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Abstract;

We consider the number of argument evaluations required to compute

a Boolean function which is left invariant by a permutation group of its

arguments. A non-constructive (that is, not based on oracle construc

tion) proof method is used to derive that, for many particular functions,

every argument must be examined. Evidence is presented for the general

conjecture that every argument of P: {0,l}d -> {0,1} must be examined

whenever P(0d) *P(ld) and the group fixing P acts transitively
on {l,2,...,d}.

I. INTRODUCTION

Trying to relate the computational complexity of a problem to the

Choice of a particular representation, or data structure, is a natural

and important question.

For example, Holt and Reingold [4] have shown that any algorithm

deciding whether a v-vertex graph contains a directed cycle

from its adjacency matrix representation requires at least
t
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-r(v + l)(v - 1) inspections of the adjacency matrix in the worst case.

Similarly, Hopcroft and Tarjan [5] mention that testing a graph for

2
planarity from its adjacency matrix requires of the order of v

operations; this should be contrasted with the linear 0(v) algorithm

of Tarjan [11], which uses an adjacency list representation of graphs.

Motivated by these results, Arnold Rosenberg conjectured that

determining from its adjacency matrix if a v-vertex graph has any

2 +
particular non-trivial, property requires Q(y ) operations.

Aanderaa destroys this conjecture with a clever counterexample:

he shows that deciding if a directed v-vertex graph H = (V,E) contains

a "sink" requires less than 3v probes of the adjacency matrix. A

"sink" is a vertex t e V such that for all vertices u e V, u ^ t,

there is an edge (u,t) e E but no edge (t,u) e E. To revive the

conjecture, Aanderaa suggests that graph properties should be constrained

to be "monotonic", that is, if the property is true of a graph H = (V,E),

it must also be true of any graph H* = (V,E') such that E C e1. This

eliminates the "sink" counterexample, and in fact, there is no known

counterexample to:

Aanderaa-Rosenberg conjecture [10]: Any algorithm for determining from

the adjacency matrix of a v-vertex directed graph H having no self-

loops whether H has a property which is

(i) non constant,

(ii) monotonic, and

In this paper, we understand the ft notation as the inverse of the

© notation: f(v) =ft(v2) iff v2 = f)(f(v)), (this is not the

standard usage of the notation).
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(iii) invariant under renaming of the nodes,

must in the worst case examine all v(v - 1) non-diagonal entries

of the adjacency matrix.

Of course, one can replace "directed" by "undirected" and v(v - 1)

by T v(v " 1) i-n tne statement of the conjecture. In [1], [4], [6],

[7] and [8], many properties satisfying (i), (ii) and (iii) are shown to

2
require ft(v ) computational steps, thus providing more evidence

towards the conjecture. The only general attempt at solving the problem

is reported by Kirkpatrick [6] who establishes ft(v log v) bound.

Except for Best, Van Emde Boas and Lemstra [1] who independently

discovered the proof technique we are about to describe, it is worth

noting that all the previous results mentioned are obtained by oracle

construction techniques.

In this work we present a generalization of the Aanderaa-Rosenberg

conjecture and a non-constructive (no oracle construction) proof

technique for attacking this type of problem. Although the generalized

conjecture is not proved in its full generality, our method yields

proofs for many special cases which we feel are of sufficient interest

to deserve this exposition. In particular, the authors show in [9] that,

as a corollary of Theorem 2 in this report, Kirkpatrick1 s ft(v log v)

2
bound can be improved to ft(v ), thus settling the question raised by

Rosenberg in [10].

II. BASIC DEFINITIONS

In this section we define the concepts and notations necessary for

stating the conjecture and presenting the proof technique.
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Let P(x1,...,xd) be a Boolean function mapping {0,1} (the set

of all d-tuples over {0,1}) onto {0,1}, which we denote

P: {0,1} h- {0,1}. Property P is non-constant since the mapping is

onto {0,1}. As usual, we say the P(x) is "true" for some x e {0,l}d

whenever P(x) = 1.

For any two elements x = (x.,...,x.) and y = (y.,,...,y.) of
id l a

{0,1} , we define x < y to mean x. < y for i e [l,d]. It follows

that 0 < x < I for all x e {0,1} . Property P is monotone if

x < y implies P(x) £ P(y) for all x,ye{0,l}. We denote the vector

of d ones (resp. d zeros) by 1 (resp. 0) throughout. The weight

w(x) of a vector x e {0,1} is the number of ones it contains.

We denote by 6 the (maximal) group of permutations of the

argument positions leaving P invariant. By definition:

(1) G «{a eSd |Vx e{0,1} : f(x1,...,xd) =f̂ xa(i) »• ••'^(d)^'

where S, is the symmetric group on {1,2,...,d} (the set of all

permutations of d elements). We say that "G fixes P" or rather

that "P is -invariant under G", for any subgroup G £ G .

As an example of the above notation, the adjacency matrix for an

undirected graph H = (V,E) with v = |v| vertices is a symmetric

v x v matrix of O's and l's whose (i,j) entry is 1 iff {i,j} is

an edge of H. If H has no self-loop, it can also be described as a

vector of d =( 1 bits. We say that a property P is "invariant

under graph isomorphism", or simply "P is a graph property" if, for all

graphs H having v vertices and all permutations o* e S :

(2) P(H) = P(tfll),
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where oH denotes the graph (V,E') such that {i,j} e E o {d(i),

Cf(j)} e E'. If we denote by I this permutation group of the edges,

saying "P is a graph property" is equivalent to I <_ G . Since we

exclude self-loops, I is transitive. A permutation group G acting

on X = {l,2,...,n} is transitive, or equivalently, G acts tran

sitively on X. if for all i,j e X, there exists a e G such that

a(i) - j.

An algorithm for evaluating P(x1>...,x.), henceforth called a

P-algorithm, must examine some of the individual arguments x , since

P is non constant. A P-algorithm can be represented as a binary decision-

tree T, whose internal nodes specify arguments to be tested, and whose

external nodes are marked true (1) or false (0) according to the

appropriate value for P.

As an example, consider the property

(3) P3(x1,x2,x3,x^) =x^ v x2x3 v x„x, v x.x-

and a particular P^-algorithm:

Figure 1.

-5-



which in order to simplify notations, is described just as well by:

Figure 2.

Here G is the dihedral group D. generated by (1234)
p3 *

and (14)(23). We write G = D, = <(1234),(14)(23)>. To evaluate

3
P3 for a given input x using the P^-algorithm of Figure 1, we first

test the argument x- (specified at the root of the tree); depending

on whether x = 0 or x- = 1, we proceed to the root of the left or

right subtree respectively, continuing in this fashion until we reach

the leaf specifying the value P(x) of P for x.

In general, we denote by c(T,x) the number of tests made in

determining P(x) by the P-algorithm T. The maximum number of tests

made, max ,{c(T,x)}, or equivalently the maximum depth of any leaf
xe{0,l}d

the tree representation of T, will be our measure of the cost of

the P-algorithm T. We define the argument complexity C(P) of P

as the cost of the cheapest P-algorithm. In symbols,

(4) C(P) min max {c(T,x)}.
def T is a xe{0,l}d

P-algorithm

Using example (3) again, we have c(T,0011) = 4 for the P-algorithm

T pictured in Figure 1; the reader can convince himself that in fact

C(p ) b 4 = d, so no P3-algorithm can do better in the worst case.
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Let us point out that in this example, Gp = D, acts transitively
F3 4

on {1,2,3,4}.

If we now consider

(5) P5(x1,x2,x3,x^) =x1x2 vx2x3 vx3x4,

the following P5-algorithm

4

0 1 0 1

Figure 3.

suffices to show that C(P5) < 3<d- 4. Note that, in this case,

G_ = <(14)(23)> is not transitive.
5

In general, aproperty P: {0,l}d + {0,1} is said to be exhaustive if

C(P) - d, i.e., any P-algorithm must, in the worst case, examine every

argument.

Often, a property P will be described in a fashion independent

of the size of the input d. For example, the property "is connected"

applies to a graph of any size. In this case, we have an overall

function P: {0,1}* + {0,1} which may be broken down into an infinite

collection of finite functions Pd: {0,l}d + {0,1} for each dEN.
If each Pd is exhaustive, we say that P is exhaustive.

Using this vocabulary, we can re formulate the Aanderaa-Rosenberg

question as: Is every monotone graph property exhaustive? It is then

tempting to ask the more general question: Can one characterize the

class of exhaustive properties? As a possible partial answer to this
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last question, we suggest the following:

Generalized Conjecture: If property P: {09l}d •*- {0,1} such that

P(0) ^ P(l) has a transitive invariance group

Gp then P is exhaustive.

Note that the requirement P(0) ^ P(l) is weaker than and is implied

by monotonicity. Although monotonicity seems to help with some of the

proofs, we do not feel that it is an intrinsic requirement of the problem.

Needless to say, we know of no non-exhaustive property P (graph property

or otherwise) satisfying P(0) f P(l) and G transitive.

Since Iy £ Gp, if P is a graph property, so that G is

transitive, this conjecture implies the Aanderaa-Rosenberg conjecture.

If one considers a property Pd defined for an infinite sequence of

values for d, it is possible to formulate a weaker conjecture which

says that ft(d) tests are required, as d •*• °°. It is proved by the authors in

[9] that this is the case for monotone non constant graph properties; the

question for arbitrary transitive groups is still unsettled.

III. THE METHOD

As mentioned earlier, our approach is not based upon the explicit

construction of oracles, but on a partial characterization of the class

of non-exhaustive properties.

Consider an arbitrary decision tree T for a property P, for

example the tree T of Figure 1 for P3 of (3). Without invalidating

the fact that T is a P-algorithm, we may extend it into a complete

decision tree Tf, in which all paths have length d. For this, we add

new useless but not redundant tests, replacing every leaf of T at
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depth d* < d by a complete subtree ofdepth d-d* whichcomputes the constant

function which is the value of P for every input which has a corresponding

leaf in the subtree. InT', there is a leaf for each of the 2 possible inputs

and each path of T* tests each variable in {x-,x2,... ,x.} exactly once.

A possible complete tree T1 associated with the T of figure 1 is:

111 0

Figure 4.

Conversely, any decision tree for P can be constructed by

starting with a complete decision tree T1 for P and "pruning off"

subtrees which calculate constant functions. The dotted lines of Figure 4

suggest the appropriate pruning operations to turn it into Figure 2.

The following is the essential observation to our method:

Proposition 1: If C(P) <_d - k for some P: {0,l}d •* {0,1} and

0 <_k < d, then there exists a complete decision tree

T' for P in which all subtrees of height k,
k(having 2 ' leaves) compute constant functions.

In order to phrase this observation differently, let

Bd =<{°»1} >—> denote the boolean lattice over {0,l}d induced

by the relation "<" defined in §1. Note that the set of inputs

corresponding to the leaves of any subtree of height k of a complete
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decision tree is isomorphic to B, , since d-k tests have already been

made so that only k arguments remain free to vary.

Let P° « {x e {0,l}d| P(x) =0} and P1 ={x e {0,l}d| P(x) =l}.

Proposition 1 then implies the following:

Proposition 2: If C(P) <d-k for some P: {0,l}d + {0,1} and

0 <_k < d, then both P° and P are packable with

isomorphic copies of B,.

We say a graph G is packable with isomorphic copies of a graph H if

the vertices of G can be partitioned into disjoint blocks {tt } such

that the subgraph of G induced by each tt, is isomorphic to H. The

graphs of P and P have the specified vectors in {0,1} as vertices

and an edge (x,y) whenver x and y differ in exactly one component.

That is, we consider the graph of the covering relation of "<" in P

and P .

As a simple consequence, we have:

Corollary 1: If \P \ is odd, then P is exhaustive.

The function P3 defined by (3) has |pJ =9 (see Figure 4). It

follows from the corollary that P.. is exhaustive, i.e., C(P~) = 4 as

announced earlier.

Not all exhaustive properties P have |P | odd however; consider

P = (x.+x^ + x, >^ 2) for example. We need a somewhat stronger conse

quence of Proposition 2. If we consider the case k = 1, we see that

P must be packable with copies of B., in order for P to be non-

exhaustive. This means that the graph of the covering relation of "<"

In B, O P must contain a perfect matching. Since any x e Bd of
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even weight w(x) is adjacent to odd weight y's only and conversely,

Bd is a bipartite graph. The same remark applies a fortiori to

'dB, np , For example, if
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(6) P6 = (x1 + x2 + x3 > 2),

then B3 H p. is represented as

Figure 5.

Since this bipartite graph does not have a perfect matching, P,
6

must be exhaustive.

More generally, the existence of perfect matchings in P ^Bj»

(or, similarly in P O B.) can be characterized by Philip Hall's famous

SDR theorem. This turns outto be rather difficult toapply, andwe opt

for a simpler necessary condition for the existence of such a matching,

namely that |P^dd| = |p£veJ where P^ ={x eP1 |w(x) is odd}

and P = {x e P I w(x) is even}. We shall see that even this
even '

simple prerequisite yields non-trivial results.

To express this requirement more elegantly, we introduce the

generating function P (z) for the set P defined by

(7) p\z) = I ẑw(x)
xeP'

with P°(z) defined similarly. Thus the coefficient of z

in P1(z) is |{x eP1 |w(x) * i}|, for 0<i<d, and, clearly,

P°(z) + P (z) = (1 + z) . Our necessary condition for the existence

of a perfect matching can thus be expressed as follows:

Corollary 2: If P (-1) ^ 0, then P is exhaustive.

Proof: The value of PX(-1) is exactly Ip^J -|? oddl- °
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If we are interested in establishing the argument complexity of

non-exhaustive functions as well, this result can be strengthened to:

j

Proposition 3: If C(P) <d - k for some P: {0,1} •+ {0,1} and

0 <k <d, then (1 + z)k divides P1(z).

The generating function for T : {0,1} •> {l} the "ever

true" property is (1 + z) , hence, by proposition 2,

(1 + z)k |P1(z) (and also (1 + z)k |P°(z)). D

Before attempting to use those results for solving special cases

of the generalized conjecture, let us point out an interesting consequence

of Proposition 2:

Theorem 1: As d -* % almost all functions P: {0,1} + {0,1} are

exhaustive.

Proof: A straightforward counting argument yields

1 ' 1 (^ 20-1
pr°b<ip„ddi •k) - prob(ipevJ - k> =U r 2 •

Since P non-exhaustive implies |P I = |p ,,|, we have
r ' even1 ' odd1'

Prob(P non-exhaustive) < Prob(|P1.J = Ip1 |)
odd' ' even'

0<k<2d"1 Vk J Xl '
9d A i I2 = (tt • 2d"1f 2 .

We see that, indeed, Prob(P non-exhaustive) -»• 0 as d -*• °°. D

Since almost all functions are exhaustive, it seems reasonable to

try to characterize classes of exhaustive functions, such as those of

our generalized conjecture.
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IV. APPLICATION TO THE GENERALIZED CONJECTURE

We now concentrate on properties P for which G is transitive.

Let G < G be a given group which acts transitively on

{l,2,...,d}. Define the action of G on {0,1} by

a* = xa(11xa(2}" 'xold) for ° eG and * e ^°»1^' Tne orDit
xG of x under this action of G is

(8) xG = {y e {0,1} | aa e G: y = ax}.

By the fundamental relation of the theory of permutation groups ([2]) ,we have

(9) |G| = |xG| • |G-|,

where G- = {a e G I ax = x} is the stabilizer of x in G.
x '

The number m of distinct orbits in the action of G on {0,1}

is given by Burnside's formula:

(10) m=-T7T I |G e{0,l}d |ax =x}|.
1 ' aeG

Let x , x9,..., x be distinct representatives of each such orbit
1 1

respectively. The generating function P (z) for p can then be

computed as follows:

(11) P^z) = I |x,G| •P(x )•zw(xj).
l<j<m J J

For example, if d « 4 and G = C, is the cyclic group, the action of

C. on B. can be pictured as:
4 4
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B. . C, - (0101)2

r i4
Here, the number of orbits in the action of C. on {0,1} is

4

m = 6. Each property P: {0,1} h- {0,1} such that C, £ G is

fully described by the values of P on the set R = {1111,0111,0101,

0011,0001,0000} of representative orbits in B, • C,. The

numbers next to each orbit indicate the size of the orbit. For exam

ple, (0011^4 means that 0011 •C^ = {0011,1001,1100,0110}, the

orbit of 0011 in the action of C, has size |0011 • C,| = 4.

The generating functions of any P: {0,1} -> {0,1} are then

given by:

(12) PX(z) = r(0) + 4P(0001)z + 4P(0011)z2 + 2P(0101)z2

+ 4P(0111)z3 + P(l)z4.

The calculation of P (z) can in general be quite complicated.

However, things simplify considerably if we consider P (z) mod q, for

some natural number q. For example, if we want to compute modulo 2,

Figure 6 simplifies to

(llll) 1

B, . C, [mod 2]

Figure 7.

(OOOO ) 1
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and formula (12) becomes

(13) P1(z) =P(0) + P(l)z4 [mod 2].

It follows from P(0) ^ P(l) that P1(-l) =± 1 [mod 2], hence
1 4

P (-1) ^ 0 and, by Corollary 2 of Proposition 2, any P: {0,1} •* {0,1}

such that C. < G and P(0) ^ P(l) must be exhaustive.
4 — p

This technique generalizes very nicely, and

Theorem 2: The generalized conjecture holds for d = q , a prime power.

a
Proof: The general idea is to prove that G transitive and d = q

implies P (-1) = + 1 [mod q], hence P must be exhaustive.

It is convenient to decompose the argument in two parts. First,

let us show that, from elementary group theory,

Lemma: If C acta transitively on {l,...,d} with d = q a prime

power, it admits a Sylow subgroup S£ Gp such that \s\ = q

with &> a, which also acts transitively on {!,...,d}.

Proof of the Lemma: Since G acts transitively on {l,2,...,d} and
p

d= qa, we know that qtt| |G |. Suppose qP is the highest power of

the prime q which divides |G |, thus 3 » a + r with r > 0. From

Sylow1s theorem (see [2], page 10) we know that G has a subgroup
P

S < G of order Isl = q . For any i e {l,...,d}, let i . S and
- p

i . G denote the orbits of i in S and G respectively. From
p P

Wlelandt ([12], Theorem 3.4, page 6), qm| |i .G | implies q | |i . s|
Qt it

for any m > 0. In particular, this applies to d = q , hence |i . S| = d

and S is indeed transitive. D
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Let m be the number of orbits in the action of S on {0,1}

and x1,X2»...,xm be distinct representative of each such orbit.

Since S is transitive, we see that |x . S| =1 iff x = 0 or

xi = 1 for 1£ i£ m. Hence, if we assume by convention that x1 = 0

and xm =1, we have \x± .S| >1 for 1<i<m. Since q^ = |s|
= |x . S| • |S- |, we have |x. . s| = 0 [mod q] for 1 < i < m.

A X . 1

It follows that, modulo q, the generating function for P can be

written:

(16) PX(z) =P1(0) +P^l) .zd [mod q],

hence P^-l) =P1(0) -P^I) ^0 [mod q], therefore P must be

exhaustive. Theorem 2 is proved. •

As we shall see, if d is not a prime power, there exists

properties P such that P (-1) = 0 and G transitive. They are not

*f*counterexamples to the generalized conjecture however and, in order to

prove that they are exhaustive, we generalize Proposition 2 as follows:

Proposition 4: If P: {0,1} -*• {0,1} is not exhaustive with G

. . P 7
trans%t%ve, then (1 + z)J divides P (z).

Proof: We notice that P (-1) can be expressed with the Mobius

inverse Q(x) of P(x), since if P(x) =_ \ _Q(y), (there is only
0 <y<x

one such function Q: {0,1} +W), then, by Mobius inversion,

Q(x) = _I P(x)(-l)w(x®y), so that Q(I) =pVl). Here xQy
0<y<x

denotes the component-wise "exclusive-or" of x and y. Thus, P

+
At least for all the examples we discovered.
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non-exhaustive implies Q(l ) = 0. Furthermore, if G is transitive,

then P =q ~ {x eP |x =0} must contain a perfect matching for each

i e [l,d] since it makes no difference which variable x. a P-algorithm

tests first. A necessary condition for this is Q(l " 01 " ) = 0, for

1 £ i £ d, since this is the appropriate sum within {x e {0,1} | x. =0}.

Since P1(z) = I P(x)«zw(x), we have
0£x£l

P\z) = I I Q(y)zw(x) = I Q(y)zw(y)(l+z)d-w(y) .
0£x£l 0<y£x Ofy<1

Proposition 4 follows directly. •

More generally, if P is not exhaustive with G_ k-transitive, then

(1+z)k+1 divides PX(z).

V. OTHER APPLICATIONS

We now attempt to solve special cases of the generalized conjecture,

by considering functions (properties) which are invariant under some

specific transitive group.

a) The Cyclic Group C

Consider for example the function:

(17) P,c - (x-i x, has k consecutive ones) ,
1j 1 d

where consecutive means up to circular shift (graphically, we may draw

xlfx2,...,x, on a circle so that x- and x, are adjacent). Clearly,

C. £ G_ , where C, is the cyclic group C, - <(12...d)>. Let us

prove that:

-17-



Proposition 5: For all d, k •> 1, the function Plg defined by (17)

is exhaustive.

Proof: Let q, denote the number of vectors x g {0,1} starting with

a zero (i.e., x = 0) and having no run of k consecutive ones; let t,

denote the number of such x*s having no cyclic run of k consecutive

ones. By counting strings y of the form 01 " x where x is counted

in qfc~ , we have: qfc =0 for d£ 0, qfc =1 for 1£d£2 and

% ~ L % f°r <* >_ 3. It follows from counting t, as cyclic
l£i£k K k

shifts (up to i places) of 01 " x where x is counted in qd~ ,

11* !*•» tnat ti. ° I i*qlr"if so that either td is odd — all
l£i£k K fc

cases except k even and d E 0[mod k+1] — in which case

P15(-l) =1[mod 2], hence P15(-D ^0, or qd is odd in which case
^P15(-D =1[mod 2], hence ^pj5<-l) ^0. It follows from
Proposition 4 that P . is exhaustive. •

The reader may find it challenging to try and prove the last result

through an oracle construction.

This particular example demonstrates that the method can be applied

to specific questions as well as to more general problems. We now attempt

to prove that all functions which are left invariant by the cyclic group

are exhaustive. The smallest d not covered by Theorem 2 is d = 6.

The graph of B^C, is drawn in
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(mm)1

011111L6

(01011lX_6(OQllllX^6(oilOll)3

(oioioi)"2(^6m)6•OOlOll)V^HTOQllOl)6.

(l0100CO~6(llOOOoV^^(lOOlOO)3

100000)6

(oooooo)1
Figure8.

Sincethisleavestoomanypossibilities,weconsiderthesamediagram,

omittingtheorbitsofsize0modulo3:

B,.C,[mod3]=
oo

(tOl)5)2

Figure9.

Fromthisconsideration,weseethatthegeneratingfunctionP^(z)

forapropertyP:{0,1}+{0,1}suchthatC,£Gpisoftheform:

(18)PX(z)=P(0)+2P((01)3)z3+P(l)z6[mod3].

ftft1
TheconstraintP(0)^P(l)sufficestoensurethatP(-1)E+1

[mod3],henceP(-1)^0andPisexhaustivebyProposition2,

Corollary2.
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We shall generalize this idea, and show that functions which are

left invariant by C, are exhaustive for a large class of

values of d. For this purpose, let ICE denote the smallest subset

of the natural numbers such that:

(19) (i) 1 elE

(ii) If n g]E and q is a prime such that q >_ 2n~1,
. ot
then nq g IE for all natural numbers a eK.

In particular, we see that IE contains all the prime powers, as

well as composite numbers, such as 2 • 3 • 31 •• • having an arbitrary

number of prime factors. The relevance of this set to our problem

appears in:

Theorem 3: If d e E (the set defined by (19)) then any

function P: {0,1} -> {0,1} such that P(0) £ P(l) and

C, £ G is exhaustive.

Proof: We prove by induction that del => P1(-l) t 0. Suppose

d = nq with q prime, (n,q) = 1; because of Theorem 2, we may

as well assume n > 1. Let Cq = <(12...d)q> be the subgroup Cq < C.

of order |cq| = q of q-shifts of the inputs. Let m be the number

of orbits in the action of Cq on {0,l}d, and R={x =0, x2,...,
xm-i»xm " ^ be a set of representative elements in each of these

orbits. By (11), we have P1(z) = *> |x. .Cq| .P(x.) .zw(xj}.
l£j£m J J

From the identity q01 = |cq| =|x .Cq|. |c3| ,we see that |x4Cq| E0
x J
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[mod q] unless, for all 0 G Cq: a(x.) = x. in which case

|x.Cq| = 1. It is easy to see that this last situation can only
_ _ a

happen if x. « (y.) is the same pattern y. of n bits, repeated

q times. Computing P (z) modulo q therefore yields:

(20) P1(z) = * P((y)q ).zw(y} [mod q].
yG{0,l}n

To each P: {0,l}d H- {0,1}, we can associate a Q: {0,l}n H- {0,1}
a

defined by Q(y) = P((y)q ) for each y G {0,l}n. Formula (20) then

becomes P (z) = Q (z) [mod q]. If we now assume n G E, we know by

induction that |Q1(-1)| >1. Since [Q^v-l)| =absval <|Q*veJ -
IQ1 |) £ 2n~1, we have Q^X-l) t 0 [mod q] as soon as q>2n" ;it

follows that P (-1) /0 if d eE, thus concluding the proof of Theorem 3. •

The first value for which Theorem 3 does not apply is d = 12, and

12
in fact, there exists (monotone) properties P: {0,1} H- {0,1} with

P(0) ^ P(l) and C ? < G such that P (-1) =0. Ad hoc arguments

for this case, based on Proposition 4 show that these functions are

exhaustive. One should therefore regard this case (d = 12) as a

demonstration of the limits of applicability of our proof of Theorem 3

rather than an indication contradicting the Generalized Conjecture. It

also gives an idea of the difficulties involved in setting up a

computer search for counterexamples. Indeed, the cyclic group is in a

sense the "simplest" group, yet the first place to look for a

counterexample is d = 20!
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b) Graph Properties

Let us turn to graph properties, which were the original motiva

tion for this work. We consider undirected graphs having v vertices

to be represented by the upper non diagonal part of their adjacency

matrices. In.this case, the number d of elements permuted by the

transitive group 1^ is - v(v - 1) which is never a prime power,

except for the trivial cases v - 2,3; Theorem 2 does not apply here!

Before describing a more general (unsuccessful) attempt at solving

the Aanderaa-Rosenberg conjecture, we point out that, in some cases, it

is possible to explicitly compute P (-1) for some specific graph

properties P. For example:

Proposition 6: The graph property P2JH) = "The edges of H are not

contained in a triangle" is exhaustive.

Proof: If v=|H|, hence d=-|v(v-l), then

(21) P£6(z) =(1+ z)d-(l +dz +d(v -2)z2 +d<v3" 2> z3).

Since P^6(-D =V(V "^^ "5^ -1 is never 0, Proposition 6is
proved. D

This approach has been exploited by Best, van Emde Boas and

Lenstra [1] who showed in this way that the graph properties: "Graph H

contains a directed cycle", "Graph H is transitive", "Graph H is contained

in a star", etc.... are exhaustive.

In order to try and derive general results, consider B. . I , for

example in the case v = 4
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12

Figure 10.

Here, (^)4 means that the number of different representations of the
graph & by adjacency matrices is 4.

Exhaustive inspection of this diagram shows that there is no non-

trivial property P such that both P and P admit a perfect

matching, hence by Proposition 2, all non-trivial graph properties are

exhaustive when v = 4. If we restrict ourselves to monotone graph

properties, the argument is simplified by the consideration of

Bft . 1^ [mod 6]:

S) 6 = 2 [mod 4]

B, .I4 [mod 6] = (O) 3

(y\ 6 e 2 [mod 4]

Figure 11.
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from this, we conclude that P (-1) = + 1 or 2 [mod 6] for any

non-trivial monotone graph property P. This technique allows to solve

many small cases of the problem, namely:

Proposition 7: The Aanderaa-Rosenberg conjecture holds for graphs of

size v = 1,2,3,4,5,11 and 13.

Proof: The case v = 4 has been treated by an ad-hoc

exhaustive inspection. The other values correspond to v prime. In

this case, an elegant combinatorial remark by Laurent Hyafil shows

that

B

fv(v-l)
I [mod v] is isomorphic to B. . C_

^v(v-l) |(v-l)

For example

B1Q . I5 [mod 5] = B21 . I [mod 7] =

2 [mod 5] and 3 [mod 7]

3 [mod 7]

Figure 12.

-24-



look respectively like

b2 .c2= (IT) 1

01) 2

(00) 1
and

Figure 13,

b. .c = (in) 1

(on) 3

(100) 3

(® 1

Using this remark, it is easy to prove Proposition 7, ... and to

realize that more involved techniques will be required if one is to prove

the conjecture in the other cases. Indeed, for v = 9, the property

P(H) ="Graph H is not contained in G^G^ or G3" is such that

PX(-1) «0; where, G± «I111 *, G2 =AAA and G3 =B :': . D

In order to salvage part of our effort, let Hn denote a

Hamiltonian circuit through n nodes. When n is prime, let H
(k)
n

for 1 £ k £ -rfa - 1) denote the superposition of k edge disjoint

,(D _Hamiltonian circuits through n nodes; hence, H^*' = Hn,

jjC^Cn-l)) = R the COTOplete graph, and the number of edges in H
n n n

is kn.

Proposition 8: Any non-trivial monotone graph property P of v-nodes

graphs such that P(H ) = 1 is exhaustive for v

a prime number.

Proof: Consider the subgroup CV £ I generated by the action on the

edges of the graph of the subgroup C of cyclic relabelling of the

vertices. If v is prime, the orbits H . C in the action of C
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on {0,1} with d = -rv(v-l) have size v, unless H is left invariant

v v
by C . The graphs which are left invariant by C are precisely the

(k)
H 's. The generating function of a property P satisfying the

hypothesis of Proposition 8 therefore satisfies:

(22) P1(z) E (1 + z)d -1 [mod v], hence P^-l) t 0

and P must be exhaustive. D

Of course, there is a general duality principle involved in the

problem by which we can replace P(H ) = 1 by P(H ) = 0 without
v 1 J v

affecting the conclusions. Here H =H 2l ~ is the complement of H .

c) Subgraphs Properties

Instead of studying properties which apply to all graphs, we now

consider properties which are only defined for the family of subgraphs

of a given graph H, or a set of given graphs. The invariance group

such properties is then a subgroup of I , namely the permutation

group resulting from the action of the automorphism group T(H) of H

on the edges of H, which we call the edge group of H.

We say that a graph H is edge-transitive (resp. vertex transitive)

if the automorphism group T(H) of H acts transitively on its edges

(resp. vertices). Harary [3] calls such graphs line-symmetric (resp.

point-symmetric).

In order to ensure that properties P of the family of subgraphs

of a given graph H have a transitive invariance group G , we therefore

insist that H be edge-transitive.
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Viewed in this fashion, the graph properties which we previously

studied are a special case, namely the properties of the family of sub

graphs of K , the complete graph with v nodes.

The bipartite graphs form an interesting class of edge-transitive

graphs, and we shall study bipartite-properties, i.e., properties which

apply to the class of bipartite graphs. More precisely, P is a (n,m)

bipartite property if P: {0,1} » {0,1} with d = n.m and Iq m£ G ,

where I is the permutation group generated on nxm boolean matrices
n,m

by arbitrary independent transposition of any two rows or columns.

If q is a prime, a and 3 natural numbers, we see from Theorem 2

that any (qa,q ) bipartite property such that P(0) # P(l) is exhaus

tive. It is not too hard to also show:

Proposition 9: If q is a prime and n <_q a natural number, any

non-trivial monotone (q,n) bipartite property is

exhaustive.

Proof: Let P be such a property and d » q.n. In the action of I

on {0,l}d, the orbits x.I have all size |x.I |=0 [mod q]
q,n q»«

unless the representation of x as a q rows and m columns matrix is

such that all columns are either equal to lq or 0 , in which case

Ix.I I- (?). where k is the number of lq columns. It follows that
1 q,n' k

(23) PX(z) = I (?)zkq [mod q] for some i>1.
Kk<m *

q,n

Thus

(24) pVd-E I (£)(-Dk =(-D1^) [mod q];
i<k<m
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1 f l"therefore P (-1) ^ 0, since q >m implies m
i

t 0 [mod q]. D

VI. DISCUSSION

We have seen that our non-constructive approach has led to encourag

ing while not decisive results on the Aanderaa-Rosenberg conjecture. An

examination of a generalization of the conjecture seems to indicate that

the important requirements are P(0) i P(I) and G transitive.

It should be interesting to relate, in the case G untransitiye,

the complexity C(P) of P to its dependence upon variables in the

various transitivity classes.
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