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ABSTRACT

This paper presents a globally convergent multiplier method which

utilizes an explicit formula for the multiplier. The algorithm solves

finite dimensional optimization problems with equality constraints. A

unique feature of the algorithm is that it automatically calculates a

value for the penalty coefficient, which, under certain assumptions,

leads to global convergence.
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1. Introduction

In the 1930*8 and 1940*s (see for example [9]) it was customary to

convexify the Lagrangian of equality constrained variational problems by

adding a penalty term. Later in 1958, Arrow and Solow [1], in considering

gradient methods for solving the problem P, min{f(x)|g(x) = 0} with

f ; R?' R^, g : R™ (m <n), proposed to solve P by finding a
saddle point of the convexified Lagrangian, ii'̂ (x,y) = f(x) + <y,g(x)>

1 2+^ llg(x)ll , for c sufficiently large. In 1969, Hestenes [10] and
Powell [16] and in 1970, Haarhoff and Buys [8] proposed related methods

for solving P, based on the convexified Lagrangian. Within a short period

of time, these methods became known as methods of multipliers and generated

a great deal of interest [2], [3], [4], [5], [6], [7], [13], [14] in the

form of specific refinements and extensions. There are two basic types

of multiplier methods: Those that compute estimates to the Lagrange

multipliers y after each inner iteration (e.g. as described in [10], [16],

etc.), and those that estimate the multipliers y(x) continuously, as first

described in [5]. The basic deficiency common to all these schemes is

that they do not incorporate a method for selecting a finite value of c

adequate to ensure convergence of the sequences constructed.

In this paper we present a multiplier method which uses an explicit

formula for y(x). Our algorithm appears to be the first in the multiplier

methods family, to incorporate an automatic scheme for determining a

finite value of c compatible with convergence, and it converges quad

rat ically under mild assumptions. The algorithm is partly based on

ideas due to Fletcher [7], which we gratefully acknowledge.



2* Preliminary Results

We shall consider the following minimization problem:

mln{f(x)|g(x) = 0}

where f : 0?,° and o • R" fl?'®and g . K. + K , with m < n. We shall denote the

components of a vector by superscripts, the elements of a sequence by
subscripts and we shall make use of the following hypotheses.

--sumption 1: The functions f and g are three times continuously
differentiable.

n

^ IS" the vectors Vg^x). 1 =1.2.....m. are
linearly Independent. ^

We recall that the Lagranglan 1 : R" x Rf ^ r1, problem (1)
Is defined by

t(x.y) =f(x) + <y.g(x)> ^2)

where <•.•> denotes the Euclidean scalar product.

Given any Xe R". it is possible to define y(x) € R" as the unique
mlnlmlzer of Ov^Kx.y)!!^

y(x) =arg mln{llv^l(x.y)ll |̂y € R"}

where i Bdenotes the Euclidean norm and we use the notation
/ 9 ' TA A(x,y)] . The symbol Vwill always denote a column vector

of first partial derivatives. We shall use a subscript on Vonly when

confusion Is possible. We Shall make use of the following two

properties of the multiplier function y(*)

Proposition Ir For every x e

-2-



V £(x,y(x)) = 0 W
dX X

Proof: It follows immediately from (3) that

f
\ 9x 9x ' 3x

IjlsZ) IJM,,,., • ,5,

and hence

V^Jl(x,y(x)) = ^V£(x) + y(x)) =0 (6)

Proposition 2; The function y is twice continuously differentiable and

its Jacobian matrix is given by

3y(x) _ /ag(x) 3g(x)^\ [3g(x) 3^&(x,y(x)) ^
3x \3x 3x / [ 3x -.23x

^ 2 i
2 e. VA(x,y(x))^ ^^ 2^^
pi J ^ 8x2

(7)

where e^ denotes the jth column of the m^m identity matrix.

Proof: That y is twice continuously differentiable follows directly from

Assumption 1 and (5). To obtain formula (7), we make use of a dyadic

expansion of (A) as follows,

m

V Jl(x,y(x)) = e. V i!,(x,y(x)) =0 (8)
3x X j dx X

Hence, differentiating (8), we obtain.

j=l J ^ * 3x I 3x

3^)l(x.y(x)) 3v(x) ] \ - 0 (9)
3y3x 3x J /
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2 T

Since ^ ^(x>y(x)) _ ^ (7) follows innnediately from (9). °
3y9x 3x

To obtain a penalty function type method which does not require

Infinite penalization for the infraction of constraints in (1) to yield

a solution of (1), Hestenes [9] and Powell [L3] have independently proposed

the use of the following, parametrized, augmented Lagrangian

ijj I XIR® IR.^, with
c

ij) (x,y) AJ^(x»y) +-^cllgCx) 11^
c z

where c > 0 is a parameter. We shall make use of a simple modification

of (10), also used by Fletcher [7], viz.,ip^ : fR-^ defined for
c ^ 0, by

ip (x) = jl(x,y(x)) +-^llg(x)ll^
c ^

We shall depend on the fact that there is an important relationship

between stationary points of and of fi, as we now show.

Proposition 3 If a pair (x,y) is a stationary point for £(•,•), then

y = y(x) and, for any c > 0, x is a stationary point for

Proof: Since (x,y) satisfy V 1(5,y) = 0, V )l(x,y) = 0, it follows from
—~ X y

(3) that y = y(x) and from (2) that g(x) = 0. Hence, for any c^ 0,

V ifj (x) = V Z(x,y) =0.
O X

The following result shows to what extent is the converse of

proposition 3 true.

Proposition 4 For every compact subset S of R , there exists a Cg ^ 0

such that for all c >c^, if 5S s is a stationary point of i)-^(-),
then (x,y(x)) is a stationary point of £.(•,•).
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is a stationary point of (•,*)•

Proof: Let S be a compact subset of IR and suppose that for some

c > 0, X G S satisfies Vip (x) = 0. Hence, making use of (4),
— ' c

3g(x) 3g(x)''̂ 3g(x) ayCx)'''
8x 3x 9x 3x

Consequently, we must have

I I/ ag(x) 3g(x)''"\ Mil Mill 1g(x) =0 (i3)
^ V 3x 3x / 3x 3x I '

g(x) (12)

Since S is compact and all the matrices in (13) and continuous, there

exists a c >0 such that for all c ^ Cq snd any x ^ S, the matrix in (13)
8 — ^

multiplying g(x) is nonsingular. Hence, if c ^ Cg, g(x) = 0 and therefore,

g(x) = V)l(x,y(x)) =0 and V^)l{x,y(x)) = Vi|)^(x) = 0, which completes our
proof.

Since the algorithm in the next section is designed to find local

minima of for adequately large values of c, it is interesting to

establish the relationship between the local minima of and f.

Corollary 1: For every compact subset S of 1R there exists 3- Cg ^ 0

such that for all c > c^, if x G S is a local minimum of il' (0, then x
— S ^

is a local minimum of f(*) on = {x|g(x) = 0).

Proof: By proposition 4, there exists a Cg 2: 0 such that if c ^ Cg

and X is a local minimum of then g(x) = 0. But ^^(x) = f(x)

for all X £ fi, and hence the corollary follows. °
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3. The Algorithm: Convergence

The algorithm which we are about to describe is related to the

Gauss-Newton method and makes use of an approximate Hessian of

defined as follows. For any c^ 0 and x ^ , let H^(x) be an nxn

matrix defined by

„ , , 3^^(x.v(x)) agCx)"*^ 3y(x) . 3y(x)^ igW
" 2 3x 3x 3x 3x

dx

+ « 3g(x) (14)
3x 9x

Proposition 5: For all x satisfying g(x) = 0 and any c ^ 0,

(x)

»c<"> - -ir-
ax

Proof; Eq. (15) follows directly by calculation from the fact that for

any c ^ 0 and x ^ ,

ax j=i \ ax

The algorithm below makes use of a preselected monotonically

increasing sequence with ^ j = 0,1,2,..., and

c. -J- 00 as j ->• «>. For example, one could use sequences defined by

c. =c + jp, j =0,1,2,..., p >0, or c =CqV^, j =0,1,2,..., with
j u J

V > 1 and Cq > 0.

Algorithm: Parameters: a ^ (O,—), 3 ^ (0,1), 0 < << 1, 0 < « 1»

Y > 1, {c.}? ^ . Initial guess: z .
- 3 3=0 "

Step 0; Set j = 0.
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Step 1; Set i = 0, and set .

Step 2; If (x.) 0, go to step 4; else go to step 3.
^ • 1

3

Step 3: If g(x^) = 0, stop; else go to step 10.

9g(x.)'''̂ / ag(x ) ag(x )^\ ^
StetA: If ^ j >1

2
"gCx^)!! , go to step 5; else go to step 10.

Commenti The test in step 4, roughly, is on the angle between Vi/;^ (x^)
9g(x^)^ /3g(x^) ag(x^)^\ ^ ^

and the Newton direction v(x^) 4—^ l~ax —ax / S(x^)»

2solving g(x) = 0, defined by v(x^.) = arg min{llvll |g(x^) +—^—v = 0).
X

Step 5t If jdet I —̂q* step 6; else go to step 7.
3

Step 6: If

-1(x^), (x^) (Xj^) > >
j j j

minCe , (x.) (x.)ll Oh^ (x ) Vij^^ (x^) II, (17)
^ j ^ j ^ j 3

set h(xj = (x.)"^Vi|/« (x.) and go to step 8; else go to step 7.
i . 1 ^. X

Step 7: Set h(x.) = (x^.) .
X ^ , X

3

Step 8; Compute the smallest nonnegative integer 5-^4® such that
£ £.

i^c +B^ h(x^)) - (x^) i e ^a <'•!'<, (*i). h(Xj^) > (18)
3 j 3

it.

Step 9: Set x^^^ =x^ + 6 h(x^), set i = i+1, and go to step 2.
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Step 10: Set = x^, set j = j + 1 and go to step 1. °

Lemma 1: Suppose that x. is such that (x^) 0, and h(x^) is
^ j

as constructed by the algorithm, in step 6 or in step 7, then there

exists an < " such that (18) holds.
1

Proof: Note that

<ViI. (x.), h(xj > < 6.(x.)lvt|) (x )ll llh(x )ll < 0 (19)
^c, i' i — ji c. 1 1

where

6.(x.) Amax{-l, -min{e-, Hvij) (x.)II^}}j 1 - ^ j ^

The lemma now follows from the Mean Value Theorem.

(20)

Lpnmifl 9: Suppose that the algorithm has constructed an infinite sequence

{x.}^_Q (i.e., step 10 is reached a finite number of times only), then any
accumulation point x* of {x.}T_n satisfies V>() (x*) = 0, and g(x*) = 0,1 l-U Cj^

where j* is the last value of j.

CO

Proof: Suppose that x* is an accumulation point of because

of the test in step 5, given any e* > 0 there exists an M* G (0,«») such

that ilh(x )I1 < M* OVil) (x.)ll for all Hx. - x*ll £ e*. Making use of this
i — c.a.1 ^

3

fact, of (19) and some of the results in section 2.1 of [12], we conclude

that Vip (x*) = 0 must hold.
C.j,
3*

Next, denoting by K C {0,1,2,...} the indices of the convergent

subsequence, since j never grows beyond j*, we must have, according to

step 4, for i=0,l,2,...

3g(x.)''̂ /3g(x ) 3g(x

-8-
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Butviji^ (x^) •> 0as i i €K, and g(•), |^ (•) are continuous, and
j*

i

is nonsingular for all x. Hence we must have g(x^) ^ 0
8x 9x

as i i ^ K and hence, g(x*) = 0.

Le^a_3: Suppose that the algorithm has constructed an infinite sequence

of points {z.}? Then {z.lT « no accumulation points.
J 3=0 j 3=0

Proof: Suppose that the algorithm has constructed an infinite sequence

{z } « which has an accumulation point z*. We shall show that this leads
j j=o

to a contradiction. Let K01 {0,1,2,...} be such that z^ ->• z* as j ^

3 G K. Obviously, the set S = {z is compact. Now consider the test

in step 4, whose failure results in the construction of a new Zy Let

6 : X R" -V ll?l be defined by

0(c.x) =

Then, making use of the right hand side of (12), we find that

e(c,x) -

|2

= <g(x),

- "g(x)

Tv-l

Since S is compact and 0 is continuous, it now follows that there exists

a c* > 0, such that 0(c,x) ^ 0 for all c ^ c* and for all x G s. Let j*

be such that c. > c* for all j > 3* - 1» then the algorithm could not
3 - ~
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•k

have constructed any point > j with j J > 3 ^ account of a

failure to satisfy the test in step 4. Hence, it must have constructed

the points z^, j ^ K, j > j* because of the transfer in step 3, i.e.,
j ~

we must have (z.) = 0, g(z.) 9^ 0 for all j ^ K» j ^ j**
^j-1 J ^

according to proposition 4, there exists a c such that if Vip (z) = 0 then
D C

g(z) = 0 for all z e s, for all c > Cg. Let j** ^ j* be such that

c. > c for all j ^ j** - 1, then we see that z , j ^ K, j ^ j** could
3 S 3

not have been constructed. Thus we have a contradiction, °

We can now collect our results and state them as a theorem.

/ -.v
Theorem 1; (a) If the algorithm constructs a finite sequence

and stops, then y(Xy)) = 0 and g(x^) = 0. (b) If the algorithm
constructs an infinite sequence bhen any accumulation point x*

of {x,}" „ satisfies V i(x*, y(x*)) = 0. g(x*) = 0. (c) If the algorithm
i i=0 X

constructs an infinite sequence {z^}^_q then this sequence has no
accumulation points. ®

4. Rate of Convergence of the Algorithm

We shall now investigate the rate of convergence of the algorithm

described in Section 3, when it converges to a local nonsingular minimum

point of the problem (1). We recall that a point x is a local nonsingular

minimum point of (1) if (i) g(x) = 0, (ii) there exists a multiplier

y G IR.® such that

= 0

and

X>>0for all Xe {x|- |̂̂ x=0, x#0} (25)
3x
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Proposition 6; If x is a nonsingular local minimum point of (1)» then

there exists a c > 0 such that for all c ^ c, x is a strong local

(x)
~ c

minimum point of ij/ (•)> i-e. Vij; (x) = 0, ^ > 0.
^ ^ 3x

Proof: By propositions 3 and 5, for any c 0, Ai/^^(x) - 0 and

(x)
•r— = H (x). From (14), summing the first three matrices and calling

the result A(x), we have

H^(5) =AW +c ^ (26)

Now, because of (25), <x, A(x) x > > 0 for all x 0 such that x = 0

and hence there exists a c > 0 such that H^(x), and consequently
(x)

, is positive definite for all c ^ c. °
ax

The converse of this result follows trivially from (26) and proposition 4.

Proposition 7: For every compact subset S of 0^^ there exists a c > 0

such that for any c ^ c, if x € S is a strong local minimum of 4'j,(*),

then X is a nonsingular local minimum of (1). °
00

Corollary 2: Suppose that the algorithm has constructed a sequence

which converges to x* a strong local minimum of (•)» where j* is the

3\(x)
c

*
3

last value of j. Then x* is a nonsingular local minimum of (1).

Proof: By theorem 1, g(x*) = 0, i.e., x* is feasible and V^Jl(x*, y(x*)) = 0.
a £(x* • y(x*))

Since H (x*) is positive definite, we must have 2 positive

definite on the linear manifold {x|̂ |̂ ^*^ x=0}, hence we are done. °
00

Lonrmfl /,; Suppose that the algorithm has constructed a sequence ^x^}^_q

which converges to x*, a strong local minimum of (•) and suppose that
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0 < Idet H. (x*)|, then there exists an 1* such that for all 1 ^ 1*,
j* _i

h(x.) = - H (x.) Vi|)^ (x.) and 1. = 0.
j* i*

Proof: Since H (x*) > 0 by assumption, and H (•) Is continuous, there
"j*

exists a closed ball B(x*) with center at x* such that H (x) > 0 and

3*
H (•) is continuous, for all x ^ B(x*). Since x. ->• x*, there exists

j* ^
an i^ such that for all i ^ i^, ^ B(x*) and |det (x^)| ^ Next,

-1 j*because H (x) > 0 for all x ^ B(x*) and B(x*) is compact and because
j*

Vi|; (x.) ->• 0, there exists an m ^ (0,®®) and an i« ^ i^, such that for

all i i^, (since y = 1)

(Xi), H (x^)-^ 'te. (Xi)> -
J* j* j*

min {e^, (xpll^} (x^) II IIh^ (x^)"%^ (x^)

= IIVip (x.)II^ (m - llVij; (x. >11'*^ ^Hh (x.) (x.)ll)

= 0 (27)

Hence, for all i i^, the test (17) in step 6 is satisfied and the

algorithm sets h(x.) = - H (x.) ^Vij; (x.).
""j* ""j*

Next, we consider the test (18) in step 8 for i ^ ±2' For x ^ B(x*)

let

<l'(x) = (x+h(x)) - ip (x) - a (x), h(x)> (28)
Cj* Cj*

where a ^ (0,-|-) is as in the algorithm. Then making use of the second
order Taylor formula, for all i i2, we obtain

-12-



1 3 (x^+th(x^))
(l-t)< h(x^) , ^ 5♦ (X^) = (l-a)<Vi)- ^ (x.),h(x.)> +1

j* J dx

h(x^)) dt
0

= C|-a) / (x^), h(x^)>

(1-t) <h(x^).
3 ilj (x.+th(x.))

^ * ju ^

dx 3*

h(x^)) dt (29)

But H (•) ^ is continuous on B(x*) and hence there exists an M^ [in,®>)
c..

3
such that

3^i|>c (x^+th(x^))
-(^a)m + sup " ^ o ^c ^*i^

^ ^ te[0,l] 3x j*
(x^)

j*

(30)

3 \i) (x.+th(x.))
0.. 1 1

3*Since sup II-
tG[0,l] 3x' 3

i* > i^ such that <|)(x^) ^ 0 for all i ^ i*j i.e., the test (18) is passed

with £. = 0 for all i > i*. "
1

- H (x.) 11 -> 0 as i there exists an
X

Theorem 2; Suppose that the algorithm has constructed a sequence {x^}

which converges to x*, a strong local minimum of (•)» and that
1< -^Idet H (x*)I. Then

0 Z* c.^ '
3*

i=0

IX.
1+1

II x^ - x^
— **1

-^0 as i -»• <» (31)

Furthermore, if the functions f and g are three times Lipschitz continuously

differentiable on a convex neighborhood of x* then there exist an i* and

a V ^ (0,«>) such that

lx..i - x*ll < V llx. - x*II for all i > i*.
1+1 — 1 —

-13-
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Proof: Let 1* be as in Lemma 4. Then for all 1^1*, = x^

- H (x.) (x^)» and hence,

llx.^,-x*ll = ll(x.-x*) - (x.)"^(Vt|i„ (x.) - vij)^ (X*))ll
1+1 1 "i* 1 "i* 1

3 If (x*+t(x.-x*))
c. . 1

II dt
$ ^c.

IIH (x.) ^
n '3* ' ax^

llx.-x*ll (33)
1

But for all 1 > 1*, Hh (x.) ^11 < M< «>, where Mis as in lemma 5, and
i* ^

hence

„x x*ll 3^4'<,^(x*+t(x^-x*))
11^7^11 ^ 72 " (34)

i t^[0,l] 2*

(x*-t(x^-x*))
Since sup IIh (x.) ^ « II •> 0 as i ->- «», (31) follows

te[o,i] j* ^ ax^

from (34).

Next, suppose that f and g are three times Lipschitz continuously

differentiable on a convex neighborhood B of x*. Without loss of

generality, we may assume that x^ G B for all i i*. Hence, (34) yields

[Ix -x*||

II I -^*11 IM sup {»H^ (x )-H^ (x*)llII *1 3C II t^[0,l] j* j*

9^^ (x*+t (x^-x*) )
+ II ^ 5 He (x*)">

Sx"^ i*

_< 2ML Dx^ - x*II for all i ^ i*, (35)
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where L Is a Lipschitz constant which is valid both for (•) and for

4--:— , and where we have made use of the fact that (x*)
3x^ 3x^3*

Setting V = 2ML in (35), we obtain (32).

Conclusion;

We have shown in this paper that there is at least one scheme for

automatically finding an adequate penalty for use in a multiplier method.

This scheme ensures convergence, but it does not guarantee quadratic

convergence, since it does not ensure that the matrices (x-^) do in
3

fact become positive definite. One could, of one so desired, add a

test to check if the matrices H (x.) are positive definite and increase
O • JL ^
3*

c^ to make them positive definite. However, it is not clear that the
extra work is justified, since in practice it has been found that the

resulting from a straightforward use of the algorithm is,usually,

large enough to ensure quadratic convergence.
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