Copyright © 1974, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

'COMPUTER ASSISTED SECURITY SYSTEM DESIGN

by

Don Clements and Lance J. Hoffman

~

Memorandum No. ERL-M468

November 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

COMPUTER ASSISTED SECURITY SYSTEM DESIGN+

Don Clements and Lance J. Hoffman
Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT
A computer software package has been implemented which partially
automates the selection of security techniques appiicable to a particular
data processing system design. The program is a table-driven, interactive,
information retrieval system which takes "objects" and "threats" as
input and produces suggested "countermeasures" as output. The system is
a small prototype; possible extensions are discussed at the end of the

paper.

Research sponsored by National Science Foundation Grant GJ-36475.

1. OVERVIEW

An autdmated management tool has been implemented to aid in the
selection of security features which would enhance fhe security of an
existing data processing facility or define secufity fequirements in a
system to be designed. An interactive decision making program was
developed which employs information retrieval techniques to produce
listings of "desireable" security measures to combat known or suspected
"threats". This paper describes the algorithm used and illustrates
(with sample output) the nature of its operation. General qualitative
evaluations and proposed extensions to the system are also discussed.
The actual programming was done in Stanford Basic using the IBM System

370 facility at Stanford University.

2. BACKGROUND

The selection of security measures constitutes one component of
the security system synthesis process. The entire synthesis procedure
is defined in "Privacy and Security in Databank Systems" (Turn c.1973?).

In this essay, Turn develops a definition of "Data Security Engineering"

as a "

...methodology, and a set of techniques, being developed to
provide a framework for synthesizing Security systems, comparing
alternative designs, and providing tradeoff analyses.'" He views the
security environment as a combination of a protected domain, a user
domain, a threat domain, the security system, and a set of external
constraints (see Figure 1).

The protected domain contains all of the entities (objects) which

require protection. This domain may be subdivided into several levels

-2

Threat Domain

User Domain

INTRUDER

Illegal Access
Attempts

Valid Access
Attempts

(THREATS)

Security System

(COUNTERMEASURES)
OBJECT '

Protected Domain

Figure 1 - The Security Environment

of protection according to the value placed upon the individual objects.
The user domain is made up of all personnel authorized to enter the
protected domain. All subversion techniques:and ﬁhe set of z11 personnel
not authorized access to the protected domain form the threat domain.
The security system employs hardware, software, physical procedures, and
administrative controls to erect barriers between the threat domain and
the protected domain., These barriers must not greatly impede access from
the user domaip. External constraints include those policies, economic
considerations, technological limitations, etc. which limit the ideal
security system design. Constraints of this nature are, of course,
common to all engineering design problems.

An analysis of the protected domain and the subsequent identification
of the objects of interest constitutes the first phase of security
system design. All valid access paths must be defined; all vulnerabilities
must be identified and carefully described. Techniques of Network Theory
have been proposed (Turn c. 1973?) as a means of identifying these paths.

Levels of required protection are determined by a value analysis of each

of the protected elements. Next a risk analysis is required to determine
the subset of the threat domain promising the greatest potential gain
from the intruder's point of view. Risk probabilities are assigned so that
the threat domain is also subdivided into levels of importance.

The synthesis of security barriers constitutes the third step
of the design procedure. A set of security counfermeasures is selected
from the inventory of all known security techniques. Criteria include:
effectiveness under the circumstances defined by.the present environment,

cost, degree of discrimination, and reliability. Care must be exercised

-4

that all interfaces with the computing system are well understood and
that no "holes" in the security barrier network develop as a result of
an incomplete or erroneous evaluation.

The proposed system must be analysed for completeness and effective-
ness, either by modeling/simulafion, detailed analysis, or full scale
penetration exercises. Several iterations of the above design process
may be required to insure the specified security goals are attained. It
is highly desireable that auditing and certification finalize the synthesis

process.

3. SCOPE OF THE PROJECT

This work is concerned with the selection of appropriate security
countermeasures: the third step in the design process discussed above.
The program to be described accepts a pairing of elements from the object
and the threat domains as inputs, producing a single "suggested" security
countermeasures as output. The program iterates over all object-threat

combinations of interest to the user and produces a set of counter-

measures which then define the security system. If implemented, these

countermeasure will form the security barriers for protection of the

set of objects which make up the protected domain. The risk analysis

which yields the most likely object-threat combinations is the respon-
sibility of the Security Officer, system designer, or manager using the
program. The risk analysis process is somewhatlfacilitated by the

program flow; the user is forced to list ﬁis objects in order of decreasing
value and the associated threats in ordef of decreasing probability.

The final countermeasure set produced is by no means to be assumed

optimal. The target is a set which is "adequate" in that all objects
are protected, and "minimal" in that any countermeasure which protects
more than one object (or defends against more than one threat upon a
single object) is given preference. Since it is recognized that a weak
countermeasure covering more than one threat may be a poor choice in a
very high security design, the "weighting" feature (see Section 5) may
be used to offset this "minimal set" characteristic where desired. It
is the user's responsibility to ascertain the cost-effectiveness of the
security barrier set and apply any external constraints which may preclude
the adoption of one or more of the given countermeasures.

This work should not be viewed as a rigorous mathematical modgl of
an ideal security system. The intent is rather the production of a

useful design aid in the selection of the pertinent security measures.

The. program is very general; it will aid in the design of a wide variety
of security systems at diverse installations. Many of the selection
criteria in the program logic are somewhat coarse since the program is

still undergoing experimentation and "tuning".

4. SAMPLE DESIGN CONVERSATION

The terminal convérsation for a complete design run is shown in
Figure 2. User inputs may be distinguished by two characteristics:
inputs always follow a prompt ("?") and are always in lower case type.
Note the use of plain text for input keywords and the high degree of
redundancy in the repeated generation of partiai lists. The summary
phase shows the effect of multiple use of a countermeasure and the special

result ('"none available') when all design alternatives are rejected by

—-6-

HERE IS A LIST OF SECURITY OBJECTS:
TYPE "YES" FOR THOSE TO BE CONSIDERED.

CORE MEMORY ? vyes
FILES ? ves

OPERATING SYSTEM ? no
REMOTE TERMINALS ? vyes

HERE ARE THE REMAINING OBJECTS:
1. - CORE MEMORY
2. - FILES
3. = REMOTE TERMINALS

CHOOSE (BY NUMBER) THE MOST VALUABLE: 3

HERE IS A LIST OF THREATS AGAINST REMOTE TERMINALS:
TYPE "YES" FOR THOSE TO BE CONSIDERED.

BETWEEN LINES ENTRY ? vyes
BOGUS TERMINAL ? no
INTERCEPTING SIGHNOFF ? yes
MASQUERADING ? yes

WIRE TAPPING ? no

HERE ARE THE REMAINING THREATS:
1. - BETWEEN LINES ENTRY)
2. - INTERCEPTING SIGNOFF Figure 2 -
3. .- MASQUERADING - T
‘ . Sample System
CHOOSE (BY NUMBER) THE MOST PROBABLE: 3
: ' Design
HERE ARE THE REMAINING THREATS:
1. - BETWEEN LINES ENTRY
2. - INTERCEPTING SIGNOFF

CHOOSE (BY NUMBER) THE MOST PROBABLE: 2

HERE ARE THE REMAINING OBJECTS:
1. - CORE MEMORY
2. - FILES

CHOOSE (BY NUMBER) THE MOST VALUABLE: 1

HERE IS A LIST OF THREATS AGAINST CORE MEMORY:
TYPE "YES'" FOR THOSE TO BE CONSIDERED.

ILLEGAL ACCESS ? no
READING RESIDUE ? yes

HERE IS A LIST OF THREATS AGAINST FILES:
TYPE “YES'" FOR THOSE TO BE CONS I DERED.

~ ALTERATION ? vyes
BROWSING ? | yes
DESTRUCTION ? vyes

HERE ARE THE REMAINING THREATS:
1. - ALTERATION
2. - BROWSING
5. - DESTRUCTION

CHOOSE (BY NUMBER) THE MOST PROBABLE: 2

-7-

HERE ARE THE REMAINING THREATS:
1. - ALTERATION
2. - DESTRUCTION

CHOOSE (BY NUMBER) THE MOST PROBABLE: 2

HERE ARE THE SUGGESTED COUNTER-MEASURES:
TYPE "NO" FOR THOSE WHICH ARE UNAVAILABLE.

PASSWORD ? vyes

SYSTEM SIGNOFF CONFIRMATION ? no
ENCRYPT NULLS ? vyes

OVERWRITE CORE ? vyes

BACKUP COPY ? yes

HERE IS A SUMMARY IN PRIORITY ORDER:

OBJECT _THREAT

REMOTE TERMINALS MASQUERAD I NG
INTERCEPTING SIGNOFF
BETWEEN LINES ENTRY

CORE MEMORY READING RESIDUE

FILES - BROWS ING
DESTRUCTION
ALTERATION

ALTERNATIVE DESIGN? yes

HERE ARE THE SUGGESTED COUNTER-MEASURES:
TYPE "NO" FOR THOSE WHICH ARE UNAVAILABLE.

PASSWORD ? no

AUTHORIZATION ALGORITHM ? vyes
SYSTEM SIGNOFF CONFIRMATION ? vyes
ENCRYPT NULLS ? no

OVERURITE CORE ? vyes

ACCESS LIST ? vyes

BACKUP COPY ? vyes

CHECKSUM ? vyes

HERE 1S A SUMMARY IN PRIORITY ORDER:

OBJECT THREAT

REMOTE TERMINALS MASQUERADI NG
INTERCEPTING SIGNOFF
BETWEEN LINES ENTRY

CORE MEMORY READING RESIDUE

FILES BROWS I NG
DESTRUCTION
ALTERATION

8-

Figure 2 - (cont.)

" COUNTER-MEASURE

PASSWORD
NONE AVAILABLE
ENCRYPT NULLS

OVERWRITE CORE

PASSWORD
BACKUP COPY
PASSWORD

COUNTER-MEASURE

AUTHORIZATION ALGORITHM
SYSTEM S1GNOFF CONFIRMATION
NONE AVAILABLE

OVERWRITE CORE

ACCESS LIST
BACKUP COPY
CHECKSUM

the user. This sample run took 5.5 minutes wall-clock time and 1.39

CPU seconds on the Stanford 370.

5. DESCRIPTION OF THE PROGRAM

Table 1 is an outline of the program logic. Indented entries
represent user inputs via the terminal; the other steps are responsés
by the program logic to these inputs. Wherever possible, inputs are
formatted as plain text "YES" or "NO" responses with the decision
keying done on the first letter of the typed input (e.g. "y'" if a "YES"
input is expected). In this way the effects of typing errors are
minimized. An exception to this policy is made in the interest of
brevity during thg ranking of Objects (step 5) and Threats (step 10).
Here the listing is numbered and the user types the number of the next
"most valuable Object" or "most probable Threat". As each Object or
Threat is processed, it is eliminated from the current list (see Figure
2). The modified list is renumbered and relisted at the terminal for
the next selection. Thus only a minimal amount of information must be
remembered by the user during execution.

The names of all Objects, Threats, and Countermeasures which are
recognized by the program together with the pointers which relate the
various combinations of these three elements are retained permanently
on secondary storage in a file system. The exact nature of this file
structure' is examined in detail in the Appendix. These files are random
access in that individual records are directly addressable. During the
execution of step 11 (Table 1), the current Object and Threat names are

entered into a table in primary (core) storage with the pointers (record

-9-

OUTLINE OF PROGRAM LOGIC

PROGRAM ACTION/OUTPUT

11.
12.
13.
14.
15.
16.

18.
19.
20.
21.

22,
23.

USER INPUT

Initialization
List an object name

2. Accept or reject
Repeat 1 & 2 until Object file empt§
List accepted subset of objects

5. Select "Most Valuable"
Search Threat file
List a threat name

8. Accept or reject
Repeat 7 & 8 until all associated threats listed

10. Select "Most Probable/Costly"

Save links to Countermeasure file for this threat
Eliminate threat & iterate 10-12 until no more threats
Eliminate object & iterate 5-13 until no more objects
Read in initial weights of saved countermeausre:s (CM's)
Increase weight of each CM saved more than once
List highest weight CM for this threat

17. Accept or reject

If rejected, zero weight and return to 16

If accepted, save CM name for summary
Eliminate threat and iterate 16-20 until no more threats

Print Object, Threat, Countermeasure triplets in a priority
order summary

If Alternative Design requested, iterate 14-21

Otherwise, terminate

Table 1. Outline of the Algorithm

-10-

numbers) of the possible Countermeasures. In addition to providing fast
retrieval during the summary printing of step 21, this tabular scheme
automatically provides a "priority ordering" according to the user's
terminal inputs.

The selection of one countermeasure from a set of alternatives
involves the use of a weight value. This initial weight of each counter-
measure recognized by the system is stored in a file which is read during
step l4. Currently, all initial weights are given the value "1", the
choice being somewhat arbitrary. The use of these initial weight
values to "preset" the system is a topic for further experimentation.

There may be occasions when one countermeasure will be useful
against more than one threat. The program logic causes the initial
weight value from the Countermeasure Weights file to be added into a
table which is initialized to zeros. Each time a countermeasure is
referenced by a link value in the summary table this weight is added in
to the accumulated value of the appropriate weight table entry. Thus,
after complete scan of the summary table, those €ountermeasures which
serve more than one threat will have attained higher weights. The
program then merelyvselects the countermeasure with the highest weight
whenever a choice is required.

It is possible (indeed likely) that one or‘more_of the various
countermeasures proposed may be unavailable, too costly to implement,
or in some other way unacceptable to the user. This information is
declared during step 17 as each proposed countermeasure is listed.

When a countermeasure is rejected its weight is reset to zero so that

the next search will ignore (recall all weights are at least "1" after

-11-

reading the weight file). If a countermeasure for more than one threat
is ever rejected by the user, the program does not consider using it
against any other threats in the set of interest. Finally, if all
alternatives in the countermeasure list foreathreat are rejected the
message "none available" is saved for the summary and processing of
that threat is terminated.

After the set of "best" countermeasures is thus determined, a
"summary is printed showing each object-threat pair in priority order.
This ordering was developed during the input phase when the objects and
threats of interest were declared by the user. A single countermeasure
is listed following each object-threat pair. This summary provides the
set of security features to be implemented and the order in which they
should be developed to insure that objects of greatest value are
protected first.

At the end of the summary phase an alternative design may be
requested (see Figure 2). Countermeasure weights are reinitialized and
a new set of "acceptable" countermeasures determined. Any number of
alternative designs including the summary information may be produced‘

without reentereing all of the object and threat information. When all
alternatives of interest are produced, the program terminates.

A sample of the output from the summary portion of the program is
shown in Figure 3. The two sets of resulté show the effect of a
rejection of a countermeasure ("password") upon fhe summary when more
than one threat is involved. A complete system design can be found in
Section 4.

In support of the file system and main design portion of the program,

-12-

HERE ARE THE SUGGESTED COUNTER-MEASURES:
TYPE "NO" FOR THOSE WHICH ARE UNAVAILABLE.

_PASSIIORD ? vyes
ENCRYPT DATA ? vyes
BACKUP COPY ? vyes

HERE IS A SUMMARY IN PRIORITY ORDER:

0BJECT . THREAT

REMOTE TERMINALS MASQUERAD I NG
. ~ WIRE TAPPING
FILES ° " BROWS ING
. DESTRUCTION

‘Figure 3a - Summary Output (note multiple use

HERE ARE THE SUGGESTED COUNTER-MEASURES:
TYPE "NO" FOR THOSE WHICH ARE UNAVAILABLE.

PASSWORD ? no

AUTHORIZATION ALGORITHM ? vyes
ENCRYPT DATA ? vyes

ACCESS LIST ? vyes

BACKUP COPY ? vyes

HERE IS A SUMMARY IN PRIORITY ORDER:

OBJECT THREAT

REMOTE TERMINALS MASQUERADING
HIRE TAPPING

FILES o BROWS I NG
DESTRUCT I'ON

COUNTER-MEASURE

" PASSWORD

ENCRYPT DATA

PASSWORD
BACKUP COPY

of Password)

COUNTER-MEASURE

AUTHORIZATION ALGORITHM
ENCRYPT DATA

ACCESS LIST
BACKUP COPY

Figure 3b - Summary Output (Password countermeéasure rejected)

-13-

file management routines are included for listing of all of the file
contents and for the modification of files by addition or deletion of
Objects, Threats, and Countermeasures. The modification routines are
designed to ease the process of linking related Object - Threat -
Countermeasure triplets by shifting file entries and pointer values as
required to maintain alphabetical order in the name files and correct
record nqmbers for linkage in the link files. Appehdix A contains sample
file listings and a description of the logic of the file management

routines.

6. EVALUATION

This systhesis algorithm possesses two features which enhance its
use in real world operations: it is extensible and interactive. The
file structure is of sufficient generality to make practical the inclusion
of a large number of objects, threats, and countermeasures. If information
in these files is made sufficiently complete, it should be feasible to
design or modify a realistic large scale computing facility. Most of
the current work has been devoted to the development of this prototype
and experimeptation with the weighting feature; complete development of
the file information sets is the next logical step.

The interactive nature of the program provides several advantages.
The user is relieved of the exhaustive task of supplying all possible
installation characteristics in advance. The proBability of erroneous
or unneeded inputs is also minimized. A batch type of program would also
lock the user into one design per run, an undesirable feature in a

design process which is usually iterative. As mentioned earlier, the

14~

interactive property of the program flow also aids the user in the risk
analysis énd priority identification portions of the design process.

On the negative side, the logic employed in selecting a single
"best" countermeasure from each set is somewhat simplistic. Recall that
each countermeasure weight is initialized to 1. In the absence of an
application of one countermeasure to more than one threat, this weight
will remain unchanged throughout the search phase. The selection of the
"best" countermeasure for a given object-threat pair is made by choosing
that element of the countermeasure set with the largest weight value.

In the event of a tie, the first entry encountered in the set is used.

Thus the algorithm is very sensitive to the ordering of the countermeasures
in each set. Some degree of improvement would result if individual
initial weights were different. These initial weights could be

governed by the amount of information known about the utility of a
particular security measure at a given installation. Since this
information is so dependent upon the individual installation character-
istics, the best approach would involve the user. This proposal is

further examined in Section 7.

Since multiple use of a countermeasure depends upon the establish-
ment of appropriate linkages at file generation time, it is important
that the name of a countermeasure be distinct whenever this multiple use
is not appropriate. Referring to the sample summaries in Figure 3, note
that "password" appears as a protective measure for both "remote terminals"
and "files". This does not mean that one password is always sufficient
to protect both objects. Flexibility may dictate a user password to the

system and a separate password for the file structure. Discrimination

-15-

could be added by using the names "user password" and "file password"
in the céuntermeasure file. The algorithm would no longer bias its
selection of the "péssword" over alternative countermeasures since the
linkages would now point to separate entries in the countermeasure file.
This tradeoff of "specificity" for multiple application of a security
feature must be carefully considered when the countermeasure file for

this program is designed or modified.

7. PROPOSED EXTENSIONS

. In the previous section, the weighting problem was discussed. One
useful modification of the present program would be a "weight preset"
option available to the user at the beginning of the program execution.
User information about availability and/or suitability of various security
features at his installation could be incorporated into the weighfing
file. This feature could also be offered during the summary phase to
generate ﬁultiple designs.showing user weightings. In this way cost
tradeoffs would be facilitated.

There is some system learning during the summary phase with respect .
to the utility of various countermeasures. This "memory" is lost after
the run since only the weighting tables are modified; the intial weights
in the countermeasure weight files remain unchanged for the next run.

A possible improvement here would involve additional logic during the
search phase to increment entries in a "history file" which would preserve
information about likely object-threat and threat-countermeasure pairings
over a large number of runs. This information would be useful in any

future modification of the linkage files to enhance efficiency by presenting

-16-

"probable" objects, threats, and countermeasures to the user first.
Finally, the exact definition of each specific object, threat, and

countermeasure should be avialable to the desigﬁer. A glossary should

be written in parallel with the expansion of the system files. This would

minimize ambiguity and eliminate any need for tﬁe_user to recognize

"security jargon'.

8. CONCLUSION

A table-driven program which automates the selection phase of
secgfity system design has been presented. Its position in the overall
field of Data Security Engineering was discussed. The algorithm which
implements this selection process was described in general terms. The
program is straightforward and relatively easy to implement, though
somewhat lacking in discrimination. Several extensions to the present
system have been outlined. A sample design run was presented in Section
4. The contents of the files used in this prototypé program are listed
in the Appendix. Given sufficiently complete files, it is believed the
program will function well in the synthesis of a large scale security

system.

~17-

(Browne 1972)

(Canning 1970)

(Hoffman 1973)

(Hoffman 1974)

ANNOTATED BIBLIOGRAPHY

Browne, P.S., "Taxonomy of Security and Integrity",
unpublished M.S. draft (in Hoffman, 1973).

Very complete treatment of the areas of consideration
in the design of a total security system; administrative,
physical, hardware, software areas outlined. Audit,

testing, and certification procedures included.

Canning, R.G., "Data Security in the CDB'", EDP Analyzer,
vol. 8, no. 5, May 1970.

Application of security techniques to protection
of the Corporate Data Base; types of threats (active,
passive, accidental) illustrated iﬁ business data environ-
ment; good general overview of access management;

suggested methods for terminal security improvement given.

Hoffman, L.J., Security and Privacy in Computer Systems,
Melville Publishing Co., Los Angeles, CA., 1973.

Anthology of latest papers in the security and
privacy field; sections on civil liberties, hardware
and software secruity techniques, formal models, data

banks; IBM's RSS used as example of existing systems.

Hoffman, L.J.,'"Computer Security Engineering', lecture
notes for CS 244, Dept. of EECS, CS Div., UC Berkeley,
Winter 1974.

Large variety of security techniques catalogued

-18-

(IBM 1970) -

(IBM 1972)

(Popek 1974)

with detailed examples of proposed and existing implemen-
tations; hardware, software, file management, 0/S
protection, physical, and administrative techniques;

short section on privacy.

IBM, "The Considerations of Data Security in a
Computer Environment, Form G520-2169-0, 1970.

Detailed examination of security techniques for
management, system design, and operations personnel; .
use of authorization techniques, file protection, audit
logs; details on development of security operating

procedures.

IBM, "The Considerations of Physical Security in a
Computer Environment", Form G520-2700-0, 1972.

Detailed treatment of protection against physical
threats to the data system; fire and disaster procedures;
backup facility design; terminal and network security;
computer and I/0 Room administration; system audit
procedures; IBM's Advanced Administrative System used

as a case study.

Popek, G.J., "Protection Structures", Computers, June
1974, pp. 22-33.

Discussion of the best known software mechanisms
for protection and their flaws; capabilities, access

lists, and domains; description of the kernel approach

-19-

(Turn c.19737)

to protection design; possibilities for program
verification in proving systems; several formal models

mentioned.

Turn, R., "Privacy and Security in Databank Systems",
unpublished paper, Rand Corporation, Santa Monica, CA.,
undated.

General delineation of the security environment;
conceptualization of the principles of Data Security
Engineering; Discussion of Risk Analysis and Cost-
Effectiveness measurements; advocacy of graph-theoretic

approach to Security System Synthesis.

-20-

APPENDIX

THE FILE STRUCTURE

Contents of the Object, Threat, and Countermeasure name and link
files are shown on the next two pages. These listings were produced by
the file management routines. The file structure is detailed in Section Al
which follows the listings. Finally, a short description of the modifica-

tion routines is given.

-21-~-

FILE NUMBER? 1 (OBJECT NAMES)

RECORD # CONTENTS
1 CORE MEMORY
2 FILES
3 OPERATING SYSTEM
4 REMOTE TERMINALS
FILE NUMBER? 2 (THREAT NAMES)
RECORD # CONTENTS
1 ALTERATION
2. BETWEEN LINES ENTRY
3 BOGUS TERMINAL
.b BROWS I NG
5 DESTRUCTION
6 DUMP I NG
7 ILLEGAL ACCESS
8 INTERCEPTING SIGNOFF
9 MASQUERAD | NG
10 READING RES IDUE
11 TRAP DOORS
12 WIRE TAPPING
FILE NUMBER? 3 (COUNTERMEASURE NAMES)
RECORD * # CONTENTS
1 ACCESS LIST
2 APPEND ONLY BIT
3 AUTHORIZATION ALGORITHM
4 BACKUP COPY
5 BADGE ACT!IVATED TERMINAL
6 - BOUNDS REGISTERS
7 CHECKSUM
8 DEFINE ALL OP CODES
9 ENCRYPT DATA
10 ENCRYPT NULLS
11 FETCH PROTECT BIT
12 FILE ID
13 OVERWRITE .CORE
14 . PASSWORD
15 PRIVILEGED MODE
16 PROTECTED PAGING
17 READ ONLY ACCESS
18 RINGS
19 SYSTEM SIGNOFF CONFIRMATION
20 TERMINAL ID (WIRED IN)
21 TERMINAL LOCK
22 USER 1D
23 WRITE RING (TAPE FILES)

Figure Ala - Contents of Name Files

-22~

FILE NUMBER? 4 (OBJECT-THREAT LINKS)
RECORD # CONTENTS

1 7 10 0 0 0
2 1 4 5 0 0
3 1 6 11 0 0
4 2 3 8 9 12
FILE NUMBER? 5 (THREAT-COUNTERMEASURE L1NKS)
RECORD # CONTENTS
1 7 14 17 23 0
2 10 0 0 0 0
3 3 14 20 22 0
4 1 2 12 14 0
5 4 0 0 0 0
6 6 16 0 0 0
7 6 11 0 0 0
8 19 0 0 0 0
9 3 5 1 21 22
10 13 0 0 0 0
11 8 0 0 0 0
12 9 0 ‘0 0 0
FILE NUMBER? 6 (COUNTERMEASURE WEIGHTS)
RECORD # CONTENTS
1 1
2 - 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
FILE NUMBER? 7 (FILE LENGTHS)
RECORD # CONTENTS :
1 4
2 12
3 .23

Figure Alb - Contents of Link, Weight & Length Files

-23-

Al. FILE STRUCTURE

This program utilizes a direct-access file structure for the
permanent retention of lists of Object, Threat, and Countermeasure names.
Most BASIC interpreters support secondary storage files with direct
access to individual records. Minor modification of the search routines -
would allow true sequential access files to be employed. Some degradation
of execution time would result.

Seven files are used in the system. File #1 contains a list of
names of Security Objects stored in fixed size records, one name per
record. Currently, names are limited to 32 characters. This restriction
is easily modified to any reasonable length. Most BASIC systems festrict
string lengths to 256 characters maximum. The Object names are stored
in alphabetical order for ease in reading file listings and to simplify
the search routines. |

Files #2 and #3 are similarly organized lists of Threat (#2) and
Countermeasure (#3) names. The contents of these files are read into
fast core tables by the search routines during prbgram execution and
printed on the user terminal. |

File #4 contains the linkages between each Object in File #1 and its
associated Threats on File #2. Each record on File #4 corresponds (in
order) to an Object name and contains a list ofiintegers which index the
Threat name file. Currently, each record contains 5 numbers. This
record lepgth is a compromise allowing a reasonable number of threats
per object while holding search time and file space to minimum values.

Record size is easily increased if required.

24—

File #5 is identical in structure to File #4. It contains the
linkages between Threats (File #2) and Countermeasures (File #3). File
#6 serves as permanent storage for "weights" of Countermeasures. Each
record contains one integer field. This value represents a relative
utility ranking of this Countermeasure against others associated with the
same threat. 'Currently, these weights are all set to "1". Some
proposalé for the use of this weight field are discussed in Section 7
above.

File #7 contains the lengths of each of the other 6 files. This
information is needed to interface properly with certain features of
the BASIC file handling routines which are peculiar to the system upon

which this program was developed.

A2. FILE MODIFICATION

In addition ot the basic Security System Synthesizer which makes up
the main program the system contains routines to allow addition of new
Objects, Threats, and Countermeasures to the files. These routines
accept a name as input from the terminal and perform the required shifting
of entries in the appropriate file (File 1, 2 or 3) to maintain alpha-
betical ordering. The associated link file (in the case of Objects and
Threats) or weight file is also shifted. The new 1ink is calculated from
further terminal input in the following manner. If an Object is added,
the system requests associated Threats. The Thre#t name file is
searched for each name entered at the terminal. The position of the
named Threat in the file is then recorded in the new location in File 4

(the Object-Threat link file). Up to five entries per new Object are

-25-

possible currently. Similar action occurs when a new Threat is added

with respect to Countermeasures. When a new Countermeasure is added,

the associated weight is merely entered directly from the termin#l and
stored on File #6.

When a new Threat is entered somewhere in the middle of File #2,
all entries which are lexicographically greater must be moved up one
record to free a record. Accordingly, the Object-Threat links to these
shifted entries are no longer valid. A correction is achieved by
scanning the link file (File #4) and adding 1 to all links having a value
greater than or equal to the position of the new entry. A similar
procedure is applied to correction File #5 when a new Countermeasure is
entered in File #3.

It is also possible to delete entries by specifying only the name
and the type (Object, Threat, or Countermeasure). AThe proper name file
is searched for a duplication of the entered name. When located, the
file entries are shifted down by one record so that the deleted name
is overwritten. The link files are patched up in a manner analogous

to the procedure for adding entries described above.

~26~

	Copyright notice 1974
	ERL-468

