

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A TWO LEVEL DISK PROTECTION SYSTEM

by

Frank Sindelar and Lance J. Hoffman

Memorandum No. ERL-M452

24 May 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A TWO LEVEL DISK PROTECTION SYSTEm"^

Frank Sindelar and Lance J. Hoffman

Computer Science Division
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

Abstract

This paper introduces an inexpensive hardware method for protecting

disk storage, A password scheme combined with data encryption at the

disk controller provides two types of protection at a very modest cost

in both hardware and CPU overhead.

•j*
Research Sponsored by National Science Foundation Grant GJ-36475

Introduction

With the advent of inexpensive bulk storage devices, the collection

and storage of sensitive information promises to increase. Protection of

this information has usually not been implemented due to worries about

the cost of the security measures necessary. Most security efforts have

been implemented in software; in many cases this has increased overhead

to such an extent that ths cost-effectiveness of the scheme could be

questioned.^

This paper describes an inexpensive hardware method which enhances

the security of information on disk storage. One tjrpe of protection is

a password scheme to insure the privacy of a file and the second method

is the enciphering of the data on the disk. The enciphering hardware is

located within the disk controller itself.

The disk drive used is a Shugart Associates SA901 Disk Drive. The

host microcomputing system is a microcomputer similar to the Intel MCS-8

System but with some modifications. The main modification is the ^irect

Memory Access Channel added for I/O devices. This does not tie up the

CPU for data transfers.

The cost of the encryption hardware is less than 5% of the total

hardware cost of the controller electronics. With two methods of pro

tection, passwords and encryption, it is felt that the protection afforded

by these schemes is well worth the cost involved.

After designing the controller and password schemes, it was found

that additional hardware had to be added into the microcomputer itself

to insure the integrity of these protection schemes. Specifically, the

microcomputer had no memory protection at all; therefore, a very simple

memory protection hardware circuit was incorporated to protect the hard

ware password algorithm.

Although we here discuss one direct implementation of this concept,

the method may be expanded onto other computing systems and other disk

drives.

The system described is currently a paper design only. The results

obtained this far are based on analysis only. Work is now in progress

to develop a hardware implementation of this system.

Host Microcomputer System and Disk Controller

The host microcomputer that communicates with the disk controller

is an Intel MCS-8-type system. Figure 1 shows the functional inter

connections between the CPU, main memory, and peripheral devices. The

DMA channel was incorporated into the system design to allow for various

peripheral devices to be utilized without degradation of the system

speed. Figure 2 is a functional diagram of the microcomputer. Once

the CPU initiates a data transfer to the disk, the disk controller

asynchronously takes care of the entire data transfer of 128 words (each

8 bits). The controller then signals the CPU that the transfer has been

done and whether or not it was a successful transfer. If an error is

found during the transfer, the controller automatically does a re-read

to attempt to recover from the error. After eight retries, if the error

persists, the controller interrupts the CPU with an error indication.

Central Processing Unit

At the center of the microcomputer system is the Intel 8008, an 8-bit

parallel CPU. The CPU uses a multiplexed 8-bit paralleled bus for all

instruction and data transfers to and from the rest of the system.

Figure 3 shows the CPU timing. A typical instruction cycle includes

sending out the low order bits of the program counter during T1 followed

by the high order bits during T2 over the bus lines. At T3, the

instruction is then brought over the bus and execution is begun. T4 and

T5 are reserved for instruction execution.

The instruction set for the Intel 8008 CPU consists of instructions

that are from 1 to 3 memory cycles in length. An input-output instruction,

denoted by the high order 2 bits (D6 and D7) of the high order address

being off, is composed of 2 memory cycles. A memory cycle 1 is charac

terized by the next instruction for execution being brought into the CPU

during T3. A memory cycle 2 follows this with the actual I/O instruction

being sent out to the device controllers on the data base. Figure 4 shows

the I/O Instruction timing. For additional information about the Intel

8008 CPU, see reference 2.

Memory

14The microcomputer system s main memory, a maximum of 2 words, is

divided into pages of 256 wordsx 8 bits. This is a result of the CPU*s

addressing scheme utilizing 8 bits of low order address followed by 6

bits of high order address. The high order 6 bits specify the page number

and the low order 8 bits designate the word number within the page.

There are two types of main memory incorporated in the system; the first

type is the electrically alterable ROM (or PROM), which contains the system

monitor and the password software. The second type of main memory is

the RAM to be used for general user program storage and execution. For

additional details of the microcomputer system architecture, the reader

is directed to reference 1.

Peripherals

Although this microcomputer allows for several peripherals (e.g.

disk, cassette, and CRT), as shown in Figure 1, this paper is concerned

solely with the disk controller and disk protection. The disk used was

the Shugart Associates SA901 Disk Drive. This is an inexpensive flexible

disk with a moderately fast transfer rate and excellent reliability. The

disk is divided into 77 concentric tracks. Each track is divided into

32 sectors of 128 words per sector. This allows for two sectors to be

read into memory to fill one page of RAM. The disk controller is not

commercially available; it has been designed and built by the principle

author. See reference 3 for complete details about the disk drive.

As mentioned earlier, the controller asynchronously transfers blocks

of data of 128 words (one half of a RAM page) to the disk. So along with

the file's track number (6 bits) and sector number (5 bits), the page of

RAM (6 bits) must be specified with a flag (1 bit) of whether the first

128 words of the page or the last 128 words of the page is to be trans

ferred. The last bit remaining in this word then specifies whether a

read or write is to be done. Therefore, three words are needed for any

data transfer while the use of encryption necessitates sending the con

troller a fourth word, the encr3T)tion key. Figure 5 shows the input

circuitry necessary to receive the encryption key and other information

required to execute a data transfer to or from the disk.

Software Password Validation and I/O Algorithm

The first method of disk protection implemented was the password

validation and I/O algorithm. This attempts to protect files by restrict

ing access to only those users that know the password. The password is

simply a code supplied by the user along with the name of the file he or

she wishes to access. The password algorithm then takes this password

and attempts to match it with the appropriate password retrieved from

the file directory on disc. The password is allowed to be set only by

the owner (originator) of the file. If there is a match of passwords,

the I/O instruction is issued. If a mismatch occurs, then control is

given back to the monitor with the information that an illegal access

was attempted.

The file name and associated password are stored in the PROM which

cannot be altered (written into) dynamically. These memory chips can be

electrically altered but must be taken out of the microcomputer and placed

into a special board that allows selective writing into the array. Since

the MCS-8 is a general-purpose, inexpensive microcomputer, no method of

memory protection is provided by the manufacturer. Thus, although the

password algorithm cannot be destroyed, it would easily be bypassed by

a clever user. Hence, an additional piece of hardware was incorporated

into the microcomputer to insure the integrity of the password algorithm.

Hardware to Insure Proper Use of Password Algorithm

The controller recognizes an I/O instruction as valid only when the

I/O command originated from the PROM containing the password algorithm.

This rules out any I/O commands issued directly by the user (located in

RAM) and bypassing the password scheme. This validation is done in

hardware by monitoring the memory bus during time T2 of memory cycle 1

(see Figure 4). If the instruction being fetched is from the PROM contain

ing the password algorithm, the data input to the Secure Flip-Flop (see

Figure 6) is enabled. At time T2, the Secure Flip-Flop is clocked and

the signal SECUR goes high enabling the controller hardware to accept

the next command as a valid I/O directive that has passed the first

security test, the password.

As mentioned earlier, a clever and malicious user could circumvent

the password algorithm by setting up the same registers that the password

algorithm uses with the file address he wants access to, and since there

is no memory protection hardware restricting access to the PROM, he then

could jump to the address in the PROM that gives the validated I/O command

to the disk controller. The controller then would verify that the l/O

did in fact originate from the password algorithm in the monitor*s page,

and would therefore honor the I/O command as valid. This is unacceptable;

therefore, additional hardware was incorporated into the microcomputer to

restrict entry into the password algorithm to only the beginning location

of the algorithm. This was implemented in the following way.

A jump instruction is composed of 3 memory cycles. During memory

cycle 1 the instruction is fetched from the RAM or PROM. At memory

cycle 2, the low order 8 bits of the address (word number to be jumped to)

are brought in during time T3. During time T3 of memory cycle 3, the

high order 6 bits of the address (page number to be jumped to) are

brought in over the data bus (see Figure 7). Any jump instruction executed

by the CPU activates a pair of comparators that allows execution to con

tinue only if the address is less than or equal to the beginning word

of the password algorithm OR greater than the last word of the algorithm.

This allows jumps to other positions within the monitor page that do not

affect the password integrity. Additional hardware was used to allow for

any jumps to be executed if they originated from within the password

algorithm itself.

The hardware just explained is realty just an implementation of a

8 9gatekeeper. * Figure 8 shows several legal and illegal jumps to the

password algorithm and Figure 6 shows the hardware realization of this

feature. So with these modifications added, the integrity of the pass

word algorithm is insured.

Encryption Hardware

The second method of protection for the disk storage data is the

encryption of the data on the disk. The Shugart Associates SA901 Disk

Drive is a small unit that uses a Diskette as the recording medium.

Tlie Diskette is a flexible disk about the size of a 45 rpra record. Its

small size makes it susceptible to anyone removing it inconspicuously

from the drive and taking it elsewhere. Since there is no bulky case to

enclose the Diskette, a user could easily place it between the pages of

a book and leave unnoticed. This fact has prompted a second type of

protection to be implemented on the controller, encryption, if a

8

user does in fact attempt to read or modify a file on the disk by taking

it to another drive which does not contain the password hardware, the

files on the entire disk, including the file directory and the passwords,

may have been garbled by a privacy transformation performed by the original
lo

controller. If a file or an entire disk is meant to be readable by

other drives an encryption key of all zeros is loaded; this key causes

no encr3rption of the data being stored. This feature makes the controller

and disk drive unit compatible with other similar drives.

The read and write circuitry of the controller has been implemented

in such a way that encryption can be done without excessive hardware

modifications. Figures 9 and 10 show the controller read and write

14
circuitry, respectively.

The data stream received from the disk drive is bit-serial. The

data is stored between clock pulses on the disk. A start read pulse

enables the clock pulse to trigger a one shot multi-vibrator, which opens

a 3 microsecond window for the data pulse. If the data pulse is present

during this interval, it is latched in the data Flip-Flop. Now the

encryption key is XOR*ed with the data and shifted into the serial-to-

parallel register. Decryption is done on a bit by bit basis so minimal

hardware and timing is required.

The write circuitry works in a similar manner by XOR*ing the clear

text data with an encryption key as it is sent from the parallel-to-serial

register to the write data one shot multi-vibrator.

The encryption key generation hardware involves ten D-type Flip-Flops

connected as a shift register (see Figure 11). The first input is XOR'ed

with various outputs of the string to modify the first Flip-Flop as the

shift register is clocked. This feedback arrangement can be set by the

security officer to any configuration desired, thus changing the algorithm

by which the key is transformed. The initial key is preset in the

registers from the input latches loaded by the password algorithm. The

output of the key generator is taken from the low end of the register and

is fed to the XOR gates in Figures 9 and 10.

This method of key generation is not a very sophisticated linear

transformation. A string of 1023 non-repeating bits is generated by the

shift register; this is sufficient for the sensitivity of the data at this

particular facility. If it is known that a linear shift register of

length N is utilized as the random key, then a subverter need only

12
obtain 2N bits of the key to determine for feedback arrangement.

Thus, the method described here introduces a work factor that would dis

courage many would-be subverters, but not all; for other applications or

facilities a longer shift register or better, a non-linear transformation

such as described by Feistel^^ could easily be implemented.

Conclusions

The two types of protection of the disk files that are provided by

this system — passwords and encryption — afford the user more security

than standard in microcomputers at a relatively low cost, A malicious
g

user has a 1 in 2 chance of foiling the password protection by guessing

it. However, even if unauthorized access to the file is gained, the

encryption of the data makes it meaningless until decrypted, and decrypt

ing the data is nontrivial. A proper selection of feedback configurations

can make this method of key generation a non-repeating key for 128 words

10

of 8 bits.^ So a considerable work factor is involved to regain clear

text from the disk.

The cost of additional hardware involved to implement the encryption

was approximately $10.00, under 5% of the cost of the disk controller

electronics. The CPU overhead involved to implement the password and

encryption schemes is less than 0.47%. This figure has been derived

from analysis only since the implementation is not completed at this

writing. The 0.47% CPU overhead figure was derived by noting that the

password and encryption key must be added to the file name when executing

an I/O instruction. This adds 50% more instructions for the file desig

nation and 33% more instructions for the transfer of the data to the

controller for an I/O operation. This includes the track address, the

sector number, the memory address, and the encryption key. The real

savings is gained in the asynchronous data transfer; since these four

instructions are needed for initialization of the I/O command, this time

is then spread over the 128 words that are being transferred. The

encryption of the data is of no cost (in time) since no interruption of

the data flow is needed. This is summarized in Table 1.

The results obtained here support the idea that data

encryption at the device controller level is feasible. Although the

particular design described here is for a specific microcomputer and

disk drive, the results are expected to be similar for other designs and

other systems.

11

References

1 Cosley, John, "Design of a Peripheral Oriented Instructional
Microcomputer," Research Project, Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley,
California, December 1973.

2 Intel Corporation, "MCS-8 Microcomputer Set 8008 8 Bit Parallel
Central Processing Unit User's Manual," Rev. 4, Santa Clara, Calif.,
November 1973.

3 Shugart Associates, "Disk Drive-SA900/901, User's Manual," Mountain
View, Calif., 1973.

4 Krishnaiyer, R. and Donovan, J., "Shift Generation of Pseudorandom
Binary Sequences," Computer Design, April 1973, p. 69.

5 Conway, R.W., Maxwell, W.L. and Morgan, H.L., "On the Implementation
of Security Measures in Information Systems," Comm. ACM 15, 4, April
1972, pp. 211-220.*

6 Hoffman, L.J., "The Formulary Method for Flexible Privacy and Access
Controls," Proc. FJCC 1971, pp. 587-601.*

7 Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing System,"
Proc. 1969 FJCC.*

8 Graham, R., "Protection in an Information Processing Utility," Comm. ACM,
May 1968.*

9 Schroeder, M. and Saltzer, J., "A Hardware Architecture for Imple
menting Protection Rings," Comm. ACM, March 1972.*

10 Peterson, W.W., Error Correcting Codes, MIT Press, John Wiley & Sons,
Inc., New York, 1961.

11 Feistel, H., "Cryptography and Computer Privacy," Scientific American
228, 5, May 1973, pp. 15-23.

12 Meyer, C.H. and Tuckman, W.L., "Pseudo-random Codes can be Cracked,"
Electronics Design 23, Nov. 9, 1972.

13 Carroll, J.M. and McLelland, P.M., "Fast 'Infinite-Key' Privacy Trans
formation for Resource-Sharing Systems," Proc. FJCC 1970, pp. 223-230.*

14 Harris, R.G., Sustman, J.E. and McDonald, J.F., "A Flexible Disk
Controller," Department of Computer Science, Dunham Laboratory,
Yale University, New Haven, Connecticut.

* References with a trailing asterisk (*) are reprinted in Hoffman, L.J.
(ed.). Security and Privacy in Computer Systems, Melville Publishing Co.,
Los Angeles, 1973.

12

Table 1

OVERHEAD PGR PROTECTION

WITHOUT PROTECTION

User Must Supply

Name of File

Pile Handler Must

Search for Space

OR

Assign Space

Disk Controller Needs

Memory Address

Track Address

Sector Ntimber

Memory Usage

Pile Name

WITH PROTECTION

Name of Pile

Pile Password

Search for Space

AND

Match Password

OR

Assign Space

AND

Set Password

Memory Address

Track Address

Sector Number

Encryption Key

Pile Name

Password

Password Algorithm

Figure I. Peripheral layout

Teletype
CRT

keyboard

Cassette Microcomputer D
M
A

Main
tape system memory

Disk Floppy
controller disk

Figure 2. Microcomputer functional layout

Input
control

CPU

8008

DMA

data

Low

address
latcti

Low

address
latcti

a:
Q o

DMA

low

address

RAM

External

input
multiplexer

External data

Interrupt
control

PROM

CO

(5
cc

o

DMA

tiigt)
oddress

Interrupts

*
2

-

Sy
nc

n
n

L
o

w
o

rd
e
r

a
d

d
re

ss

o
u

t

T

Fi
gu

re
3.

C
PU

T
in

ni
ng

n
n

H
ig

h
or

de
r

a
d

d
re

s
s

o
u

t

1
2

n

In
st

ru
c
ti

o
n

o
r

d
o

te

in

1
3

n

E
x

ec
u

ti
o

n
E

x
ec

u
ti

o
n

1
4

T
5

Fi
gu

re
4.

I/
O

in
st

ru
ct

io
n

tim
in

g

M
em

or
y

cy
cl

e
1

M
em

or
y

cy
cl

e
2

T
|

T2
T3

T4
T

s
T

|
T

2
T3

T4
T

5

L
o

o
rd

e
r

H
i

o
rd

er
In

st
ru

ct
io

n

a
d

d
re

ss
a
d

d
re

ss
in

(w
o

rd
#

)
(p

ag
e?

#
)

D
e
c
o

d
e

a
n

d

e
x

e
c
u

te

Fe
tc

hi
ng

in
st

ru
ct

io
n

fr
om

m
em

or
y

L
o

o
rd

er
H

i
o

rd
e
r

In
st

ru
ct

io
n

a
d

d
re

ss
a
d

d
re

ss
o

u
t

to

(w
or

d
#

:)
(p

a
g

e
#

)
de

vi
ce

c
o

n
tr

o
ll

e
rs

V

Is
su

in
g

I/
O

in
st

ru
ct

io
n

N
o

t
u

se
d

fo
r

ou
tp

ut
in

st
ru

c
ti

o
n

CPU

Figure 5. Input latches for data

Track

number

Sector

number

Memory page number
Read/write bit
Even / Odd bit

Encryption
seed

number

Figure 6. I/O validation and gatekeeper circuitry

MCl __ ILR

r>

D4 D7

< A <

> B >

< A

> B

a

Password page number i
^01^1 ,'̂ 2 ,^3 ,^4 P5 ps p7

> A >

< B <

TTl
First word of olgorlthm

^0.^1 1^2,^3 i'̂ 4P5 1^6 Pi

> A

< B <

> A >

< B <

> A >

< B
-r

06

0 7

Last word of algorithm

PCI

PCI

PCI

C Q

° Q

y\

MCl
T̂3-H

'3
MC2

SECUR

MC3

53"
TCLR T

Reset

Halt

1 0 0

c_=3
T

CLR

MCl

MC2

MC3

M
em

or
y

cy
cl

e
1

T,
Tg

T3
T

,
T5

Fi
gu

re
7.

Ju
m

p
In

st
ru

ct
io

n
tim

in
g

M
em

or
y

cy
cl

e
2

T,
Tg

T3
T4

T 5
T

,

M
em

or
y

cy
cl

e
3

W
o

rd
#

P
ag

e#
In

s
t.

W
o

rd
#

Pa
ge

#
D

a
ta

W
o

rd
#

P
ag

e#
D

a
ta

o
u

t
o

u
t

in
—

—
o

u
t

o
u

t
in

—
—

o
u

t
o

u
t

in

(j
um

p)
(w

o
rd

)
(p

ag
e)

lO-H

20

40

76

-lOO-H

Figure 8. Legal and illegal jumps

Stort

Jmp to 40

I/O to disk

PROM

(Password algorithm
and monitor)

Illegal (blocked)

Legal

Legal

Legal

Illegal
(blocked)

Start

Jmp to 76

Jmp to 100

I/O to disk

Jmp to 10
Stop

RAM

(Users program)

Controller

(Disk)

Illegal
(blocked)

Clock

Start reod

Done read

Figure 9. Read circuitry

Data

one st)ot
3/xsec

Encryption key

Seriol-to-

poroiiel
register

Seriol-to-

To DM/

From

DMA

Parallel

serial

register

Figure 10. Write circuitry

Encryption key

Clock

Write data

one shot

200 ns

Data and

clock to

disk drive

rC(C
D 0 D Q

C R
u

C R
—rr"*

Clock

Figure II. Key generation

dt;
D Q

C R

8

D Q

C R

I

0 Ql

C R

Encryption
key

