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Abstract
Nonlinear resistive networks can be characterized by the equation
f(s) =y where f(°) is a continuous piecewise-linear mapping ofcpt1
into itself. The n—dimensional‘Euclidean space'is divided into a finite
number of regions, and, in each region say region R » We can express f
by J( m) X + w( m) where Jﬁn) is a constant nxn Jacobian matrix and w(m)
is a constant n-vector. In this paper we obtain the following results:
If all the Jacobian determinants in the unbounded regions have the same
sign, the equation f(f)‘= y has atileast one solution and an algorithm is
- developed, which obtains one or more solutions in alfinite number of
steps. The work represents a generalization of early work by Fijisawa,
Kuh and Ohtsuki and relaxes the condition imposed on the function. For

example, in the bounded regions, the Jacobian matrices can be singular and

the sign of Jacobian determinants can be arbitrary.
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I. Introduction. - o o

Most electrical engineers are familiar with the technique of piecewise-
linear approximation. of a nonlinear function. For example, in the
analysis of a simple electronic circuit, diode characteristics can be
represented by continuous, liﬁear segments, Tﬁis often gives considerable
insight to the problem, and, as a result, yields quick solution. During
the past dgcade, major advances have been made on the anaifsis of general
nonlinear resistive networks based on the piecewise—linéar approach [1]-[16].
Because of the generality of the approach and the specific results, we
believe that piecewise-linear analysis will become useful not only in
nonlinear networks but also in many related fields such as étrﬁétural
analysis, flow networks, mathematical economics, numerical iﬁtegration
and nonlinear systeh groblemé in general. | )

Consider a nonlinear network or systeﬁ which is characterized by

the equation
£(x) =y | @

where f maps the real‘n-dimensional Euclidean spaceCIQn intd itself.

x is a point inclkn and represents a set of chosen variables of a given
network or system and y is an arbitrary point 1n<12“ and.représents the
input. By specifying f as a continuous, piecewise-linear function, we can

express £ as follows:

m)

£) = 3™ x+v® | m=1,2,...0 @)

(m)

where J'°’/ is a constant nxn matrix (called Jacobian matrix.for

convenience) and y(m) is a constant n-vector, both defined in region Rm.



The whole space<12n is divided into a finite number (2) of polyhedral
regions by a finite number of hyperplanes. A typical boundary hyper-

plane in the x-space can be characterized by the following equation:
n X = constant (3)

- where n is the normal vector of the hyperplane. The continuity of £
imposes an important constraint between Jacobian matrices in neighboring

regions, namely:

~ ~

where J and.g"are Jacobian matrices of neighboring.regions R:and R',
respectively, sharing the common boundary definea by the.no;mal'vector n,
and,g is an arbitrary comstant n-vector. Thus ¢ g? is a and and it
turns out that eq. (4) represents a key property of a continuous, piecewise-
linear function. |

In previous work, necessary and sufficient conditions for f to be
a homeomorphism have been established. A continuous function £ is said
to.be homeomorphic from<12u onto itself if and only if ;he equation
f(x) = y has a unique solution for all y Fujisawa and Kuh.[7 ] have
shown that if f is homedmorphic then the algorithm due to Katzenelson
always converges, thus the solution can be found fof any input y. Further-
more, Fujisawa; Kuh and Oktsuki [ 5 ] have dgmonstrated thaﬁ as long as

i
all Jacobian determinants det.J( )

» 1 =1,2,...% have the same sign (the
. property is referred to as the "sign cohdition") there exists at least
. one solution to the equation f(g) = y and the Katzenelson algorithm also

converges. - Nevertheless, the "sign condition" on Jacobian determinants



is a rather severe restriction for many probiems‘ In this paper, we
shall deal with continuous, piecewise-linear functions which do not

obey the "sign condition" in general.’ Moreover, singular Jacobian
matrices will be allowed. We shall develop the condition under which
solutions of eq. (1) exist and can be obtained.

A relatea problem is also treated in the present paper. Recall that

'Katzenelson's algorithm depends on the tracing of a solution curve in

the x-space. When the solution curve reaches a multiple boundary, called
a corner, where more than two regions meet, Fujisawa and Kuh have
introduced a perturbation method to by-pass the corner. The method works
if the given function satisfies the "sign condition" on the Jacobian
determinants. It turns out that for a genmeral function, a new look at
the corner problem is essential. In this paper we have developed a
general theory to handle the corner problem.

In order to make the present paper reasonably self-contained, we will
first review briefly the Katzenelson algorithm in Sec. 2. The dynamic
behavior of the solution curve is next discussed when the "sign condition"
constraint is removed. What is crucial in this case is to ensure that
the solution curve in the x-space always crosses a boundary which
separates two regions having Jacobian determinants with opposite signs.
The technique used is a generalization of that first ‘introduced by Kuh and
‘Hajj.[2 ]. Two siﬁple examples are given to illustrate several diffi-
culties of the problem when the "sign condition" is not satisfied.

"In Section 3 we develop the general théory first with two assumptions,
namely: the solution curve never hits ‘a corner and all Jacobian matrices

are noﬁsiﬁgulér. We find that under the more relaxed condition that, in



all unbounded regions, the Jacobian dgterminants have the same sign, one
or more solutions exist and can be obtained by tracing the solution
curve. It should be pointed out thét the coﬁdition is not as restrictive
as it seems because most physical systems behave like a passive element
when any of its variables becomes unbounded, which implies that the
Jacobian determinants in the unbounded regions are all'positife.

In Section 4, we deal with the corner problem by means of a new
pérturbatioﬂ'méthod. The basic result is that, theoretically, an initial
éoint cén.aiﬁéyé'be picked in‘the.x—sbacé for which the solution curve
does nof hit‘any corners. Computationally, it giveé avmethbd to perturb
the solﬁtion;cﬁrve if the solution curve hits a'corﬁef.

' in Section 5, we discuss in detail the problem of singular Jacobian
matricés and'éhow how to handlé the problem.' Tﬁé method depends on the
result of Section 4.

With the results of Sections 4 and 5, we can finally state a general
theorem of solving piecewise~linear equations. Our algorithm'wili lead
to one or more solutions if the piecewise~linear function has the prbperty
that all Jacobian determinants in the unbounded regions have the same
sigh{ | o

“II. Dynamic behavior of solution curves

The basic problem is to obtain one or more solutions of eq. (1) for
“a given input g* where f is continuous and piecewise linear.. If all
~Jacobian deta:mina;ts have the same sign, the Kagzenelsonvalgorithm always
converges and can be illustrated by means of Fig. 1. We first choose an
arbitrary initial point in the x-space, say X

in region R In RO’ the

0 0’

equation: which characterizes eq. (1) is
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"f(§) = g(O) X + Y(O) = y : e 5

H

We may use eq. (5) to compute the image y, = £(x,)
°T 20 =00 -

Yo = 1@ X+ v . A (6)

Deno;e the ;ine segment joining Yo and Z* in the y-space Fy Ly. The
problem_ig then reduced to one of dete;mining a continuous curve in the
g—spaqe, gtarting yith §0, which is the‘inve;se i@age 9? Ly. lThe curve
is called the solution curve in the x-space. The beginning point is %
and the end point of the solution curve is the solution g*. Thus we only
need to trace the solution curve to obtain the‘soiution §?.

Let us take a look at the properties of the solutiqn curve. The

portion of the solution curve which lies in RO is determined by

x,(A) = x5 + 1 4 : i )
where
-1
- (0 *_ o . .
go J (y Zo) (8)

and A z 0 is a parameter. If go(l) happens to be in Rb, thenvgo(l) = g*

is the desired solution. The line segment joining x, and go(i) is the
solution curve and the algorithm terminates. If otherwise, thé value of

A has to be determined such that go(k) lies on the boundary of Ry. Denote
‘such a value of A by Ao’and define X, ='§0(AO) and gl = f(f'). The line
segment joining X and % is then the first portion of the desired solution
curve. The next step 1s to extend the solution cufve beyond §l‘into region.
R

Assuming that xl lies on a simple boundary hyperplane, between the



0)

two regions R0 and R,, Fujisawa and Kuh proved that if det J and

det J ave the same sign, the solution curve in the x-space will

%
indeed enter Rl_as Yy moves forward y through e .We have next in

region Rl’ the solution curve

v

Q) =x +r4d r=o0 | (9
where
-1
- (D *_
gl =J (Z 21) .. ) (10)

Since the total number of regions is finite, thefmethpd will converge
eventually to a solution g* which is the inverse image of z*,' The crucial
point hete‘§s that the solution curve will never reenter a region which
has already been traced. This is due to the fact that all Jacobian
matrices are‘nonsingular, anguthe proof is simple. Suppose that the
solution curve enters region R, at x, and leaves it at x

h| 3 i+l

curve later reenters the same region at X, as shown in Fig. 2. Clearly

an@ that the

the three points X4 §j+1 and X do not lie on a line.. Therefore the two

vectors Ej x, and X §j are linearly independent, whereas their

+1 33
@) 44,

images under linear mapping J are both constant multipliers

of Z* - Yo and hence are linearly depepdent. This contradicts the
gsspmption that g(j) is ponsingulgr.*

It should be noted»that.;g1 = go(xo) may lie on more than one boundary
as shown in Fig. 3,_orAstated in another way, ¥ is at a corner. We shall

postpone the discussion of the corner problem until Section 4. Meantime,

,*It whould be noted that we only need the nonsingularity of Jacobians to
prove this result. This does not rule out the situation that a solution
curve in a region can be retraced, which implies that a region is reentered
at x.. It will be seen later that when the Jacobian determinants have
diffdrent signs, a modified algorithm can lead to a cyclic solution curve.

-7-



we assume that the solution curve will not hit any corners.

If we remove the condition that all Jacobian determinants have the
samelsign, the problem becomes much more complicated. Let us consider
the solution curve in the x-space which transverses in region R starting
from %y and along the direction gj. The solution curve reaches the
point §j+1 at the boundary which separates region R and region R'. In

[ 7] Fujisawa and Kuh derived the following equation

T -1

det Jn J " =det J'n J (11)

This equation prescribes completely the local behavior of the soltuion
'curve at §j+l’ and thus the strategy of our algorithm. The proof of
boundary crossing in the x-sapce for ‘the c¢ase that the Jacobian
determinants have the saﬁe sign is essentially based on eq. (11). Further-
more, eq. (11) also suggests what we should do for the case in which the
Jacobian determinants of neighboring regions have opposite signs. With
reference to Fig. 4, assume that the Jacobian determinants of J and J'
have opposite signs. The solution curve in the x-space has been traced

from %y in region R along the direction gj and reaches x on the simple

§+1
boundary between R and R'. In the y-space, the co:respdnding'points gj

and Zj+l are marked. In order to force the solution curve in the X-space
into region R', we must reverse the direction of traversing at‘Zj+l A
away from Z* as shown in Fig. 4. The proof of this together with the casé

which has determinants with same sign is given in Lemma 1 below, stated

in a fairly general form.’

Lemma 1 The solution curve will enter the region R' at x and traverse

Xj+1
region R' along the directiqn §j+l given by~either (1) or (it1):



- *
1) 4y, =T olie, -y

341 Y Yyap) i

@ 4y =371G "y, and @et ) et ') > 0, o

®) d, = -J_l(z*-zj) and (dét J) (det J') < 0;

~J

= - 1 *_
(1) dyyy = -3 TG yyyy) i

(a) gj = g-l(g*-zj) and (det J) (det J') < 0, or
®) dy = -3 T-y,) and (det ) (et 3% > o.

Proof: Since the solution curve reaches X541 OO the boundary from x_,
we have ngj > 0 where n is the normal vector at §j+l of the hyperplane.
Furthermore, the solution curve will enter and traverse R' if and only if

T , _
n §j+1 > 0. Suppose Zj and !j+1 are represented by the following equations

*
33" Yoty G Y 1wy > 0

*
V41 = Yo t M (T Vods 1 > myyy > 0

then

%* *
y -¥% < (1'“3) (g —go)

*

*
Y =Yg = (rugyy) O3

The proof then follows immediately from eq. (11). It is important to note,
from lemma (1), that if (det J) (det J') < 0, we must reverse the
direction of traversing at yj+1 in the y-space along Ly in order to make

n'd, and n'd, , both positive.

3 j+1

From the computation point of'view, the simplified statement given in



the following lemma is more useful.

Lemma 2. If X9 is an interior point of the region Ro then gj is given by

R §

w 39 (Z*'Yj) 1¢ (det 390y et 3 > 0, or

-1 .
(1) 3@ (Z*‘Xj) 1 (det 97 (det @) < 0.

Proof: Since %

-1

is an interior point of RO’

N ()

dg = J

%
S (Y
It fdllows, from Lemma 1, that

-1
d, = 3D *y) af et ;M) @er 3@y 50, or
-1

[=9]
1

-3 '(Z*'Zl) if (det 3P )er 39 _ 0.

We want to prove this lemma by induction. First assume that the lemma is

true for the j-1lth region, that is,

. 4yl
d = g(Jnl) (y*-yj_l) and (det g(j-l)) (det J(O)) >0 or

(=%
1

-1
= -g(j"l) (y*-yj_l) and (det g(j‘l)) (det g(o)) < 0.

@7
From Lemma 1, we have gj =J (y -yj) if

-1 .
g(j'l) (y*—yj_l)'and (det g(j)) (det g(J—l)) > 0 or

-~ -~

(@ 4y,

-1
®), 4,y = -390 iy, ) and der 5Dy (er 39TV <o

Thus if (det g(j)) (det g(o)) >0, clearly

-10-



(et 3Dy (@et 39Dy (ger 39y (ger 3@ > 0

_ -1 |
we conclude d, = g(j) (y*-yj) if (det g(j)) (det J(O)) > 0.

h | ~

Thus (1) is proven. Using the same argument,‘wglpan prove (11). The
advanﬁage. of(pemma 2 is that we only need to look into a neﬁ,rggion and
cohpare its Jacobian 4eterminant with that of thevinitial region.

The above algorithms take care of the solution curve at a local
.point on the boundary when Jagobian determinan;s_have different signs.’
On the c;her hand the global behavior of the solutiontcurve.needs to be
'investigated. It turns out that if we do not have additional properties
imposed on the continuous piecewise linear function the equation f£(x) = Y
ﬁay ﬁot have a solution. Furtherﬁore, the algbrithm of‘trécing é solution
curve may not work even if soluctions do exist. Before we derive the
mainvresult 1n the‘following section, which imposes further conditions on
f and guarantees the conﬁergenéé of the élgarithm,‘we‘wili present two
examples to 11lustrate two possible diffiéﬁltie; ﬁhiéh}havé not been
encountered up to now. |

Example 1. Consider a continuous, piecewise-linear function g

specified by the following equations with the regions shown in Fig. 5.

In R1 y = x , det]J = 1.
- LTZ 1
r~
11 L@ _
In RZ’ y = X , - .det g =1
;.0 1d
1 0
In R,, y = ' x , det 2(3) = -1
- 0 -1



InR,, s det 4(4) = 1,

A

g
n
"

Since the problem is simple, it is possible to determine the complete
mapping of the 2-dimensional space. The mapping 56122) is shown in
Fig. 5 in the y-space in order to have a better understanding of the
problem at hand. Note the overlapping in the second quadrant of the
Z-space. Thus for eacy y in the second quadrant, there exist three
- solutions which lie in Rz, R3 and R4 of the x-space.

1
*
Let us assume that the given input vector is y =| ) and we wish

-1
1
to find the solution of the equation f(x) ==< ) . We choose arbitrarily
- -1 1
is calculated to be( )

)in region R
1

the initial point X9 = ( 1 3° Zo

i * .
- A line segment is drawn from Yo to y as shown in Fig. 5. Following the
algorithm just described, we obtain the first segment of the solution

curve in the x-space. It is given by

go(k) = X, +2Ad . .015 A <A

~0 0
where
-1 3/2
d, = J(3) (v -y, =
0 2 20
2
and AO represents the maximum value of A for which X (A) is in R3. AO is
0
-— _1’.. =] = =
found to be 1/3 and X = :50(3) <_.l)’ Yy g(z_gl) _l) . The next
' 3 3

region is identified as_Rn. Since (det g(3)) (det g(é)) < 0, in order

*
to enter R4, we traverse in the y-space from y; away fromy . The

-12-



@ 1
direction 91 is given by Lemma 2, -J (y -Yl) = . The second
~ . ) - —10
'segment of the solution curve is gl(k) =.§1.+ Agl, A > 0. It enters R&

as shown in the figure, but will not reach any boundary hyperplane. Thus
the algorithm fails to. find a solution. 0f course, as we can see, in the
y-space, Z* is never reached. Instead, the curve will pass by Yo and |
become unbounded.

Example 2. Consider the continuous, ﬁiecewise-liﬁear function given

by the following, together with the regions indicated in Fig. 6a.

- ' . l 0 B .
In R, y = . X, det g(l) = -1
SN2 -1 :
In R2 Ly = X, det J(Z) =1
N 2 -1 :

X, det g(3)

]
[

In R y =

'/_\ T
o
[

[
&

-3
g
1l
N
1
= [«
' : DO
. v
+
PN
[
(9] wv
~———
=}
1]
rt
112
~
&~
N’
{
[

In R

[
N
3]
+
N
[
o
~—
A d .
(=N
(1}
c
Y
~
v
~
fl
w

In R5 z =

o
w

In R.6 ‘Z =

[
w

-
N

o
+
N
[
o
\/ .
- .
[~9
(13
(a3
ey
~~
[=)]
N
}
[y

In R y =

~J
?
N
[\
L]
(¥, N
o
.
w -
~———
-
+
P
s
N [V, ]
U‘\,/
A J
(=%
)
T
ey
~
~
~
i
wv
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- .1 . 5 : | :
In R.8 y= x + » det J(B) = 4.5
- 2.5 3.5 \12.5 o

, 1 0
In Rg y= X, " det g(g) =1
d 0 1 . .
1 0 ' ‘
In RlO oy = X, det J(lo) = -1
b4 0 -1/ }

The images of these regions in the y-space.are shown in Fig. 6b. Again
it is noted that there is an overlapping in the y-space as shown by the

shaded area. For every y in this area, there exist multiple solutions.

*

7
Let us consider the given input vector y = ( ). Suppose that .5

- 10
-4 . 3
is chosen to be ( ) in R7. Yo is found to be ( ). The solution curve
-5 ~
5

*
corresponding to Ly = {y|y = Yo + A (y -yo)}, can be traced by the algorithm

: : 13
. *
given in this section. It is found that the solution x = ( )in four
N 2

steps as shown in the figure. Next, suppose that X is chosen to be

-2 4
go through with our algorithm, we find that the solution curve is a cyclic

1 1
(' )in Rl’ then y0==( )which happens to be in the shaded area. If we

~ curve shown in Fig; 6a. The corresponding traversing in the y-space is
marked. Thus g* can never be reached. This example points out that a
solution curve in the Xx—-space can reenter a region previously traversed
and form a cyclic curve when Jacobian determinants have different signs.
It should be noted that this does not contradict the early statement and
proof since the fegion ié reentéred at the same point §j and the solution
curve is retraced. Thus the choice of initial point is of primary

~14-



importance in order to avoid the situation as illustrate&.

III. - The main result

- The main purpose of this paper is to obtain conditiqns‘not as
‘restrictive as the "sign condition," yet under which a convergent algorithm
can be developed to obtain one or more solutions of piecewise-linear
equations. In this connection, the two examples give us cpnsiderable
insight as to the nature of the conditions we are looking for,_‘First let

us present the following lemma concerning existence of solutionms.

Lemma‘3. Let £(+) maps fromcizn intoc12p be continuous and piecewise-
linear. Let the Jacobian determinants of all unbounded regions have the
same sign, then there exists a constant M > 0 such that
(i) there exists at least one solution to the equation f£(x) = y
.if-HZ“.Z M, and

(i1) there exists no solution in any bounded regioms.

Proof The proof follows from that given in Appendix 1 of [5]. Since
f is continuous, the image of the union of all bounded regions is contained
in a ball B(O,Ml) in the y-space. Suppose (i) is not true, then there
exisfs an unbounded boundafy.hyperplane between f(iép) and(qén/féqgn).
However, f is a local homeomorphism at any point on this simple boundary
hyperplane since the determinants of Jacobians of all unbounded regions
have the same sign. This is the desired con;radiction; Thefefore,
M‘> Ml > 0 exists such thgt both (i) and (ii)va:e true.

The condition (ii) of this lemma is of ﬁrimgry impqr;ance in

developing a convergent algorithm. Let us assume that the initial point

X, is chosen such that Uyoﬂ_z M as given in Lemma 3, where X, is an interior

-]15-



point of a rggion. Since there arg no other solu;ibns of §(§).= Yo in

any bounded region, in traversing from Yo to X*’ we are certain that the
curve will not come back to Xo‘and go beyond1¥0;‘ Thus if we assume that

" the solution curve does not hit any corners, the solution curve cannot

‘become cyclic. Since regions previously entered cannot be reentered and
since the total number of regions is finite, we conclude that the following

algorithm will converge in a maximum of 2 steps where % is the total

number of regions.

Algorithm I
Step 1: ‘Choose %y, an interior point of R;, such that ﬂyoﬂ >-M, where
M is defined in Lemma 3. Set j = O.
vStep,Z: Compute gj accprding to Lemma 2.
Step 3: C t = A = ) w

fp ompute §j+l gj + i gj, ¥j+l §(§j+1) where Xj > 0 is the
maximum value such that {x(A) = x, + Ad,, 0 < A <A.} is in R,.

3 ~3’ 3 A

. * *
Step 4: If g(j) gj =Y " and Aj >1, then x = gj + gj.is a solution.

~

‘Stop.
Step 5:. Otherwise, idgntify region Rj+l’ Set j = j + 1 and go to Step 2.

To conclude, we state the following theorem:
Theorem 1: Algorithm I will find a solution in ‘finite number of steps if

(1) All Jacobian matrices are nonsingular,

(ii) the determinants of Jacobian matficeéAin’éll unbounded regions
have the same sign, and 3
(iii) the solution curve does not hit any corners. -
It is possible to modify the algorithm slightly so that once a
 solution is found, the algorithm will continue from that point to find

~16-



other solutions without choosing a new initial point. The details will
not be given here.

In the next two chapters we will deal Qith, first, the corner
- problem, and then the problem involving singular Jacobian matrices.

We will remove the conditions in (i) and (iii) of Theorem 1.

IV. The corner p:obleﬁ.

This section is devoted to the study of the corner problem. First,
we will give an example to illustrate one possible difficulty which arises
when the solution curve hits corners. Next we will study whether it is
possible to choose the initial point.so fhat the solution curve will never
hit any corners. Intuitively, we can see that this is always possible
since there are only finite numBer of corners. Furthermore, since
corners are at places where hyperplanes meet; therefore, if we deal with
a two dimensional space, for example, boundary hyperplanes are straight
lines and corners are points. Clearly, it is possible to choose an initial
point in the x-space such that the s&lution curve avoids all corners.

This is proven in this section for the generai case.

Let us first review the problem at hand. When a solution curve
reaches a corner, the previous algorithm cannot determine ;he next region
to be entered. Suppose that, by means of a perturbation technique, we
can determine the next region to be entered, we can then use the cornmer
as the next starting point to continue ;he tracing of the solution curve

in the proper region.

Example 3. Let the continuous, piecewise-linear function be defined by

the following equations with the regions shown in Fig. 7.

-17-



1 0 |
In Ry y= X det lil) =1
- 0 1
: 1 o A
In R2 y = x det {(2) =1

N
—

-2
In R g+( )detg(3)=2

-2
In R +( ) det 38 =
. J

()
1
=t
11

W

td

! "
N N
ol (=]

1 0

In R5 y = X det Q(S) = -1
.- 2 -1
1 0

In R, y = X det 4(5) = =1

o
|
(o

N
o .

-2 3

= *

Let the input vector bey = ( ), and the initial point be X ==(
~ -2

4 2 2
in R,. Thus y, = X, and y, can be calculated to be and ’
3 -0 7 ~1 71 0 4

respectively. We use a parallel perturbation and find R2 as one possible

‘next region. Therefore we start with X, and use the equation for R, to

2

determine the next portion of the solution curve. xz'and y, are found to
0 0

be and ( » respectively. Thereafter, the solution curve traverses
1 1 o 2

R1 and R6 and R5 successively and returns to the point X = ( ). And,

\0

once again R2 is found to be a possible region to be entered. Thus a

cyclic solution curve emerges. Actually, for this problem no soiution
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=2
exists for the input X* = . This example points out nevertheless an
important property. When a-zolution curve hits a corner, it can become
cyclic although the initial point Xq is not on the cyclic portion of the
solution curve. This could not have happened if the solution curve never
hits a corner.

In the following, we will demonstrate that it is indeed possible to
choose an X0 for which the solution curve never hits any corners. As
indicated in Section 1, a boundary hyperplane can be represented as
Hx = {§|9T§ = vy}, where n is the normal vector to the hyperplane and y is
a constant. A corner is a subset of the intersection of two or more
hyperplanes in the x-space. Suppose that the Jacobian matrices are non-
singular, the image of any boundary hyperplane of region R is a hyper-
plane Hy in the y-space. The image of a cormer in the x-space is a subset
of the intersection of two or more hyperplanes in the Z—space. For
convenience, the image of a boundary hyperplane in the x-space is called

a boundary hyperplane in the y-space. Similarly, the image of a cormer in

the x-space is called a corner in the y-space. Thus in the y-space,

Hy = {yIpTy = q} and a corner can be represented as a subset of
C = {y[PTy = Q}, where P is an nx2 matrix and Q a 2-dimensional vector.
y =G RO s -~ -~ -~

Also, for convenience, we transfer the coordinate of X* to be at the
origin, hence, we are dealing with the equation f£(x) = 0. The purpose of
the development to follow is to locate a straight line Ly = {y|y = pa}l
where a is a unit vector and y is a positive parameter, such that Ly does
not intersect any corners in the y-space. Thus the solution curve in
the x-space corresponding to Ly will not meet any corners. Since a corner
is represented by a subset of Cy’ we need to find a vector h such that

yTy = 0 for all y € Cy' Thus if ng # 0, Ly defined by {y]y = pa}l will
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not intersect Cy. It is obvious that h can always be determined because
Cy is contained in Sp(Cy),Athe span of Cy which is an (n-1) dimensional
subspace assuming that Cy does not contain the origin. Since the number
of corners is finite, we expect thatkg can be found by induction. This

result is stated below as a theorem.

Theorem 2: Let S = {Cyi} be the set of corners in the y-space. Suppose
i=1 ) IR
that the origin is not contained in the union of Cyi's, then there exists

a unit vector a for which Ly = {yly = pa} does not intersect Cyi for all

i.

" Proof: First we neéed to characterize a unit vector hy corresponding to
Cyi such that gzg = 0 for all y € Cyi.' This can be done easily. Since

Cyy = {gley = 9 },'Sp(Cyi) is an (n-1) dimensional subspace. Let

y{i), y; ), coes y(ii constitute a basis for Sp(Cyi); which can be

~

' determined. Then h; is defined by the following

r—~

)T )
1

ST |
Y2
) by =0 and hyhy =1 , (12)

(1)T

Next we needvto construct the unit vector a from hi’ i=1 2,...,N.
This, we will do by induction. Let al = hl. It is obvious that h i1 # 0.

Suppose that hj i # 0 for 1 < j < i, we want to show that a . can be

+1

computed for which h

hy 854 # 0 for 1 < jJ < (i+1). There are two cases to

be considered:
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(1) high 2y # 0, we simply define aj < 8-

(11) P§+l a = 0, wé perturb a, to obtain 31;1 accor&iﬁg t6 |

841 =3tV o a3
whefe

h11:+1 v#o

Furthermore, the magnitude of v should be small enough so that it does

not concel the effect of previous perturbations, if any. Let

m = min |b® a,| (14)
. ~j ~1i

1<i<d

M= max |B; Byl S Y ¢ 1)
ki<i+#l  d _

We define
a = 3 +—El—— h K>1 (16)
3441 T3 TR 41 T = ,

It is easy to see that hJ a # 0 for 1 < j < i+l. Premultiplying the

~i+l

above equation by p?, we-obtain:

T T m T

by 25n =By 2 o By Ben ~oan
For j = i+l, hi+l 8541 is clearly positive. For 1 < j < 1,
- R m :
|h 84l 2 l«J ~1| IR | j hpl2m-5gM>25>0 (18)
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Since the total number of corners is N which is finite, we have

demonstrated that ay can always be obtained such that

b? 2y #0 for 1<j<N (19)

~ -

Thus the unit vector a = ﬁzgv has the property that Ly = {yly ébug} does
not intersect any corners. This completeg the proof of theorem 2.

From the computational point of view, it is certainly impractical
to compute a according to the suggested proqeduref Singe it is not a
frequent event that the soiutioﬁ curve will hit a corner, we éhbuld only
carry out a ﬁerturbation‘if and whén the soltuioﬁ.éurve hits avcorner.
Thus.if a corner represented by Cyi = {zlgz y= 91} is hit, we need to
perturb the vector a by a small vector v ='§§E bi where bi is perpendicular
to the subspace spanned by Cyi.

With this, we have overcome the corner problem; The condition (iii)

given in Theorem 1 that the solution curve does not hit any corners has

therefore been justified.

V. Singular Jacobian Matrices

As seen from the development of various results so far, the assumption
of the nonsingularity of all Jacobian matrices plays a major role. For
example, without this assumption , the direction gj in region Rj cannot
be defined by our algorithm; furthermore; the solution curve can reenter
a region which has been traversed previously. This fact can be illustrated
as follows:. Intuitively, when we encounter a region Rj with'singular
Jacobian g(j), we may wish to choose g according to g(j)'gj = 0. This

implies that in the y-space yj+1 = yj, that is, the solution curve

traverses in the x-space across region R, via d, when in the y-space the

3
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image stands still. Obviously, we run into difficulty in that there may

exist more :than one vector which satisfies the equation J(J)d = 0. 'Then,

-~ -~

-1 ~2

the equation, the solution curve can indeed reenter region Rj and become

as shown in Fig. 8, if d, and d, are two such vectors which both satiéfy

cyclic.  Before pursuing to the the developﬁent, we again illustrate with

an example the complication involved.

Example 4. Consider the continuous, piecewise-linear funétion as follows

1 1
det g(l)
1 ‘1 S o

In B y

0

-1 1
In R y = . X det J(Z) =0
) 2 b "'l 1 - i C
-1 -1
In R, y =( S )g o det g(3) =0
¥ -1 -1
In R y = X det J(A) =0
4 - 1 -1/ : - w
1 1 0
Ta S ARl VIR e (5) .5
In R5 ¥—<__2_ _l)lt +<5) detg =17
' 3 4 :
' -1 1 0 o
-.In R wfy‘= ) ‘ X + , - det Jgﬁ):=;l
s e L/ - 4
-3 |
, A -1 2 o\ ' e L
In.R7 y = 9 |% + det g<7) =-%
: AN R 0 _z 5 : "
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L 4
In Ry Y=(.5 )§+ ) Cder 3@ -8
- -1 -1 0 .
9
< 1 4 A
In R, y = 3 x + det J(g) =2
9 4 11 1/° = 5
| | = -1 0 7
1 - 0 | | |
In RlO y = x + det 4(10) =1
- -1 2 6 ’
. ’ ' 1 1 0
In R, y= v 1|8+ ; det g(ll) ='%
- -1 2 6

The regions in the x-space are shown in Fig. 9a, the images in the y-space
are shown in Fig. 9b. It is seen that the four regions Rl’ Rz, R3, and
R& into which singular Jacobian matrices aré mapped become a straight line

in the y-space. The solution curves correspbnding to three different

cases are shown. Note specially that the solution curve x-space
, ' 2
corresponding to any point on the line segment {yly =1 » 0 <uc<1}
- 2
is a closed curve going through regions R., Rz, R3 and R4.

There are two methods to overcome this problem. The first one is
to perturb the Jacob;an matrices which are singular such that the
‘perturbed function is sufficiently close to the original functiomn, yet
contains no singular matrices. This method will not be given in this paper.
We shall present in this section the second method in which we prove that
it is always possible to choose an initial point in the x-space such that
the solution curve will be noncyclic and furthermore will not reenter a
region previously traversed. It turﬁs out that the key to this approach

is to distinguish between singular Jacobians which are of rank (n-1) and
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-~ those with rank less than (n-1).

Let a singular region be a region whose Jacobian issingular. If
the rank of J for region R is (n-1), there exists a vector p such that
P J =.0. Consequently, the image of R is a subset of the hyperplane

{glng'= ng} because y= J x+ wand BTY = pTg §,+ ET =‘pTy. On the

~ -~

g

other hand, if the rank of J is (n-2) or less, there exist at least

two vectors p, and,gz, g{ ?2‘# 0, such.that gi J and ggsg are both zero.
‘Let P = (gl.gz) and Q= (gl,gzjrg. The-image of R is then a scbset of
{Ylg?g = 9} which behaves exactly like a corner. This suggests that

we can use the result of,.the previous section to deal with.those
singular regions which are of rank (n~2) or less.. All we need to do is
to ensure that Ly in the y-space does not intersect with any singular
regions whose Jacobians are of rank (n-2) or less. Theorem 2 shows that

‘this can always be done. Therefore, we shall persue immediately to the

‘case in which all singular Jacobian matrices are of rank (n-l) First,

‘we need to understand some basic properties of singular Jacobian matrices

in connection with continuous, piecewise-linear functions.

Lemma 4. Let the rank of J for region R be (n-1). Let Ly = {y|y = pa, pu > 0}
intersect the image of region R under the mappingif £(R). Then either
(i) Ly intersects f(R) at one and ouly one point, or (ii) Ly is a subset

of an (n-l) dimensional subspace which contains f(R)

Proof: Suppose that Ly intersects f(R) at two points, namely:vyl = 1,3,

T T
Yo = Uy @ 1y # Hos then. there eixsts a vectorAg such that g 41 = E ¥2°

~

This implies pTa = 0 since Hy # P Therefore, Ly is a subset of the

~ o~

subspace {ylp y.= 0} which contains f(R) This completes the proof.
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In the two dimensional case, this lemma is illustrated by Fig. 10.
Note that £(R) is a line segment, thus it either intersects an Ly which
connects to the origin or is a subset of an Ly.

‘Let us consider the case in which Ly is a subset of an (n-i) dimensional-
subspace which contains f(R). Obviously, we can treat this.case like
the corner problem, since it is always possible to find an Ly which does
‘not intersect the image of such a‘region. Therefore, we are left with the
‘remaining case that Ly hits a singular region of rank (n-1) at precisely
.one point.. The following lemma tells us that, for this case,.there is
a unique direction d in R for which J d = 0, and furthermore the solution

curve will not reenter this region afterwards.

Lemma 5. Let the Jacobian J of region R be of rank (n-1). Let

= {yly = pa, u > 0} intersect f(R) at one and only one point. Let

the solution curve in the x-space enter R at x, and leave R at x

-s-j. . . A ~j+l’
then xj_._1 é xj + ldj where J dj = Q. Furthermore, the solution curve
in the x-space cannot reenter region R through a point other than xj and
Ty41°

Proof: Suppose that the solution curve reenters region R at %0 then

=Jx +tw=

]

=J e + w. Since xj, X and ¥ are not on

~3j J ~j+1 ~j+l
a straight line, (x xk) and (xj+l xk) are linearly independent. But
g(§j-§k) = 0 and §(§j+1-§k) 0 imply that the rank of J is less than
(n-l). Thus X cannot exist and 93 is the only vector which satisfies the
quuationlg:gj J(xj+1-x .) = 0. This completes the proof.

The final item is to investigate the property of boundary crossing

in the x-space when a singular region is reached. . In this connection,



it is important to present the following lemma:

Lemma 6. Let J and J' be nxn matrices, and

T

0’

If det J # 0 and det J' = 0, then the rank of J' is (n-1).

" Proof: Suppose that the rank of J' is equal to or less than (n-2), then

" there' exist two vectors, d, and d,, such that J'd = J'q, = Oiaﬁd de = 0.
~1 ~2 SRS ~1=2
From eq (20), and the above we obtain
J'd, =0=J4d, + an
~ "1 ~~1 S~~1
J'd, = 0=Jd, +cnd,
] ST
Since J is nonsingular, J gl and J gz are non-zero, thus ngl and ngz are
- non-zero. Let E
“ T A T
Ql - gll? gl and 92 = §2|E 92

Agaiﬂ, from eq. (20) and the above, we have

v

b LS TA ~
' g = . =

J1d=Jdd tend =Td +e

J'd, =J4d ; c nTa =Jd +c

L9282 "L S TS Y S TN YT R
Therefore J él =J éz, which implies that él = az. This contradicts
T
Ql 92 - Q‘

From this. lemma, we know that a singular region with rank (n-1) is
entered from a regular region and departs to a regular region. - Let us

- consider the solution curve in the x-space traversing through regions R,
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R' and R", respectivgly as_shown in Fig. 1l.. We assume that;regions R
and R" are regular and region R' is singular with a Jacobian J' of

rank (n-1). The portioﬁ of the solution curve in reéion R ag‘ihAIcated
by the vector d is determined by Lemma 2. When the boundary point §j+l
is reached, d' is determined according to J'd' = 0. The next boundary

point is reached at x +é, where the solution curve enﬁeis régiou R".

~3
The image for the portion of solu;ion curve in region R':-is a- single
point Zj+1 = g(§3+1) = ¥j+2 = £(§j+2)' The solution curve then start
from ¥j+2 and d" is again determined by Lemma 2. This concludes the

discussion on singular matrices.

VI. Conclusion
In conclusion, we present a summary of our results in terms of the

following theorem and algorithm.

S

Theorem 3. Let f(') be a continuous, piecewise-linear function . which

maps CQ“ into (Dn .
£(x) = 3@ g 4 ;@ ,m=1,2,...,2.

Let g(m) in all unbounded regions be nonsingular, and furthermore, their
determinants all have the same sign. Thgn-algorithm I1 below leads to

*
a golution of f£(x) = y for any given y in a finite number of steps.

Algorithm II.

Step 1: Use Algorithm I to trace the solution curve.
Step 2: If the solution curve hits a corner or a singular region whose
image is a subset of an (n-1) dimensional subspace in ‘the y-spacé, use

- the perturbation method as given in Section 4 ‘to find a new initial point.
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Go to step 1.
Step 3: 'If the solution curve hits a singular regiomn other than those
given. above, the direction d is defined by Jd=0. Go'to Step 1.

. With some minor modification, it is possible to continue the tracing
of the solution curve once a solution is obtained. This enables us to
obtain multiple solutions. However, this in no way guarantees that all
- solutions can be found. It is still an open question to obtain the

conditions under which all solutions can be determined. -
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X -space

o b

Fig. 1. The solution curve in the y-space is on the straight line connecting

*
y and y . The solution curve in the x-space is a continuous

T~ ~

piecewise-linear curve.
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X - space : y - space |

2

Jio

Fig. 2. The solution curve in the x—space‘will not reenter a region

whose Jacobian is nonsingular.
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_ . Fig. 3.  The solution curve in the x-space reaches a corner.
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Fig. 4. The solution curve in the y-space reverses direction, i.e.,

. ; *
moves away from y .
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. T

Region I Region I

Region I Region I¥

Fig. 5. The solution curves go to infinity without finding a solution.
o3 ' |



#9 # 2

#6

#5

Fig. 6. (a) Solution curves in the x-space starting from different

initial points. One of them is cyclic.
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Fig. 6. (b) Solution curves in the y-space.
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Fig. 8. Cyclic solution curve through a region whose Jacobian

is singular.

=0



#6 #5

Fig. 9.

(a) The x-space is divided into eleven regioms. The Jacobians

of all bounded fegions are singular.
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Fig. 9. (b) Images of 11 regions in the y-space.
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#6 #5

#7 #10

#8 #9.

Fig. 9. (c) Solution curves through singular regioms.
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L¥={y|y=ug,, uelR'}

y -space

H={ylp7y='q}

or ('f'(R) x Cy : corner in the y - space

Fig. 10. Intérsections of a straight line passing through the origin in
the y-space and the images of regions whose Jacobian are

singular.
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X -space y-space

A=<

Yi+l =Z’j+2

Fig. 11. Solution curves going through a region whose Jacobian has rank

n-1.
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