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Abstract

The paper presents a procedure for designing a rent control schedule

which achieves reduction in rents while it simultaneously discourages

under-maintenance leading to deterioration of the housing stock. The

focus of the procedure is to understand the reaction of a profit-

maximizing landlord to a given rent schedule and then to design the

schedule so as to induce a favorable reaction. This is formulated

mathematically as an inverse problem of optimal control. Implementation

requires continuous and accurate monitoring of the state of the housing

stock. Some cost estimates are presented for an information system

which achieves this for a city with 30,000 rental units.
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1. Introduction

Our objective is to present a method for designing a rent control

scheme which appears to have a good chance of being "successful" in

the following limited situation. Imagine a small city with little

vacant residential land within a metropolitan area which over a short

time interval becomes considerably more attractive as a place to live

in comparison with neighboring cities. The increased demand drives

up rents well beyond those prevailing in neighboring cities. This not

only creates a redistribution of income in favor of landlords but also

forces many renters to change their place of residence thereby causing

a disintegration of neighborhood communities. If the inhabitants of

the city find this intolerable, then one obvious countermeasure which

may be available to them is the imposition of rent control, that is, the

replacement of market-determined rents by an administratively determined

schedule of rents. Most economists have arrived at the judgement that

such an intervention in the housing market will, at least over the

long run, lead to a worsening of the overall housing conditions instead

of ameliorating them. Everyone familiar with the horror stories,

whether of an anecdotal or statistical nature, about New York or Paris

or some other city which has imposed rent control, will doubtless agree

that at best rent control is a blunt instrument.

We propose here a procedure, or more accurately, a framework for

carefully designing this instrument so that it will have the intended

effect while simultaneously minimizing the unintended, damaging side

effects for the limited situation outlined above. We view rent control

as being essentially embodied in a rent schedule which determines the
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administered rent for each particular dwelling unit as a (mathematical)

function of the bundle of housing services delivered by this unit

during a fixed period of time, say one month. The problem is then

transformed into that of designing this function. We assume that the

owner of the unit will adjust his maintenance inputs so as to maximize

his profits given the rent schedule. A particular rent schedule then

elicits a determinate reaction from the landlord, so that the schedule

must be so designed as to induce a reaction from the landlord which is

socially desirable. Mathematically, the design procedure reduces to

the so-called inverse problem of optimal control.

A crucial aspect in implementation is the cost of continuing collection and

processing of information about the 'state' of each dwelling unit

sufficient to determine the "bundle of services" delivered by the unit.

This aspect cannot be formulated mathematically. Instead we give some

cost estimates for a hypothetical city with 30,000 rental units. These

estimates suggest that the scheme can be implemented at a modest cost.

The rest of the paper is organized as follows. The next section

briefly summarizes the economist's main arguments against rent control.

Some of these are inapplicable to the situation being considered here.

Others still maintain force, whereas the remainder are effectively

countered by the proposed scheme which is presented in Section 3. The

implementation cost estimates are given in Section 4. Some concluding

remarks of a more general nature are collected in Section 5.

2. Arguments Against Rent Control

To assess these arguments it will be useful to briefly review the

theory of the rental housing market.^ We think of each dwelling unit

^For further details please refer to [1-4].
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in our city as being characterized by a single quality variable x,

0 ^ X < **>, with lower quality levels corresponding to higher values

of X, so that at any time the stock of housing is described by the

distribution of the number of units in each quality level. Now, over

a short time interval the housing stock does not change appreciably

i.e., the short-run supply of housing is inelastic. Hence the rent of

housing of a given quality level x, say r(x), is determined solely by

the demand for housing. In particular, this market-determined rent

function r(x) reflects consumer preferences so that it is an efficient

rationing mechanism.

Over a larger interval of time landlords will make decisions which

change the city's housing stock. These decisions are of two kinds.

Maintenance decisions change the quality level of an individual unit:

higher maintenance lowers x, poor maintenance increases x. Construction

or demolition decisions change the total number of housing units. Since

landlords seek to maximize profits their maintenance programs will

depend upon maintenance costs and rent differentials among different

quality levels, whereas their construction decisions depend as well upon

returns to investment available outside the city's housing market.

Now suppose that rent is controlled so that the administered rent

function R(x) < r(x). The following damaging consequences appear

evident from the theory above.

C1 In the short run there will be inefficiencies in consumption (of

housing) among renters. Renters who are willing to pay more for a

2
X may be regarded as the "effective" age of a unit. A well-maintained

unit will have a lower effective age than an undermaintained unit
constructed at the same time.
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certain quality of housing than those currently occupying it will be

unable to do so.

C2 Alternative rationing systems such as queues and black markets will

develop as the gap r(x) - R(x) increases sufficiently.

C3 There is a redistribution of income from landlords to renters.

C4 Over the long run the quality of housing stock will decline over a

broad front as landlords find it unprofitable due to reduced rents to

maintain housing at a high quality level. (Recall the experience of

New York City.)

C5 Over the long run the supply of housing will be reduced (relative

to the market-determined supply) since it is not profitable to construct

new housing. This is inefficient since the community as a whole would

prefer to devote more of its resources to housing as against other

commodities.

C1 will remain valid if the scheme proposed below is adopted.

But two points should be kept in mind before accepting 01 completely.

First of all the charge of consumption inefficiency assumes implicitly

that the monetary and psychic costs borne by those who have to relocate

because of their inability to pay higher rents are negligible. Much

of the literature on urban renewal suggests that this is not the case.

Secondly, the imposition of rent control reveals that the citizenry

has collectively decided to favor current residents as against potential

householders who wish to locate in the city. C2 can be mitigated in

part by adequate legal enforcement and in part by not permitting the
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gap r(x) - R(x) to become very large. C3 of course remains valid and

is indeed an intended effect of rent control. C4 and C5 are in some

ways the most serious consequences since they allege that everyone

"loses" in the long run. As will be seen C4 can be effectively

eliminated by the proposed scheme. C5 carries more weight if rent

control is applied throughout a nation or a large part of a metropolitan

area. It is less important in the context that we are considering

and, even then, the supply of new housing can be partly controlled by

appropriate modification of the administered rent function R.

3. The Rent Control Scheme: Theoretical Considerations

Let x(t) be the effective age (quality level) of a particular

unit. In the absence of any maintenance this age increases by one year

per (physical) annum. However by appropriate maintenance the aging

process can be slowed down or even reversed according to the differential

equation

x(t) = 1 - m(x(t)) u(t), (1)

where, at time t, u(t) is the annual rate of dollar expenditures for

maintenance, and m(x) is the amount of effective age reduction per

dollar of expenditure when the unit is in state x. m is an exogenously

specified function and has to be determined empirically [5].

Let R(x) be the rent schedule. Then the profit-maximizing landlord

will program his maintenance expenditures u(t), t 0, so as to

Maximize I e '̂ ^[R(x(t)) - u(t)] dt (2)
u(-)>0 1
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Here 6 is the rate of interest so that the integral in (2) is the

present value of the program u(0« Let capital letters denote optimal

values of the variables. By the Maximum Principle there exists a

function P(t), t ^ 0, satisfying the adjoint equation

• JiU

P(t) = (t.X(t),P(t),U(t)), (3)

with boundary condition lira P(t) = 0, such that for all t
t-H»

H(t,X(t),P(t),U(t)) = maximum H(t,X(t),P(t),u), (4)
u>0

where the Hamiltonian H is given by

H(t,x,p,u) = e '̂ ^[R(x)-u] + p[l-m(x)u] (5)

If instead of the price function P(t) we work with the ("current"

price) function Q(t) = e P(t), we obtain from (3) the equation

Q(t) = 6Q(t) - R'(X(t)) +m'(X(t)) U(t) Q(t), (6)

while (4) yields the conditions

U(t)

0 , if [1 + m(X(t)) Q(t)] > 0

= ^ lO,"] , if [1 + m(X(t)) Q(t)] =0 (7)

+ , if [1 + m(X(t)) Q(t)] < 0

We can now state our problem mathematically:

Design the rent schedule R(*) so that the corresponding optimal

trajectories yield satisfactory values for the state of housing (low

values of x) for a large number of initial values. Furthermore, the
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design and.the optimal trajectories should not be very sensitive to

errors In the specification of m(0 or In measurement of x.

In the (x,q) plane let s'*",S,S denote respectively the regions

where [1 + m(x)q] > 0, 0, <0. We will Impose the restriction that

R(x) > 0, R'(x) < 0 for X < X, and R(x) = 0 for x ^ x (x Is the minimum

acceptable quality level). We assume that m 0. Finally we assume

that there Is a unique value of x, x = x*, such that (see Figures 1,2)

+ R' (x) + = 0
m^Cx)

(8)

We will first analyze the behavior of the optimal solution In the

region S, then S^, and finally S. Suppose that (X(t),Q(t))^ S for a

non-vanlshlng time Interval I = [t^,t2]. Then, for t ^ I, Q(t) =

from (7) which upon differentiation yields

Q(t) = [1 - m(X(t)) U(t)]
m (X(t;))

= 6Q(t) - R'(X(t)) + m'(X(t)) U(t) Q(t) from (6)

Hence

m (X(t;;

so that

X(t) = X* , t e I,
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and hence for t ^ I

° Q(t) = - = q* say

This is the unique singular solution. It is also the unique optimal

steady-state. Its contribution during the interval I to the present

value (2) is

^2

e-«'[R(x*) -^ ]dt =-fee ''l-e ''2) [R(x*) - (9)
^1

1

-}•
Next, in the region S U(t) = 0 by (7) so that the optimal policy

is to disinvest as rapidly as possible and to allow the unit to

deteriorate. Under this policy X, Q obey the equations

X(t) = 1 , 6Q(t) = Q(t) - R*(X(t)), (10)

so that in a neighborhood of S the trajectories of (10) satisfy

IS
3X 3X

3 r 1

= + R' (X) +rIjA < 0 as X5 X* (11)
m^(x)

by (8), so that the vector field (10) has the form shown in Figure 3.

Suppose (X(t), Q(t))£ S for t GI^ = [t-|̂ »t2]. Then integration of
(10) leads to
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X(t) X(t^)
e-'̂ ^('=)Q(t) +1 e"^*R'(x) dx =e +J (x) dx

0 0

If we define

(12)

X

p(x) =I e (y) dy (13)
•'o

then, by (12), the characteristic curves of (10) are given by

"fixe Q(X) + p(X) = constant (14)

From the terminal conditions lira P(t) = lim e~'̂ ^Q(t) = 0. Since R'(x) = 0
_ t-^ t-x»

for X x» we can see from (10) that the only trajectory in s"^ which

hits the X axis and which satisfies this terminal condition is the one

which passes through the point (x,q) = (x,0). By (14), this trajectory

lies on the curve

e *^^Q(X) + p(X) =e 0+ p(x) =p(x) (15)

labelled T in Figure 4. It is evident that if a portion of the optimal

trajectory lies on for some time t^ then it must remain on for

all t ^ ty An obvious necessary condition for R(-) to be a good

design is that if the initial state of the unit is x* then it is more

profitable for the landlord to maintain the unit in this state i.e.,

adopt u(t) = > rather than disinvest i.e., u(t) e 0. This gives

us our first design condition.

X

i dy >0
j X*
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Integrating the second term by parts leads, after some simplification,

to the equivalent condition

e q* + p(x*) > p(x) (16)

From (15) we see that (16) is equivalent to requiring that the curve t"^

intersects S at (x^,q*^) to the right of(x*,q*) as shown in Figure 4.

Another straightforward analysis reveals that there is only one other

curve in along which an optimal trajectory can possibly lie. This

is the curve belonging to the family (14) which passes through (x*,q*).

It is given by

e"%(X) + p(X) = e"^**q* + p(x*), (17)

I [

and is labelled T in Figure 4.

Finally we analyze the behavior in S . Suppose (X(t),Q(t)) ^ S

for some t so that, by (7), at time t U(*) is a Dirac delta function,

say

U(s) = u6(s-t) (18)

where u ^ 0 is a constant. From (1) and (6) we see that both X and

Q will then be discontinuous at t. To compute X(t+) - X(t) rewrite (1)

as

c'\ dX(s) ^ I ds _ t
J m(X(s)) J m(X(s)) J

t.
L

U(s) ds (19)

t t

so that taking limits as t^ ^ t+ gives, using (18),
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X(t.)

f '
lim I

dx

^ " (20)
X(t)

1If we define y(x) =j dy, then (20) gives us

M(X(t+) = y(X(t)) - u (21)

from which we can.solve for X(t+) knowing X(t) and u. To determine the

jump in Q we proceed similarly by rewriting (6) as

I dQ(s) ^ I _ f R'(X(S)) . 1
J Q(s) J J Q(s) •»

By (19) the last Integral above is equal to

'l 4
_ f m'(X(s)) f in'(X(s))

J ni(X(s)) 'lX(s)+J „(x(s)) ds

(X(s)) U(s) ds (22)

Substituting this in (22), integrating and taking limits as t^ ->• t+

yields log Q(t+) - log Q(t) = log m(X(t)) —log m(X(t+)) from which we

obtain the desired relationship

Q(t+)m(X(t+)) = Q(t)m(X(t)) (23)

In particular if(X(t),Q(t)) G s (the boundary of S~), then (X(t+),

Q(t+)) G s also.

It remains to determine the initial values of X(0) for which the

maintenance program (18) is in fact optimal and the corresponding values

of X(0+). First of all, if X(0) ^ x* then it is routine to show that it
[ I

is better to disinvest i.e., the optimal trajectory lies along T in
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Figure 4. On the other hand if X(0)= x> x* and if (18) is optimal then

one can show that X(Of) = x* i.e., (X(0),Q(0)) e s and (X(0+), Q(0+))

= (x*,q*). From our earlier analysis we know that if this is not optimal

then the optimal trajectory must lie along in Figure 4. To determine

which of these two extremal policies is more profitable for different

initial conditions X(0) = x > x* we compare the corresponding contributions

to (2). Under (19) this contribution is

X*

whereas along it is

fJ«(x) =1 e R(y) dy

Some algebraic manipulations lead us to

j^(x) - J2(x) =- 1 "I [^(x*) +q*] - [r(x)+q(x)]
X* (24)

where Q(x) is given by (15), the curve describing t"*". Evidently

J1-J2 decreases with x. Hence the investment policy (18) is optimal

for X(0) < X whereas disinvestment is optimal for X(0) > x where x

is defined by

J^(x ) - = 0 (25)
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The behavior of the optimal trajectories is displayed in Figure 5.

We can now deduce the ranges within which R will be a "good"

design. First of all the optimal steady-state x can be chosen by the

city subject to its defining characteristics (8). Note that it depends

upon the values of R' i.e., upon rent differentials only and not upon

the absolute values of R as long as the necessary condition (16) is met.

Thus (8) and (16) establish the maximum range over which consequence

C4 can be avoided. Of course, if R is reduced so that (16) is

violated, then massive deterioration must result. To reduce x* (i.e.,

to have a better steady-state) (8) suggests that R should be increased.

Also, to maintain x* in the face of exogenous changes in the interest

rate 6 and maintenance costs m appropriate compensatory changes in R

must be made.

Secondly, a "good" design should be such that the state x given

by (25) must be as large as possible. From (24) we see that this can

be achieved by increasing R(x*) - R(x) for x > x* since that will

reduce profits from disinvestment relative to maintenance. If R(x*)-R(x)

is increased by raising R(x*), this may nullify the purposes of rent

control to some extent; on the other hand if it is increased by reducing

R(x) there will be a relative increase in demand for housing of lower

quality levels. In any case we can see the amount of flexibility which

is possible in choosing R. Any further specification of R would require

detailed consideration of intended redistribution effects among households.

Finally we suggest how to cope with C5. Since the steady-state

net revenue per annum is R(x*) - new housing will be created only

if this yields a return which is favorable in comparison with investment
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opportunities outside the city's housing market. One way to encourage

new construction is to make R a function of x and t, R = R(x,t), where

t denotes the date of construction of the unit. This will permit

adjustments in R according to changes in construction costs.

In summary, equations (8), (16) and (25) are the most important

theoretical relations which should be considered in designing R, and

these will also reveal the sensitiveness of the design to errors in

the specification of m and in measurement of x.

34. Considerations in Implementation

Three different sets of "inputs" enter into the production of

the bundle of services that we call "housing." The first can be called

the structure of the unit. Normally the only requirements imposed on

this is that the structure meet the building code regulations. The

second set of inputs is such capital equipment as appliances, furniture

etc. whose value can be determined independently of the unit. Finally

we have the set of inputs which are usually classified as "maintenance

and operating" expenditures. Some of these such as janitorial services,

painting, repairing, gardening, and some management services are directly

related to output, and these are the empirical correlates of the

function m of the previous section; other inputs in this category such

as taxes and finance costs are not directly connected with output.

In the previous section we saw that a good design depends upon

continuously updated information regarding maintenance costs as well

3

The author is indebted to D. Pessel and M. Stonebraker for the
estimates presented here.
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as the state of housing (so that any misspecification of m can be

detected). Of course Information on all other costs is also necessary

to arrive at the final determination of rents. The total information

can be broken down into the following categories: structural data,

capital equipment -furnishings and appliances, optional services such

as parking, maintenance and operating costs, financing costs such as

taxes, etc. We estimate that this will account for not more than 300

bytes of data. Hence a city with 30,000 rental units requires an on

line access to a data base of 10^ bytes of data. The rental cost of a

system providing such a capacity should not exceed $12,000 per year.

The other major costs are software development, data acquisition and

reliability of data. Data reliability can be ensured by having the

information available to both tenants and landlords with appropriate

procedures to decide when conflicting claims are made. The data

should be updated at least annually and if appropriate forms are designed

these can be filled out by landlords at minimal costs, although the

collective cost incurred by them may still be substantial (estimate:

$1 per unit per year x 30,000 = $30,000 per year). Software development

should not exceed six man-months, or $12,000. Thus the costs incurred in

implementing an adequate information system necessary to support

the proposed scheme would be $42,000 per year,^ and a software development
cost of $12,000. Since the administrative costs of rent control

doubtless exceed these estimates by a huge margin, the cost of the

proposed scheme appears to be quite modest.

4
Note that this figure includes the "invisible" cost of $30,000 borne

by the landlords.
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5. Concluding Remarks

Economic theory tells us that the best way to ameliorate the

hardships incurred by people facing rapidly rising rents is not to

interfere with the market but rather to have direct income transfers

to these people. Such income transfers should be financed through

taxation preferably perhaps of the landlords who are making "windfall"

profits. Cities do not have such taxing authority. 'Hence the proposed

scheme is what is called a "second best" solution.

Doubtless this scheme is extremely naive and inefficient when

compared with the perfectly functioning, decentralized, housing market

of. some economic textbooks. But the real housing market is not as

efficient as may appear, especially the cheap housing sector of the

market, and it is the consumers of this housing who are least able

to absorb rent increases.

Since the "first best" solutions of the economist are often not

implementable it may be worthwhile investigating realistic second best

solutions both regarding their effectiveness and their costs. This

paper is an exercise in bringing to bear an "engineering" approach to

such problems.
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Fig. 1. Assmued behavior of R, m.



Fig. 2. The optimal steady-state x*.



Fig. 3. Analysis in S



Fig. 4. Optimal trajectories in S
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Fig. 5. The optimal trajectories.


