

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PREFIX PRECEDENCE GRAMMAR

by

Jeff Nee Yang

Memorandum No. EEL-M451

16 July 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PREFIX PRECEDENCE GRAMMAR*

by

Jeff Nee Yang

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

I. Introduction

A class of context—free grammars called prefix precedence grrs

is defined. This class is shown to include simple precedence grammars

as a proper subset. The construction of a fast, small, and extensible

parser for these grammars is described. Four inspection rules are

given which allow one to check whether a given grammar is a prefix

precedence grammar. These features make prefix precedence grammars useful

in the design of extensible programming languages [2].

II. Terminology

A language is a set of sentences. Each sentence is a finite string

of symbols from an alphabet set Z. Hence a language is a subset of the
ic

set Z of all finite strings of symbols from Z. And a graimnqr is a

means of defining a language (i.e. specifying which strings are

sentences in the language) and ascribing structure to its sentences. In

this paper, we specify a language, L(G), by a context-free grammar, G,

which is defined as a finite set of productions (or rewriting rules) of

This paper is a development of one of the ideas proposed in [2].
Somewhat similar ideas have been developed independently by M. Geller
in his work on production prefix grammars.

Research sponsored by the Naval Electronic Systems Command Contract
N00039-71-C-0255.

the form A x with the following properties:

1. A ^ N, where N is a finite set of nonterminal symbols which are

used in defining the language. NO E = (().

2. X is a nonempty string whose symbols are in the set N ^ Z.

A is called the left part and x the right part of the production A -»• x.

There is a special symbol in N called the starting symbol and denoted by

S. Figure 1 is an example of a grammar with E = (a,*,+), N = (E,T),

and S = E.

E E + T

E T

T -V a * T

T ^ a

FIG 1. Grammar Gl: N = (E,T); E =» (a,*,+); S = E

Unless otherwise specified, uppercase letters at the beginning of

alphabet (A,are used for nonterminal symbols in N, lowercase

letters at the beginning of alphabet (a,b,c,...) for symbols in E,

uppercase letters at the end of alphabet (Hr,X,Y,...) for symbols in V

(V = N U E), and lowercase letters at the end of alphabet (u,v,w,x,...)

for strings, in V.

In order to show how a context-free grammar defines a language, we

need some further definitions. We say that y is a direct derivative of

z (written z => y) by applying the production A x if there are

(possibly empty) strings u and v such that z = uAv and y =.uxv. The

substring x is called a phrase of string y. The transitive closure of

"=>" is denoted by z y if there exist strings Zq,Z^,Z2, .. •,Z^

-2-

sucli tlist Z ~ ^0* ^0 *** ^i—X^ ~ V' V caXXsd filia

derivative of z, and the sequence Z = Zq =» => ... Z^ = y is a derivation

of y from z. We write Zi y, if Z4 y and Z ^ y. The derivatives of

the starting symbol S are called the sentential forms« A sentence is

a sentential form consisting only of terminals. The language L(G) of

a grammar 6 is defined as the set of sentences.

L(G) = {x|s 4 XKXe E*}

In the grammar G1 of Fig, 1, L(G1) is the set of all arithmatic

expressions using operator + and *, and the operand a. The sentence

a+a*a can be derived from E as follows: E=>E + T=>E + a*T E + a*a

T + a*a => a + a*a. Any sentential form can be represented by a syntax

tree reflecting its derivation. The syntax tree of a + a*a is shown in

Fig, 2, In Fig, 2a, we put phrase markers at the beginning and the end

of each production in order to illustrate the phrase structure of the

sentence and to give some idea of how the sentence is derived from the

starting symbol. Thus, given a context-free grammar one can generate

sentences of the language by deriving them and their syntax trees from

the starting symbol. Compilers, on the other hand, have the opposite

problem: given a sentence r and a grammar G, construct a derivation of

r and find a corresponding syntax tree. This is the process of parsing

of the sentence.

A A
E + T (E + T) .

I A I lA
T a * T (T) (a * T)

a a (a) (a)

Fig, 2, Syntax Tree of a+a*a Fig, 2a, (((a)) + (a*(a)))

• . • •-3- •

III. Bottom Up Parsing

The parsing algorithm that we shall be considering belongs to the

class of bottom up parsing methods which analyze the input sentence r

and construct the syntax tree of r from bottom to top. A bottom up

parsing algorithm can be thought of as the iteration of the following

two steps applied to a string y G v*. Initially y is in E*.

1. Find the leftmost phrase, x, of y (detection of phrase).

2. Determine the production involved, say A •> x, and replace x by

A to obtain a new y (reduction of phrase).

Assume we know all the phrase markers of the input string (e.g. string

in Fig. 2a). Detection of phrase in a bottom up parsing algorithm now

consists of scanning the input string from left to right until the first)

is encountered and then retreating back to the last (. Between these

two parentheses is a phrase and we reduce this phrase to the corresponding

nonterminal by consulting the production set. Fig. 3 shows the history

of bottom up parsing of the input string a+a*a.
E

I
T T

I I
a+a*a a+a*a a+a*a

(((a)))+(a*(a))) > ((T)+(a*(a))) (E+(a*(a))) -»•

/\E E T E

I I I
T T T / T T

a+a*a a+a*a i+a*a
(E+(a*T)) ^ (E+T) ^ E

Fig. 3. History of bottom up parsing of the input string a+a*a.

T

-4-

In general, if the given grammar is uniquely invertible (i.e., no

two productions have the same right part), reduction can be done easily

once the phrase is detected. Hence detection of the phrase,in other words,

finding phrase markers, is the major problem in parsing.

A class of context-free grammars called simple precedence grammars

was first described by Wirth and Weber [1]. It has the property that

all the phrase markers can be detected by comparing two adjacent symbols

in the sentential form. Grammar G1 is a simple precedence grammar and

its precedence matrix is shown in Fig. 4. Where (' corresponds to left

phrase marker,•) corresponds to right phrase marker, = means no phrase

marker, and blank means error.

E T a + X A

E = >

T . > >

a > = >

+ = <

X = <

A < < <•

Fig. 4. Precedence Matrix of Grammar G1 (A represents empty string).

To parse a sentence of a simple precedence grammar, we scan the input

string from left to right and compare each pair of adjacent symbols in

sequence. If the precedence relation between these two symbols is -,

then the scanning head is moved one character to the right. If the

relation is (*, then a (• is inserted between these two symbols and the

-5-

head moved to the right. If the relation is*) , then the scanning head

is retreated back to the left of the last (*ahd the phrase is reduced to

the corresponding nonterminal.

The idea of simple precedence grammar can be generalized as follows:

instead of comparing two adjacent symbols to detect the phrase, we use

all the symbols back to the last (i.e., the prefix of the right part

of some production) to detect the phrase since eventually this information

will be used to reduce the phrase.

IV. Prefix Precedence Grammars

Definition. There are three prefix precedence relations, <•, and

'), between a prefix w of some production and a symbol Y. They are

defined as follows.

1. w = Y if A -»• wYu is a production.

/ +2. w * Y if A wBu is a production and B => Yu.

3. W•> Y if A w is a production and Y € F(A), where F(A)

= {b|b ^ Z, S yAbz}.

Definition. A context-free grammar is a prefix precedence grammar

iff the following two conditions are satisfied:

1. At most one prefix precedence relation holds between a pair of

prefix and symbol.

2. If two productions A -»• x and B x have the same right part, then

F(A) n F(B) = <|>.

Grammar G1 is a prefix precedence grammar. The prefix precedence relation

of grammar G1 is shown in Fig. 5. Each row corresponds to a prefix and

we refer to it as a state. The corresponding parsing flowchart is shown

in Figure 6.

-6-

a + >« E T A

1 E = >

2 E+ < =

3 E+T > >

4 T > >

5 a > = >

6 < =

7 g>^T > >

0 A < < <

Figure 5.

-7-

I
C

D I

A

<
T

-«
>

4

>
+

>
A

#
-
T

=
T

<
a

5
6

=
T

a
q

K

>
+

>
A

#
T

—
a

F
ig

u
re

6
.

>
+

«
P

E
+

T
3

E
+

T

>
+

a
tt

T
-"

o
>

«
T

7

q
K

T

During the parsing process we maintain a stack, denoted by

" S„|Yu (1)

The portion to the left of the vertical line consists of the names of

states; this represents the portion of a string which has already been

scanned. To the right of the vertical line is the remaining input

string. is the current state and Y is the current input character.

Initially we are in state S^, the stack to the left of the vertical

line in (1) contains only S^, and the string to be parsed appears to

the right. Inductively, at any state during the parsing process and with

the stack contents as given by (1), there are three possible next steps:

1. If Y, then delete Yand put Sy (next state) to the right of

S ,
w'

US Iyu US S |u
w' w y'

2. If S = Y, then delete Y and change the current state S to S ,
w ^ w wy

US Iyu ->• us |u
w' wy'

3. If S^ *)'Y and Y^ F(A), then output A-> w, insert A to the right

of Y, and pop off the current state (i.e., delete S),
w

US Iyu -»• uIayu
w' '

This process is iterated until the input string is reduced to a single

S or an error is detected. Figure 7 shows the stack contents in the

process of parsing the input string a*a+a.

-9-

State Stack Input Stack Output

0 1 a*a+a
05 1*a+a
06 1 a+a T a

065 1
06 1 T+a T a*T

07 +a

0 T+a

04 +a

0 E+a E ->• T

01 +a

02 a

025

02 T T a

03

0 E E E+T

01 Accept

Fig. 7. Parsing History of Input String a*a+a.

Note that in our algorithm each state corresponds to a prefix of

some production. During the parsing process, each prefix w is transformed

to a single state name S and stored in the stack. Hence a smaller
w

storage space is required compared with the simple precedence parsing.

Note also that, unlike SLR(l) parsing, if = Y we simply change the

current state from S to S without putting S in the stack. Thus our
w wy w

algorithm requires less storage space and is also faster than SLR(l)

parsing.

V. Inspection Rules.

In this section, four inspection rules are given which allow one to

check the conflict of prefix precedence. This feature is useful when

designing a simple grammar for a given programming language. An

equivalent definition of prefix precedence grammar defined by these four

inspection rules is given as follows.

-10-

Theorem 1. A context-free grammar is a prefix precedence grammar iff

the following four conditions are satisfied:

1. If two productions have the same prefix w (w is not empty),

A wXu and B wYv,

•ft ft

then X =^Yz and Y ^ Xy.

2. If one production is the prefix of another production,

A ->• w and B wXu,

then F(A) H i(x) = ((). Where I(X) = {b|b e Z, X4 ba}

3. If A is a left recursive nonterminal (i.e. A ^ Au), then there

is no production in the form B ->• yAz, where y is not empty.

4. If two productions have the same right part, A w and B w,

then F(A) O f(B) = (f).

Proof. Since rule 4 is identical to condition 2 of the first definition,

we will just consider the equivalence of condition 1 to rules 1, 2 and

3 in the following proof.

Only if: In this part we will show that a given grammar violating

any one of the inspection rules must have a prefix precedence conflict.

Let us consider the conditions one by one.

(1) Assume that A wXu and B wYv are two productions, and that

X^ Yz. Then by the definition of prefix precedence we have w = Y and

w <• Y.

(2) Assume that A -> w and B wYv are two productions and that

b ^ {F(A) I(X)}. Then we have w •) b and w (• b (w=b if X isb).

(3) Assume that A is a left-recursive nonterminal, and that B wAu is

a production (w is not empty). Then we have w = A and w (• A.

If: In this part we will show that any prefix precedence conflict will

cause an immediate violation of the inspection rules.

-11-

(1) Suppose that w = b and w •) b. This means that there exist A, B, and

u such that A w and B ->• wbu are productions and b ^ F(A). Thus

inspection rule 2 is violated.

(2) Suppose that w (• b and w •) b. This means there exist A, B, Y, u,

and V such that A w and B ->• wYu are productions, Y ^ bv and

b ^ F(A). Thus inspection rule 2 is violated.

(3) Suppose that w = X and w X. This means there exist A, B, Y, u,

V, and z such that either A wXu, B wYv are productions and

Y i Xz or A ->• wXu is a production and X is a left-recursive non

terminal. Hence either inspection rule 1 or inspection rule 3 is

violated.

Example: Grammar G2: N - (S); E = (b,d); S = S.

S bbS

S ->• bd

S ->• d

It can be checked immediately by using the above inspection rules

that G2 is a prefix precedence grammar. G2 is not a simple precedence

grammar or BRC(m,l) grammar for any m [4].

Theorem 2. Every simple precedence grammar is a prefix precedence

grammar.

Proof. Let Tail(w) be the last symbol of the string w andY be a

symbol. We will prove the contrapositive. It is obvious that if there

exists a prefix precedence relation (<•, =, or •)) between w and Y, then

the corresponding precedence relation ((•, =, or •)) exists between Tail(w)

and Y [1]. Therefore, if a grammar has a prefix precedence conflict

-12-

between w and Y, it must have a precedence conflict between Tail(w)

and Y. Hence a given grammar is not simple precedence if it is not

prefix precedence.

VI. Lookback Prefix Precedence Grammars.

In this section we continue the development of our parsing machine

construction technique. We analyze the class of lookback prefix

precedence grammars whose sentences can be parsed during the deterministic

left-to-right scan with each parsing decision being made on the basis of

the knowledge of both the lookahead symbol and lookback state name.

Example. Consider the parsing flowchart shown in Figure 8. It corresponds

to grammar G3 which contains the following productions

(1) S -J- adAd (4) S bdBb
(2) S adBc (5) A ->• ee
O) S ^ bdAc (6) B ee

Production 5 and 6 have the same right part and F(A) = F(B) = {c,d}.

Hence G3 is not a prefix precedence grammar. At state 8 the lookahead

symbol alone is not enough to decide whether to reduce using production

5 or 6. However, we could make the parsing decision associated with

state 8 by looking at both our left and right contexts after arriving

there. If we look to our left and see "3" (note that according to our

parsing algorithm, state 3 or 4, not 7, are the possible left states of

state 8 in the stack) then, if we look to our right and see d, //5 is

the correct reduction, but if we see c, //6 is correct. On the other

hand, if we see "4" to our left then the correspondences are d with //6

and c with //5.

For G3 and many other grammars we can define the function C(A)

-13-

I I

5
=

d
r

II
>

A
#

S
^

a
d

A
d

a
d

A
a
d

A
d

.
C

T
l

3
6

=
c

^
1

2
>

A
#

S
-^

a
d

8
c

A
a

a
d

o
d

B
c
d

B
c

7
=

e
B

g
|(3

,d)
,(4

,c)
}#

A—
ee

e
{(4

,d)
,(3

.c)
}#

B-
ee

<
b

^
2

=
d

^
4

9
=

C
1

3
>

A
#

S
-
b

d
A

c
g

>

b
b

d
b

d
A

b
d

A
c

1
0

=
d

1
4

>
A

#
S

—
b

d
B

d

b
d

B
b

d
B

d

F
ig

.
8

.
P

a
rs

in
g

F
lo

w
c
h

a
rt

fo
r

G
ra

m
m

ar
G

3

for some nonterminal A whose value is a set of ordered pairs of predecessor

states and lookahead symbols. The definition requires the following

three preliminary definitions: (1) P(A), the predecessors of nonterminal

A, is the set of all states of the parsing machine which emanate an

A-transition arc, (2) S(S |̂A), the successors of A-transition from state

S .and (3) {(I,Z)} denote the set of pairs whose first components are
w

state names and whose seconds are in E.

Definition Let A be a nonterminal of the given grammar. Then C(A)

= {(S^,b)|S^ G P(A) and there exists a prefix precedence relation

between S(S !a) and b}.
0)'

Example. In grammar G3, C(A) = {(3,d), (4,c)} and C(B) = {(3,c), (4,d)}.

This result can be obtained easily from the parsing flowchart in Figure

8.

We now define the lookback prefix precedence grammar whose sentence

can be parsed by our modified algorithm.

Definition. A context-free grammar is a lookback prefix precedence

grammar iff the following four conditions are satisfied.

1. If two productions have the same prefix w (w is not empty),

A wXu and B ->• wYv, and Xi Yz for some z, then P(A) P(B) = (J).

2. If one production is the prefix of another production, A w and

B -> wXu, and F(A) ^ I(X) then P(A) ^ P(B) = (j).

3. If A is a left recursive nonterminal, then there is no production

in the form B ^ yAz with nonempty prefix y.

4. If two productions have the same right part, A -»• w and B ^ w,

.then C(A) H c(B) = (j).

-15-

It can be shown that every LR(K) granmar has an equivalent lookback

prefix precedence grammar. The lengthy proof which involves several

transformation grammars is ommitted here. Grammar 03 is an example of

lookback prefix precedence grammar. The parsing flowchart of grammar 03 •

is shown in Figure 8. Note that 03 is not a SLR(K) grammar of a LALR(K)

granjmar [5].

The idea of making, a parsing decision by using both left and right

contexts surrounding the decision point was first described by Floyd's

bounded context grammars [4]. Lookback prefix precedence grammars among

other grammars such as SMSP grammars [6], BRC grammars [4] and L(m)R(k)

grammars [5], employ similar parsing strategy. However, the C(A) sets of

the lookback prefix precedence grammars is less difficult to compute than

those of BRC grammars and L(m)R(k) grammars. Also, in our algorithm the

lookback symbols are state names rather than symbols in V and hence

provide more information. For example, grammar 03 is BRC (2,1) or L(4)R(1)

Thus two or four lookback symbols are needed if these parsing methods

are used.

VI. Conclusion.

The class of prefix precedence grammars is broad enough to describe

most of the programming languages. The inspection rules are simple and

straightforward, they can be applied at any stage during the designing

and modifying of a language. The parser for prefix precedence grammar .

is small and fast. Each state of the parser corresponds to a prefix of

some production, hence small changes in a grammar (e.g. addition or

deletion of a production) only cause small corresponding modifications

of the parser (addition or deletion of a few corresponding states). All

-16-

these features make prefix precedence grammars a useful model for

programming languages.

Acknowledgement

The author wishes to express his deep gratitude to his research

advisor. Professor Lotfi A. Zadeh for his guidance and encouragement

throughout the preparation of this report; thanks are also due to

Professor Jay Barley, Dr. Eric Cho, and Mr. Rowland Johnson for their

helpful discussions and suggestions.

-17-

References

1. Wirth, N., and H. Weber (1966). EULER - a generalization of ALGOL

and its formal definition. Parts 1 and 2. Comm. ACM 9: 1, 13-23

and 9: 2, 89-99.

2. Yang, J. N., (May,1973). Simple grammars and design of programming

languages. Qualifying Exam. Note, U.C. Berkeley.

3. DeRemer, F. L. (1971). Simple LR(K) grammars. Comm. ACM 14: 7,

453-460.

4. Floyd, R. W. (1964). Bounded context syntactic analysis. Comm.

ACM 7: 2, 62-67.

5. DeRemer, F. L. (1969). Practical translators for LR(k) languages.

Ph.D. Thesis, MIT, Cambridge, Mass.

6. Aho, A. v., and J. D. Ullman (1972). .Weak and mixed strategy

precedence parsing. J. ACM 19: 2, 225-243.

-18-

