
 

 

 

 

 

 

 

 

 

Copyright © 1974, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



COST OF EXECUTION-TIME DATA-DEVELOPMENT PILE ACCESS

by

Joseph Kennedy

Memorandum No. EKL-453

June 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



COSTS OF EXECUTION-TIME DATA-DEPENDENT SECURITY

Joseph S. Kennedy

Electronics Research Laboratory and
Department of Electrical Engineering and

Computer Sciences
Computer Sciences Division
University of California

Berkeley, California

ABSTRACT

It is often convenient to allow access to a file in a data dependent

manner. Access decisions made at translation time are sometimes inadequate,

and postponement of data dependent access until execution time has previously

been reported to be expensive both in time and space requirements. Some

simple and reasonable assumptions in design of data dependent access methods

facilitate efficient implementation and result in overhead costs which are

quite small in almost all situations.

Research sponsored by the National Science Foundation Grant GJ-36475.



COSTS OF EXECUTION-TIME DATA-DEPENDENT SECURITY

Joseph S. Kennedy

INTRODUCTION

Conway, Maxwell, and Morgan [1] have shown that data dependent access

methods are inadequate in many cases. Control over integrated data bases

which include data of varying sensitivity sometimes requires access to the

data which at least in part depends on the data itself. Thus, a file of

personnel records may have many different access levels, and access to

different levels may depend on the identity of the user. Certain records

may be available to the accounting department, others to the company medical

officer, and still others to management level personnel. The ability to

allow access to a file but not to its entire contents obviates the need to

maintain separate files with at least a partial duplication of data. Of

course there will always exist the need for data independent access control

since not every employee needs access of any kind. The question of whether

to implement data dependent access control should be considered another

data base design decision.

Translation-Time and Execution-Time Access Functions

Conway, Maxwell and Morgan have suggested the distinction between

translation-time fetch and store functions (F^ and respectively) and

run-time fetch and store functions (F^ and respectively). Each function

takes as arguments a user identification u and a data item name d. At

translation time, F^(u, d) checks a security matrix and decides whether or



not data independent access is granted. If so, normal object code is

generated; if not, and if data dependent access is permitted, a call to

F^(u, d) is generated in the object code. Otherwise, an abort is generated

indicating lack of any access permission. (Similar actions are taken for

store requests.) Fj.(u, d) makes the access check at run time and either

returns the data item (if the data dependent check succeeds) or a null (if

it fails). In this manner data independent access can be implemented with

only a slight increase in translation time and no degradation in execution

time. Data dependent access will, of course, result in loss of run-time

efficiency proportional to the degree of data checking and the frequency

of illegal access attempts (since F^(u, d) will have to generate and

return a null record in that case).

Woodward and Hoffman [2] have pointed out several serious deficiencies

in this method. Among them are (a) the necessity for all requests for file

accesses to be known at translation time, (b) increased difficulty in

ensuring integrity of object code after translation, and (c) the need to

enforce retranslation of some, if not all, object code modules having access

to a given data base if it is ever necessary to alter the data base access

priviledges.

An Alternative Method - Modified Svstem I/O Routines

It would be unfair to suggest that Conway et al. did not recognize

some of these limitations. In fact, an alternative in which system I/O

routines perform the F^ and functions was discussed by them. In this

case, F^ and would be* abandoned and all data accesses would be made

at run time. Access control could then become translator independent, but

performance degradation resulting from run-time access methods would become

additional expense. They did not pursue this scheme.

-2-



Worst Case Costs •

In the face of little empirical evidence. Woodward and Hoffman [2]

conducted worst case studies to ascertain the feasibility of such an

approach. Their results indicated that such run-time access might prove

too expensive to garner wide acceptance. Worst-case degradations in run

time efficiency of 22% (for data independent access) to 146% (for data

dependent access with a 100% access attempt failure rate) seemed to indicate

that further work with the scheme described above was not warranted. However,

their study was directed at worst case estimates, and no attempt was made to

produce a "working solution" with, hopefully, more reasonable cost figures.

Another Implementation

We essentially implemented the function with a slight modification

to its definition given earlier. At every record access attempt, a data

access flag was tested which could give three results. If negative, data

independent access was not permitted and an abort routine implemented that

could, although in this case did not, result in the erasure of all files

written by the process making the access attempt. This is a simple way to

implement run-time file access control where access privileges may change

during the execution of the process. If the data access flag were zero,

data independent access was permitted, and if positive, specific data

dependent access was permitted. Before a more detailed description of this

implementation can be given, a look at the file structure of the installation

where the experiment was conducted is in order.

The system 1/0 routines of the Fortran library on the CDC 7600 at the

Lawrence Berkeley Laboratories, University of California, Berkeley, were

chosen for the measurements. A brief description of the sequence of events

-3-



resulting from the appearance of an I/O request (READ or WRITE) in the

Fortran source code is given:

1. All local file names are identified by the compiler and

assigned a File Environment Table (FET). This is completely

independent of the file which will actually be referenced at

run-time.

2. Each statement of the form READ (m,n) [input list] with k

items in the input list generates an initial call to the

system routine INPUTC which allocates a character buffer (we

dealt only with files encoded in the CDC display code) tests

and resets file status flags in the FET, and initializes the

decoding routine KRAKER.

3. k calls to INPUTC result in the decoding (conversion of a

character string to an internal representation. For example,

the string "123" may be decoded to the real number 123, the

integer 123, or simply as the symbol "123" ) of the input

characters according to format n and transferral of the

decoded data to addresses specified by the input list items.

Note that a specific call to INPUTC may result in the decoding

and movement of more than one data word.

4. A final call to INPUTC resets file status flags and clears the

character buffer.

Therefore, we can summarize the activities in three phases: (1) initial

call to the I/O routine for each record, (2) decoding of the data list items,

and (3) a final status reset call.

-4-



In order to facilitate Implementation, it was assumed that within a

record, the "key", that data field on which the data dependent check is to

be made, is in a known location for all records referenced by a particular

READ statement. (All cost experiments were conducted using the input

routines, although a similar treatment of output routines would suffice for

function implementation.)

Like most systems, BKY (the locally maintained operating system for

the CDC 7600) utilizes a specific area of memory for communication between

system I/O functions and user processes. This area is the File Environment

Table in the user program space and consists of the 5 to 16 words allocated

by the compiler for each file. It is within this area that three words were

allocated for the data access control feature. (Of course, it would be

necessary to move this area to a system protected region if any control were

to be enforceable. It is assumed that this could be made readable to the

user program with no penalty in access time.) One of the words was the

Data Access Flag (DAF) and the other two provided upper and lower bounds for

the record key. (These bounds could be real, integer, or character, etc.)

More sophisticated means of access control and record key checking could

be implemented with a slight increase in memory requirement. The values of

the DAF and the key limits were set by the testing program; this function

would pass to the operating system in an operational environment.

The Experiment

The experiment consisted of modifying INPUTC in order to implement the

data access control method and executing a set of timing programs. The

modification to INPUTC was made in the section of code executed when the first

-5-



call for the record was made. Just before a normal return, after the

character buffer had been filled, the DAF was obtained from the FET and

checked. If negative, a call to the system routine ABORT was initiated,

indicating no access permission. If zero, a normal return to the calling

program was initiated. If positive, indicating that data dependent access

control was to be made, the record key was decoded from the character buffer

and compared with the key limits in the FET. If within the given range, a

normal routine was made. If out of the bounds set by the limit words, the

character buffer was filled with a coded blank (octal 55 in the display

code) and then the normal return given. It might seem like an undue

restriction to require overwriting the entire record, but it is probably

reasonable to assume that in most cases the data base could be organized to

allow an all or none access to a record, since it can be arbitrarily small,

down to one character. Modifications to INPUTC totaled an additional 13

words of coding.

Variable record size data was generated by another Fortran program and

entered into the permanent (disk) file system for use by the timing programs.

Each data file consisted of 100,000 records with a randomly generated key

inserted in a given portion of the record. Record sizes of 5, 25, and 50

characters (excluding the record key) were used as the three test cases.

The timing programs were written in Fortran and consisted mainly of a

timed loop executing a READ statement 100,000 times. Prior to this loop,

the FET entries for the DAF and key limits, if necessary, were altered. With

the DAF set to a positive value, the key limits could be altered to give a

variable percentage of access attempt failures and subsequent overwriting,

since the record keys were generated randomly over a fixed interval.

-6-



Each program was tested using 0%, 25%, 50%, 75% and 100% overwrite

rates, with an additional two runs required for data independent access

and the benchmark (the original INPUTC routine). Thus, seven runs on

three sets of data were conducted.

Results

The results of the timing measurements are given in Figure 1. Both

the actual timings and the performance degradation measured as the percent

of CPU execution time increase are given for the three test cases.

Perhaps the most interesting result is the surprisingly low cost to

implement data independent access control at run time. The high of 1.65%

would seem like a small price to pay for the extra capability in those

situations where this type of access control is desirable.

The sharp rise in degradation realized when the overwrite rate becomes

high was an expected trend. What was not expected was the relatively small

increase in view of [2]. Since the system may be considered to be designed

poorly if accesses result in these high rates of failure, a somewhat lower

figure would seem to give a more likely ceiling. In fact, if we may assume

that access to a file in a data-dependent manner should result in a zero

access failure rate, the figures for a 0% overwrite rate reflects an expected

cost for such access control. The high of 28.27% appears to be an accept

able cost. Also, since these test cases were void of any computation, it

might be more meaningful if computation time were added to the execution

times and the resultant increases expressed as a percent. Figure 2 gives

these interpretations for several 'computation times*. Now, costs seem to

be even more attractive. For example, a job accessing 100,000 records of

50 characters each and requiring a total CPU time of approximately 30

seconds (20 seconds for input and 10 seconds of computation) would be paying

-7-



a cost of .56% for data-independent access of 5.38% for data-dependent access

Conclusion

Execution time data-independent and data-dependent access control was

implemented by modifying system I/O routines on a CDC 7600 and test cases

run and timed to ascertain the cost involved. Experimental results indicate

that this implementation would be cost effective and attractive for a wide

range of applications where this capability is desired. A CPU overhead

of around 1% - 2% for run-time data-independent access control is

realized. Reasonable data base design should give cost increases for data

dependent access control of 30% or below.

ACKNOWLEDGEMENTS

I wish to thank L.J. Hoffman whose discussions on the subject lead to

these experiments, and to C.C. Bass, for insight in maintaining my perspective,

-8-



REFERENCES

[1] Conway, R.W., Maxwell, W.L., and Morgan, H.L., On the Implementation

of Security Measures in Information Systems, Comm. ACM 15, 4, (April

1972), 211 - 220.

[2] Woodward, F. and Hoffman, L.J., Worst-Case Costs for Dynamic Data

Element Security Decisions, Proc. ACM National Conference, San Diego,

California, 1974.

-9-


