#...,ij^ of l,...,i-l, multiplied by (-1)^
In the cofactor determinant the columns 1,...,i

receive the new labels 1*,...,(i-1)* . So we may

rewrite the permutation i2».-.#ij^ as / • • • / i *

Its sign as a permutation of l,...,i-l is however

unchanged^ Hence the prefix in sign required on the

cofactor determinant is (-1)^ ^ . It follows that

for n=l,... ,N

N-n+1

=Nt 1+ I (-1)^"' Di ] . (9-4)
i=2

where is the (i-1)y(i-1) determinant given by



D. = :
1

^ ^ ^1^ 2 2 3^

» ' 3

• • •

• • •

• • •

• • t

• • •

(i-2)'^
-V -V

(i-2)'®
-V -V

(i-4)'^ (i-3)'^
-V -y

(i-5)'^ (i-4)'®

1^

=Y.

• # • =yi
h
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(9.5)

Our next objective, accomplished in §13 , is

to prove that the sum in the brackets in (9.4)

is absolutely bounded.
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1
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kLet i>2 . We denote by d^, k=l,...,i-l.
V i — 1

the coefficients of y in (-1)

We denote the indices of the rows and

columns ot by h and j respectively.

We shall refer to the diagonal just below

the main diagonal in as the 1-diagonal. Notice

that the entries above the 1-diagonal, i.e. with

# are ^—c .
(j-h+1)^

We first observe that

di = ^ (10.1)

for any i:^2. In particular this disposes of the

case i=2.

Now suppose that i>3, and 2<k<i-l. Any non-

zero path involving y has to leave the 1-diagonal
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exactly k-1 times with j^2. Suppose it leaves it

at the columns j ..., with j < • • •< < i-2.

There can be only one non-zero path corresponding

to the succession goes down the

1-diagonal until col\imn is reached. It must then

go to row 1, and acquire the factor ^ . If j^>l,

the first row entries are then 2,3,...,j^,l ,

which form a permutation of sign (-1)^1 ^ of the

succession l,...,j^. Clearly this sign is also

correct if The path now returns to the 1-diagonal

until it reaches column j2. At that point it must go

to row ji+l and acquire the factor ^—r . We

also see that the succession of rows corresponding

to columns j^+l,...,j2 forms a permutation of sign

(-1)^2 ^1 ^ of the succession j^+1, ,32' reader
should check this separately in the cases 32

j2=j]^+l- The path proceeds in a similar way across

the segments [ j2+^'33] ' • ••' [ ^ ^'^k-l"'' acquiring the
—y —y

factors —5" »... # r and the permutation

signs (-1)^3 " ^2 " , (-l)^k-l " ^k-2 " The

path across the final segment [j^_^+l,i-l]
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similarly acquires the factor ^ and

the sign (-1). The rows

on the path therefore form overall a permutation of sign

= (10.2)

of the succession l,...,i-l. There are k minus

signs in the factors. The contribution of this path

to is therefore

/• -j \ i+1 k
C w ' ^ r c . (10.3)(jl) (jj-ii) ••• (3k-i-jk_2)^(i-l-jk-i)^

It follows that

0? - I
l<j . .<j^__^<i-2

(10.4)
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We note that the are all positive, hence

also all the (-i)^ appearing in (9.4). For our

objective noted at the end of §9 it will therefore suffice
N

to estimate ^ (-1)^ ^ . We have evidently
i=2

N N i-1

I (-1)^-1 D. = f; I • (10.5)
i=2 i=2 k=l

11. A trivial inequality

In what follows we shall frequently need

to estimate the quantity

s-1

y —IT—c ' (11-1'
, (q-r)^(s-q)^

q=r+l ^

r and s being integers with 0<r<s-2. Put
1

g(w) = r . Then, by elementary calculus,
{w'r)^{s'w)^

(r+s)/2 s
T g{w)dw - r a{^)<3u} = n/2, independently
r (r+s)/2

of r or s satisfying the inequality indicated above.
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g{w) is decreasing on [r,(r+s)/2] and increasing

on [(r+s)/2,s]. Put q* =[^2^] • Then evidently

y q* (r+s)/2
I < J < j' c(u))dio = tt/2 (11.2)

q=r+l r

and

s-1
^ s s
^ < f ff(iv)dw < J g(w)dw = tt/2 . (11.3)

q=q*+l q*+l (r+s)/2

Hence the quantity (11.1) is less than tt , independently

of r and s with 0<r<s-2.

12. Estimation of the d^

If i^2 and k=l we have the trivial exact

formula (10.1): d '̂= l/(i-l)^.

If i>3 and k=2 we have

.2

I (12.1)l;^^<i-2 ^^l' ^ ^1^

according to §11.
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If and k=3 we have

1 y I- V U ' (12.2)
l<jl<j2<i-2 dl) ^(32-^1)

For each fixed we have, according to §11,

) E n < IT . (12.3)

Hence

i-3 i-3 N

" I TT% ^ " -f" ^ " I ^ =2ttn'̂ .
j^=l <3i) 0 0

(12.4)

Next we suppose that i^S and k is even, k=2q

with 2^q< . We consider successions j2'34» '^2q-2

satisfying

2 < j2< < j4< < ••• < <^^2q-2-^"^ ' (12.5)

where the double inequality indicates that the

difference is at least 2. Put e= [i/2] . The number
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of such sets of q-1 non-adjacent integers in [2,i-3]

certainly does not exceed

(i-4) (i-6)...[i-4-2 (q-2)]

(q-1) 1

(2e-3) (2e-5)...[2e-3-2(q-2)]

^ (q-1) I

(2e-2)(2e-4)••.[2e-2-2(q-2)]
<

(q-1) 1

_ nq-1 (e-1) (e-2) » «» (e-g+l)
(q-1) 1

-q-1 e (e-1) « *» (e-a4-2)
(q-1) !

=2*^ ^ <q-l' • <12.6)

Now with the succession 32'"^4" "''^2q-2 satisfying
(12.5) fixed, we group the k=2q factors in the

denominator in (10.4) into pairs and sum on

satisfying l<ji<j2<33<34< •••

•••< j2q-2 ^2q-l — result, according
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to §11, is less than n^. It follows that

< (2n)''(qfj^) . (12.7)

Finally suppose that ij>6 and k is odd, k=2q+l

with 2<q<^2^ • ^ and consider
successions j3'--*'32q-l satisfying

j]^+2 < <<j^< <•..<< 32q-l ^ . (12.8)

The number of such sets of q-1 non-adjacent integers

on [j^+2,i-3] certainly is less than the number on

[2,i-3], and we once again have the overestimate

2^ ® ) as at (12.6) . This time, with j. and
q X X

the succession j3'--"32q-l satisfying (12.8) fixed,
we group the 2q factors following (j^^)'̂ in the
denominator of (10.4) into pairs and sum on

j2'34" •-'32q satisfying ji<j2^^3^^4^
••• < < j2q < . The result is once again

less than n^. It follows that

i-3

d^ < 2^"^Tr'' ( f.) y —^ < (2Tr)%'̂ ( f,) .
1 q-x Z_i /• x'S q J-

ji=i

(12.9)
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We see from (12.1) and (12.4) that the general

estimates (12.7) and (1.29) hold also for k=2 and

k=3, the combinatorial term, in both cases having

q-l = 0, being interpreted in the usual way as unity

13. Estimation of the v̂ n

What we have to estimate is the quantity
N i-1

y 1 the right side of (10.5).
i=2 k=l

Put

fi) (t,P) = (up/0)y2 (l-t)/rr . (13.1)

As usual, we write simply u) when the dependence on

t or 0 need not be made explicit. Then, from (8.5),

y =

N i-1

We first consider the terms iri ^ ^
i=2 k=l

with k=l. Using (10.1), we find that these add to
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) < 2yN^ = 2(1) . (13.2)
t • -I \ T

i=2 (i-l)''

What is left is the quantity

N i-1

I I • <"•'>
i=3 k=2

We shall prove that this is bounded.

Suppose first that i=2e+l, e>l, is odd.

Then the inside sum in (13.3) satisfies, according

to (12.7) and (12.10), the outside inequality below:

y = y (d?''y '̂'+
k=2 q=l

® 2q 2q+l

/_. q J- jjq jj^q
q=l

e

= (i+ui) y
e

{
q-

q=l
e-1

=w(1+uu) y
q=0

e

< (1 +(d) y^
q=0

= (1 + (ju)w (1 + z^) ®

2

< 2(1 + (I)) tt'I) /N , (] 3.4)
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where we wrote w=2tt(u /N .

If i=2e, e>2, we have

i-1 e
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Z I (d?^y^''+< 2(l+»<)nui^e™ /N ,
k=2 q=l

(13.5)

the calculation after the second term in (13.5) being

the same as in (13.4). Hence

N 2 •

Y < 2id +2(l+m)Troupe™ <r , (13.6)
i=2

where

r = r(0) = 2ii)q + 2(l+,„^)TTouQe^"'0 , (13.7)

with

Q = (JU(O,0) = (^p/e)y2/^ . (13.8)

r is (except for its dependence on 0) the absolute

bound asked for at the end of $9.
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It follows from (9.4), (13.6), and the

inequalities Yj^:^Yn looted at the beginning of §9

that, for all n=l,...,N,

Y„ < ( l+D , (13.9)

where A = A (t) is given by (8.4) and r = F (0 ) by

(13.7). Ihe whole work of §57-13 has been directed

towards this inequality, which is a central result.

14. Spatial Lipschitz and Hblder coefficients

8
N

Q
on the spatial derivatives of (t,x) . Theorems

111 and IV

To obtain the Lipschitz constant Aq of

V<>\^(t,x) =vcp\® (t,x, Tq) in Xwe need only apply
formula (8.3) with n=0, using (13.9) and recalling

the definitions of v and A at (5.2) and (13.4):

N

tn < X+ y < X+ 2vX(l+r) < X®, (14.1)
° q=l

where
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X® = X+ 2iV2/TT(Le^^+uX) (l+r)/6 , (14.2)

r being given by (13.7)-(13.8). With 0 fixed this

estimate is uniform in t,x, and N.

Before we turn to the second derivatives,

we note a simple point. Suppose a real-valued

function g{w) is bounded by K and has Lipschitz

constant i. Then, for any a with 0<a<l, gijjo)

is Hblderian in w with exponent a and coefficient

(2K) ^ ^1°^. We leave the trivial proof to the reader.

We now consider the representation (2.10)-(2.11).

We have just proved that ij^(t,x) has the uniform Lipzchitz

constant given by (13.9). By the results

of §3, where is given by (2.10), has the

uniform Lipschitz constant

\/ 2h^^^ p/n^ •Yn <p(l+P) (Le^%|jX)y2/TT / Gn^N^ . (14.3)

(n)
Here we have recalled from (2.2) and dropped
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I.
a factor (l~t) ^ from the numerator. The right hand

side of (14.3) therefore serves as a uniform bound for

B>l'j^(t,x) over all t,x,i,j.
Bx^. SXj

a^\lf (t,x)
Next, the Lipschitz constant of

in X has, once again from §3, a value not exceeding

< 2p(l+r) (Le^^+uX)/e^n . (14.4)

Hence, by the trivial observation made two paragraphs

(t,x)
back, —r r— has relative to a6(0,l) the HOlderoXj

coefficient

C®
j,(l-a)/2 ^(l+o)/2 '

where

c® = 2°' p(i4-r) (Le^^+px) (2/tt).

(14.6)

The reader should observe that C does not depend on t.
a
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Now put

2 ®

t I ] • (14.7)
^ ^ n=l

It follows from (14.5) that the Holder coefficient

N
of (t,x) in X has the estimate

C® 1 2C®
u(l-a)/2 L „(l+a)/2 ' (14.8)

n=l

which is independent of t. The reader will see

here the reason for passing from Lipschitz to H51der

coefficients for the second derivative. The Lipschitz

Ncondition of Y^j(t,x) in x as estimated by summing
(14.4) is of order of magnitude log N; the estimate

(14.8) is independent of N.

All the discussion to this point has had t<l.

It is convenient at this point to complete the definitions

of §2 in a trivial way by putting <&X^(l,x) =cpX^ (l,x, t^^) =
9 n= 4>Xjj( 1,X, T^) =cp(x) for all n=0,...,N and x^R^. Then

of course i^(l,x) =0 for all n=l, ...,N and x^R^, so

that also (l,x) exists and is identically zero.

Hence the HOlder constant 2C®/(l-a) given by (14.8)
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for (t,x) is valid for all (t,x)^[0,1]xR^.
11

As to the other term in the representation

(N)
(2.11), its gradient Jvcp(x+z) d^ t (z) has Lipschitz

constant \ in x, which serves as a bound for its

second spatial partial derivatives. And by the

first part of §3 the second partials have Lipschitz

constant estimated by

• X = pXylTT/e (14.9)

Hence they have with respect to a6(0,l] the Holder

coefficient in x

h® . = 2^"°'Xp°'(2/rT)'*'^^. (14.10)
oc, r

which does depend on t.

We are now ready to state our first

theorem on Lipschitz and HOlder coefficients.
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THEOREM III. Under the hypotheses stated in

the second paragraph of §2, in particular under the

assumption that the terminal function cp and its gradient

vcp are uniformly Lipschitzian. but with no hypotheses

concerning anv second derivatives of cp, the spatial
o

gradient VcE>Xjj(t,x) is uniformly Lipschitzian in x,
0

With the constant x given by (14.2).

p
The second spatial partial derivatives of <f>X^(t,x)

may be represented. f6r (t,x)f[0,1)xR^, in the form

(t,x)

Bx^SXj
KT 7?-

= (t,x) + [ J cp(x+z)d5^t (z) ] , (14.11)

(t,x) being given by (14.7), and with =p/0^(l-t)
X J t

Nnot depending on N. The function Y^j(t,x) is uniformly

Hblderian in x relative to anv exponent a6(0,l), with

0 0the coefficient 2C /(1-a) $ C being given bv (14.6),
OCf OL

throughout rO,l]xR^- The second term on the right hand

side of (14.11) has the Holder coefficient h^ , in x given
a* t —

by (14.10) relative to anv nffO.l]. having the order

of growth (1-t) near t=l. Neither Holder coefficient

depends on N or. x.
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The following is an immediate consequence

of the representation (14.11).

THEOREM IV. Suppose in addition to the

hypotheses of the second paragraph of §2 that the

terminal function po has second partial derivatives

2which are uniformly HQlderian. with constant h^ ,

for some af(0,l]. Then the second spatial partial

derivatives — exist throughout fO/llxR^oxj j

and are uniformly Holderian in x there, with the

9 2
same exponent a and with constant 2C /(1-a) +h ,

oc oc

being given by (14.6), not depending on N, t, or x.
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15. Time Httlder coefficients on the spatial

D

derivatives of . Theorem V

These are obtained by a modification of the

lengthy calculation relative to x which we have just

finished. However this time we seek Hblder coefficients,

rather than Lipschitz constants, on the increments

ij^(t,x). The modification is not quite trivial.

Until (15.27) is reached we will fix on t,t' with

0<t<t'<l. Put

and

t.f
Xn ' = Sup ^ , (15.1)

x6rP '

xSrP

|vcpX^(t',x,T^) - vcpX^(t,x,T^) I

(15.2)
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I I An=0,...,N. Because |i^(t,x)| <y(1-t)Le and
0 X I . . _AIvcpXjj (t,x, T ) I< Le for any n, t, and x, both

and h^'^'
n n

' and h..' are finite.

Now we seek an analogue of the "double-difference

formula" (7.13). We sharpen the notation following (2.3)

by denoting explicitly by ^^'^n-1'^n-1^ point

reached at time t # starting from r(T„ ^) = x at time
n -re

and following the differential equation

r (t) = ? (p (t) #T, (15.3)

across the interval [''"n^ ' similarly for t'.
t 'Evidently we may redefine ^n-1'"n-1^

the point reached at time starting from p' (t^^..^^) =x

at time following the differential equation

f'(T)= irt

(15.4)

across the interval [t- Put
•- n— X n
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6 (t) = Ijr (t) - F' (t) I , (15.5)

t€[ - Then by an easy calculation we see

that

6(t) < A6(t) + ^ (15.6)

SO that

< 6(t„) < (o+u) (f-t)e^'^/N < (o+^) (f-t)eVN .

(15.7)

Hence

cpX®(t',Xn "n-l '̂'̂ n^

- '^n^^'^n-1'"n-1^''^n^

+ (m+c) (t'-t)Le^^? (1) /N . (15.8)
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Now put ^ ~ "n-1 * Then
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1 ft
= [ J VCpXjj(t' ,X+OUS, Tj^)d(j[)] • §

0

^ 0= [ J VCp^.^(t,X+(JU3,T^)duj] • §
0

+^n'̂ 'u (1-t) {f-t)^0{l) /N

cpX^(t,Xn "n-l'' ""^n' Tj^)

+h '̂̂ 'u(l-t) (f-t)'̂ 0{l) A

(15.9)

Now (15.8) remains valid if we replace the factor

J- h
t'-t by (1-t) ^(t*-t) - It was in order to make this

crucial replacement that we chose t'>t. On combining

the resulting formula with (15.9) we get
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cpX^(f ,X^ (x,iin_i. .Tj^) - cpx|(t',x,T^)

CpXjjj(t,Xj^(x,Ujj_j/«Tjj) - cpX^(t,X,Tjj)

+ [ (u+a) {l-t)'̂ Le^^ +h '̂̂ 'u(l-t)] (f-t)'̂ O(l) /N

(15.10)

On taking the values in (15.10) over UxV we therefore

get

It„(t',x) - t„(t,x) 1

;s: [ (u+a) (l-t)'̂ Le^^ +h^ '̂̂ 'ud-t)] (t'-t)'̂ /N .

(15.11)

Since this holds for all x6R , it follows that

Xn'̂ ' ^ [ (u+a) (l-t)'̂ Le^^ +h '̂̂ 'u (1-t)]/N . (15.12)

(15.11) is the desired "double-difference formula", and
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(15.12) here plays the role of (7.14). These

formulas hold for n=l,...,N.

Next we suppose that 0<n<N-l and consider

the representation (8.2) for cpX^(t* ,x,t^) . The
first term in the corresponding representation for

(N-n)
VcpX^(t',x,T^) is J vcp(x+z') dg^t' (z') . We

may rewrite this relative to the time t as

1 4- I l.» N̂"*n) '1_4-i3s; •t-3<
J vcp(x + ("^ )'z) dg'̂ t (z). Now 1- (-pf ) < '
SO that

I (N-n)J Ivcp(x+ (p;^ )^z) -vcp(x+z)| dg^t (z)

<x(frt)'' J 1^1 <38r""^(^)

. fN-n)% (1-t)'^
~ ^ 1 - t ^1 r j^2

< xe (t'-t)'^ . (15.13)

(N-n)
J vcp(x+z) dg^t (z) has therefore the uniform
Holder coefficient X0 in t relative to the exponent
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Now we consider, component by component,

«(<j)
the terms V[_[ »x+2') dg t' (z') ] » q=l,-..,N-n

in the representation corresponding to (2.11) for

vcpX^ (f ,x, Tjl!^) . In the following calculations we

will write and for typographical

convenience. The first component of

n+q

Kv[J I (t',x+z') dg t' (z') ] is then

a

hx-i "J n+q

2 2
-H(Zt+... + Z )/2 . , /ic l>i\

e 1 p dz, ••• dz . (15.14)
1 P

dzi ••• dz'
1 P

Since 1(t* ,z') | < |jl (l-f )LeV^ for any t',z' ,
1 _ t J-*

we may replace the factor (^ in the last integral
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by 1 with an error satisfying

Error^ < [n (t'-t)^(l-t')'̂ Le^/N]

2 2. K . p/2 f. , 1 -;t (z,+ .. .+z^)/2
• ''̂ 2^7' J l^il® 1 P dZj^.'.dz

h /n< ^LeV2p/TT(t'-t) VeN^q^ . (15.15)

Here we once again use the hypothesis that t<t'.

Recalling (13.9), we may now replace the entry

1^1

X + —r ) in I . by x+z with a further error
1-t n+q

satisfying

' /t' -tx ^ , XXp/2 n I II _I -K (z? + ... + z?)/2Error2 < Yn ^^2^^ J l^lllzl el P '

dZi 000 dz
1 P

^ J>^,2 + |zJ|z2+... +z2|'53

g-)i(z^+ ... +Zp)/2 ^
X If
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^ ( l+y2p/n )

2A 3<
< 3(Le +uX) (l+rV2p/TT(t'-t) VN .(15.16)

Ic
Here we have dropped a factor (1-t) , and noted that

1 < 272p/tt . Finally, we may replace

in the altered integral by tj^^g(t,z) with a final

error satisfying

Errorj <x '̂̂ ' (t'-t)\J |zj |̂

dz, • • • dz
1 p

h. t,t'^ yZjt/TT (t'-t)

= y2p/TTN\jj"' (f-t) Ve (l-t)'^q^ . (15.17)

We have thus arrived at the derivative

J n̂+q ] at t, with a total

error satisfying
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Error < Error^ + Error2 + Error^

9NV N 6(l-t)V

. (t'-t)^ . (15.18)

Since the error estimate is the same for t^[ •]#•••» C*3ax2 aXp
the difference of the gradients does not exceed the

h
right side of (15.18) multiplied by p . Adding up the

resulting estimates from q=l to q=N-n and taking account

of (15.13), we get

lvcpX^(t',x,T^) - ycpX^(t,x, Tj^) 1

- A ^ 2A
< X0 (t'-t) + p {.2[xLe /0 + 3 (Le +iaX) (1+r)

+ y . (15.19)
9 (1-t) ^

Since the right side of (15.19) is independent of

X, we have thus proved that
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4- J- I TV OA

h^' < X0 +pya/iT [ 2nLe /9 + 3(Le +MX)(H-r)

+—^ I ] . (15.20)0(l-t)^ q=l

n=0,...,N-l, analogous to (8.3) but somewhat

less obvious.

We may now combine (15.20) with (15.12),

n=l, ,N-1. The result is:

N-n

<H(t)/N +y I q"'̂ XnlJ' ' (15.21)
q=l

analogous to (8.6), where

OA P ——— A

H(t) = [ (^+o)Le •'•uxe + 2|a''py2/n L eV9

2A+ 3|ipV2/TT (Le'"+uX) (1+r)] (1-t) ^ , (15.22)

and y is given by (8.5). Applying (15.12) with n=N

t t 'and noting that hj^' =0, we may extend the system

(15.21) to n=N. The system (15.21) now differs from
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the system (8.6) only in that A is replaced by

H(t). Hence we have the analogue to (13.9);

Xn'̂ ' < (l+D , (15.23)

n=l,...,N, H(t) being given by (15.22) and r

t t'
by (13.7). We observe that depends on t

but not on t'€(t,l).

From (15.20) and (15.23) with n=0, we find

that

ho''^'<h| , (15.24)

where

h| =Xe + py2/n [2uLeV0 + 3(Le^^+nX) (l+D + 2H(0) (l+r)/0]

(15.25)

H(0) being the constant in brackets in (15.22). The

reader will now understand the importance of the "crucial
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replacement" of t'-t by (1-t)(t'-t)^ in (15.8),
which we made following (15.9) . Since h^ does not
involve t or t', we have thus proved that

|v^)X®(t',t) - VOX® (t,x) I <h||t*-t|^ (15.26)

for all pairs t,t' 6rO,l) with tj^tf and hence

for all pairs t,t'6[0,l). The reader should

now carry out the easy verification that for t<l

|vOX® (t,x) - vcp (x) I

< (X0 + |apy2/TT Le'̂ /e) (1-t)'̂

<h^(l-t)''̂ , (15.27)

SO that (15.26) holds for all pairs t,t'6[0,l]. Hence
0 • . Ahj^ IS a uniform Holder coefficient in t for vOX^(t,x)

relative to a=h throughout [0,1]xR^.

In order to understand the situation with

the second derivatives, we begin by studying the
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(t,x)
second partials — , which we denote?Xi j
provisionally by /(t). We now need the bound,

sharper than (14.3), which we noted following

(14.3):

|/(t) I < K(t) , (15.28)

where

2 A . . \ t n , \ ^K(t) = pV2/rr(Le +uX)(l+r)(l-t)V9n^N=. (15.29)

Now let 0^t<t*<l. In the following calculation

(N) (N)we shall write h=k^ , . We suppose at

first that . Then

/(f ) =H'̂ (^)P/^ J zj^z; tn(t'.x+z'+ *••

dZi • • • dz
1 P

2 2~*K (z + , . , + z )/2 j , c •an^
e 1 p dz, ••. dz . (15.30)

^ 1 p
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1-t
We may replace the factor second integral

in (15.30) by 1 with an error satisfying

Ej^ < (2«,/n) (f-t)|j/N

< 2|ap(t'-t)/0^ (l-t)n

< [2up/e^ (l-t)'̂ n] (f-t)®^ . (15.31)

Here we have once again made a "crucial replacement"

similar to the one we made in (15.8). We may then

1 —t' ^
replace the entry x + ) z ir by x+z with a

further error satisfying

E2 ^ (2k/tt)

< [2p(Le^^+MX) (l+r)/e^(l-t)^n] (t'-t)^ .(15.32)

Here we used the estimate (13.9) for Yj^- Finally

we may replace i^(t',x+z) by tj^(t,x+z) with a further

error satisfying
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E3 < (t'-t)'®

< [2pH(0) (l+r)/9^ (l-t)'̂ n] (t'-t)'^ . (15.33)

Here we have used the estimate (15.23), valid for

t<t'<l. In all three estimates we dropped the factor

1/tt- We have thus arrived at the formula for / (t) ,

with a total error not exceeding E^+E2+E2 . Thus we

have proved that if 0<t<t'<l then

l/(t') -/(t) I <M(t) , (15.34)

where

2A

M(t) = 2p >r+(Le +n^)(H-p+H(0)(l^n . (15.35)
9 (1-t)^ n

Now we have a second estimate for /(t*) -/(t)

since K(t') <K(t), then

l/(t') -/(t) 1 < 2K(t) . (15.36)
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and taking the square root, we get
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lf(f ) -/(t) 1< [2M(t)K(t)]'̂ (t'-t)^ . (15.37)

But [2M(t)K(t)]^= [;2M(0)K(0)1 ^ dies not depend

on t or t'. Hence for any pair t,t*€rO,l) we have

3^\lf^(t,x)
?x. c^x.

1 3

= |/(t')-/(t)l < [aiKOKCOj'̂ lt'-t|̂ ; (15.38)

5 ({l (t,x)
is uniformly HOlderian on [0,1) withSx^ aXj

exponent ^ ana coefficient [2M(0)K(0)] given by

(15.35) and (15.29).

If i=j the factor 2h/tt appearing at the outset

of each of the estimates (15.21), (15.22), (15.23) is

replaced by 2h. Since we dropped the factor 1/n there.
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these estimates remain valid with some < signs

replaced by = or ^ . The effect of this trivial

difference is entirely wiped out before (15.37)

is reached, and (15.38) holds as stated for all

pairs i,j.

We now write f2M(0)K(0)l^ in the form

[2M(0)K(0)n'̂ =^1/4® 3/4 , (15.39)

where

a _ 2p(2/n)^(Le^^+u\)^(l+r)*^rir+(Le^\uX) (l+D +H(0) (l+D]^

(15.40)

H(0) being given by (15.22), is an absolute constant.

On adding up the inequalities (15.38) we see that

the function (t,x) defined at (14.7) satisfies
^ J

the inequality

|y^. (f ,x) - (t,x) I ^ 40|t'-t|'® (15.41)
1J X J

for all pairs t,t'(=[0,l).
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Now we need to study the behavior of (t,x)

near t=l. We have first the inequality (15.28) for

(t,x)
fit) =—- — . In addition we have the inequality

i j

l/(t) I ^ 2K^(l-t)/N = 2pn/9^n , (15.42)

gotten by differentiating in (2.10). On multiplying

these inequalities and taking the square root, we get

If (t) I < 2PLi'f2/n)-'(Le^^+nXl 'fl+D '

^1A„3/4 ' (15.43)

0 being given by (15.40). Hence

lY^jCt.x)! <4@(l-t)'® . (15.44)

NSince (l,x) s 0 , this last inequality implies

that (15.41) holds for all pairs t,t'€rO,l] without

exception.
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As to the other term [ J co(x+z)d3 t (z) ]
i j

in the representation based on (2.11) for

fl

— general not even
i j

continuous as t-+l. So no general uniform Hblder

condition can be hoped for. The reader should however

prove for himself the fact that that term is uniformly

Hblderian, with exponent a=h and coefficient

y2p/n(L/0 + 3X)/(l-t) , on the layer [0,t]

where t<l.

2

If however ? exists and is H51derian
dx. dx.

^ 2in X with exponent a and coefficient h^, one sees
.2 (N)

trivially that dx ^I '̂ (^+z)dQ^t fz) ] has the
i j

2 r»
uniform Holder coefficient h 0 I in t relative to

(X a

the exponent a» where

2. .2

la= |„|ag-p(i«i+...+Wp)/2 • • • dz^
P

(15.45)

the expectation of relative to the Gaussian
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spherical distribution of standard deviation 1,

depends only on a-

On assembling all the above facts, we have

the following theorem.

THEOREM V. Under the hypotheses of the second

paragraph of §2, that is under the same hvpotheses as

in Theorem III, the spatial gradient 7<f>X^(t,x) is
uniformly Hblderian in t ^ rQ,l]xR^ with exponent a=h

6
and constant hi given bv (15.25).

'2

(t,x)
In the representation (14.11) for ,

Sx.

the function (t.x) is uniformly HOlderian in ton [0.1] y

with the coefficient 40 relative to the exponent a=k ,

0 being given bv (15.40). The second term on the right

hand side of (14.11) is uniformly .

layer [ 0. t] . with coefficient ./2p/n (L/9 + 3X)/fl-tl

and exponent n =h. provided that t<l.

If in addition the second partial derivatives

3^cp(x)
^ of the terminal function cp are uniformly

i j
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2 .
HSlderian with coefficient relative to the exponent

a€(0,l], i.e. if the hypotheses of Theorem IV are

fulfilled. then the second spatial partial derivatives

(t,x)
— are uniformly HOlderian in t ^ [0,1]xR^ ,

i j

2 nwith coefficient h^0 + 40 and exponent p=min fa/2,1/4] ,

being criven by (15.45) .

.2,, eQ h 4)X„(t,x)
16. Convergence of v4>X^, (t,x) and —r-^~•W oXj^oXj

to V<|>X® (t,x) and ^^x. ^x!^^ * Lipschitz and Holder

coefficients on the latter. Theorems VI and VII

Fix on any t€[0,l), and on any bounded open

set G in R^.

By Theorems III and V, the family {V'̂ X^(t,x)}
is uniformly equicontinuous throughout [0,l"ixR^.
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Furthermore, its members are equibounded there

A . Q
by Le . Consider any subsequence of f (t,x) "i.

A subsequence of that subsequence must converge

uniformly on [0,1]>0, and it is a well-known

elementary result that the limit must be (t,x) .

g
Hence the whole seqpience f (t,x)} converges

g
uniformly to 7<&X (t,x) on [0,1] xG. In particular

it follows that v^X (t,x) must have on [0,1] xG

the same uniform Lipschitz and HSlder properties

as those indicated for the individual v4>Xjj(t,x)

in Theorems III and V. Since these did not involve

G, they must hold throughout [0,l]xR^.

By Theorems III and V, the family

S^aX® (t,x)
[—uniformly equicontinuous throughout

- D ^ $X„(t,x)the layer [0,t]xR . Also, f—-—r } is obviously
oX« *

1 j

equibounded by the Lipschitz constant X® of VAX®(t,x)

estimated by (14.2). Hence the whole sequence

[— J converges uniformly on [0,t]xG to
^ ^ (t,x)

a function which has to be —r r r . That function
dX . OX .

1 3
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has the same uniform HOlder coefficients on [0,t]yG

(t,x)
as those indicated for the r in Theorems

. Bx.
1 3

III and V, Since these do not involve G, they hold

on [0,t]°R^. Since t<l is arbitrary, these derivatives

exist, and they satisfy the indicated Httlder conditions,

on [0,1)xR^.

In the statement of Theorem III, we noted that

.2 (N)
the term [ J cp(x+z)d3 t (z) ] in the representation

. ^i

(14.11) does not depend on N. It follows that the sequence

fY^.(t,x)] converges on rO,l)xR^. Since y?.(l,x) =0, that
•• 13 ij

sequence converges on [0,1]xR^. We denote the limit

function by (t,x) and note that (l,x) =0. By (15.41),

Y^j(t,x) is uniformly HOlderian on [0,1]xR^ with
coefficient 4® and exponent a=%. We have thus proved

the following theorem.

THEOREM VI. Suppose the hypotheses of the second

paragraph of §2 satisfied. In particular. the terminal

function cp and its gradient Vco are uniformly Lipschitzian
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throughout but nothing is said about any

second derivatives. Then the Fleming randomized

0
value function (t,x) , whose existence is asserted

fi
by Theorem I, has a gradient (t,x) , defined on

rO,l]xR^» uniformly Lipschitzian in x there with
0

the constant \ giyen by (14.2), and uniformly Hblderian

in t there with the coefficient -h^ given by (15.25)

relatiye to the exponent a=^ .

0
The second spatial derivatives of (t,x)

may be represented, for (t,x)6[0,l)xR^, in the form

h^^X^ (t,x)
?^x^ 3xj

.2= . (t,x) + —[ J ff)(x+z)d3^t (z) ] , (16.1)
i j

Yj^j(t,x) , defined on [0,1] xR^, being the uniform
limit of the functions Y?.(t,x) defined at (14.7) ,

1 j
2

and With k. = p/0 (1-t). The function Y..(t,x) is
"C 13

uniformly Hblderian in x on [0,1]xR^ relative to any

exponent a6(0,l), with coefficient 2C®/(l~a), C® being
QC
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given by (14.6), and uniformlv HQlderian in t

on [0,1]xR^ with coefficient 40 relative to the

exponent a=k, © being given by (15.40).

The second term in the right side of (16.1)

is Holderian in x for fixed t<l with the constant

h® given bv (14.10) relative to any af(0,l), and
oc, P

Haiderian in t on the laver [0,t] with t<l.

with the coefficient ^/2p/tt (L/9 + 3X)/(l-t) and

exponent a=^.
*

Finally. let.B be any bounded set in ,
Q

and t€'*0,l) . Then the sequence | (t,x)} converges
Q

uniformly to (t,x) on [0,l]xB, and the sequence

7^ 4>X^(t,x) (t.x)
f—\ converges uniformlv to r—'—^ pn<• Bx^BXj •»

[0, t]XB.

Using the representation (16.1), we deduce

trivially the following theorem, analogous to Theorem

IV and the last paragraph of Theorem V.
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THEOREM VII. Suppose in addition to the

hypotheses of the second paragraph of §2 that the

terminal function cp has second partial derivatives

2which are uniformly HOlderian, with constant h^,

for some a€(0,l]. Then the second spatial partial

derivatives ^ exist throughout [0,1]xR^ ,

and are uniformly Holderian there, with constant

9 22C^/(l-a) + in. X relative to a , and constant

h^9°'I^ +4© and exponent B=min [a/2,1/41 in t. where
C® is given bv (14.6), © (15.40), and I hy

OL CC

(15.45) .
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17. nie parabolic partial differential

equation. Theorem VIII

At the end of this section Fleming's parabolic

partial differential equation finally makes its
0

appearance. We show (Theorem VIII) that (t,x)

satisfies it; in §20 we prove this solution unique

in a certain class

We fix on any pair (t,x) with t^[0,l). We

consider t<t such that (t-t)/(l-t) is rational; that

t might be negative is of no account. If (t-t)/(l-t) = P/Q

with P and Q integers, then we have *)

*) The reader may notice some superficial

similarities with the derivation of the Hamilton-

Jacobi equation for the n-problem in Value, V, §9.

. (17.1)P Q P+Q
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so that for any integer M>1

tzt ^ 2)
PM QM PM+QM • U / . ;

We consider the (PM+QM)-stage Fleming game,

played over the interval (t,l). It has shocks of

1—t ^standard deviation 0 ^ . Because of (17.2) *) ,

*) This was the original reason that the factor

1-t was introduced at (2.2) .

it may therefore be regarded as a PM-stage game,

played over[t,t) and having shocks, of standard deviation

6 ("^ ) ^ / followed by a QM-stage game played over

[t,l) and having shocks of standard deviation 0

We therefore fix attention on that PM-stage game,

which has the terminal function ^>>®^(t,x). We will
call it the "Fleming PM-stage game", in order to

distinguish it from the "special PM-stage game"

defined below.
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In the special PM-stacre game (not to be

confused with the game in §4), played# along with

the Fleming PM-stage game, over the interval [t,t))

there is only one shock Z, of standard deviation
—

9 (t-t) . It is applied at time t, before the shock

of the QM-stage game at that time. Ihus the special

PM-stage game may be assumed to be deterministic,

with the terminal function

Ili(x) = (t,x+Z)cia'*'t (Z) , (17.3)

where h^=p/0 (t-t), having been defined for

general k at (2.1).

We wish to compare the values of the Fleming

and special PM-stage games. In comparing these values

we once again (as in ^4) use the same underlying sample

space, by representing a shock for the special PM-stage

game in the form

Z - Zq+ ... + Zpjyi_i (17.4)

of a sum of shocks from the Fleming PM-stage game
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We say that a sample point (Zq,...,for the

latter game is good if | Zq + ... + | 9("t-t) ,

r=0,...,PM-l . Otherwise it is bad. According

to the Kolmogorov inequality, the probability that
— 1/3

a shock is bad does not exceed (t-t) ^ . Using

this estimate and the ^-construction, we find that

the values of the PM-stage Fleming and special games,

starting at time t, do not differ by more than

(A6 +2ii)Le^(t-t)'^/^ ; (17.3)

the details can by now safely be left to the reader.

Unitl we reach (17.35), we shall be concerned

only with the special PM-stage game with terminal

function ij; (x) given by (17.3). Our first objective

is to find a suitable formula for ij; (x) , which we

give at (17.11).

First we write out Taylor's series, to the

e

QM

ft — —
second power, for (t, x+Z) , around x
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?,X®j^(t,x+Z) = 4.X®jj(t,x) +7<fX®j^(t,x) . (x+Z-x)

2 0 —
IV a 0Xpo(t,x') (X +z -X.) (x.+Z.-x.) , (17.6)
2 L. .. ^x.Bx. Ill DDI

13 13

where x*€[x,x+Z] .

For the remainder of this section we fix on

a^3>x® (t,x)
an arbitrary a€(0,l) . By Theorem III, ^xSx

c[>X®j^(t,x+z) = ^X®j^(t,x) + (x+Z-x)

+ ~ ^ c9^(x.+Z .-X. ) (x.+Z.-x.)
2 L, 13 1 1 13 1 3

1 D

is uniformly HOlderian, with exponent a» in x, with

coefficient H® — = 2C®/(l-a) + h® — given by (14.8)
a#t a a#t

and (14.10) . Using this and the inequality of

convexity U+ri |^ <2^"^ (|^| jri |^) , holding for
any pair of vectors i!,r|€R^ and real n\imber q>l, we get

+ (p/2)2'̂ H® J(|x-xl^"^°'+ lz|̂ '̂ °')0(l) , (17-7)

where

= v^X® (I.x) . c?" = . (17.8)QM 13 BXjSx.
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In the special PM-stage game we are only interested

in X reachable from x in time t-t, so that (x-x|< u(t-t) .

We may therefore rewrite the second line in (17.7) as

y c?^(Z.+x.-x.) (Z .+X.-X.)
2 L i 1 i j D D

=2 X + X Z,(x.-x.) + ^ oQ5(x,-x.) (X.-X.)

=2 + I=ii

+ (p/2)\®u^(t-t)^0(l) , (17.9)

where we recall that |c^j , X being the uniform
0Lipschitz constant for v^\jj(t,x) given by (14.2).

As for the third line in (17.7), we first have

I "~i2+a 2+a/T" .v2+a . .|x-xl <|j (t~t) . Since we are going to carry

out the integration indicated in (17.3), we need a

formula for J |z|̂ ^^d^^t (Z) . For this we put
Z = 6(t-t) . Then
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J (z) = l2_ , (17.10)

where l2+a content depending only on a

gotten by replacing a in (35.45) by 2+a.

We are now ready to carry out the integration

indicated in (17.3), using (17.7)-(17.10). In doing

so we observe that the middle term in the first

expression in (17.9) vanishes, and the terms in

the sum ) c?^ Z.Z. vanish when i?^j. The variance of
Zj 13 13

each Z^ is 0 (t-t)/p . We thus get, for |x-x| <|j (t-t) ,

♦ (X) =•T'\QM(t,x) +0°". (x-x) + Y

+ (p/2)xV^(t-t)^0(l)

+ (p/2)2®H® t;[
vX # ^

+ ]0 (1) .

(17.11)

the desired expression for t(x). This formula bears
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some resemblance to Fleming's (2.7) on page 201

of Convergence II. It is here that the Laplacian
ZQM .

^ii fi^st makes its appearance, in the

integration of ^ ) c?^ ^i^j *

Thus, with the error indicated in (17.11),

the terminal function ^ (x) for the special PM-stage

game may be replaced by

*(x) =c + a°". (x-x) . (17.12)

where

c = (t x) + Y cQ" n7 T^^+ 2p A °ii • (17.13)

The control function T(x,t,u,y) may now be replaced

by T(u, u) = T(x,t,u/y) with a further error no greater

than

(A^+a) (t-t)^ jo^^l < (Au+a) (t-t)^Le^ . (17.14)

We are now once again dealing with the "simplest
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linear game" of Value, III, §8 (recall e.g. this

paper, at (5.5)) . The value of this game is

C+ (t-t)v^^, where

= Value T (x,t,7^,.y) . (17.15)
UyV

We now return to the Fleming PM-stage game

— 0 _
starting at x at time t, whose value is •

In passing from the Fleming game to the special game

we incurred the error (17.5). In passing from the

terminal function ijf (x) given by (17.3) to the terminal

function il;*(x) given by (17 .12) - (17.13) we incurred

the additional error given in the second and third

lines of (17.11). Finally, in passing to the control

function y(x,t,u,7;) we incurred the error estimated by

(17.14) . Putting all this together, we get

f+- Z\ - (T Z\ 4. J. ^t-t)Q^ Y QM^^PM+QM^ + (t t)v + 2p ii

+(A9+2u)Le^(t-t)^/^0(l) + (p/2)X®u^(t-t)^0(l)

+(p/2)2°'h®

+(A|j+a) (t-t)^Le'^ 0(1) , (17.16)
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where ^2+(x gotten from (15.45) by replacing

a by 2+a. By Theorem I, '^^pm+qm-* (t,x)

and ^XQj^(t,x) -♦^X^Ct^x) as M-»oo. By the last sentence
of Theorem VI, =v<f'XQj^(t,x) -> v^X® (t,x) as M-»oo,
so that as given by (17.15) converges to v = v(t,x),

where

v(t,x)= Value v<^X® (t,x) •7(x, t, U/7?) - (17.17)
UxV

Finally, by the last sentence of Theorem VI, c9^
as given by (17.8) converges to

^ (17.18)
ax.

as M-• 00 . Equation (17.16) therefore holds with

the subscripts PM+QM, QM deleted. Since all its

terms ^except the 0(1) terms, which indicate

inequalities) are continuous in t, it holds not

only for the special t<t for which the fraction

(t-t)/(l-t) is rational but for all t<t. We now

0transpose $X (t,x) in (17.16) to the left, multiply
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through by -1, divide by t-t, and pass to the

limit as tt- . The result is:

®_(t,x) = -V - ^ , (17.19)

the subscript t- indicating the left partial

derivative , and v and c^^ being given by (17.17)

and (17.18) respectively. Finally, it is a particular

consequence of Theorem VI that the right hand side

of (17.19) is continuous in t for each fixed x.

9Hence so is $X^_(t,x). It follows from an elementary
0 — —argument that the right partial derivative c&X^_j^(t,x)

exists as well for any t<l, and equals ^X®_(t,x).
9 — —Hence the partial derivative $X^(t,x) exists for any

t< 1, and is given by

(t,x) =-V - ^ . (17.20)

V and being given by (17.17) and (17.18)

respectively. This is Fleming's parabolic equation.
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The local HOlder properties of (t,x) for t<l

may easily be read off from the properties of

0 (tVcpX (t,x) and —' as stated in the general

and special cases in Theorems VI and VII. We shall

not. present these in detail, only noting that in

the special case $X^_(l,x) exists and satisfies (17.20)

We have thus proved the following theorem.

THEOREM VIII (Fleming's parabolic equation).

Under the hypotheses of the second paragraph of §2,

the value function (t,x) has. for anv t<l and anv

a partial derivative <i>X^(t,x) with respect to t,
which is continuous in t and x. This derivative

is given explicitly bv the forimila

0 2
^X^(t,x) = ~v(t,x) - (0 /2p) A$X®(t,x) , (17.21)

where v(t,x) is given by (17.17) and the Laplacian

c_. . in terms of the c..
/...• 11 — 11

0 \~A^X (t,x) = > c.. in terms of the c.. given bv (17.18)
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If in addition the terminal function cp has

second partial derivatives which are uniformly Httlderian

with exponent a€(0,l], the partial derivative $^(t,x)

exists throughout rO,l]xR^ and is uniformly HOlderian

in t with exponent p = Min { a/2,1/4} and in x with

exponent a.

For the second paragraph of this theorem we

need only note that v(t,x) is in any case uniformly

Httlderian in t with exponent h and uniformly Lipschitzian

in X.

Thus we have accomplished the main objective

of this paper, to prove, without recourse to existing

PDE theory and in fact in a completely elementary manner,

that Fleming's value function (t,x) exists and

satisfies his parabolic PDE. We have done this without

any assumption on the derivatives of the terminal

function beyond the first.

In the next section we clear up an apparent

deviation, noted preceding (2.1), between our

definition of Fleming's value and Fleming's own

definition of that value.
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18, Fleming's, and other, randomizations

The randomization introduced in this paper,

at (2.1) and (2.2), is different from the one used

in Fleming's original definition of his value in

Convergence II. For Fleming (top of page 199

in Convergence II) the i^^ component z^ of the
shock is either (in our notation) +6 (l-t)^/p'̂ N^ or
-0(1-t) VP each with probability h. Thus

Fleming's sample space for his shocks has only

finitely many points; this was essential for his

proof of his Lemma 2.

On the other hand, the Gaussian shocks are

essential for our method, in the first place because

they yield smooth before position functions, and for

other reasons as well.

It is the object of this section to show that

both randomizations lead, in the limit, to the

same value.
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In fact we shall prove a slightly stronger

proposition. We shall call a distribution Q of

the shocks for the N-stage game at each of the times

tq» ... / admissible provided it is the product

of orthogonally and independently distributed one-

dimensional distributions of mean zero and standard

deviation 0 (1-t) /p^N^. With this definition we

have the following theorem.

THEOREM IX. Under the hypotheses of the second

paragraph of §2, it does nor matter which admissible

distribution of shocks is used in defining the value

of the N-stage randomized Fleming mixed-strategy game;

the value function always converges uniformly as N »

on [0,l]xR^ to the function (t,x) defined in §§2-5

using the Gaussian distribution.

PROOF. Consider an admissible distribution 3*-

We shall denote the corresponding position functions

and value function by putting a star in place of 0.
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Write

6^ = Sup |cpAg(t,x,Tj^) - cpX® (t,x,T^) / (18.1)
x6rP

n=0,...,N. Then 6j^=0. Suppose that 0<n<N-2 and

that we have a finite estimate for 6„,, ; we are
n+ i

leaving the estimation of until later, at

(18.15). By the Principle of the Transmission

of Continuity, we have

Sup I (t,x,Tj^) ~ (t, X, ) I S. ^ (18.2)
xGR^

so that for any x€R^

lc()X*(t,x,T„) - cpx® (t.X.Tjj) 1

+ 6„^, . (18.3)
n+1

0
Now diX^ (t,X, Tj^) has the representation
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« (^"1) (N-n-1) f .
^ L ^ ijj^.q(t,x+z)da t (z) + J cp(x+z)d3'̂ t

q=2

+ tn+1^^'^^ ' (18.4)

analogous to (8.2) . Using essentially the same

arguments as those leading to Theorem III, we see

that the first term in this representation has second

spatial derivatives having the H51der coefficient

2C®/(l-a) , C® being given by (14.6), and that the
a a

second term has second spatial derivatives having

the Hblder coefficient [N /(N-n-1) Ih . , where
^ a, t

h® . , given by (14.9), is fixed for t fixed. Thus
01, r

the sum \{f (x) of the first two terms in (18.4) is c",

and the second derivative has Hblder coefficient

X = T—^ n ' (18.5)
a,n 1-a 'N-n-1' a, t

We may therefore write

2<1 (x+2) =tl; (x) + 7ili (x) .z +I YL^Sx!

+ (p/2)X^^j^l2l2'*"'̂ 0(l) . (18.6)
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Hence

J ill (x+z)dg* (z) = ili(x) +^ 2p ^

(18.7).

where

^2+a ^ I lw|̂ '̂ ®'aj*(a)) , (18.8)

W* being the distribution of standard deviation 1 and

homothetic to gotten by putting z =0(1-t) \;/N^ ,
depends only on a. We have the similar formula for

(1)
J i(i (x+z) dQ^^t (z), in terms of the l2+a

replacing the a in (15.45) by 2+a. Hence

I [ ij; (x+z)d3* (z) - J (|i(x+z)d^ t (z) [
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The remsining term in the representation (18.4),

i^(t,x), is in general not even differentiable. But

we have the estimate (13.9) for its Lipschitz constant

Y . Hence
' n

i^(t,x+z) = ij^(t,x) + |z IA (l+r)d (1)/N , (18.10)

so that

ft (t.x+z) dfl*(z) = t„(t,x) + A(l+r)e (l-t)^0(l)/N .
d n n

(18.11)

and similarly for J i^(t,x+z)d3 t (z) ; hence

(1) 3/2
I J (t,x+z)dg* (z) - (t,x+z)d '̂̂ t (z) I< 2A(l+r)0/N

(18.12)

On combining (18.3), (18.9), and (18.12), we get

+ 2A (l+r)eV/2.

(18.13)
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n=0,...,N-2 . On noting that

N-2 2CS
M Y X • < + 2h®- , (18.14)
N /_, a,n 1-a a»n

n-:0

we find that

- ''n-1 P® "''̂ 2+0."'' ^2+a' ^1-Yc

+ 2(N-l)A (l+r)e/N®/^ . (18.15)

One now easily fills in the missing step at

n=N-l and gets

6jj_i ^ 2Le/N'̂ + 2A (l+r)9/N^^^ , (18.16)

SO that

<fiV*(t,x) - 4>x® (t,x) 1

C® . ^
^ P®''"'(^5+a-' ^2+a) <1^ + +2Le/N'

+ 2A(l+r)0/N'̂ . (18.17)
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Now for any sample point Q* = (z*,...,z*

of the alternate randomization and any succession

of controls Uq, Vq, ... # %-l' have

1xn-x| < u(l-t) + |z*+ ... +z*_j |̂ , (18.18)

x=Xq being the starting point, so that

|e)(Xjj) -i?p(x) 1<M(l-t)L+ |z*+...+z*_j |̂l . (18.19)

Using an e-construction, one immediately sees that

l^X*(t,x) - cd(x) 1 < u(l-t)L+0 (l-t)^L . (18.20)

We have the similar inequality for the Gaussian

randomization, so that

|̂ X*(t,x) - ^X®(t,x)| < 2(^+0) (l-t)^L . (18.21)

Let e>0. We choose t6[0,l) so that
— Je

2 (|i+0) (1-t) < g. Then we choose Nq so large that the
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right side of (18.17), calculated at Nq and t,

is less than g. Since h® . < h® -r t<T then
a,t a#t

l^X*(t,x) -$X^(t,x)| <g for all N>Nq and all t^[0,li.
Q

$X*(t,x) therefore converges uniformly to ^X (t,x) as N«

on [0,1]xR^, and the theorem is proved. •

The proof of this theorem, given the

machinery now at our command, was quite simple.

However the theorem itself, using the delicate

estimate (13.9) for the equally delicate

Holder estimates on the second derivatives, is

far from trivial. It answers affirmatively the

conjecture made by Fleming in Convergence II.top of

page 199, where he said "The central limit theorem

suggests that the form of the distribution of the

[shocks] is unimportant for large [N] ." However

the question does not appear to this writer to have

anything to do with the central limit theorem.
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19. The integral equation. Theorem X

It is possible to find an integral

generalization of the parabolic equation, as

follows.

THEOREM X. SuDiaose that ^(t,x) is uniformly

L-ipschitzian in [0,1]xR^ and has bounded generalized

•patial partial derivatives [#(t,x)] such that
J^Xi

the equation

.2

^^(t,x) +^ A^(t,x) + v*(t,x) = 0 (19.1)

holds almost everywhere, where

v*(t,x) = Value 7^(t,x) • T(x, t, u, y) . (19.2)
U X V

SuPTJOse further that $(l,x) = cp (x) throughout R^.



Then for all (t.x)6[Q,1]yR^ we have

2

#(t,x) = J cp(x+z)d3 '̂® (l~t)
rP
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1 , 2 , .
+ J dr [" v*(T,x+z)dgP (f t) ^

t rP

where ^ was defined at (2.1).

PROOF. Put fit) =^(t,x), and

fir) = J «(T,x+z)e h(Zj^+.. .+Zp)/2
•2" p

r'^

(19.3)

dz^ ••• dZp (19.4)

2for T€(t,l], where H= p/0 (r-t). Then /(t) is

continuous on [t,l] and
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/(t) = f
2tt

rP

dz, • • • dz
1 p

+ (^)^^^[p/20^(T-t?]

2n -p

J" (z^+...+z^)4.(T,x+z)e '̂ (Zi'̂ ---+Zp)/2
rP ^

dz, • • • dz
1 p

(p/2) (•^)P^^ (2n/H )(1/2tt) [p/fl^ (T-t)^]

J ${T,x+z)e"'''4+-"+4'̂ ^
rP

dz, • • • dz
1 p

dz, • • • dz
1 P

0 2 2 2^ ^)P/2(02/2p) J [w. (Zj^+.. .+z ) - ph]^(t,x+z)
2n j^p

-H(z^+...+Zp)/2 ^2, ...dz
1 p



rP

dz, • • • dz
1 p

+ (^) '̂̂ ^(0V2p)

A[ J ^(T/X+z)e H(2^+.. .+Zp)/2
,PR'

dZi • • • dz 11 p j
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= f C^tCT.x+z) + (e2/2p)A4>{T,x+z) ]
rP

2 2
-h(z- + ..,+z )/2 , ^ Ve 1 p . dz^ . . . dz . (19.5)

tr

Since ^ is uniformly Lipschitzian in t and the derivatives
2 2S bounded, it follows that /(t) is bounded on

(t,l], and hence / uniformly Lipschitzian there. Hence

1

/(I) "/(t) = J /(t)<3t . (19.6)
t

Formula (19.3) is now an immediate consequence of

(19.5) and (19.1). The theorem is proved. •
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20. Uniqueness. Iheorem XI

We shall say that a function <E>(t,x) defined

on [0,l]xR^ is in the class St provided it is uniformly

Lipschitzian in both variables, and satisfies equation

(19.3) almost everywhere in [0,1]xR^.

We have seen from Theorem X that the class St

includes all uniformly Lipschitzian functions $(t,x),

taking on the prescribed boundary values $(l,x) =cp(x) ,

and having bounded generalized second partial derivatives

^ j [$(t,x)] such that the parabolic equation (19.1)
dx.

holds almost everywhere. In particular, from Theorem VIII,

0
the class ^ includes the Fleming value function (t,x).

THEOREM XI. Under the hypotheses of the

second paragraph of §2, the class St consists of

0
the single element $X (t,x) .

PROOF. The result is trivial if t=l, so we

fix on a t<l. We need first to estimate the spatial
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derivatives of the right hand integral in (19.3).

If we do this through the Gaussian distributions we

will arrive at an improper integral. We therefore

seek to estimate the difference quotients of the

^1integral J J v* (t,x+z)dQ^^® (r-t) (2) ,
t rP

where t^€(t,l], directly.

Suppose that Put x= (x^,...,Xp) and

X. = (x^,...,x. ,,x.,x._,...,x ), so that x and x
1 i. 1—1 1 i+i p

differ only in the i coordinate. We are interested

in the difference

^1 2
J dT J [v*(t/X+2) - V* (t,x+z) (T-t) ^

rP

(20.2)

V* having been defined for by (19.2). Now we fix
2on a T€(t,t^] and once again write K=p/0 (r-t)

write the inside integral in (20.2) in the form

We
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[ [v*(t,x+z) - v*(t,x+z)] (z)

= J ^-K{zl+...+zl_^+zl^^+ ...+z^)/2
rP

rP-^

dZi • • • dz. , dz. , - • • • dz x
1 1*~ X 1+ X p

X V* (t,z^, .. • ... ,Zp)
R"

[.g-'c(yi-Xi)V2 _^-K{y^-x^)^/2 ^

(20.3)

For the quantity in square brackets we use the integral

form of the law of the mean:

-K(y.-x.)V2 _ g-«.(y.-x.)2/2

K J' (y^-1^) <35^ . (20.4)
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Using this we estimate the inside integral in (20.3)

as not larger in modulus than

X .

/2J l^^il I ^i -i dy^
X.

1

= 2^A*|x^-x^| . (20.5)

Hence the modulus of the overall integral in (20.3)

does not exceed

_4- \ ^ IV —>v'2»i/n uA* = (|jA*/0 )y2p/n (T-t)~ |̂xj^-Xj |̂ .

(20.6)

It follows that the modulus of the difference (20.2)

does not exceed

(2uA*/e)y2p/Tr(tj^-t) ^jXj^-Xj^l . (20.7)

Thus the desired difference quotient does not

exceed (2uAV9 )y2p/n (t^-t)
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Now we consider the other part of the integral
A

in the right hand side of (20.3), with t^ still on

(t,1]. We get

1 „/.2
a^xT J v*(T,x+z)da^/® (z) ]
^ t^ rP

^ I — I z^v* (T,x+z)d3P^® (z)
t^ 0 (T-t) J^p

= J 2^ — J z^v* (T,x+z)daP'̂ ® (T-t)
t 0 (T-t) J^p

+ (2uAV0)y2p/TT(tj^-t) 2{?(1). (20.8)

On combining this with the estimate (20.7) and

taking account of the fact that t^ is arbitrary

on (t,1], we see that the derivative of the whole second

integral on the right side of (19.3) exists and that

in fact

- [ J dr J V* (T,x+z)d3P/® (z) ]
3x

^ t rP

_ J. ^P'̂ ''"— J Z^v* (T.x+z)dsP''® (z)
t ® rP

(20.9)
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It follows in particular that the gradient v^(t,x)

exists everywhere on [0,l]xR^.

The above formulas have been written down

for an arbitrary element it of R, Now suppose also

that , and denote by v*' the value function

corresponding to <1?' under (19.2). Put

6 (t) = Sup l7®(t,x) - V#' (t,x) 1 . (20.10)
xeRP

Evidently 6(t)<2A*.

Using formulas (19.3) and (20.9), we find

immediately that

(t.x)] 1

^ip|(T)dT p/e2„-t)(^)
t e rP ^

= j dT . (20.11)

SO that
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«(t) < S-i^ a, < („p/,) / dT .

(20.12)

Since 6(t)<2A*, we find from (20.12) that

6(t) <K^(l-t)^ , (20.13)

where K^=4^pA*/0 . Suppose thar m^l and that we

have proved that

6 (t) :< (20.14)

for some On substituting this into (20.12) we

get

6(t) < (up/e)Kj^ ^ (2up/0)Kjj, f (o^ - ds
t (T-t)' 0

^ (ni+l)/2 ^ (20.15)



where

n/2

'̂ m+l " (2mp/9)Kj^ J* (cos dui (20.16)
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and we wrote c = (1-t) ^ so as to recognize the

integral. If we now choose so that

tt/2

(2[ip/0) J (cos d(ju < 1 for all then
0

K . , < K for all in>m^. It follows that
m.+ i m — 0

6(t) <K (l-t)"*^^ for all so that 6(t) =0
mg u

for all t6(0,l]. Then obviously 6 (0)=0 as well.

Hence v*(t,x) = v*'(t,x) for all pairs t,x, so

that from (19.3) <E>(t,x) = $' (t,x) for all pairs

t,x, and the theorem is proved.
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21. Other values. Theorem XII

One may also define N-stage geimes with shocks

h hof standard deviation 9(1-t) /N corresponding to

+ +the unrandomized games having values ^Xjj(t,x), Fjj(t,x),

VRD^(t,x), VREKD^(t,x) and EI^(t,x) as defined in
Value. Chapter I *) . We denote these values by

*) Except that here we have a general starting

time t^[0,l], as we did in §§8-10 of Value. Chapter V.

the addition of a superscript 0. The existence proof

+0 +0
for the limit (t,x) of the sequence (t/X)]

follows the general lines of §§4,5 , except that we

use a piecewise-constant e"Construction as for the

corresponding problem in the early sections of Chapter

IV of Value, and the v in (5.5) is replaced by a Min Max .

One proves by a trivial carryover of the arguments

of Value. V, 67 that the limits F (t,x) and

VRD"^® (t,x) exist as well and equal (t,x) . In
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the corresponding parabolic equation the v(t,x) of

(17.17) is replaced by

v(t,x) = Min Max (t,x) • f (x, t, u# u) • (21.1)
u€V u€U

One then proves as in Value. IV, §11 that the limits

VREKD^®(t,x) and (t,x) exist and equal ^X^(t,x).

We summarize these facts in the following theorem.

THEOREM XII. The upper randomized values

(t,x), (t,x) , and VRD"^® (t,x) exist and are

equal. Thev satisfy a parabolic equation analogous

to (17.21) except that v(t,x) is replaced bv the

v(t,x) of (21.1). All the facts stated in Theorems

VI-XI for $X®(t,x) carry over to ^X^®(t,x) .

+1^
The upper randomized values VREKD (t,x) and

EK^® (t,x) exist and equal <^X® (t,x) .

There is also a parabolic equation for the

O-problem. The formulation is rather more clumsy

than the others and we leave it to the interested

reader.
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§22. Fleming's trick and a special class

of parabolic equations with Lanlacian operator.

Theorem XIII

One may combine the methods of this paper

with a simplified version of a clever device

introduced by Fleming in §4 of [6] to obtain

an elementary proof of an existence and uniqueness

theorem for a parabolic equation in appearance

somewhat more general than (17.21). The equation

in question is

4>^(t,x) + A^(t,x) + F(t,x,V4>(t,x) ) = 0, (22.1)

where F(t,x,o) is locally Lipschitzian in t and x

with constant C(1+|q|), uniformly Lipschitzian in

Q with constant i, and satisfies

|F(t,x,0) I < K (22.2)

for some K and all (t,x)€[0,1]xR^ . These

conditions are rather more restrictive than

Fleming's conditions (4.3') in [6]. The terminal

conditions are:
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^(l,x) = cp(x) (22.3)

for all xGR^/ where cp, as in §2, is Lipschitzian

with constant L and has a gradient vcp which is

Lipschitzian with constant X,

As in §19, we consider the integral

equation

<^(t,x) = J cp(x+z)d3 '̂̂ ^ (z)
rP

+ J dT J F(T,x,7^(T,x)d3^^^ (z)
t rP

(22.4)

Any uniformly Lipschitzian function on [0,1] xrP

having bounded generalized second spatial partial

derivatives such that (22.1)-(22.3) is satisfied

almost everywhere also satisfies (22.4). We may

therefore regard (22.4) as the generalized form of

(22.1)-(22.3) .
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Our version of Fleming's trick is as

follows. We play the gsime in As U we

take the set of p-vectors u=

I I A hsatisfying |u|<(hfl)e , where A = 3(p+1)^C/2. As

V we take the unit sphere (u ) + ... + (®^) = 1.

We put

I'-ix.t.u.v) = ^ (u,+ l)u^ , i=l pj
l+lul

(22. 5)

TP^^(x,t,u,7j) = - (u,+ ,)u.u ,
i+Ur

where m= (3/2)Max{ K, t ] . As the payoff we take

the function ijf(x,x^^) = cp(x) +x^^, where

X= (x^, — ,xP)GR^.

Since (s+s^)/(l+s^) < 3/2 for all real s,
kwe see that ? is bounded by |j = (p+1) (3/2)Max fK , t} +

h k+ (p+1) (uj+i) = (p+l)^(<.)+i) . similarly, f is uniformly
kLipschitzian in t and x with the constant A=3(p+l)^C/2

defined above. The terminal function \1; is uniformly
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1
Lipschitzian in with constant L+1, and

its gradient (vcp(x),l) is uniformly Lipschitzian

there with constant X. Here v denotes the gradient

operator in R^. We take 0 =>y2p . The hypotheses

of the second paragraph of §2 concerning the game

defined by U, V, f, and 9 are then all satisfied.

We take the game to be the Fleming lower

(minorant) randomized game, in which the operation

of taking the value at each stage is replaced by

a Max-Min operation. Following §21, we denote

the value of the N-stage game by ^X^^® (t,x,x^^) .
As we noted in §21, the entire apparatus of this

paper carries over to this game. The limiting

value function <f>X ®(t,x,x^^^) then exists, has the

same Lipschitz and Hblder properties as the mixed-

strategy value ^X (t,x), and satisfies the parabolic

partial differential equation (17.21) in which v

has been replaced by the v gotten by replacing the

Min-Max in (21.1) by Max-Min. All we have now to

do is to calculate v in the case at hand.
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Evidently we may decompose ®(t,x,x^^^)

into the form

®(t,x,x^^^) = ^{t,x) + x^^ , (22.6)

so that

V ®(t,x,x^^) = (vcE)(t,x),l) , (22.7)

the unsubscripted v always denoting the gradient

in R^. If we write q =7^(t,x) we get

\7(t,x,x^^) = Max Min
u6U z;€V

j. F(t,x,u) (1+7/,*0 )— (oj+i) (u-Q )•y ] .
1+ lu|2

(22.8)

For each fixed if we choose v- (u-o )/l7^"~a [

we get



F(t,x,u) {l+wa) _ j).
1+ lul

= F(t,x,u) + (o-u) _ {u,+ t)|u-a
l+|u|'
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< F (t,X, 0) + I IU""Q I + U) IU~Q I ~ (u)+ t ) |u~Q 1

= F(x,t,Q) . (22.9)

It we choose u-a« the quantity in brackets in

(22.8) is equal to F(t,x,Q) independently of u.

Hence

v(t,x,x^^) = F(t,x,V<^(t,x)) , (22.10)

so that satisfies (22.1) . $ therefore satisfies

(22.4), and is, by the carryover of Theorem XI,

the only uniformly Lipschitzian solution of (22.4).

We have thus proved the following theorem.
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THEOREM XIII. Suppose F and cp satisfy

the conditions stated in the first paragraph

of this section. Then the integral equation

(22.4), which is the generalized form of the

parabolic equation (22.1)-(22.3), has. among

the class of all uniformly Lipschitzian 4> defined

on [0,l]xR^» a unique solution. 7€> is uniformly

Httlderian in t with exponent and uniformly

Lipschitzian in x. The second term on the right

of (22.4) has second spatial deriyatives which

are uniformly Hblderian in t with exponent ^ and

uniformly HOlderian in x relative to any exponent

a6{0,l).

If in addition cp has second partial

derivatives satisfying a uniform Hblder condition

with exponent a€(0,l], then and the second

spatial partial derivatives a (J/Bx^^axj are
uniformly Hblderian in t with exponent p = Min { a/2,1/4}

and uniformly HOlderian in x with exponent a.
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The first paragraph in this theorem,

with its light conditions on cp, is apparently

new. The second paragraph is a very special

case of Theorem XIV of [10], which appears to

make the stronger assertion that 3=a/2 *) .

*) Interim note in draft; I have written

Professor Oleinik questioning her on this point.

If F is not Lipschitzian in t, $ as given by

(22.6) still exists and satisfies (22.1)-(22.3), but

and the c^x. lose their Hblder properties
-I

relative to t, and there is no uniqueness assertion.

Fleming's trick in [6] applied to an F involving

not only but also That does not make the trick

itself any harder, but it leads to a differential game

of a type radically different from that treated in this

paper, in which the position function is at each stage

multiplied by a function (near unity) depending on the

strategies of the players (see formula (3.3) in [6]) •

The problem of a direct approach to such games on the

lines of the present paper appears to be very difficult,
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GLOSSARY

We have tried in this paper to adhere

to a uniform notation, consistent with that

of Value, and to avoid using special symbols

for different things. We have ourselves, considering

that this paper has 236 displayed formulas and uses

a good fraction of the available alphabets, had

difficulty in recalling notations. So we have

provided this Glossary.

Gothic alphabet

0 p-vector, denoting a gradient; used at

(17.8) ff. .

T control function; see second paragraph of §2

R class of solutions of integral equation; see 519

global strategy for maximizing player in

Fleming's mixed-stragegy game; see just

preceding (4.19)

JO same, for minimizing player
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g "stick", used at (7.5)-(7.9) and at (15.9)

p function whose values are position vectors

3 3^ is spherically symmetric Gaussian

distribution in with standard deviation

7p/h ; defined at (2.1)

Greek alphabet

a Hdlder exponent, exclusively

3 Holder exponent, defined first in Theorem VII

Y is Lipschitz coefficient of ijj(t,x); see S7

F a constant defined at (13.7); exclusive

^ the conventional spatial Laplacian in

6 generic; used in estimating deviations

e used only in referring to the e~construction;

see §4 and Chapter IV of Value

Q a sample point in the product space of shocks;

see §4

T) generic; used in estimations

0 0 (1-t) Vn is the standard deviation of

one shock in the Fleming game; see the second

paragraph of §2
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0 a constant, defined at (15.40)

1 ^n fundamental incremental function,

defined at (2.9)

K parameter in Gaussian distribution; used

variously at (2.1) and in §619,20

X Linschitz constant of gradient vcp of terminal

function; defined in second paragraph of §2
A 0

X Lipschitz constant of 74>X (t,x) in x

A defined at (8.4); exclusive

A* Lipschitz constant used in §§19,20

|i bound for | y|; see second paragraph of §2

V defined at (5.2); exclusive

^ generic, preceding (17.7); also, is

a parameter defined at (20.4)

n joint distribution of shocks; see following

(4.21)

TT 3.1415926535...

T tine parameter, used throughout

«^X® Fleming's mixed-strategy randomized value

function; also after position function; see §2

cpX® before position function; see (2.4) and (2.7)
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4s a solution of the parabolic equation7

see 4$19,20

cp terminal function, exclusively; see ^2

X generic; sometimes a Holder coefficient,

as at (15.1), sometimes a function, as at (3.1)

X X , at (18.5), is a Httlder coefficient.
•• a,n

Here we intend capital greek chi, not latin

capital X

used generically in several places. il/j^(t,x)

is used specifically in the representation

(2.10)-(2.11)

Y the functions Y.• are defined at (14.7)
13

a) generic; there is a special definition of

uj(t,0) at (13.1)

Latin alphabet

A Lipschitz constant of T in x

a Lipschitz constant of T in t

B bounded set in

c generic; used at (5.6) for a constant, in 517

for partial derivatives, and at (20.15) to

h
denote (1-t)

0
C generic; the important constant is

defined at (14.6)
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D the determinants are defined at (9.5)
If ^ ^ —1

d the coefficients d^ of y in (-1) are

defined in the first paragraph of §10

E expectation, in ^^4, and error, in fil5

e e = [i/2], defined following (12.5); to

be distinguished from e

e exponential function (exclusively)

/ generic function, used several times
F see §22
G bounded open region in

g generic function, used several times

h Holder coefficient, modified variously by

subscripts and superscripts as follows;

H

h® . is defined at (14.10)
ttf t

h^* '̂ is defined at (15.2)
n

h? is defined at (15.25)
h
2

h is defined in the statement of Theorem VII
a

H(t) is a function defined at (15.22). H .
Of.»t

is defined preceding (17.7)

I^ is defined at (15.45) ; '̂ 2+a

gotten from I^ by replacing qc by 2+a
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i sometimes row of matrix, as in §9 ,

other times index of coordinate in

j sometimes column of matrix, as in §9,

other times index of coordinate in

k integer index, introduced in ^10

K generic, always a bound

l *^n Lipschite constant of 7cpX (t,x,Tj^) in x

I generic for a Lipschitz constant; see ^3 or §14

L Lipschitz constant of the terminal function cp

m generic; used in many ways

M nuitber of groups of stages; see §4. Also:

M(t) is a function, defined at (15.35)

n index of a stage in an N-stage game

N number of stages in a game .

0 (9(1) is any scalar or vector with '(9(1) |<1

P generic integer

p dimension of the playing space

Q generic integer

q generic integer, as at (8.6) or (11.1)

r generic integer
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Euclidean p-dimensional space

s generic; used in many ways, e.g. a

standard deviation in fiS

t starting time of game

U control space for mcucimizing player

u a control for maximizing player

V control space for minimizing player

D a control for minimizing player

V value of a game, used frequently; to

be distinguished from v

w generic; usually variable of integration

X position vector in

^ ^n+l^^n'^n'"n^ defined following (2.3)
Do not confuse with greek letter X, q.v.

y parameter, defined at (8.5)

z shock; see §2 ff.

Z sum of shocks; see in particular (4.1)

Special symbols

V gradient operator, in R^

''A
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