Copyright © 1974, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



FLEMING'S RANDOMIZED GAME AND HIS PARABOLIC
PARTIAL DIFFERENTIAL EQUATION

by

John M. Danskin

. Memorandum No. ERL-M450

April 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering .
University of California, Berkeley
94720



FLEMING'S RANDOMIZED GAME

AND HIS PARABOLIC PARTIAL DIFFERENTIAL EQUATION ' %,
by

John M. Danskin %)

Typing begun in Berkeley, California, February 1974

ool Dactt
/%»K;wﬁtjf¢

*) Work supported by the Office of Naval
Research under Contract Number N00014-69-A-0200-1068



ABSTRACT

Proceeding from first principles and making
no use of existing PDE theory, this paper gives a
direct and elementary proof that the value of Wendell
Fleming's 1964 randomized mixed-strategy game éxists
and satisfies his parabolic PDE. Fleming required the
terminal function to have Lipschitzian first and second
parfial derivatives; this paper requires only that
the terminal function and its gradient be Lipschitzian.
The solution is given a new representation, which
allows precise Lipschitz and H6lder estimates to
be made. A trick of Fleming allows the dedﬁction of
a uniqueness and existence theorem for a class of
parabolic equations with Laplacian operator under

the lightened terminal conditions.
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1. Introduction

In 1964 Wendell Fleming, in his paper [5] which
we shall call Convergence II, made a quite remarkable
contribution to the theory of differential games. He
showed that if the game were "randomized" by the
superposition of a Brownian motion onto the deliberate
moves of the players and a certain notion of value
adopted, that value would exist and satisfy a certain

partial differential equation of parabolic type.

Fleming was considering N-stage games of
prescribed duration, with mixed strategies at each stage.
For his randomization he supposed that the position vector
was displaced at each stage, Jjust before the choices of
the players, by a random variable drawﬁ from a certain
probability distribution with expectation at the origin
and of standard deviation fe(l;t)%/N%, B8 being a . fixed

positive number and (1-t) being the duration of the game.

Fleming knew, from results of Friedman and his
student Kaplan [9], and of Oleinik and Kruzkov [10],

that the parabolic PDE in question had a sufficiently
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smooth solution provided that the data, which in

ol

differential games mean the terminal function, had
Lipschitzian first and second partial spatial derivatives.
By "sufficiently smooth" here we mean that there exists

a B<l such that the first and second spatial derivatives,
and the first time derivative, of the solution satisfy
uniform HBlder conditions wiin exponent B relative to

the space variable x and exponent B/2 relative to the

time t. Using these facts, he proved (Lemma 1 of
Convergence II) that the values of the N-stage

randomized games converge uniformly to the solution of

the PDE.

Fleming's objective in Convergence II was to

prove the convergence of the value of his unrandomized
mixed-strategy game. He accomplished this by

proving, in a special case whichwas adequate to his

XY

needs, that the values of the N-stage unrandomized
and randomized games differ by less than C8, where C
is an absolute constant. This was his Lemma 2 in
Convergence IT. It follows from this and his Lemma 1

that there is an N(8) such that if N, N' >N(f) the



'values of the N-stage and N'-stage unrandomized

games differ by less than (2C+1)§. Since this is
true for any positive 8, the values of the N-stage
unrandomized games form a uniform Cauchy sequence and

so converge uniformly to a limit, the Fleming mixed-

strateqy value of the unrandomized game.

The parabolic equation when applied to other
values, such as Fleming's upper perfect-information
value of {41 or Friedman's upper perfect-information
value of [8], or to their own values defined in terms
of "relaxed controls", has been a powerful tool in the
hands of Robert Elliott and Nigel Kalton, who in a series
of papers, particularly [2] and (3], have used it to
prove a number of existence and equality results.
The Fleming randomization, and the parabolic PDE
. associated with it, appear therefore to be important

objects in themselves.

Fhkhkkhkhhkhkhhhhhkhhhkhhhhkhkhkdhhhhd ki

Our objective in the present paper is to turn

Fleming's approach, as it applies to his randomized



game, around. First we prove (Theorem I) in §384,5,
without mentioning any PDE, that the value of Fleming's
N-stage randomized mixed-strategy game coﬁverges
uniformly to a limit, the Fleming mixed-strateqy value
of the randomized game. The techniques here are the
Kolmogorov inequality fof partial sums of independently
distributed random variables, the g-construction from
Chapter IV of the author's book [1], and a simple
observation (§3) on the effect of a Gaussian smoothing
of a Lipschitzian function, used earlier in Chapter

V of [11 in proving the existence of the n-value.
Althouéh it must be admitted that the e-construction

is complicated, all three of these tools are directly
accessible without special theory and may be accounted

elementary.

In 86 there is a diversion; for completeness we

give a now very easy proof of Fleming's theorem from

convergence II of the uniform convergence of the value of

his N-stage unrandomized mixed-strategy game to a limit.
This is our Theorem II. We gave a different elementary

proof in (1], Chapter Vv, §10.

g
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Next we consider a particular decomposition,
(2.11), of the N-stage randomized value function into
the sum of a smoothing of the terminal function and
components wn(t,x) which are smoothings of the increments
'n(t'X)' given by (2.9), resulting from the play.

By a rather lengthy calculation, taking up §§7-15,

we estimate Lipschitz and HYlder coefficients for

the first and second spatial derivatives of the wn(t,x),
and thus obtain Lipschitz and H5lder estimates for the
first and second spatial derivatives of E;wn(t,x)

and thus of ¢A%(t,x) . The calculation in question
mostiy amounts to estimating a determinant, given

by (9.3), and is entirely elementary. These results

are summarized in Theorems III and V.

The Lipschitz and Holder estimates on ¢x§(t,x)
and its first and second spatial derivatives persist
in the limit; this is Theorem VI in §16. In §17
we directly calculate the time derivative, and thus
show that the limiting value function @xe(t,x) satisfies
Fleming's parabolic PDE. That is the main result of

this paper, Theorem VIII.
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In §19 we present an integral equation which

is a generalization of the parabolic equation: any

*(J

uniformly Lipschitzian solution of the latter which
has\bounded generalized second spatial partial
derivatives satisfies the former. We then show

in §20 that @Ae(t,x) is the only uniformly Lipschitzian

gsolution of the integral equation (Theorem XI) .

Our methods, combined with a trick of
Fleming which exhibigs certain parabolic equations
as the Fleming equation of a randomized game, allow
us in §22 to prove an existence and uniqueness theorem
for a special class of parabolic equations with
Laplacian operators, under light conditions on the

terminal data. This is Theorem XIII.

Our randomization is different from Fleming's:

we show that this makes no difference in the limit

R

in §18. This is Theorem IX.

w ..



If the terminal data are of HYlder class |
240, i.e if in addition to the hypothesis of §2 that
the terminal function ¢ and its gradient vy are
uniformly Lipschitéian we assume that the second
vpartial derivatives azw/axiaxj exist everywhere
and satisfy a Holder condition with exponent a€(0,17,

we retrieve *) HOlder estimates on d&e(t,x) which

‘%) Interim.draft note: Approximately;

see the note on page 139.

were already known for a much more general parabolic
equation; see Theorem XIV in Oleinik-Krufkov [10].
Our versions of these facts appear in Theorems IV,

v, VII, VIII, and XIII.

Other values are discussed in §21.

Except where explicitly stated, we stick to

one set of hypotheses, stated in the second paragraph

of the following §2.
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2. Assumptions. Definition of Fleming's

randomized value function ¢A%(t,x)

We shall have to refer frequently to the book
[1]. References to it will be given in the form:
abbreviated title, chapter number, section number.
E. g., secion 2 of Chapter‘I becomes Value , I, §2.
Section references to the present paper will be given
simply by a § followed by the section number; this

section is §2.

(s

N |



The elements of the randomized differential
game are x. . u, v, ¥, 9, 8. The game is of prescribed
duration, played on the interval rt,l), starting at '’
the starting point x= X, € RP. U and V are arbitrary
compact topological spaces, called the control spaces
for the maximizer and minimizer respectively. The
control function f(x,t,u,v) is continuous and bounded
by u on RPx[O,l]xeV, and Lipschitzian in x and t
with constants A and ¢ respectively. The terminal
function ¢(x) is uniformly Lipschitzian throughout
RP, with constant L. It has a gradient vy (x) everywhere,
which is unifofmly Lipschitzian in RP with constant A.

8, the standard deviation of the randomization, is a

fixed positive number. There is no integrand function

*) *%)

*) For the classical elimination of the
integrand function in the deterministic problem by

passing to p+l dimensions, see e.g. Value, I, §12.

The reader will easily see how to eliminate the integrand
in the present randomized problem by passing to p+2

dimensions.




*%) In Value, I, §2, we assumed that =0
for x outside some compact box B; this assumption
is not needed here. Also, we assumed there only that
®w(x) was uniformly Lipschitzian in x‘witﬂ constant L;
here we add the assumption that ve(x) is uniformly
Lipschitzian with constant A, an assumption which
we do not need before §7. Otherwise the.hypotheses
concerning U, V, ¥, and o are the same as those

stated in Value, I, §2, and adhered to in the first

five chapters there.

Except where explicitly noted, we do not
make any other hypotheses concerning U, V, f, or o.
When we use the expression "Under the hypotheses of
the second paragraph of 82" in the statement of a

theorem, this is what we mean.

¥

W
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In the following definition we use a Gaussian
distribution for the shocks, while Fleming in
Convergence II used a particular discrete distribution.
As we show (Theorem IX) in §18, this makes no difference

in the limit.

We denote by 3" the spherically symmetric

Gaussian distribution in RP given by the density

(n/2-rr)p/2' e‘“(zi+ ces + z;)/Z . (2.1)

The expectation of this distribution is at the origin,

and its standard deviation is ,/p/u .
We put
.nén) = pN/ng? (1-t) . | (2.2)
n=1,...,N. Until we reach formula (2,10) we are

only concerned with nél)==pN/Bz(l—t): the standard
1

deviation of the distribution 3”t is then 9(1—t);5/1\13i
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*) The reason for the factor 1-t in (2.2)
is that we wish the total variance. of the shocks in
a game of duration 1l-t to be prOporﬁional to 1-t.
Because Fleming in Convergence II referred his
time-subdivision to a fixed time interval [0.T4].

this factor did not enter explicitly there.

In the present formulation, the shocks occur
at the times Tn==t+ (1-t)n/N, n=0,...,N-1. At time

T,+ the first thing that occurs is a shock, i.e. the

position vector x; is displaced to a new point xn==x;4-z
(1) '
t . Then the players

’

n

the shock z being drawn from 3"

choose controls un€U and vneV respectively. The position
vector r (1), starting at time T, 2t X, now follows
the differential equation

r(r) = T(r(¢).¢.un.vn) (2.3)

across the intervall[Tn,T ), reaching a point

n+1l

(!

% 4

(>

W
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xn+1f=§(7n+1) at time 7 We shall denote this

n+1°
last point by xn+1(xn’uh'vn)‘ If ntl<N, there is
now- a shock, and the game proceeds. When the point
xN:=xN(xN—1'uN-1'UN-1) is reached at time =1, the
game terminates without a shock, and the payoff

is o(xy).

We define the value of this randomized game in
terms of before and after position functions, as follows.

We write
(p)\%(t'xN'TN) = CP(XN) ’ | (2.4)

and call wxg(t,xN,TN) the before position function

at time TN=1. There is no after position function at
this time, there being no shock. Now suppose that
- 0<n<N-1 and that the before position function

8 . . .
wa(t'xh+l'Tn+l) has been defined and is continuous

in x

P
n+l® Let anR . Put

f (X ¢ U e D )=@§T(t'xn+l(x o U e ) )IT . (2.5)

n'"n’“n’%n n’“n’“n n+l)
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(¥ 24

The function fn defines a continuous game over

(-

UxV at xn. Put

6 ,. _ '
@kN(t.xn,Tn) = Vgige fn(xn.un.vn) ’ (2.6)

the notation Value denoting the operation of taking
Uxv
the ordinary mixed-strategy value of the continuous

game at x_. We call @A%(t,xn,qn) the after positaon

n

function at time Th* By the Principle of the Transmission

of Continuity (Value, II, §3), @k%(t,x 'Tn) is continuous

n
in X, - We then put

(1)
o (tox r) = @tk va ryaght () . 2.7)

n

This is the before position function at time T .

We carry this process down to time ¢0=0. We

then put g
a8 (t,x) = (£, x, 7.) (2.8)
N ’ N ’ ’ 0 . Ld

This is the value of the N-stage Fleming randomized
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game, starting at time t at the point x. Evidently
@A%(t,x) is a ¢® function of x. Also, by Lemma A

in Value, II, §4, as it applies to randomized games,

@X%(t.x) and all the before and after position functions
defined above are Lipschitzian in the position variables,

with constant LeA.

In what follows we shall need another representation

for @k%(t.x). For n=1,...,N put

tn (E0X) =@y (tix,ry ) —@Ag(E ) o (2.9)
Then put
y ()
wn(t,x)==ftn(t,x+z)d8 t (z) , (2.10)

n=1l,...,N. The reader will then easily verify that

N
(N)
85 (t.x) = [o(x+z)aght  (2)+ ) ¢ (£,x) . (2.11)

n=1

This decomposition, and its generalization at (8.2),

constitute the key to our method.
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3. Notes on the normal distribution

&

Let x(x) be a function in RP with Lipschitz

constant ;, and put
¢ (x) =[x (x+z)agh(z) , C o (3.1)

the distribution 3” being the one defined at (2.1).

Evidently ¢ is c”. We are interested in the Lipschitz
constants of its first and second partial derivatives.
We did this easy calculation for the first derivative

in Value, V, §2; the Lipschitz constant of v§ turned

out to be ,/2up/m 1 .

If i #3j we calculate

2 2 2

3 Y (x) 2 2 “n(25+...+42°) /2

axiaij = (u/2n)p/ j'x(x+z)zizj e (21 p) )
dz)+eedz . ' (3.2)

Y

2
The Lipschitz constant of %;igil is therefore not
i

more than
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2 p/2 - (z?'+ +zz)/2
Len™ (n/2m) ‘“zillzjl e 1"°°"""p
dzl--odzp = 2ut/m . (3.2)

For the case i=j the constant is somewhat different:;
we find that azx(r(x)/axi2 has the Lipschitz constant

2
2xt. Thus in any case %;i§§l has the Lipschitz
i :

constant 2x1.

Next suppose that Y(x,t) is measurable in x

and Lipschitzian in t with constant 7 , and put
V(x,t) = [ x(x+z, £)dg"(z) . (3.4)

Then in just the same way as above we see that the
Lipschitz constant of v{(x,t) in t does not exceed
J2up/m T , and that the Lipschitz constant of g;g%%;%L
in t does not exceed 2x7. o

These trivial principles extend to H8lder
coefficients as well, and they are applied extensively

in that form in §15.
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4. The special MP-stage game

We must assume at this point that the reader
is thoroughly familiar with Chapter IV of Value,

particularly §§12,13.

We index the stages of the MP-stage game by

double subscripts (m,r), m=0,...,M-1, r=0,...,P-1.

The special MP-stage game differs from the
Fleming MP-stage game of §2 in that there are only
M éhocks, of standard deviation e/M;5 each, at the
times Tm, 0= t+ (m/M) (1-t), m=0,...,M-1. The shocks
are Gaussian and spherically symmetric as before. The
reader will readily see how to define the value @Aﬁp(t,x)

of the special game in analogy with §2; or see Value,

II, 85, vwhere we did it for general shocks (though there
we had no shock at the outset). We shall denote the
various position functions for this game by using a star
where with Fleming's game we had a §. We wish to

compare @kﬁp(t,x)‘with QA&P(t,x); this is accomplished
at (4.29).

K
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The shocks in the Fleming MP-stage game will
be denoted by 2oy m=0,...,M-1, r=0,...,P-1. We will
14

denote a succession of these shocks by g=(zo-’_0,...,zM_1’P_1);

this is a sample point for the MP-stage Fleming game. For

each m we define the partial sums

Zm'r=zm'0 + vee + Zon,r ¢ (4.1)
r=0,...,P~1. Each sample point { in this way uniquely
determines a sample point Z(¢) = (ZO.P-l"”'Z -l,P-l)
for the special game. The shocks Zm—l,P-l' m=0,...,M-1,
appli.ed in the special game at the times Tm,0’ 3re
evidently spherically symmetric Gaussian and of standard
deviation 6/ ;5, as required for the special game. With
this understanding, we may take the underlying sample

space for the two games to be the same, the space of

the (.

We wish to say what we mean by a "good" sample
point (. First we consider a group (zm 02y P-l)
of shocks in (. This group is said to be good if the

partial-sums_Zm r given by (4.1) all satisfy the inequality

4
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<om" /3 | (4.2)

7, | <

Otherwise the group is said to be bad. Since the

%

standard deviation of 2 is oM , it follows from

m,P-1
the Kolmogorov inequality (see e.g. Value, IV, §3) that
the probability, calculated over the space of the P-tuples

(z 0" "2p P-l)' that the group is bad, does not exceed
1/(M1/6)2 =M—l/3.

The sample point { is now said to be good if the
number of groups (Zm,O""'zm,P-l) in it which are bad
does not exceed M5/6. Otherwise ¢ is said to be bad.
Since the expected number of bad groups, calculated over

the sample space of all the {, does not exceed M.mfl/3 =

=D42/3, the probability that ¢ is bad does not exceed

W2/3 y5/6 _ \ 1/6

We first suppose that ( is good, and that the
controls chosen by the players are u0,0”"'u -1,p-1 n
and v0,0""'”M—l,P—l respectively. We wish in this
- case to calculate the deviation of the terminal point
of the trajectory of the special game from that of the

Fleming game.



iy

20

We now carry out a calculation somewhat analogous
to that in Value, IV, §6. This time ¢ will denote the
trajectory for the special game, r' the trajectory-for
the Fleming game, and p" a trajectory, running parallel
to ¢, but taking the shocks of the Fleming game. More

precisely:

(i) the trajectory r, starting at g(ma 0)==xt

at time TO,O==t' is displaced at each time Tm,O ’
m=0,...,M-1, Dby the shock Zm p-1 given by (4.1)
with r=pP-1. Otherwise it follows on the stage (m,r),

n=0,...,M-1, r=0,...,P-1, the differential equation
r(fr)=¥(g('r).'r.um'r¢..vm'r) . (4.3)

(ii) the trajectory ¢', starting at t'(Ta 0)==xt
’

’

at time 70,0==t, is displaced at each time Tm. r
’

m=0,...,M-1, r=0,...,P-1, by the.component Zor
[ 4

of C. Otherwise it follows on the stage (m,r) ,

mn=0,...,M-1, r=0,...,P-1, the differential equation

f'(r)=T(z:'('r).'r.um'r.vm’r) . (4.4)
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(iii) the trajectory ", starting at g"(To 0)==xt
4

at time To.0= b is displaced at each time Tm ’
’

’

m=0,...,M-1, r=0,...,P~1, by the component Znr
’
of (. Otherwise it follows on the stage (m,r),

mn=0,...,M-1, r=0,...,P-1. the differential eéuation

Eu('f)=T(§(T)"roum'rrvm'r)- (4.5)

Put
s(r) = |e' (1) ~¢"(m)] . (4.6)

Clearly &6(t) is absolutely continuous on [t,1l], and

6(70 0)==0. Our task is to estimate § (1) .

Suppose that (Zm,O""'zm,P-l) is a good group

in ¢, so that all the partial sums 2. ¢ given by (4.1)
. ?

satisfy (4.2). Now the before-shock positions of "

and ¢ at time Tm, 0 coincide: t"(Tm,O)zzr(Tm,O)’ m=0,...,M-Js,

Hence for all ft€(«r o) we have

m,0’ "m+1,

le (1) = ¢ ()| < oM™ Y/3 | (4.7)



(1)

It follows that

22

et (1) = e (r) | < 6(r) +om Y3 (4.8)

there. Hence from (4.4) and (4.5) we have

Fer) < |E(m) =" (n)] < A () +oM 3

By making the substitution n(7) =5(r)e

—A(T -

we deduce immediately from (4.9) that

4/3. A/M

(4.9)

Tm,O R

8 (Tpeq,0) < [8(ny o) +20M /7] &7, (4.10)

On the other hand, if (z

. o o z
m,0’ '“m, P-

bad group we have the crude estimate

6("'m+1,

0) < 6(¢m'0) +2u/M .

It follows that for any m=0,...,M-1

4(The1,0) <80ty o) e

where Wy, = AgM

4/3 eA/M

A/M +
m

if the group is good,

1) is a

(4.11)

w ’ (4.12)

and
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wm==2u/M if the group is bad. By induction we now

deduce from (4.12) that

) cw o (m—l)A/M+ v.e” (m-2)A/M

) (Tm'o =%

1 + .0 + (l)m_l ’ (4.13)

m=1,...,M. Hence in particular
(1) =6 (T ) < (wat +i )6A | (4.14)
M,0°='Y0 °°°"""M~-1 : °

Now since ¢ is good, at most MS/6 groups are bad.

Hence it follows from the definition of the " that

-1/3 eA/M -1/6) P

8 (1) < (ArM + 2yM . (4.16)

For‘typographical convenience we replace this by the

cruder estimate

(1) < (aam V3 4o V622 (4 16)

Now observing that ¢"(1l) =¢ (1), we get

1/3 —1/6)62A

le (1) = ¢ (1) ] < (AeM 2+ 2yM . (4.17)

4]

o’

n
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For a good { and the successions Ug,0’ """ Uy-1,p-1

and p 0’**"*Uy-1.p=1 * this 'is the desired estimate
. ’ 14

of the deviation between the terminal points of the

special and Fleming games.

If ¢ is bad, (4.17) is replaced by the crude

estimaté
le (1) =¢' (V)| <2u , (4.18)

holding for any pair of successions uo'o,...,u -1,p-1

and vy gseccrUy-1,p-1 °

In order to assemble the above estimates we
now make use of an e-construction similar to the one

we used in Value, IV, §§12,13 in comparing the value

of the unrandomized Fleming mixed-strategy game withv
that of a general randomized Fleming mixed-strategy
game. Here we have two randomizations of his game
to compare. We will have the maximizer play the
special randomized MP-stage game and the minimizer
play the Fleming randomized MP-stage game; this

is our present version of the "skew play" of Value, IV.
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With N=MP and with this new understanding of
the skew play, everything goes through here just as it

did in Value, IV, §§12, 13, up to the formula (IV.13.1)-

(Iv.13.2) for the (-expectation to the maximizing player,

which for us now reads
EN (C lxtlxt' t)

t] -l -—
= JUTC ot ananc o )adli ) oy )]
1 1 0 0
cos] aq;t (ry) (u,l)dsar. (ry) ()] ap (7o) (uo)dsg. (1) (vg)
(4.19)

where g(¢n) and g'(Tn), n=0,...,N-1, denote respectively
the after-shock positions of the maximizer's trajectory ¢
in the special game, with the M shocks, and the
minimizer's trajectory ' in the Fleming game, with

the N=MP shocks, so that in particular g(¢0)==xt+Z0'P_1
and g'(¢0)==xt4-z0’0. The formula for the {-expectation
Eﬁ(g,xt,xé,t) to the minimizing player is obtained by

replacing o (r (1)) by o(¢'(l)) in the right side of (4.19).

K
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The formula for the difference of the {—-expectations
is thus gotten from (4.19) by replacing the o(y (1))

in its right side by the expression o(r (1)) —o(r'(1l)).

Now, Jjust as at (IV.13.3) in Value, the integral

in the right hand side of (4.19) is in fact a finite sum.
To each term of this sum there corresponds a definite pair
of successions u0,0""'uM—l,P-l and 0,0’ %M-1,p-1

of controls for the maximizing and minimizing players
respectively, and corresponding definite terminal points

r (1) and ¢' (1), satisfying (4.17) or (4.18) depending

on whether { is good or bad. Hence if { is good we have

IEN (C rxtlxtr t) - El'\]' (c'xt'xt' t) l

< oM V34 o /0y 2R (4.20)

and if ¢ is bad

|Eg(Coxiox ot) —Eg(Cox ,x,t) | <2uL. (4.21)
. (1)
Now we denote by HN8 the distribution of
the C‘=(Zo,0"“'ZM-1,P—1) for the Fleming N=MP-stage
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game. By the analogue to Proposition 2° in Value,

«

IV, 8§12, we have the formula

‘ (1)
Ey (X %0 t) = [EG(Cox,x,, £)AN8" (C) (4.22)

for the overall expectation to the maximizing player,
playing the special MP-stage in the e—éonstruction.
Here the shocks in that special game at the times
¢m==t+(l-t)m/M, m=0,...,M-1 are understood to be

given by the formula Zm,P-1:= zm,O*""i'zm,P-l as

we indicated above following (4.1). For the minimizing
player, playing the Fleming N=MP-stage game in the
g-construction, we have the formula

| (1)
Eg(x .x.,t) =IEI{](C.xt.xt.t)an3" ¢) , (4.23)

the component shocks 25,07 " *Zy-1,p-1 of { this time

being applied just before each move. Since, as we saw *
above in the paragraph following (4.2), the probability
that ¢ is bad does not exceed M-l/e, it follows from =

(4.20), (4.21), (4.22) and (4.23) that
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- L]
|By (xpox 0 t) —Ep(x ,x ., t) |

1/3 1/6,. 2a -1/6

< (aeM 74 2yM /O et + 2uIM

< (AeM"l/3+ 4uM-1/6)Le2A . " (4.24)

Now because the maximizer in the e—-construction

is always maximizing to .accuracy no worse than e¢/N = ¢/MP,

we have in analogy to Proposition 3° of Value (formula

(Iv.12.32)) that
* -
Similarly, in analogy to Value, (IV.12.33), we have
' 8
Eg(xeox,,t) < ®hg (t,x.) +e . (4.26)

Hence from (4.24)

1/3 ~1/6),,2A

+ 4uM + 2e.

9 -
‘I”‘f&p(t"‘t) - tI))\MP(t.xt) < (ABM

(4.27)
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Since the left side of (4.27) does not depend on ¢

and since g is arbitrary, it follows that

Mg (0x) - @& (£,3) < (aow™ /3 4 aun /6y 1%

(4.28)

for any X=X, € RP. By reversing the roles of the
players in the g-construction we obtain the opposite

inequality. Hence

| @A, (t,x) - @A (£,%) | < @oM~ Y3 4 4um /6y 2B

(4.29)

for all x ¢ RF. This -is the desired comparison of the
value of the special MP-stage randomized game with that

of the Fleming MP-stage randomized game.

«'

s



(1]

30
5. Convergence of @A%(t,x) as N+, Theorem I

The first thing we have to do is to find an
estimate of the difference between mkﬁp(t,x) and @k&(t,x).

Put

8
= * -
by = SuP [@Afip (Eox,m ) —edp(e,x,m )], (5.1)
x€RP
where T =T =t+ (1-t)m/M, m=0,...,M. We suppose
that O<m<M-1 and that 6m+l is known to be finite, as
is surely the case when m=M-1l. We seem an estimate

for 6m.

Consider the problem of the P stages of the
special MP-stage game starting after the shock at the
time Tm. 0 at the point X. The terminal function for

’

. * . ..
these P stages is ¢AMP(t'x'Tm+1,O)' Using the Principle

of the Transmission of Continuity as it applies to mixed-

strategy games without random shocks .(Value, II, §3) ,

and recalling that the Lipschitz constant of

¢Aﬁp(t,x,7 o) in x is LeA, we may replace the

mt+1,
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control function over [Tm’o,Tm+l'0) by T(u,v) =

= T(E}Tm'o,u,v) with an error no greater than
(uA+a)LeA/M2. Using that Principle once again,
)

we may replace the terminal function mkﬁp(t,x,7m+1 0

for the P stages of the special MP-stage game by
mx&(t,x,¢m+l) with a further error not exceeding 6m+l’
Since @k&(t,x,7m+l) has Lipschitz consﬁant LeA in x
and wk&(t,x,7m+l) = IQX&(t,x+z,Tm+l)d3K(z) with
n=pM/92(1-t), it follows from the result noted in the
first paragraph of §3 that vwk&(t,x,¢m+l) has in x the

Lipschitz constant ./2up/m LeA = v(t,e)LeA'M%. where

v(t,0) = pJ2/m /81t . (5.2)

When we wish later to emphasize the dependence of v (t,0)
on t and g, we shall write it out; otherwise we shall
simply write v. In this section both t and 6 are fixed,

and v=v(t,8) may be regarded as fixed.

We now follow the argument of Value, V, §3; the

reader should note that the definitions of v here and

;
there are different. For any x€RP we have from the Law

'

L4
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of the Mean that

) =

8
CDAM(thI Tm+1 R

= m)&(t.;.Tm+l)4-le&(t,x',7 (x-x) , (5.3)

m+1)
where x' is on the segment L;,x]. Since any point x
accessible during the P stages starting at X must

satisfy |x4;|5;u/M, (5.3) implies that for such a point
mAe(t X,T )
MY 'm+l

4 - - -
= cpo(t.x. ¢m+1) +Vco?\&(t.x.'rm ) o (x-x)

+1

+ \)uzM-3/2LeA0(1) ’

(5.4)
where 0 (1) here and throughout this paper denotes a
scalar satisfying [n(1)]| < 1. It now follows by a
third application of the Principle of the Transmission
of Continuity that the terminal function wx&(t,x,1m+l)
may be replaced by the first two terms in the right
side of (5.4) with a further error not exceeding

ou2LePu3/2
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We are now in the situation of the "simplest
linear (mixed-strategy) game" treated in Value, III,
§8. According to the (quite trivial) analysis presented
there, the value of the P-stage game starting at x with

the control function ?(u, p) =¥ (;, T, 0° W p) and the

teminal function given by the first two terms of (5.4)

. e -
is ¢+ v/M, where c=cp)\M(t,x,¢m+l) and

L 8, — —
v = Vg)l(‘t;e VCP)\M(t:X:T“H_l)'T(X. 'rm'o.urv) . (5.5)

We have therefore Proved the formula
O\ (ts X, 1y o) = ¢ + v/M
A .
+ [ ara) 2+ 232 neP0 (1) w6, 10(1) . (5.6)

For the single stage of the Fleming M-stage game
starting after the schock at the time Txﬁ=Tm 0 from the
. . ’

point ;, we obtain similarly

6 - -
(I’?\M(t._xwrm) = c + v/M

3/2,

F [ ara) M2+ P2t (1) (5.7)

1 Y

a’

v
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the only transition in terminal functions having this

time been the linearization. Hence, uniformly in ;ERP,
— e -—
| oA fip (Brxory o) = @y (tox,m )]

2 2,.3/2 A
S8 1 F 20 (WA+a)/M” + v~ /M / 1Le” . (5.8)
Evidently this same inequality persists for the before
position functions at the same time Tm. 0= "m* Hence

’
6m is finite and

3/2 A

5o <6 1+ 2[ (ua+a) M2 + v 23 2Lt (5.9)

m+1l
On concatenating the inequalities (5.9) and recalling

that §,, =0, we find that

M
| @Aty (£,x) - & (t,x) |

5’60 < 2[ (uA+g) /M + vuz/M%]LeA , (5.10)

uniformly on [0,1]xRp. This is the desired relationship
between @Aﬁp(t,x) and @X&(t.x) mentioned in the first

sentence of this section.
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We now combine (5.10) with (4.29), letting

a further eA term into the former. The result is:

o'

lcmf,u,(t.x) - cmfd(t.x) |/Le2A

1/3 1/6

5_AGM- 4-4uM_ 4'2(UA+G)M-14'2vu2M—% . (5,11)
By interchanging the rdles of the M and P in these
last two sections, we obtain the corresponding
inequality for IQX&P(t,x)-@Ag(t,x)l/LezA, with
the M's in the right hand side of (5.1l) replaced

by P's. Hence

188 (£, - 88 (£,%) |/1

<34 V3 L og 0, 2716

«“

+ 2 (ud+a) (M'1+ p~ L) 4+ 2vu2 (M-%+ P';i) . (5.12)

¥

It follows that {@X%(t,x)} is a Cauchy sequence,

uniformly in t and x. We have thus proved the
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following theorem, which is essentially due, in
a slightly weaker version, to Wendell Fleming, as

a consequence of his Lemma 1 in Convergence II:

THEOREM I (Fleming). @k%(t,x) converges
uniformly for (t,x)e:[O,I]xRp to a limit @Xe(t,x)

as Noao,

In our proof of this theorem we have not
used the hypothesis stated in the second paragraph
of §2 about the Lipschitzian character of Vo (x) .

Nor have we mentioned any PDE.

The function @&e(t,x),is called the Fleming

mixed-strategy value of the randomized game.

We thus have the first part of our objective,
which is existence by elementary means of @Xe(t,x).
We will now set out, in §§7-17, +to prove by elementary
means that @Ae(t,x) in fact does satisfy Fleming's
parabolic PDE. But first, in 86, we run off the
easy completion of the proof of the existence of his

unrandomized mixed-strategy value, promised in A1l.
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6. Convergence of QAN(t,x) as N+o,., Theorem II

Fleming's unrandomized N-stage mixed-strategy
vaiue function @AN(t,x) is obtained from @A%(t.x) by
putting 6=0, i.e. eliminating'the shocks; or see

value, I, §8.

THEOREM II(Fleming). Let B be a bounded set in

Rp. Then QAN(t,x) converges uniformly for (t,x)E[O,l]xB

to a limit &\ (t,x) as Now.

PROOF. Sinée the position vector for the
deterministic game must remain within a py-neighborhood
B of B, we may, by altering ¢ if necessary outside B,
assume that there is a constant K such that lo(x) | <K

throughout rP.

Though now we have a shock at the beginning
and not at the end as in Value, IV, §13, and our
game is played over [t,l] instead of [0,1], Lemma

D ot Value has the same form as it did there, and

we have in analogy with Value, (IV.13.9) the inequality

Id»kf\,(t.x) - B (t,x) | < (1+Ae™) AsL + 2k/\2 . (6.1)

4@

Ab
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Here s is the standard deviation of the sum

of the shocks, and A is any

Zgt eeet 2y 4
number larger than 1. Since each of the shocks
has standard deviation @ (1—t);5/N;i ., we have
s=e(l-t)%. Now suppose 6¢(0,1) and put )=9-1/3.
(6.1) now becomes

l8d (e, x) - oA (e,x) | < 0/, (6.2)

where C==(1+AeA)L+-2K. Now suppose e>0. Choose 8

so that C92/3

< &/3; this is the only point in this
paper at which § is regarded as anything but a fixed
constant given a priori. By Theorem I there is an
Ne such that if N,N'zN9 then

|88 (0 -l (60| < o3 (6.3)

for all (t,x)E[O,l]xRp. On combining this with (6.2)

we see that if N,N'ZNe then

|@r g (tox) = @A (t,x) | < e (6.4)
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for all (t,x)€[0,1]xB. Hence {&\ (t,x)] is a

3

uniform Cauchy sequence for those (t,x), and

the theorem is proved. o

Except for the minor point that his
control function did not involve time, Fleming
proved this theorem in Convergence II. The
present author has given a different elementary

proof in Value, Chapter V, §10. 1In all three

proofs the basic idea was randomization. No

proof is known for which this is not so.

We now return, for the rest of this
paper, to the randomized game with a fixed

positive 6.

[{]

7. The Lipschitz constants Yn and 'n

In this section we begin a detailed study of
the structure of the position functions for the

N-stage Fleming randomized game.
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Let 1l<n<N. We denote by.yn the Lipschitz
constant in x of the increment function 1n(t,x)
defined at (2.9). We denote by N the Lipschitz
constant in x of the gradient vmk%(t,x,wn) of the
before position function mx%(t,x,Tn) at time The We
wish in this section to find a relation between Yn

and Ln.

Put

_ _ 28
Q'n_l(x,u -1’ Un_l) = fn_l(xlun_ll 'Dn__l) CO)\N(tlxv 'l'n) ’
(7.1)

In-1 being given by (2.5) with n replaced by n-1.

Let x and x' be two points with |x-X'|=1L
Denote by r the trajectory over [Tn_l,Tn) of the
differential equation ¢ (7) =% (r(r),T/u_q,v,_7)
starting at x. Similarly we define p'. Next we
&note by " a path starting at x' and running parallel

to r. Put §(7) = |¢" (1) =¢' ()] , 1€l Th—17, 7] - Then
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6('rn_1) =0 and
§(r) <Alr(r) =¢' (1) =Ale" (m)=¢"' (1) +x-x' | <A[8 (1)+n]-

(7.2)

Hence by a standard calculation like that at (4.9)-

(4.10), we get

5(r) < [0/ < n-n) A, (7.3)

lxn (X:un_lu vn_l) + (X'."X) - Xn (x' lun_lrv _1) ‘
A
< n(l-t)Le /N . (7.4)

= - "= V
Now put s-xn(x,un_l.vn_l) x and § Xn(x'un—l'vn-l) .

Then we may rewrite (7.4) as
' A
|s-8'| < n(l-t)e /N . (7.5)

Since, as we noted following (2.8), mxg(t,x,fn) has

o+

s
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Lipschitz constant LeA, we therefore have

gn-l(x"un—l'vn—l)

CD)\%(t:X' +8', ‘Tn) - CD)\%(toX' ’ Tn)

mx%(t,x'+e,7n) - mk%(t,x',wn)
+ (-t e?P/Nj0 (1) . (7.6)

Now, wusing first the integral form of the Law of
the Mean and then noting that | (x'+ws) - (x+ws)|=mn

for any real w, and that |[8| <y(l-t)/N, we get

oAl (t,xt4e,n ) - @d (e, )

1
] va%(t.X'+ms.Tn)dw]og

0

1
9
[ [ vorg(t, xtwe, 7 )dw].s
0

+ [n(1-t)ut /N]0 (1) . (7.7)
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o

Hence we finally have the formula

: 1
' o 6
gn_l(x :un_l.vn_l) = [ I VwAN(t'X+w§an)dWJ'S
0

+ [n(1-t) (ne®Pepp )/NI0(L) . (7.8)

Now, directly from the integral form of the Law

of the Mean, we have

1
gn_l(x'u -1 7)n_1) = [ I ch)\%(t'X"'WRl Tn)dw]'ﬁ -

0

(7.9)
Hence
lgn_l(X'run_lov _l) - On_l(x'uh_l.vn_1)|
2A )
< n(l=t) (L + 4 )/N . (7.10)

We may now apply the second part of the Principle
of the Transmission of Continuity as it applies to games

with mixed strategies (Value, II, §3). Because the
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estimate (7.10) holds for all Un,1’ Un-1°

Value g _.(X',u_._q1,m._q) — Value g (X,u . _~1s0._1)
Uy o 1 n-1’"n-1 Uy n-l Un-1 1

< n(l-t) @Pe )N . (7.11)

But from (7.1) and (2.6)

Value ¢ __(x',u _1,0._4)
oy D 1 n-1 1

Value fn-l(x"’ - mkg(t,x'.wn)

OV Ln_ll Un_l)

(T’)\g],(t'x,’ ’ 'I'n_l) - CPA%(t,X" . "I'n)

1, (Eex"), (7.12)

and similarly at x. Hence (7.11]) may be rewritten as
|1, (kox") - zn(t.x)l < n(l-t) (LéZA+ w,) /N

(7.13)

a formula called by the author the "double-difference
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formula". It follows that

A

v, < (1-t) (ze? +ul )/N, (7.14)

n=1,...,N. This is the desired relation between

Yn and Ln.

8. An inegquality for the Yn

We have LN=L so that

Yy < (1-t) (uX + LeZA)/N . | (8.1)

Now suppose that O<ngN-1, and consider the
finction cp)\%(t,x, Tn) . If the reader has derived
(2.11) from a formal induction, he will have proved

the formula

0 =
cpkN(tIXI 'rn) -

, (N-n) g L@
= [ o(x+z)aght  (z) + z [ tpeqltoxemraghe (2).
q=1

(8.2)
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of which (2.11) is the case n=0. The idea of
representing wk%(t,x,Tn) in the form (8.2) is the

principal new idea of this paper.

Now fix attention on a term
(q)
= " . .
v(x) =] 1n+q(x+z)dg t (z) in (8.2). Since tn+q(t,x)
has Lipschitz constant Yn+q in x, it follows from the

first paragraph of §3 and the formula (2.2) for n(n)

that vy (x) has Lipschitz coefficient\/Zuég)p/n 'Yn+q==

1
(\;N;'i/qz)yn_!_q , where v was defined at (5.2). Hence

from (8.2)
N-n
% z -%
1, < A + VN 9 Ypeq ’ (8.3)
q=1

n=0,...,N-1. Now put
ACE) = (1-t) (Le?P+ ) (8.4)
and

y(£,8) = (1-£)uw/N? = (up/0)/Z (=) /oN . (8.5)
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We will write simply A or y when we are not dealing
explicitly with the dependence on t, or on t and 6. We
then combine (8.3) with (7.14), which requires n>l. The
result is:

N-n .

Y, S AN+ yi 9 Yneq (8.6)

q=1
n=1,...,N-1. We see from (8.1) that (8.6) is valid
also for n=N. This inequality, holding then for

n=1,...,N, 1is the desired one.
We shall spend §§9-13 estimating the y  from
(8.6): the result is stated at (13.9).

9. The determinants Di

Consider the system of N equations, n=1,...,N:

N-n
-~
VESAN Y ) od ko (9.1)
q=1 '

\»

"
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in the variébles Yi;...,yﬁ , y and A being given

by (8.4) and (8.5) respectively. Using (8.1) at

n=N and working backward using (8.é), one proves
trivially that ynggy; , n=1,...,N. From now

until the end of §13, we shall be seeking to estimate

the Y; .

For each n, consider the system of N-n+l
equations

N-n'

Y;;l -y z q
g=1

=% - A

Y?1+q TN (9.2)
'n'=n,...,N, in the N-n+l1 unknowns y;,...,yﬁ .

The determinant of this system is unity. By
Cramer's rule, y; is therefore gotten by replacing

the first column in that determinant by the entries

on the right hand side of (9.2), i.e.
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5%

A =y =x ., = =y
N I% ;ﬁv (N—n-l)gi (N—n)%"

A - -V -4

- 1 [ ] [ ] L] .
N I§ (N-n-2)% (N-n-—l);5
L o 1 ... 4 4

N (N-n-3)%  (N-n-2)%

= [ ] [ ] L ] [ ] [ ] [ ] L ] [ ] . (9.3)

.A. -

N O 0 .. 1 —1%5

'% 0 0 s o s 0 1 1

We will refer to a path across this, or

any other determinant, which has a non-zero

product, as a hon-zero path .

Let i>l. Any non-zero path starting at the

4 in the ith row of (9.3) must go down the diagonal

N
after the ith column has been passed. Hence the

v
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cofactor of that % is the determinant made up
of rows 1,...,i-1 and columns 2,.;.,1 in (9.3),
prefixed in sign as follows. Consider a non-zero
path in (9.3) involving that A ., Wwhich passes
through rows i'iz""'ii as j=2,...,i. The sign
of its product is then that of the permutation
iyre..rig oF 1,...,i-1, multiplied by (-1)*71,
In the cofactor determinant the columns 1,...,1
receive the new labels 1%*,...,(i-1)* . So we may
rewrite the permutation i,,...,i, as il*""'i(i-l)* .
Its sign as a permutation of 1,...,i-1 is however
unchanged. Hence the prefix in sign required on the
cofactor determinant is (-1)31"-1 . It follows that
for n=1,...,N
N-n+1
vk = % [ 1+ z (-1)1'1 D. 1. (9.4)

i=2

where Di is the (i-1l)x(i-1) determinant given by
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=y -y = ~y -y
?\é ;% ;% (i-2) 73 (i-1) 7

1 X =0, Y =Y
1% 9% (i-3)%  (i-2)%

o 1 =X ... =4 =Y
1 (i-4)% (i-3)7

0 0 1 o o s = —

D, = (i-5)% (i-4)% |.  (9.5)

0 0 0 =+ ¢+ 1 = =

R

0 0 0 * o 0 1 :E
2 )

Our next objective, accomplished in §13 , is
to prove that the sum in the brackets in (9.4)

is absolutely bounded.
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‘ 10. The coefficients dt
Let i>2 . We denote by a5, k=1,...,i-1,

the coefficients of yX in (-1)1'1Di.

We denote the indices of the rows and

columns ot Dy by h and j respectively.

We shall refer to the diagonal just below
the main diagonal in D, as the 1l-diagonal. Notice

that the entries above the l-diagonal, i.e. with
— Yy

h<j , are L -
(3-h+1)

We first observe that

a; = —l— (10.1)
(i-1)
for any i»2. 1In particular this disposes of the

case i=2.

Now suppose that i>3, and 2<k<i-1l. Any non-

zero path involving yk has to leave the l-diagonal
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exactly k-1 times with j<2. Suppose it leaves it

There can be only one non-zero path corresponding

to the succession jl""'jk-l . It goes down the

l1-diagonal until column jl is reached. It must then

go to row 1, and acquire the factor :§ . If j11>1,
Iy

the first j1 row entries are then 2,3,...,j1,1 ’

1

which form a permutation of sign (-1)317" of the

succession 1,...,j1. Clearly this sign is also

correct if j1=1. The path now returns to the l-diagonal

until it reaches column jz’ At that point it must go

to row jl+1 and acquire the factor _T—:¥—_§ . We
(35-34)

also see that the succession of rows corresponding

to columns j1+1,...,j2 forms a permutation of sign

(-1)j2—j1-1 of the succession jl+l,...,j2; the reader

should check this separately in the cases j2 >j1+1 and

j2=j1+1. The path proceeds in a similar way across

the segments [j2+1,j3],...,[jk_2+-l,jk_lj, acquiring the

factors ——4:L—1; teoos — L and the permutation
(33733) Og-179x-2)

signs (-1)337 327 1 1

e (-0k-1" %271, The

path across the final segment [jk_1+-l,i—l]
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i

similarly acquires the factor and

(i-1-3, ;)

1=

the sign (—1)1-1_Jk—1_ (—1)1_3k-1 . The rows

on the path therefore form overall a permutation of sign
(-1) (J l-l)+ (jz_j 1—1)"'0 .ot (jk_l-jk_2-1)+ (l-jk"l)

= (-piktl (10.2)

of the succession 1,...,i-1. There are k minus
signs in the factors. The contribution of this path

to Di is therefore

(*l]i+lgyk »
(G263 % ver (Gyoq=dpg) Fim1-3,_ )2
1) 32737) 7 eer Ogagmdp ) *E-1=3 )

. (10.3)

It follows that

k _
d;j = E:

]_Sj 1<n Ty <j.k_ lg_i—Z

1

3

(3) 263 ) v Gy g3y ) F(im1-3, )7

(10.4)
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We note that the d? are all positive, hence
also all the (-i)l—lDi appearing in (9.4). For our

objective noted at the end of §9 it will therefore suffice

N
to estimate E: (—1)]‘-1 Di . We have evidently
i=2
N N i-1
i-1 _ k k
i=2 i=2 k=1

11. A trivial inequality

In what follows we shall frequently need

to estimate the quantity

s-1

1 »
Y , (11.1)
1, _ ;5 - ;5
q=r+1 (37T) “(s=q)
r and s being integers with O<r<s-2. Put

1
. Then, by elementary calculus,

(w) =
I (w"r);i('s-w);i
(r+s) /2 s
I glw)dw = j‘ agw)dw = n/2, independently
r (r+s) /2

of r or s satisfying the inequality indicated above.
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g(w) is decreasing on (r, (r+s)/2] and increasing

on [(r+s)/2,s]. Put q*==[£§§] . Then evidently

Y g+ (r+5) /2

z gl@ < | gwaw < | gwdaw =n/2 (11.2)
g=r+1 r r
and

s-1 . .

z o@ < [ gwaw < [ gwldw = /2. (11.3)

g=qg*+1 a*+1 (r+s) /2

Hence the quantity (11.1) is less than 1, independently

of r and s with O<r<s-2.

12, Estimation of the d?

If i>2 and k=1 we have the trivial exact

formula (10.1): di'= 1/(i-l)%.

If i>3 and k=2 we have

a = N . <m (12.1)
1 Dip (5 R(i-1-3 ) '
1< <i-2 1 J1

according to §11.
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If i>4 and k=3 we have

3 1
d; = 2 . );5 . ] ;ﬁ ) . ;5 - (12.2)
]-Sjl<j25i-2 (jl (32-31) (1-1-32)

For each fixed j1 we have, according to §11,

. 1 '
) —5 % < - (12.3)
jl<j2$i-2 (32 Jl) (l 1 32)
Hence
i-3 i-3 N
3 ) dw ’ S _ 3
a; <m EJ » )% <mn | o< { L = 2nN” .
j;=1 Y1 o ¥ o ¥
1
(12.4)

Next we suppose that i>5 and k is even, k=2q

with 2$q5'l§l . We consider successions jz.j4,---.j2q_2

satisfying

[’

25j2< <j4<<... <<j2q_25i-3, (12.5)

where the doublé inequality indicates that the

di fference is at least 2. Put e=(i/2] . The number
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of such sets of g-1 non-adjacent integers in [2,i-3]

certainly does not exceed

(i-4) (1=6) o+ [i-4-2(g=2)]
(g-1)!

(2e=3) (2e=5) s s [2e-3-2 (q-2)]

(q-1)!

<

(2e—2)(2e-4)--o{2e-2-2(q—2)]

(g-1)!

<

= 2q—1 (e_l) (e-2) s (e—q+1)
(gq-1)!

a-1 e(e=1) s s« (e-g+2)
<2 (g-1)!

_ 2a-1 e .

= 2 (q-l) . (12.6)
Now with the succession 32'34""’32q-2 satisfying
(12.5) fixed, we group the k=2q factors in the
denominator in (10.4) into pairs and sum on
jl'j3""'j2q—1 satisfying 15jl<j2<j3<j4< cee

seeg j2q-2 < 32q—1 <i=-2. The result, according
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to §11, 1is less than n4, It follows that

af <2971 9 (o) < em( S . (12.7)

Finally suppose that i»6 and k is odd, k=2qg+l
i-2

with 2<gx< 5 - Fix onaj1_21 and consider

successions j3.....j2q_1 satisfying

j1+25j3<<j5<<-u <<j2q_lgi-3. (12.8)
The number of such sets of g-1 non-adjacent integers
on [jq+2,1i-3] certainly is less than the number on
(2,i-3], and we once again have the overestimate
2q“1(qfl) as at (12.6) . This time, with j, and
the succession j3""'j2q—l satisfying (12.8) fixed,
we group the 2qg factors following (jl);i in the
denominator of (10.4) into pairs and sum on
j2.j4‘,...,j2¢I satisfying Jj;<j,<j3<j,<-e--

s & qu_1< qu_<_ i-2 . The result is once again

less than nq. It follows that

i-3
k g-l q, e 1 a.%, e
d <2l ) i (em oA 2)) .
=

(12.9)
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We see from (12.1) and (12.4) that the general
estimates (12.7) and (1.29) hold also for k=2 and
k=3, the combinatorial term, in both cases having

g-1=0, Dbeing interpreted in the usual way as unity.

13. Estimation of the Yh

What we have to estimate is the quantity

no~1e

i-1
§ d];yk in the right side of (10.5).
i=2 k=1

1

Put
m(t,8) = (uwp/B)J/2(1-t)/m . (13.1)

As usual, we write simply w when the dependence on

t or 8 need not be made explicit. Then, from (8.5),

Y==w/N%.
N i-1
We first consider the terms in} z d]j{_ yk
i=2 k=1

with k=1. Using (10.1), we find that these add to
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y —— < 2yN? = 24 . (13.2)

What is left is the quantity

N i-1
YooY Ayt . (13.3)
i=3 k=2

We shall prove that this is bounded.

Suppose first that i=2e+l, ex1l, is odd.
Then the inside sum in (13.3) satisfies, according
to (12.7) and (12.10), the outside inequality below:

2e e
k .
zdliy _ 5 (diqy2q+d§q+ly2q+l)
k=2 g=1
€ 2q 2g+1
< ) emIS) B+ =)
L q N9 ne
g=1

e
= (1+w) ) (o1

q=1
e-1
=w+w) ) (Swd
q=0

e
< w(l+w) 2 (cel)wq
g=0

= (1+uww(l+w)®

2
<c2(l+m)mme™ /N, (13.4)

(3
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2
where we wrote w=2mw" /N .

If i=2e, e>2, we have
Si-1 e 5
Y&y < ) (295704 U2 o (me?e™ N
k=2 a=1

(13.5)

the calculation after the second term in (13.5) being

the same as in (13.4). Hence

N
. . 2
} -1 1o, <20+ 2(Lw)m®e™ <T ., (13.6)
i=2
where
'2
T =T@®) = 2w0 + 2(1+m0)nw06ﬂ"0 ’ (13.7)
with
mg = w(0,8) = (up/B)J2/m . (13.8)

I' is (except for its dependence on §) the absolute

bound asked for at the end of §9.
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It follows from (9.4), (13.6), and the
inequalities ynsgy; noted at the beginning of §9

that, for all n=1,...,N,
v, <R, (13.9)

where A=A(t) is given by (8.4) and T=T(8) by
(13.7). The whole work of §87-13 has been directed

towards this inequality, which is a central result.

14, gSpatial Lipschitz and Holder coefficients

C]

N(t,x) . Theorems

on the spatial derivatives of &)\

III and IV

To obtain the Lipschitz constant LO of
V¢A%(t,x)==vmkg(t,x,70) in x we need only apply
formula (8.3) with n=0, using (13.9) and recalling
the definitions of v and A at (5.2) and (13.4):

N

-~
g <+ METL N 77 o s anen) <2®, (14l
q=1

where
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L

28 = + 2p/2/m (Le?Pepn) (14T) /6  (14.2)

T being given by (13.7)-(13.8). With 6 fixed this

estimate is uniform in t,x, and N.

Before we turn to the second derivatives,
we note a simple point. Suppose a real-valued
function g(w) is bounded by K and has Lipschitz
constant 1. Then, for any a with O<a<l1, g w)
is H5lderian in y with exponent o and coefficient

(2K)1—01a. We leave the trivial proof to the reader.

We now consider the representation (2.10)-(2.11).
We have just proved that zh(t,x) has the qniform Lipzchitz
constant yn£;%(1+r) given by (13.9). By the results
of &3, A where wn is given by (2.10), has the

uniform Lipschitz constant

\

(n)

2nt p/m Y < p (1+4T) (LeZAﬂJ.X)\/2—/-1;/91'1;51‘7;5 . (14.3)

Here we have recalled Kén) from (2.2) and dropped



65

. 1
a factor (1-t)? from the numerator. The right hand

side of (14.3) -therefore serves as a uniform bound for

2
° wn(t'x) over all t,x,i,].

axiaxj
%y, (t,x)
Next, the Lipschitz constant of ———————
axiaxj

in x has, once again from §3, a value not exceeding
Zn(n)vn < 2p(14T) (Le2A+uA)/62n . (14.4)

Hence, by the trivial observation made two paragraphs

2

37y, (£, x) ,
back, YR has relative to a€(0,1) the H81lder

1%
coefficient
cg |
~ , (14.5)
(=0 /2 | (1+a) /2 .

where

® = 2% pur) (LePeun) (2/m) (170172 sglva
(14.6)

The reader should observe that cz does not depend on t.
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Now put
N
N _2
Yij(t'x) = AX, 3K L §:¢n(tvx) ] - (14.7)

n=1

It follows from (14.5) that the HOlder coefficient

of Yﬁj(t,x) in x has the estimate

c? N 1 2c?
a2 L (a2~ 1o+ (14:8)
n=1

which is independent of t. The reader will see

here the reason for passing from Lipschitz to H®lder
coefficients for the second derivati?e. The Lipschitz
condition of Yﬁj(t,x) in x as estimated by summing
(14.4) is of order of magnitude log N; the estimate

(14.8) is independent of N.

All the digcussion to this point has had t<1.
It is convenient at this point to complete the definitions
of §2 in a trivial way by putting @Ag(l,x)==¢kg(l,x,¢n)=
= ¢x§(1,x,¢n)==¢(x) for all n=0,...,N and xeRP. Then
of course zn(l,x)==0 for all n=1,...,N and xcRP, so
that also ng(l,x) exists and is identically zero.

Hence the HYlder constant 2C§/(1—a) given by (14.8)
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for vi; (t,x) is valid for all (t,x)e[0,1]x&P.

As to the o*her term in the representation
L0
(2.11), its gradient [vep(x+z) dg"t (z) has Lipschitz

constant )\ in x, which serves as a bound for its
second spatial partial derivatives. And by the
first part of §3 the second partials have Lipschitz

constant estimated by

S ™o on = ey /8 (1-1) 2 (14.9)

Hence they have with respect to ae(O,l] the HOlder

coefficient in x

=2Vt m % /6% (1m0 %? (14.10)

which does depend on t.

We are now ready to state our first

theorem on Lipschitz and H8lder coefficients.
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THEOREM III. Under the hygotheses stated in
the second paragraph of §2, in particular under the
assumption that the terminal function ¢ and its gradient

Vo are uniformly Lipschitzian, but with no hypotheses

concerning any second derivatives of ¢, the gpatial

gradient v@&%(t,x) is uniformly Lipschitzian in x,
8

with the constant )\ given by (14.2).

The second spatial partial derivatives of @A%(t,x)
may be represented, for (t,x)([o,l)xRp, in the form

2B (t,%)
axiaxj
N (e + = [ [ o(x+z)a " (2) (14.11)
= V.. t,x + : o0 X+2z z ’ e

\yli“j (t,x) being given by (14.7), and with »{™) =p/s?(1-t)
not depending on N. The function Yﬁj(t,x) is uniformly

Hblderian in x relative to any exponent a€(0,1), with
8
o
throughout rO,lijp. The second term on the right hand

side of (14.11) has the Hblder coefficient hg & in x given

by (14.10) relative to any a€(0,1], having the order

the coefficient 202/(1—a) ., C°. being given by (14.6),

of growth (l—t)"OL/2 near t=1. Neither HYlder coefficient

depends on N or x.
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The following is an immediate consequence

of the representation (14.11).

THEOREM IV. Suppose in addition to the

hypotheses of the second paragraph of §2 that the

terminal function m has second partial derivatives

which are uniformly HYlderian, with constant hi ’

for some a€(0,1]. Then the second spatial partial

2_.6
d 6XN(t,X)

axiaxj

derivatives exist throughout [O,I]xRp

and are uniformly HOlderian in x there, with the

game exponent o and with constant 2C§/(l—a)-+h§ ’

]

Ca

being given by (14.6), not depending on N, t, or X.
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15. Time HBlder coefficients on the spatial

derivatives of ¢A%(t,x) . Theorem V

These are obtained by a modification of the

lengthy calculation relative to x which we have just

finished. However this time we seek HBlder coefficients,

rather than Lipschitz constants,

ln (tlx) .

on the increments

The modification is not quite trivial.

Until (15.27) is reached we will fix on t,t' with

O<t<t?’<l. Put

and

ttl Sup
n

xeRp

hg't = Sup

x€Rp

Itn(t"x) = tn(t'x)l

(15.1)

8 (i 'y - 8
[vorg (e',x, 1)) vorg (t,x, 7 ) |

(15.2).
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n=0,...,N. Because ltn(t,x)ls;u(l—t)LeA and
]me%(t,x,wn)ls;LeA for any n, t, and x, both

Xg't' and hﬁ't' are finite.

Now we seek an analogue of the "double-difference
formula" (7.13). We sharpen the notation following (2.3)
by denoting explicitly by X, (x,u__; v, ;) the point
reached at time T starting from g(wn_l)==x at time
Th-1 2nd following the differential equation

£(1) = ?(r(T).T.un_llvn_l) (15.3)

across the interval (7, _;,7,) ; similarly for t'.
. . t'
Evidently we may redefine Xn (x'un-l'vn-l) to be
the point reached at time Th? starting from p'(Tn_1)==X

at time 7, _, and following the differential equation

°y — l‘.&' ' P T_
= A v, B e s R w vy
(15.4)

across the interval [Tn_l,Tn). Put
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o

§(t) =|¢(7)=¢" (r)] , (15.5)

Te[Tn—l'Tn]’ Then by an easy calculation we see

that

§(r) < As(r) + (Gl -tl (15.6)

so that

£ te.
an (x, un_l; Dn_l) Xn (XI un_l' vn_l) l

A/N

< 6(ry) < (at) (' -0) N /N < (a+n) (£'-) PN .

(15.7)
Hence

B ] t' 1
m)\N(t Ixn (xl un_lyv _l),'rn)
= om0 t '
= CQ}\.N(t"Xn (xlun_ll Un_l):'rn)

+ (uta) (t'-t)Le™0 (1) /N . (15.8)
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Now put 3=Xt(x v _q) = Th
P n run_ll n-1 X . en
2] t [ - 8 '
CQAN('E,Xn (X,un_ll Un_l)v'rn) CPXN‘(ﬁlx'Tn)
1 8
= [ J‘ VCP)\N(t' 'X+wQ,T;l)dw] * 3
. 0
oo
= [ I vme(t.X+wé.Tn)dw] ° 8
0
+ B E L (-8 (-0 F0 (1) N
— o8 t - -
= QPKN(t:xn (xlun_ll Un_l) lTn) C{))\N(t:x' Tn)
' 1
+ hz't p(l-t) (t'-t)20(1) /N .
(15.9)
Now (15.8) remains valid if we replace the factor
1
t'-t by (1-t)%(t'-t)2. It was in order to make this

‘erucial replacement that we chose t'>t. On combining

the resulting formula with (15.9) we get

Eaal



73

v t! [ '
wk%(t X (X.un_lyv _1)175) = wk%(t :xan)

n
] t
= wlN(t.Xn(X.un_lov _l)lTn) - wk%(t:X:Tn)

2

[ lra) (-0 7?2 4 Y -y -0 %0 ) /N

(15.10)

On taking the values in (15.10) over UxV we therefore

get

|1, (£70%) =1 (£,x) |

t,t

IARNEEY (e -t) /N .

< [ (u+a) (1-1:);51.62A +h
(15.11)

Since this holds for all xeRp , 1t follows that

t,t!

xE ' < Lure) (-0 e 4 -0y /L (15.12)

(15.11) is the desired "double-difference formula", and
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(]

(15.12) here .plays the role of (7.14). These

formulas hold for n=1,...,N. -

Next we suppose that O<n<N-1 and consider
the representation (8.2) for mx%(t',x,wﬁ) . The

first term in the corresponding representation for

: : 5 (H72)
vorg(t', x,70) is [ vo(x+z') agher (z') . We

may rewrite this relative to the time t as

—F (N-n)
[ opte+ AZE)%2) aghe (@), wow 1- JZENE< FEpT .
so that
o (1)
f IVm(x4-(——— )2z) - vo (x+z) | dg t (z)

A(t t % f |z| d8(N n) (2)

t'-t. % (N—n)%g(l—t)5

sl(l_t) .
£
Ty _
< A8 (t'-t) ° . (15.13)
(N-n)
[ vo(x+z) aght (z) has therefore the uniform

H81der coefficient A8 in t relative to the exponent

a=13%.
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Now we consider, component by component,

(q)

the terms V[.fz (t',x+z2' )d3 t' (z')], «=1,...,N-n,

n+q
in the representation corresponding to (2.1l1l) for

vmxg(t',x,fﬁ) . In the following calculations we

will write n=néq) and K._n(q) for typographical

convenience. The first component of

y (D)
VL[ gt xez') dg't’ (z") 1 is then

-jL-'[J'tn+q(t‘,x+z') dgK' (z*)

axl

_ - l(..&.:)p/z z' (tl %x+2z" )e K.(Zi2+ .-.+Z' )/2
AR I 1t n+q ’

dzi s e sz'>
- - p/2 1-t% "vi,
2 2
. n(zl+ ...4—zp)/2 dzy o dzp ] (15.14)

Since |;n+q(t',z')|<|4(1—t')LeA/N for any t',z' ,

t)}i

we may replace the factor (l T in the last integral
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by 1 with an error satisfying

Errory < [u(t'- ) —t1) TLeP /N)

2 2
P/2J~lzl‘e-n(z1+...+zp)/2 az

A .o
c w5) 1 dzp
< pLeé/Zp/h(t'—t)%/eN%q% . (15.15)
Here we once again use the hypothesis that t<t'.
Recalling (13.9), we may now replace the entry
X + (l:L')%z in by x+z with a further error
1-t ‘n+q
satisfying
t'—-t (_g,_)p/2 I I l -u(z§_4-...+zz)/2
Brror, < v,(f=¢) *(or [lzqll=l e P
dzl 00 de
e L R EN IS
< a7t 125+ eee 2%

2 2
“u(27+ ... +22)/2 e
e 1 P dzl dzp

fe
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%

svn(l t) (1+/2p/m)

< 3(Le®H) (14T)2p/m (£'-£) /N . (15.16)

Here we have dropped a factor (1—t)%, and noted that
1<2/2p/m . Finally, we may replace tn+q(t',z)

in the altered integral by (t,z) with a final

n+q
error satisfying

2 2
t,t! L (x.\p/2 - (2T7+...+20) /2
Error; < ¥, (t'-t) u(2n)p J'Izlle 1 ) /

le LU de

s,JZn/h(t'-t)%xﬁ't'

%tt

= ,/2p/mN %y t);i/e (l-t);i % . (15.17)

We have thus arrived at the derivative

-3‘[.f1 (t,x+z) dg"(z) ] at t, with a total

error satisfying
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Error < Error1 + Error2 + Error3

A 2A ;E '
< .J2p/m [;ufag 4+ MILe ) (141 N Y (Bt ]
aN2qg N 5 (1-t) g2 O

. (t'—t);i . (15.18)

Since the error estimate is the same for Sﬁ—[-],...,sﬁ-[t],
the difference of the gradients does not exieed the P
right side of (15.18) multiplied by p%. Adding up the
resulting estimates from g=1 to g=N-n and taking account

of (15.13), we get
|v A8 (et x,rt) - verd (t,x, 0 )
. CPN X Th CPN ¢t B T/

< Ae(t'—t)%-F p V2/m [ZuLeA/e + 3(Le2A+ux)(l+r)

N% o 3
T ; q-zxg't ] (t'-t);5 . (15.19)
8 (1-t)* oy

Since the right side of (15.19) is independent of

"x, we have thus proved that
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Rt < Ao +py2/m [ 2uLeP/h + 3(1e”P+ud) (14T)
N;i N-n .
) - t,t'
P q ’ , (15.20)
B (1-t) 2 Z %] .

g=1

n=0,...,N-1, amalogous to (8.3) but somewhat

less obvious.

We may now combine (15.20) with (15.12),

n=1,...,N-1. The result is:

N-n

t, t B T % A

n S HE)/N+vy 2 qd* Xpiq (15.21)
q=1 |

analogous to (8.6), where
H(t) = [ (u+a)Le?P+une +20%p/2/m L eP/0
: — 2A 5
+ 3upJ/2/m (Le” +ud) (1+T)] (1-t) * , (15.22)

and y is given by (8.5). Applying (15.12) with n=N

t't'
N

(15.21) to n=N. The system (15.21) now differs from

and noting that h =0, we may extend the system
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the system (8.6) only in that A is replaced by

H(t). Hence we have the analogue to (13.9):

xﬁ't s—(—LHNt (1+T) , (15.23)

n=1,...,N, H(t) being given by (15.22) and T

by (13.7). We observe that Xt't'

n depends on t

but not on t'€(t,1).

From (15.20) and (15.23) with n=0, we find

that

hd (15.24)

- where

ng = A8 + py2/m [2uLe™/6 + 3(Te”Pud) (4T) + 2H(0) (14T) /87,

z

(15.25) -

H(0) being the constant in brackets in (15.22). The

reader will now understand the importance of the "crucial
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replacement” of t'-t by (l—t);i(t'—i:)!5 in (15.8),
which we made following (15.9) . Since h% does not

involve t or t', we haye thus proved that
lvarg (e t) - v’ (e, | <nilt'-e|?  (15.26)
for all pairs t,t' €r0,1) with t#*, and hence

for all pairs t,t'€[0,1). The reader should

now carry out the easy verification that for t<1
lvard (%) - vp )|
< (A8 + upy2/m LeP/p) (1-t) %
< hgi(l—t);i , (15.27)

so that (15.26) holds for all pairs t,t'€f0,1]. Hence
hi is a uniform HYlder coefficient in t for V@X%(t,x)

relative to g=% throughout [O,l]xRp.

In order to understand the situation with

the second derivatives, we begin by studying the
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2%y, (t,x)
second partials ————=— , which we denote
axiaxj
provisionally by f(t). We now need the bound,

sharper than (14.3), which we noted following

(14.3):
lr )] < x(e) (15.28)
where
K(t) = pdm(Le2A+ux)(1+r)(1—t)%/en%N%. (15.29)

Now let Ogt<t'<l. In the following calculation

(N) {N)
t

we shall write u=« ’ u'=nt. . We suppose at

first that i#j. Then

-K.(Z ] 2

Jt") = n'z(ﬁ)p/zfziz:‘] 1n(t',x+z')e

dz1 es dzp

(£',x + (ﬁ')%z)

2, u\p/2 1
w G fzizj° 1-t' * 'n

2 2
g (B et 2) /2 dz) ++. dz, . (15.30)
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We may replace the factor %E%, in the second integral

in (15.30) by 1 with an error satisfying
E; < (2n/m) (£'=t)u/N
< 2up(t'-t) /8% (1-t)n
< E2up/92(1-t)'%n3 (t'-t)}5 . (15.31)

Here we have once again made a "crucial replacement"

similar to the one we made in (15.8). We may then
1-t' . .

replace the entry x + (E:E )%z iv ¢ by xt+z with a

-

further error satisfying

B, < (2n/m) $=5)%

n

< [2p (Le?Phn) (147) /62 (1-t) Tn] (£'-0) F . (15.32)

Here we used the estimate (13.9) for Yn* Einally

we may replace zn(t',x+z) by zn(t,x+z) with a further

error satisfying
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.t %
By < (u/my, "~ (t'-t)
2 % V3
< [2pH(0) (1+T) /87 (1-t) *n] (t'-t) % . (15.33)
Here we have used the estimate (15.23), wvalid for

t<t'<l. 1In all three estimates we dropped the factor
1/r. We have thus arrived at the formula for S (t),
with a total error not exceeding E+E,+E5 . Thus we

have proved that if O<t<t'<l then

|7 (£") - ()| <M(t) (t'-t)% , (15.34)
where
[Vias (Le2A+ux) (14+4D) + H(O) (1+4T) |
M(t) = 2p 5 1 . (15.35)
8°(1-t)* n

Now we have a second estimate for yf(t') -s(t) :

since K(t') <K(t), then

|7 (") = F(e)| < 2K(t) . (15.36)
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On multiplying (15.34) and (15.36) together

and taking the square root, we get

|7(t") - 7(8)]| < [2M(t)K(t)]%(t'-t)% . (15.37)

%

But [ZM(t)K(t)]%==[2M(0)K(0)1 dies not depend -

on t or t'. Hence for any pair t,t'€ro0,1l) we have

2 2
2Ty, (Etex) 3%y (Ex)
axiaxj axiaxj

= |7 -7 < [2M(0)K(0)];5|t'—tl% ;  (15.38)

azxpn(t,X)

axiaxj

exponent % and wmefficient [2M(0)K(0)];5 given by

is uniformly H8lderian on [0,1) with

(15.35) and (15.29).

If i=j the factor 2x/m appearing at the outset
of each of the estimates (15.21), (15.22), (15.23) is

replaced by 2x. Since we dropped the factor 1/m there,
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these estimates remain valid with some < signs

replaced by = or <« . The effect of this trivial .
difference is entively wiped out before (15.37)

is reached, amnd (15.38) holds as stated for all

pairs 1i,].
We now write [2M(0)K(0)‘|;5 in the form

[2M(0)K(0)77 = (15.39)

®
N1/4n3/4 ’
where

_ 2p(2/m) % (1e®Pen) % (147) H s (1e?Peud) (14T) + H(0) (14T) 1%

® = ’
93/2

(15.40)

H(0) being given by (15.22), is an absolute constant.
On adding up the inequalities (15.38) we see that
the function Yﬁj(t,x) defined at (14.7) satisfies

the inequality

N

1] N ] ;’
I‘l’ij (t',x) ¥y (6x) | < 40|t'-t|* (15.41)

for all pairs t,t'€[0,1).
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Now we need to study the behavior of ng(t,x)

near t=1. We have first the inequality (15.28) for

2
d wn(t,x)
j(t)=-—7§;7;;—-. In addition we have the inequality
1%
|7(t) | < 2xu(1l~t)/N = 2pu/6°n , (15.42)

gotten by differentiating in (2.10). On multiplying

these inequalities and taking the square root, we get
4

L
(2/m) % (1e®Pen) F (141
e3/2n3/4N1/4.

|7 ()| < 2=
-0
N n
® being given by (15.40). Hence
N Y .
|Yij(t.x)| < 40(1-t)* . (15.44)
Since ng(l,x)s 0 , this last inequality implies

that (15.41) holds for all pairs t,t'€r0,1] without

exception.
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2 ()
As to the other term —%— [ [olx+tz)agtt (z) ]
axi axj
in the representation based on (2.1l1l) for
a2 :
S;;g;; [@\g(t,x)], it is in general not even

continuous as t-#1. S0 no general uniform Hdlder
condition can be hoped for. The reader should however
pove for himself the fact that that term is uniformly
Hdlderian, with exponent a=% and coefficient
J§;7;YI¢%-+3X)/(1—E) , on the layer [0,¥j,

where Ekl.

olx)

X. OX.
. o} laxJ . )
in x with exponent o and coefficient ha' one sees

If however exists and is H®lderian

2 (N)
. . o N % .
trivially that axiaxj [J’m(x+z)d3 t (2) ] has the
uniform HYlder coefficient hieal0 in t relative to

the exponent a, where

’

2 2
I = (g%)p/zj'|w|°ﬂe—p(wl+"'+wp)/2 Gy v @

o P

(15.45)

the expectation of |w|® relative to the Gaussian
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spherical distribution of standard deviation 1,

depends only on q.

On assembling all the above facts, we have

the following theorem.

THEOREM V. Undexr the hypotheses of the second

paragraph of §2, that is under the same hypotheses as
in Theorem III, the spatial gradient vaxg(t,x) is

uniformly Hblderian in t on FO,l]xRp with exponent a=%

and constant h% given by (15.25).

, azékg(t,x)
In the representation (14.11) for ’
axl ox

J
the function ng(t,x) is uniformly Holderian in ton [0, 1]x

with the coefficient 406 relaiive to the exponent o=% ,

® being given by (15.40). The second term on the right

hand side of (14.11) is uniformly .

layer [O,;b, with coefficient ./2p/m(L/0 + 3X)/(1-t)

and exponent o =%, provided that t<l.

If in addition the second partial derivatives

§2 (x) , '
axmaz of the terminal function ¢ are uniformly
i
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Hdlderian with coefficient hé relative to the exponent

«€(0,1], i.e. if the hypotheses of Theorem IV are

fulfilled, then the second spatial partial derivatives

22ad (t,%)
are uniformly HYlderian in t on [O,lijp ,
Hxiaxj

with coefficient hi6a1a4-4® and exponent g =min {q/2,1/47 ,

Ia being given by (15.45).

2.8
d @AN(t.X)

axi ij

l16. Convergence of v@k%(t,x) and

22e0® (£, x)

AXi an

to V¢Ae(t,x) and . Lipschitz and Holder

coefficients on the latter. Theorems VI and VII

Fix on any §6[0,1), and on any bounded open

set G in Rp,

By Theorems III and V, the family {vrb)\%(t,x)}

is uniformly equicontinuous throughout [O,lijp.
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'Furthermore, its members are equibounded there

by LeA. Consider any subsequence of {v&kg(t,x)w.

" A subsequence of that subsequence must converge

uniformly on [0,1]xG, and it is a well-known
elementary result that the limit must be Vﬁﬁe(t,x).
Hence the whole sequence {v@X%(t,x)} converges
uniformly to V¢Ae(t,x) on [0,1]xG. In particular
it follows that vmxe(t,x) must have on [0,1]xG

the same uniform Lipschitz and HYlder properties

as those indicated for the individual v¢m%(t.X)

in Theorems III and V. Since these did not involve

G, they must hold throughout [0,1]xRp.

By Theorems III and V, the family
e (£,x)

} is uniformly equicontinuous thfoughout
o 228\ (t,x)

the layer [O0,t]xR™. Also, { axiaxj }
equibounded by the Lipschitz constant Ae of véhg(t,x)

is obviously

estimated by (14.2). Hence the whole sequence

°ar 2 (t,x) _
{ 3%, ox } converges uniformly on [0,t]xG to
173 a2an® (t,x) |
a function which has to be T That -function



92

[ T

has the same uniform HOlder coefficients on [0,t]xG

32and (t.%)
in Theorems

as those indicated for the
AX . dOX..
1 3]
IITI and V. Since these do not involve G, they hold
on [O,€j°Rp. Since t<1 is arbitrary, these derivatives
exist, and they satisfy the indicated HVlder conditions,

on {0,1)xRp.

In the statement of Theorem III, we noted that

2 (N)
the term e [J’m(x+z)d8”t (z) 1 in the representation

Axiaxj
(14.11) does not depend on N. It follows that the sequence
{ij(t,x)} converges oOn [0,1)xRp. Since Yﬁj(l,x)sso, that
sequence converges on [0,1]xRp. We denote the limit
function by Yij(t,x) and note that Yij(l,x)sso. By (15.41),
Yij(t,x) is uniformly HVlderian on [O,l]xRp with

coefficient 4@ and exponent o =%. We have thus proved

the following theorem.

THEOREM VI. Suppose the hypotheses of the second

paragraph of §2 satisfied, In particular, the terminal
function ¢ and its gradient ve are uniformly Lipschitzian
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throughout Rp, but nothing is said about any

~second derivatives. Then the Fleming randomized

- . a . .
value function &\  (t,x), whose existence is asserted

by Theorem I, has a gradient v&xe(t,x), defined on

rO,l]xRp, uniformly Lipschitzian in x there with

the constant Aeqiven by (14.2), and uniformly HSlderian

in t there with the gggfficient,hi given by (15.25)

The second_spatial derivatives of &Ae(t,x)

may be represented, for (t,x)G[O,l)xRp,_ in the form

azggegt,x)
AXiaxj
3 32 : %
= Yij(t,x)_+ S;;g;; [J o(x+z)dg™t (z) ] , (16.1)

Yij(t,x) , defined on [0,1]xRp, being the uniform

limit of the functions ‘Yqu_j(t,x) defined at (14.7) ,

and with nt==p/62(1~t). ‘Phe function Yij(t,x) is

uniformly Hvlderian in x on [O,l]xRp relative to any

8
a

exponent 0€(0,1), with coefficient ZCS/(l“a). ¢’ being
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given by (14.6), and uniformly Holderian in t

on [O,I]xRp with coefficient 4@ relative to the

exponent a=%, © keing given by (15.40).

The second term in the right side of (16.1)

is Holderian in x for fixed t<1 with the constant

hg tgiven by (14.10) relative to any a€(0,1), and

Hblderian in t on the layer [O,Ej with E?l,
with the coefficient.J2p/n(I¢©-+3A)/(1-€) and

exponent a=3%.

Finally, let B be any bounded set in Rp,

and t€r0,1) . Then the sequence ;v@k%(t,x)} converges

uniformly to v@&e(t.x) on [0,1]xB, and the sequence

2.8
{ 1 } converges uniformly to 2 A (t,x) op
oX; oXy AX. OX.
1 J i 3
[O,IJXB.

Using the representation (16.1), we deduce
trivially the following theorem, analogous to Theorem

IV and the last paragraph of Theorem V.
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THEOREM VII. Suppose in addition to the

' hypotheses of the second paragraph of §2 that the

terminal function o has second partial derivatives

which are uniformly HYlderian, with constant hi,

for some a€(0,1]. Then the second spatial partial

azéﬁejt,xl o)
derivatives exist throughout [0,1]xR" ,
axiaxj

and are uniformly Holderian there, with constant

202/(1—a)-+h§ in x relative to a , and constant

hiea1a4-4® and exponent B =min { a/2,1/4} in t, where

cg is given by (14.6), @ by (15.40), and I_ by

(15.45) .
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17. The parabolic partial differential

equation. Theorem VIII *

At the end of this section Fleming's parabolic
partial differential equation finally makes its
appearance. We show (Theorem VIII) that @Ae(t,x)
satisfies it; in §20 we prove this solution unigue

in a certain class 8.

We fix on any pair (t,x) with Eé[o,l). We
consider t<t such that (E;t)/(l—z) is rational; that
t might be negative is of no account. If (t-t)/(1-t) = P/Q

with P and Q integers, then we have ¥)

*) The reader may notice some superficial
similarities with the derivation of the Hamilton-

Jacobi equation for the (Q-problem in Value, V, §9.

-t _ l-t _ 1-t
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so that for any integer M>1

t=t _ 1-t _ _1-t
PM ~ QM =~ PM+OM ° (17.2)

We consider the (PM+QM)-stage Fleming game,
played over the interval (t,l). It has shocks of

1-t . 5

N . 2 *
standard deviation e(PM+QM) . Because of (17.2) *) ,

*) This was the original reason that the factor

1-t was introduced at (2.2) .

it may therefore betregarded as a PM-stage game,

played over[?,t)and having shocks of standard deviation

e(%ii)% . followed by a QM-stage game played over
[?}1) and having shocks of standard deviation 9(%;%)%.

We therefore fix attention on that PM-stage game,
which has the terminal function éagM(E)x). We will
call it the "Fleming PM-stage game", in order to
distinguish it from the "special PM-stage game"

defined below.
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In the special PM-stage game (not to be
confused with the game in §4), played, along with
the Fleming PM-stage game, over the interval {E,t)) v
there is only one shock Z, of standard deviation
e(T:'-t)!“i . It is applied at time t, before the shock
of the QM-stage game at that time. Thus the special
PM-stage game may be assumed to be deterministic,

with the terminal function
- 6 T %
b (x) = [ergy (E,x+2)dg" ¢ (2) . (17.3)

where nt==p/02(EFt). 8“ having been defined for

general x at (2.1).

We wish to compare the values of the Fleming
and special PM-stage games. In comparing these values
we once again (as in &4) use the same underlying sample
space, by representing a shock for the special PM-stage

game in the form

(17.4)

of a sum of shocks from the Fleming PM-stage game.
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We say that a sample point (zo,...,z ) for the

PM-1
latter game is good if Izo+-...+-zr|5;9(E;t)1/3 )
r=0,...,PM~1 . Otherwise it is bad. According

to the Kolmogorov inequality, the probability that
a shock is bad does not exceed (T:.-t)l/3 . Using
this estimate and the e—construction; we find that
the values of the PM-stage Fleming and special games,

starting at time t, do not differ by more than
@0 +20) Ll (E-0)43 . (17.3)
the details can by now safely be left to the reader.

Unitl we reach (17.])5), we shall be concerned
only with the special PM-stage game with terminal
function m(x) given by (17.3). Our first objective
is to find a suitable formula for {§(x), which we

give at (17.11)..

First we write out Taylor's series, to the

second power, for &AgM(E,x+Z), around x:
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o a8 T 6 == =
A M(t.X+Z) = @XQM(t.X)4-V¢AQM(t,x)-(x+Z X)

Y. 6 (P}\ (t x' ) (X +7. -X )(XJ+ZJ-X ) , (17.6)

4 Px axj

1
)
where x'E[;,x+Z] .

For the remainder of this section we fix on

azcmgm (t,x)
an arbitrary a€(0,1) . By Theorem III, 3%, OX
i

3
is uniformly H®lderian, with exponent n, 1in x, with

. 8 _ _ o8 /i1 8 _ .
coefficient Hq,t an/(l a) + ha,t given by (14.8)

and (14.10) . Using this and the inequality of
convexity |g+n|q5;2q-l(|§|q+|n|q) , holding for

any pair of vectors E,neRp and real number gsl, we get
9 - oM
QM( ' X) + a

e — -_
mQM(t.X+Z) A s (x+2-x)

1l © oM = =
+ 5 Z.clj(xi+zi Xi)(xj+zj xj)
+ (p/2)20‘H2';_'(|x-;|2+a+‘ 12*%0 (1) (17.7)
where
oM 8 — = om 2@ ‘I”‘e (t.x) (17.8)
= 9@ , >t = . .
a v xQM( t,x) i3 axlax
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In the special PM-stage game we are only interested
in x reachable from x in time t-t, so that |x-x|<y (t-t) .

We may therefore rewrite the second line in (17.7) as

%‘- z cS?(Zi+xi—;i) (Zj+xj-;j)
- %~.§:cg? 2% + f? 2, (x;%5) + ). QM(x X, ) (x57%;)
_=31 ZC?I;I.ZiZj+ S?Z (# -x)
+ (/2% % &)%) , (17.9)

9

where we recall that ]cggdl <28, being the uniform

Lipschitz constant for vdﬂ\%(t,x) given by (14.2).

As for the third line in (17.7), we first have

—(2+0 2+a —
|x~x l <M

(t- t) *a . Since we are going to carry
out the integration indicated in (17.3), we need a
formula for J' ]Z|2+a dgu‘t (2) . For this we put -

Z=6(€-t)%w . Then
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Jt !Zl2+a dBut (Z) - 62+d(¥_t) 1+ﬁ/2 T (17.10)

24q
where I2+a is the contant depending only on q

gotten by replacing a in (15.45) by 2+a.

We are now ready to carry out the integration
indicated in (17.3), wusing (17.7)-(17.10). 1In doing
.s0 we observe that the middle term in the first
expression in (17.9) vanishes, and the terms in

b QM

the sum cij Zizj vanish when i#j. The variance of

each Z. is QZ(E-t)/p . We thus get, for |x—;l 5H(E—t),

_ _ — a2 o

:
bix) = Moy ii

+ (/2?2 (®-6)%0 (1)

+ (P/2>2°‘H2,; [ u2+a (E—t)2+a

24q 7.y 1+a/2 ¢
+ 6 (t-t) 12+a]0(1) ’

(17.11)

the desired expression for y(x). This formula bears

LS



»

n

103

some resemblance to Fleming's (2.7) on page 201

of Convergence II. It is here that the Laplacian

term E:cg? first makes its appearance, in the
15 oM

integration of E'Z,Cij Zizj .

Thus, with the error indicated in (17.11),

the terminal function {§ (x) for the special PM-stage

game may be replaced by

i*(x) = c + oM (x-x) C(17.12)
where
- 2 .
_ a0 T (t-t)p° ¢ oM

The control function f(x,t,y,v) may now be replaced

by.?(u'v)==7(;;z}u,v) with a further error no greater

" than

(Buta) (t-6)2[a M| < (Au+e) (F-t) 2P . (17.14)

~ We are now once again dealing with the "simplest
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linear game" of Value, III, §8 (recall e.g. this

paper, at (5.5)) . The value of this game is

C-F(E;t)VQM, where

oM oM

v = Value ¢
UxV

cF (X, t, ) - (17.15)

We now return to the Fleming PM-stage game

)
PM+QOM

In passing from the Fleming game to the special game

starting at x at time t, whose value is @\ (t,x).
we incurred the error (17.5). 1In passing from the
terminal function § (x) given by (17.3) to the terminal
function {*(x) given by (17.12)-(17.13) we incurred
the additional error given in the second and third
lines of (17.11). Finally, in passing to the control
function T(;fz,u,u) we incurred the error estimated by
(17.14) . Putting all this together, we get

: = a8 (T3 4 (or) QM , (E=£)0 T oM

rag+20) LR (E-0) 73 0 (1) + (p/2)2 %02 E-6)20 (1)

1+q /2

+(p/2)2%8 ¢ 24 o By I, 10 (1)

r(Ap+a) (B-0)2LeP o (1) (17.16)
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where Irta is gotten from (15.45) by replacing

6
PM+QM

and éng(E,E)-oéle(E};) as M+ o. By the last sentence

of Theorem VI, uQM: VéK%M(E,E) -+ vd‘»ke (E,;) as M9 o,

so that vQM

a by 2+a. By Theorem I, &)\ (t,;)-»ﬁxe(t,;)

as given by (17.15) converges to v=v(t,x),

where

v(t, %)= value va\® (€,%) ¥ (X, T w 1) - (17.17)
UxV

oM
Cii
as given by (17.8) converges to

2. 87 =
_B_M%._)_ (17.18)

C.. =
ii A%
i

as M+o . Equation (17.16) therefore holds with
the subscripts PM+QM, QM deleted. Since ali its
terms \except the 0(1) terms, which indicate
inequalities) are continuous in t, it holds not
only for the special t<t for which the fraction
(E;t)/(l—z) is rational but for all t<t. We now

transpose ¢A6(Ef§) in (17.16) to the left, multiply
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through by -1, divide by E;t, and pass to the

limit as t+t~- . The result is:

8 (T Ty = -0 -
al_ (€% = -v Zc.

ii ¢ (17.19)

the subscript t- indicating the left partial
derivative , and v and Ciy being given by (17.17)

and (17.18) respectively. Finally, it is a particular
consequence of Theorem VI that the right hand side

of (17.19) is continuous in t for each fixed x.

Hence so is ¢A%_(Ef§). It follows from an elementary
argument that the right partial derivative @Ai+(§};)
exists as well for any t<l, and equals ¢Ai_(?}§).
Hence the partial derivative ¢Ai(€,§) exists for any
t<1l, and is given by

8 T Ty _ e _\
¢kt(t,x) =-v.- ) S, (17.20)

v and Ci4 being given by (17.17) and (17.18)

respectively. This is Fleming's parabolic equation.
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The local HB8lder properties of &Ai(t,x)for t<1

may easily be read off from the properties of

2,6

o &\ (t,x) as stated in the general
axiaxj _

and special cases in Theorems VI and VII. We shall

lee(t,x) and

not. present these in detail, only nbting that in

the special case @xi_(l,x) exists and satisfies (17.20).
We have thus proved the following theorem.
- THEOREM VIII (Fleming's parabolic equation).

Under the hypotheses of the second paragraph of §2,

the value function ¢xe(t,x) has, for any t<l and any

xERp, a partial derivative @Xi(t,x) with respect to t,

which is continuous in t and x. This derivative

is given explicitly by the formula

By (t.x) = =v(t,x) - (6%/2p) ad®(t,x) , (17.21)

where v(t,x) is given by (17.17) and the Laplacian

A@Ae(t,x) = > Cy in terms of the cii given by (17.18).
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If in addition the terminal function ¢ has
second partial derivatives which are uniformly Hblderian

with exponent a€(0,1], the partial derivative Q{(t,x)

exists throughout F_O,l]xRp and is uniformly Hblderian
in t with exponent B =Min { a/2,1/4} and in x with

exponent a.

For the second paragraph of this theorem we
need only note that v(t,x) is in any case uniformly
H8lderian in t with exponent % and uniformly Lipschitzian

in x.

Thus we have accomplished the main objective
of this paper, to prove, without recourse to existing
PDE theory and in fact in a completely elementary manner,
that Fleming's value function @ke(t,x) exists and
satisfies his parabolic.PDE. We have done this without
any assumption on the derivatives of the terminal

function beyond the first.

In the next section we clear up an apparent
deviation, noted preceding (2.1), between our
definition of Fleming's value and Fleming's own

definition of that value.
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18. Fleming's, and other, randomizations

The randomization introduced in this paper,
at (2.1) and (2.2), is different frém the one used
in Fleming's original definition of his value in
Cor.vergence II. For Fleming (top of page 199
in Convergence II) the_ith component z. of the
shock is either (in our notation) +6(1—t)%/p%N% or
—e(l—t)%/p%N%, éach with probability %. Thus
Flemingfs'sample space for his shocks has only
finitely many points; this was essential for his

proof of his Lemma 2.

On the other hand, the Gaussian shocks are
essential for our method, in the first place because
they yield smooth before position functions, and for

other reasons as well.

It is the object of this section to show that
both randomizations lead, in the limit, to the

same value.
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In fact we shall prove a slightlf stronger
proposition. We shall call a distribution g of
the shocks for the N-stage game at each of the times
To e TN=1 admissible provided it is the prbduct
of orthogonally and independently distributed one-
dimensional distributions of mean zero and standard
deviation e(l-t)%/p%N%. With this definition we

have the following theorem.

THEOREM IX. Under the hypotheses of the second
paragraph of §2, it does not matter which admissible
distribution of shocks is used in defining the value
of the N-stage randomized Fleming mixed-strateqy game;

the value function always converges uniformly as Now
on [0,1]xRP to the function &% (t,x) defined in §§2-5

using the Gaussian distribution.

PROOF. Consider an admissible distribution §*.
We shall denote the corresponding position functions

and value function by putting a star in place of 6.

G
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E Write

_ _ ¢}
6, = Sup |mk§(t,x.7n) mkN(t.X.Tn) ’ (18.1)
x€RP

n=0,...,N. Then 6N=0. Suppose that 05n5N42 and

that we have a finite estimate for § we are

n+l ’

leaving the estimation of § until later, at

N-1
(18.16). . By the Principle of the Transmission
of Continuity, we have

Sup Iékﬁ(t.x;Tn)?'ékg(t.x.Tn)IS_é (18.2)

n+l '
: xERp '

" so that for any x€RP

1. — .8
‘q))\ﬁ.(tixr Tn) CDKN(t'Xo Tn) ‘

| (1)
< |J‘&k%(t.x+z.wn)d3*(z)»-J’@A%(t,x+z,¢n)d3”t (z) |

1%

; . (18.3)

+ 6n+l.

oy

Now ék%(t,x,Tn) has the representation
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ad (t,x,2)
N-n
- (g-1) (N-n-1)
= ; I tn+q(t,x+z)d8Kt (z) + J’w(x+z)d8”t (z)
g=2

+ 1n+l(t1x) ’ . (18.4)

analogous to (8.2) . Using essentially the same
arguments as those leading to Theorem III, Wwe see
that the first term in this representation has second
spatial derivatives having the H®lder coefficient
2C§/(1—a) , Cg being given by (14.6), and that the

second term has second spatial derivatives having
8

the H8lder coefficient [N%/(N--nvl)%]hOL £ where
hg £’ given by (14.9), is fixed for t fixed. Thus

the sum {§ (x) of the first two terms in (18.4) is c%,

and the second derivative has H®lder coefficient

332 N _.%.8
Xy,n = 1o * (N-n-l) ho,t : (18.5)
We may therefore write
(+)v— (x) + vy (x)ez + = "ﬁ“&zz
‘sz—ll'x \h 2 Jaxibxjij
+ /2%, |z|**% ) . (18.6)
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Hence

: 2. o2 ()
[ v(xtz)dg*(z) = y(x) + T 2; : 2 a,ax_§

i
+ [(p/2)xa'n92+a(l-t)1+a/21f2‘+a/Nl+a/2] 0(1) ,
(18.7),

where
15, = [ |w|**® aw* w) | (18.8)

W* being the distribution of standard deviation 1 and
homothetic to g§* gotten by putting z==9(l—t)%w/N% ’

depends only on q. We have the similar formula for
(1) .
f w(x+z)d3”t (z), in terms of the 12+a gotten by

replacing the ¢ in (15.45) by 2+q. Hence

(1)
| [ o (x+z)dg*(z) - jq,(x+z)d3"t (z) |

l+a /2
< /2)X, (@5, I )N . (18.9)
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The remsining term in the representation (18.4),
1n(t,x), is in general not even differentiable. But
we have the estimate (13.9) for its Lipschitz constant

Y, Hence

1, (trx+z) = ¢ (E,x) + |z|A (1+T)O (L) /N, (18.10)
so that

[ 1, (€, x+z) dg*(z) = ¢ (t,x) + A(14T)6 (1-£) S0 (/N

(18.11)

(1)
and similarly for ‘ftn(t,x+z)dgut (z) : hence

(1)
1 (t,x+z)dg*(z) - 1 _(t,x+z)d e (2) 5,2A(1+T)6/N3/2 .
J‘ n 8 n 8

(18.12)

On combining (18.3), (18.9), and (18.12), we get

)X /Nlm/2 + 2A(1+P)B/N3/2,

2+Q oy
(I I2+a a.,n

2+a,+

8y S8pyqt (P/2)8

(18.13)
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* ’ n=0,...,N-2 . On noting that
¢ 1 N—'2 2c® 5 .
v }J X, o < T2 2m (18.14)
n=0

we find that

24+a a ) /2
8g < by—q T POT O (IF, + I, )Gt ha,t)/Na
+ 2 (N-1)A (1+T) o /N372 . (18.15)

One now easily fills in the missing step at

=N-1 and gets

< 218/N% + 28 (14T)e /N2, (18.16)

SN-1

so that

@it (£, %) - S (£, |

6
C
2+a —a . 48 a/2 %
< PO (IS, Y Igy, ) (Pog t By I/ANTTT 4 2L6/N

W

+ 2!\(1"'1")9/1‘1;i . (18.17)
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. Now for any sample p01nt g*-—(zo,...,zN l)

of the alternate randomization and any succession

of controls UQr Ve ==erly_qs U we have

|2y x| < u(1-t) + lz6+-...+-z* (18.18)

fe1l
X=Xq being the starting point, so that

Ico(xN)-cP(x)l R(1-t)L + |z¥+...+z} [ |L. (18.19)
Using an e-construction, one immediately sees that

|#Ag (£,x) -0 (x) | < < u(1-6)L+0 (1-6)%L . (18.20)

We have the similar inequality for the Gaussian

‘randomization, so that
|«m*(t x) - cme (£.%)] < 2(utn) (1-t) 7L .  (18.21)

Let ¢>0. We choose t€[0,1) so that

2(u+9)(14€)%<:g; Then we choose N, so large that the

]
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right side of (18.17), calculated at NO and'E,
. . ] O _ if t<T
is less than ¢. Since ha,t<:ha,t , then

|¢A§(t,x)-—¢k%(t,x)|«<s for all N>N. and all te¢[oO,1;.

0
@Aﬁ(t,x) therefore converges uniformly to @Ae(t,x) as Na«

on [0,1]xRp, and the theorem is proved. (u]

The proof of this theorem, . éiven the
machinery now at our command, was quite siﬁple.
waever the theorem itself, using the delicate
estimate (13.9) for y, and the equally delicate
HOlder estimates on the second derivatives, is
‘far'from trivial. It answers affirmatively the
conjecture made by Flemihg in Convergence II,top of
page 199, where he said "The central limit theorem
suggests that the form of the distribution of the
[shocks] is unimportant for large [N] ." However
"~ the question does not appear to this writer to have

anything to do with the central limit theorem.
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19. The integral equation. Theorem X

It is possible to find an integral
generalization of the parabolic equation, as

follows.

THEOREM X. Suppose that &(t,x) is_ uniformly

Ldgggh;tz1an in [O, 1]xRp and has bounded generalized

gpatial partial derivatives —3—— [®(t,x)] such that
ax.

the equation .
| 2
Be(t,x) + 25 A8(tx) + v*(tx) =0 (19.1)

holds almost everywhere, where

v*(t,x) = Value vd(t,x) t(x,t,u,v) . (19.2)
UxV

Suppose further.that B(1,x) =0 (x) thfbughout rRP.
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Then for all (t,x)E[O,l]xRp we _have

2
Bt,x) = [ olxrz)agh/® (78 (4
RP
1 2
+ [ar [ vr(r,xez)ag?® (7B (5,
t RP
(19.3)
where 3” was _defined at (2.1).
PROOF. Put f(t) =&(t,x), and
n \p/2 —n(22+ ‘+22)/2
(1) = GO [ a(r,x+z)e 1" %p
RP
azy ++ dz (19.4)

for T€(t,1], where n==p/62(7-t). Then f(7) is

continuous on [t,l] and

e mm—— L

~—
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- 2 2
Flr) = (_Z_g;)p/z [ &, (1,x+z)e n(zl+...+zp)/2
P
R

dzl LN ) dzp

+ P 2(p/20% (r-tF)

_ 2 2
I (Zi+. . .+z£2))¢‘(1',x+z)e " (z]_+‘ . .+zp)/2

rP

dzl s dzp

- (/2) @2 @2n/n) (1/2m) (p/6? (1-8))

2 2
[ &(1,x+z)e " (Z1F-- °+zp)/2

RrP
le s e dzp

- 2 2
= (ﬁ)P/z ‘I‘ d)t('r.X+Z)e K(Zl+...+zp)/2

rP

le o0 dzp

+ (_2A)P/2 (92/2p) J [nz (z:2L+...+z§)-pu]¢('r.x+z)
™ Rp

2 2
n (z1+. . .+zp)/2

e élzlo--dzp
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- 2 2
(EKT—T)F>/2 I (I’t(T'X‘i'Z)e K(Zl+...+zp)/2
P
R

dzl-»- dzp

+ (fﬁ)p/z(ez/Zp)

2 2
AT J- &(7,%+z)e n(zl+...+zp)/2
RP

dzlooo dzp J
- (j#)P/Z J1 [ét(T'x+z)*'(92/2P)A¢(T,x+z)]
p
R

2 2 |
g M (2Fe o +2) /2 dzy +esdz . (19.5)

Since @ is uniformly Lipschitzian in t and the derivatives

82¢/axi2 bounded, it follows that,f(w) is bounded on

(t,1], and hence f uniformly Lipschitzian there. Hénce

1
J() -7t) = [ fndr .

t

(19.6)

Formula (19.3) is now an immediate consequence of

(19.5) and (19.1). The theorem is proved.

g e o e an
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20. Unigqueness. Theorem XI

We shall say that a function &(t,x) defined
on [0,l]xRp is in the class & provided it is uniformly
Lipschitzian in both variables, and satisfies equation

(19.3) almost everywhere in [0,1]xRp.

We have seen from Theorem X that the class @
includes all uniformly Lipschitzian functions &(t,x),
taking on the prescribed boundary values &(l,x)=¢(x),
and having bounded generalized second partial derivatives
—QEE [®(t,x)] such that the parabolic equation (19.1)

X .
hoids almost everywhere. In particular, from Theorem VIII,

the class & includes the Fleming value function @Ae(t,x).

THEOREM XI. Under the hypotheses of the

o

second paragraph of §2, the clags ® consists of

the single element @ke(t,x) . ‘ =

PROOF. The result is trivial if t=1, so we

fix on a t<l. We need first to estimate the spatial
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4 derivatives of the right hand integral in (19.3).

If we do this through the Gaussian distributions we

LY

'will arrive at an improper integral. We therefore

seek to estimate the difference quotients of the
t f

1 | 2,
integral I dr f v*(T,x+z)dBP/9 (T t) (z) .
t rP
where tlé(t,l], directly.

Suppose that xi#xi. Put x==(xl....,xp) and

-~

x.==(xl,...,xi_l,xi,xi+l,...,xp), so that x and x

i
differ only in the ith coordinate. We are interested

in the difference

1 2 :
[ ar | [v*(r,%+2) - v*('r,x+z)]d,8p/e (1-t) (z) .
t RrP

(20.2)

v* having been defined for &cf by (19.2). Now we fix
on a TE(t.tl] and once again write n=p/62(¢-t) . We

- write the inside integral in (20.2) in the form
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]' [v¥*(7,%+2) —‘v*('r,x+z)] d,gK (z)

rP
2 2 2 2
(.22$;)p/2 [ e w(zlte..tzy_q vzl + “ee¥20)/2
rP™L
dz1 eeedz, c'lzi_‘_1 vo dzp X

X Il V*(T'Zl'""Zi—l'yi'zi+1""'zp)
R

_ _ 2 _ _ 2
e u»(yi xi) /2-3 n(yi xi) /2jdy ]

i
(20.3)

For the quantity in square brackets we use the integral

form of the law of the mean:

%022 | n(yyx) 22

X, 2
= w7 oy -ep a8 /2 g L (20.0)

£5
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Using this we estimate the inside integral in (20.3)

as not 1argef in modulus than

%
2
' - . —E . 2
[laggl ] alyg-gglunee™ 0802 4y,
X R

= 2uA*| %, -x. | . ‘ (20.5)

Hence the modulus of the overall integral in (20.3)

does not exceed

Jo2u/m ubh* % -xq| = .mﬂ*/BLJZP/n(T-t)-%lii—x1| .
(20.6)

It follows that the modulus of the difference (20.2)

does not exceed
EY | 3
(2uA*/8)/2p/m (£1=t) *|%y-x, | . (20.7)

Thus the desired difference quotient does not

exceed .(2;,11\""/9),\/2p/1—r(1:1—t);i .
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Now we consider the other part of the integral

in the right hand side of (20.3), with ty still on

(t,1]. We get

3 1 ' 5
ax, (far [ V*(T,x+z)d8P/9 (7-t) (2) ]
t

p
1 R
1 2
= .r —EgﬁzL—— I ziv*(fr,x+z)dgp/g (=) (z)

2
=] 8% (1-t) | Zi"*(*'x*'z)dap/e () (a)
t T RP

+ (2uA*/8)/2p/1 (tl-t);iO (1). (20.8)

On combining this with the estimate (20.7) and

taking account of the fact thétutiis arbitrary

on (t,l], we see that the derivative of the whole second

integral on the right side of (19.3) exists and that

in fact
2 F /62 (1-t)
vy ['f dr I v* (r,x+z)dg (z) ]
Lot rRP
1 par /Qz(w—t)
= J‘ ———— J‘ ZiV*(T;x+Z)d8p (Z) .

2
t ) (‘T-t) Rp

(20.9)

v

W
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It follows in particular that the gradient v&(t,x)

exists everywhere on [0,1]xRp.

The above formulas have been written down
for an arbitrary element & of ®. Now suppose also
that &'€e , and denote by v*' the value function

corresponding to &' under (19.2). Put

5(t) = sSup |v&(t,x)-ve' (t,x)| . (20.10)
x€RrP

Evidently 6(t)52A*.

Using formulas (19.3) and (20.9), we find

immediately that

-1 D o
Iaxi[tb(t.X)J. axi[s»(t.x)]l

! ps(r)a 2 (4=

62 (1-t)

t rP

- w/2p/n I _ﬁill; ar | (20.11)

so that
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t
—_~
=

I
o+
ﬁt
3
I
t
~
A

“Since §(t)<2A*, we find from (20.12) that
5 (t) < Kl(l-t)% . (20.13)

where K1=4ppA*/9 . Suppose that m>l and that we
have proved that

m/2

8 (t) S,Km(l—t) (20.14)

for some Km‘ On substituting this into (20.12) we

get

1 . _m/2 o ’
5(t) < p/o)K_ [ —%’)—%— ar = (2up/0)K_ [ (c? - %)™ as
t 7 0

9

- —ey (m+l) /2
= Km+l(l t) R (20.15)
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where
n/2
K1 = (ZHP/G)Km I (cos w)m+l dw (20.16)
0

and we wrote c = (].--1:);5 so as to recognize the

integral. If we now choose m,. SO that
(2up/8) [ (cos o)™ ay < 1 for all m>m,, then
, 0

K1 < ¥p for all m2m . It follows that

5(t) <K_ (1-t)™/2
)

for all m>mg, SO that 6(t) =0
for all t€(0,1]. Then obviously §(0)=0 as well.
Hence v*(t,x) =v*' (t,x) for all pairs t,x, so

that from (19.3) &(t,x) = &' (t,x) for all pairs

t,x, and the theorem is proved. ' o
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4
21. Other values. Theorem XII

13

One may also define N-stage games with shocks
of standard deviation 6(1—1:);5/N;i corresponding to
the unrandomized games having values img(t,x), F§(t,x),
VRD&(t,x), VREKD;(t.x) and EKg(t,x) as defined in

Value, Chapter I *) . We denote these values by

t

*) Except that here we have a general starting

time te[0,1], as we did in §88-10 of Value, Chapter V.

the addition of a superscript §. The existence proof
for the limit ¢A+9(t,x) of the sequence {@xge(t,x)}
follows the general lines of §§4,5 , except that we
use a piecewise-constant g-construction as for the
corresponding problem in the early sections of Chapter S
IV of Value, and the v in (5.5) is replaced by a MinMax.

-

One proves by a trivial carryover of the arguments

of Value, V, 87 that the limits F+9(t,x) and

VRD+e(t,x) exist as well and equal ¢A+e(t,x). In
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the corresponding parabolic equation the v(t,x) of

(17.17) is replaced by

V(t,x) = Min Max van"® (£,x) % (x, €, 0) . (21.1)
vEV €U :

One then proves as in Value, IV, §11 that the limits

VREKD+6(t,x) and EK+e(t,x) exist and equal @ke(t,x).

We summarize these facts in the following theorem.

THEOREM XII. The upper randomized values
¢A+e(t,x). F+e(t,x), and VRD+e(t,x) exist and are

equal. They satisfy a parabolic equation analogous
to (17.21) except that v(t,x) is replaced by the

;(t,x) of (21.1). All the facts stated in Theorems

VI-XI for ¢ke(t,x) carry over to ¢&+e(t,x) .

The upper randomized values VREKD+e(t;x).and

EK+e(t,x) exist and equal @Ae(t,x) .

There is also a parabolic equation for the
-problem. The formulation is rather more clumsy
than the others and we leave it to the interested

reader.
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i

§22. Fleming's trick and a special class
of parabolic equations with Laplacian operator.

Theorem XIIT

Q

One may combine the methods of this paper
with a simplified version of a clever device
introduced by Fleming in §4 of (6] to obtain
an elementary proof of an existence and uniqueness
theorem for a parabolic equation in appearance
somewhat more general than (17.21). The equation

in question is
&, (t,x) + 2&(t,x) + F(t,x,vo(t,x)) = 0, (22.1)

where F(t,x,8) is locally Lipschitzian in t and x

with constant C(1+|a|). uniformly Lipschitzian in

la

a with constant i, and satisfies
|F(t,x,0)] < K (22.2)

for some K and all (t,x)G[O,l]xRp . These
conditions are rather more restrictive than
Fleming's conditions (4.3') in [6]. The terminal

conditions are:
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<T-‘(1'x) = CP(X) : (22.3)
for all xeRP, where », as in §2, 1is Lipschitzian

with constant L and has a gradient vo which is

Lipschitzian with constant ).

As in §19, we consider the integral

equmation
*(t,x) = | cp(x+Z)d.81/2(1-t) (z)
rP -
! | 1/2 (r-t)
+ [ ar [ F(r,x,v&(r,x)dg T (z) .
t rP |

(22.4)

Any uniformly Lipschitzian function & on [0,1]xRp
having bounded generalized second spatial partial
derivatives such that (22.1)—(22,3) is satisfied
almost everywhere also satisfies (22.4). We may

therefore regard (22.4) as the generalized form of-:

(22.1)-(22.3) .
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3]

Our version of Fleming's trick is as
follows. We play the game in Rp+1. As U we
take the set of p-vectors y= (ull...,up) e RP
satisfying |u| < (L-l-l)eA, where A = 3(p+1);5c/2. As
V we take the unit sphere (vl)2 + ...+ (uzp)2 =1,

We put

. ( ) i . _
Tl(xltlulv) = F t X 2 + ((D"'l)vl ’ l=1'-¢o'p7
1+|ul
(22.5)

Tp-l-l(xltIUl‘D) = 'E;(MdzLL = (W'*'l)u‘v ’
1+|u|

where w= (3/2)Max{ K,t } . As the payoff we take
the function w(x,xp+1) = @o(x) + xp+1, where

X = (xl, .. .,xp)ERp.

Since (s+sz)/(l+sz) < 3/2 for all real s,

we see that ¢ is bounded by u= (p-l-l);io (3/2)Max fK,1} +
%

+ (p+l) “(w+t) = (P+1)%(m+t). Similarly, ¢ is uniformly -
Lipschitzian in t and x with the constant A= 3(p+1)!5c/2

defined above. The terminal function § is uniformly
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Lipschitzian in Rp+1 with constant I+1, and

its gradient (vo(x),l) is uniformly Lipschitzian
there with constant A. Here v denotes the gradient
operator in rP. We take 6==J5§i. The hypothese§
of the second paragraph of §2 concerning the game

defined by U, V, §, §, and § are then all satisfied.

We take the game to be the Fleming lower
(minorant) randomized game, in which the operation
of taking the value at each stage is replaced by
a Max-Min operation. Following §21, we denote
the value of the N-stage game by @x;e(t,x,xp+l).

As we noted in §21, the entire apparatus of this
paper carries over to this game. The limiting
value function ¢A—e(t,x,xp+l) then exists, has the

same Lipschitz and H8lder properties as the mixed-

strategy value &le(t,x), and satisfies the parabolic

partial differential equation (17.21) in which v
has been replaced by the v gotten by replacing the
Min-Max in (21.1) by Max-Min. All we have now to

do is to calculate v in the case at hand.
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Evidently we may decompose @&—ejt,x,xp+l)

into the form
a0 (&, x,xP™Y) = a(t.x) + =P, (22.6)
so that

7 pr1 B (t,x, ") = a(t,x),1) ., (22.7)

the unsubscripted v always denoting the gradient

in RP. If we write g =v&(t,x) we get

X(t:xlxp‘l-l) = Max Min
u€U vev

F(t,x,u) (I+yea) _ (w+t) (u=a)ov 1 .
; 1+ |u|2 - :

(22.8)

For each fixed u#a, if we choose v= (u-a)/|u-a]

we get

“

e
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Flt,x,y) (Ityeq)
Elleewd (hura) _ (4y) (uma) ow
1+ |ul
= F(t,x,u) + Elt.x '2 — - (w+t) |u-al
1+ |u|
< F(t,x,0) + t]u-a| + w|ua] - (wte) |u=al
= F(x,t,a) . (22.9)

It we choose y=q, thei quantity in brackets in
(22.8) is equal to F(t,x,a) independently of v.

Hence

z(t.X.xp+1) = F(t,x,v®(t,x)) , (22.10)

.80 that & satisfies (22.1) . & therefore satisfies

(22.4), and is, by the carryover of Theorem XI,
the only uniformly Lipschitzian solution of (22.4).

We have thus proved the following theorem.
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THEOREM XIII. Suppose F and o satisfy

the conditions stated in the first paragraph
of this section. Then the integral equation

(22.4), which is the generalized form of the
parabolic equation (22.1)-(22.3), has, among
the class of all uniformly Lipschitzian & defined
on [0,1]xRp, a ﬁnigue solution. v& is uniformly
Hblderian in t with exponent %, and uniformly
Lipschitzian in x. The second term on the right

of (22.4) has second spatial derivatives which

" are uniformly HBlderian in t with exponent % and

uniformly HYlderian in x relative to any exponent
ae (0, 1) -

If in addition ¢ has gecond partial
derivatives satisfying a uniform HYlder condition

with exponent «€(0,1], then & and the second

spatial partial derivatives azm/axiaxj - are

19

uniformly H8lderian in t with exgonent'B==Min{ a/2,1/4}

and uniformly Hblderian in x with exponent «. -
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The first paragraph in this theorem,
with its light conditions on ¢, is apparently
new. The second paragraph is a very special
case of Theorem XIV of [10], which appears to

make the stronger assertion that g=a/2 *) .

*) Interim note in draft: I have written

Professor Oleinik questioning her on this point.

If F is not Lipschitzian in t, & as given by
(22.6) still exists and satisfies (22.1)-(22.3), but
vé and the azm/axiaxj lose their HBlder properties

relative to t, and there is no unigueness assertion.

Fleming's trick in [6] appliéd to an F involving
- not only vé& bgt also ®. That does not make the trick
itself any harder, but it leads to a differential game
of a type radically different from that treated in this
paper, in which the position functioﬁ is at each stage
multiplied by a function (near unit?) depending on the
strategies of the players (see formula (3.3) in [é])'-
The problem of a direct approach to such games on the

lines of the present paper appears to be very difficult.
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GLOSSARY

We have tried in this paper to adhere
to a uniformvnotation, consistent with that
of Value, and to avoid using special symbols
for different things. We have ourselves, éonsidering
that this paper has 236 displayed formulas and uses
a good fraction of the available alphabets, had
difficulty in recalling notations. So we have

provided'this Glossary.

Gothic al habét

(] p-vector, denotihg a gradient; used at
(17.8) ff.
control function; see second paragraph of §2
[ class of solutions of integral equation; see 819
B global strategy for maximizing player in
Fleming's mixed-stragegy game; see just
preceding (4.19)

9 same, for minimizing player

&
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"stick", used at (7.5)-(7.9) and at (15.9)
function whose values are position vectors
3” is spherically symmetric Gaussian

distribution in RP with standard deviation

Jp/n ; defined at (2.1)

Greek alphabet

H81lder exponent, exclusively
H6lder exponent, defined first in Theorem VII

y. is Lipschitz coefficient of 1n(t,x); see 8§87

n
a constant defined at (13.7): exclﬁsive

the conventional spatial Laplacian in RP
generic; used in estimating deviations

used only in referring to the e-construction;
see §4 and Chapter IV of Value

a sample point in the product space ofvshocks7
see §4

generic; used in estimations

8 (1-t) % /N7

is the standard deviation of
one shock in the Fleming game; see the second

paragraph of §2



A*

< T

(ha 1]

142

a constant, defined at (15.40)

'n is the fundamental incremental function,
defined at (2.9)

éarameter in Gaussian distribution; used
variously at (2.1) and in §819,20

Lioschitz constant of gradient vep of terminal
function; defined in second paragraph of §2
Lipschitz constant of v&&e(t,x) in x

defined at (8.4): exclusive

Lipschitz constant used in §§l9,20.

bound for |f|: see second paragraph of §2
defined at (5.2): exclusive

generic, preceding (17.7); also, gi is

a parameter defined at (20.4)

joint distribution of shocks; see following
(4.21)

3.1415926535...

time parameter, used throughout

Fleming's mixed-strategy randomized value

function; also after position function; see §2

before position function; see (2.4) and (2.7)

t
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a solution of the parabolic equation;
see §$19,20

terminal function, exclusively; see &2
generic; sometimes a HOlder coefficient,

as at (15.1), sometimes a function, as at (3.1)

X , at (18.5), 1is a HBlder coefficient.

a,n ,
Here we intend capital greek chi, not latin

capital x

used generically in several places. wn(t,X)
is used specifically in the representation
(2.10)-(2.11)

the functions Vij are defined at (14.7)
generic; there is a special definition of

w(t,8) at (13.1)

Latin alphabet

Lipschitz constant of ¥ in>x
Lipschitz constant of ¢ in t
bounded set in RP
generic; used at (5.6) for a constant, in §17
for partial derivatives, and at (20.15) to
denote (1—t)%

8

generic; the important constant C, 1is

defined at (14.6)
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the determinants D, are defined at (9.5)
the coefficients d? of yk in (-1)i-lDi are
defined in the first paragraph of §10
expectation, in 84, and error, in 815
e==[i/2], defined following (12.5); to
be distinguished from e

exponential function (exclusively)

generic function, wused several times

see §22

bounded open region in rP

generic function, used several times

H8lder coefficient, modified variously by

subscripts and superscripts as follows:

hg is defined at (14.10)

t
tpt'
n
h% is defined at (15.25)

h is defined at (15.2)

hi‘is defined in the statement of Theorem VII

H(t) is a function defined at (15.22). Hg .
. &

is defined preceding (17.7)
Ia is defined at (15.45) ; Iota is

gotten from Ia by replacing o by 2+a

1

{ (]
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sometimes row of matrix, as in §9 '
other times index of coordinate in RF
sometimes column of matrix, as in §9,
other times index of coordinate in RP
integer index, introduced in 810

generic, always a bound

n

4. is Lipschitz constant of vmxe(t,x,Tn) in x

generic  for a Lipschitz constant; see §3 or §14
Lipschitz constant of the terminal fitnction o
generic; used in many ways

number of groups of stages; see §4. Also:
M(t) is a function, defined at (15.35)

index of a stage in an N-stage game

number of stages in a game . |

0(l) is any scalar or veétor with 10(1) |<1
generic integer

dimension of the playing space

generic integer

generic integer, és at (8.6) or (11.1)

generic integer
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Euclidean p-dimensional space
generic; used in many ways, e.g. a
standard deviation in &6

starting time of game

control space for maximizing player

" a control for maximizing player

control space for minimizing player

a control for minimizing player

value of a game, used frequently; to
be distinguished from v

generic; wusually variable of integration

. position vector in RP

Xn+l(xn'un'”n) is defined following (2.3)
Do not confuse with greek letter X, dg.v.
parameter, defined at (8.5)

shock; see §2 ff.

sum of shocks; see in particular (4.1)

Special s ols

gradient operator, in rP
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