
 

 

 

 

 

 

 

 

 

Copyright © 1974, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



HIGH LEVEL INTEGRITY ASSURANCE IN RELATIONAL

DATA BASE MANAGEMENT SYSTEMS

by

M. Stonebraker

Memorandum No. ERL-M473

16 August 1974



HIGH LEVEL INTEGRITY ASSURANCE IN RELATIONAL

DATA BASE MANAGEMENT SYSTEMS

by

Michael Stonebraker

Memorandum No. ERL-M473

16 August 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



HIGH LEVEL INTEGRITY ASSURANCE IN RELATIONAL

DATA BASE MANAGEMENT SYSTEMS

by

Michael Stonebraker

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

Because the user interface in a relational data base management

system may be decoupled from the storage representation of data, novel

powerful and efficient integrity control schemes are possible. This

paper indicates the mechanism being implemented in one relational system

to prevent integrity violations which can result both from improper or

malicious updates by a single process and from concurrent update of the

data base by two or more processes. Basically, each interaction with

the data base is immediately modified to one which is guaranteed to

have no integrity violations of the first kind at the query language

level. Potential violations of the second type are detected and resolved

at the same level.

Research sponsored by the Naval Electronics Systems Command Contract
N00039-71-C-0255 and Air Force Office of Scientific Research Contract

F44620-71-C-0087.



I. INTRODUCTION

Integrity of stored data can be corrupted in at least two ways:

(1) By inadvertant, improper or malicious update by a process.

(2) By concurrent update of data items by two or more processes.

The first mechanism can result from access violations, i.e., an

unauthorized user alters the data base in an unapproved way. In a

recent paper [1] we indicated that user interactions with a data base

could be efficiently modified into ones guaranteed to have no such access

violations. However, data base integrity can also be destroyed by

inadvertant update by an authorized user. For example, a data base

containing salaries of employees might be inadvertantly updated to give

some employee a negative salary. Such an update would violate a constraint

which might be put on the data base that all salaries be nonnegative.

Other possible constraints are that employees with a job classification

of Assistant Professor must make between $12,000 and $16,000 and that

department chairmen must be full professors. In this paper, we will

show that a wide variety of integrity constraints can be effectively

guaranteed using the same interaction modification technique indicated

in [1].

A second way that integrity can be compromised, by concurrent update,

is well known in operating systems and several solutions have been proposed

including locks, semaphores and conditional critical sections [2]. How

ever, as pointed out in [3], data bases present more difficult concurrency

problems than typically addressed by the above mechanisms, both because

of the large number of possible locks and the need to guarantee the truth
»

of complex conditions. In this paper, we indicate that prevention of

-2-



integrity violations while allowing a high degree of concurrency can be

accomplished efficiently and simply at the user language level. Moreover,

our solution prevents deadlock [3,4,5] from ever occurring. Thus, not

only does a process never need to be backed up but also no code to test

for deadlocks need ever be included. Lastly, our solution has the property

that the concurrency allowed is directly proportional to time invested

in attempting to ascertain the truth of various conditions about inter

actions. Hence, CPU time can be traded in a natural way for concurrent

use of secondary storage and each data base system can individually

decide what investment to make.

The solution of both problems at the user language level should be

contrasted with lower level solutions such as providing locks and data

base procedure calls in the access paths to data [6,7,8] where they will

be called repeatedly. In our scheme integrity checks are performed just

once.

The observation is made in [9] and [10] that integrity constraints

of the first kind should be predicates in a high level language. However,

neither suggests an implementation scheme. The specification of our

constraints of type 1 are very similar to these in [9] and [10]; however,

we indicate reasonably efficient implementation algorithms. The suggestion

that predicates could be used for integrity constraints of the second type

is attributed to Jim Gray of IBM Corporation.

Both mechanismsare being implemented in a relational data base

system [11] under development at Berkeley. This system, INGRES, must be

briefly described to indicate the setting for the algorithms to be

-3-



presented. Of particular relevance is the query language, QUEL, which

will be briefly discussed in the next section.

II. QUEL

QUEL has points in common with Data Language/ALPHA [12], SQUARE [13]

and SEQUEL [14] in that it is a complete [15] query language which frees

the programmer from concern for how data structures are implemented and

what algorithms are operating on stored data. As such, it facilitates

a considerable degree of data independence [16], Since basic entities in

QUEL are relations, we define them and indicate the sample relations

which will be used in the examples in this paper.

Given sets D,...,D (not necessarily distinct) a relation

R(D.,...,D_) is a subset of the Cartesian product D.xD0x...xD . In
x a 1 2 n

other words, R is a collection of n-tuples x = (x.,...,x ) where x. € DJ
In i i

for 1 < i < n. The sets D.,...,D are called domains of R and R has
l n

degree n. The only restriction put on relations in QUEL is that they

be normalized [17]. Hence, every domain must be simple i.e., it cannot

have members which are themselves relations.

Clearly, R can be thought of as a table with elements of R appearing

as rows and with columns labeled by domain names as illustrated by the

following example.

EMPLOYEE

NAME DEPT SALARY

Smith toy 10,000

Jones toy 15,000

Adams candy 12,000

Johnson toy 14,000

Baker admin 20,000

Harding admin 40,000

MANAGER

Jones

Johnson

Baker

Harding

Harding

none

AGE

25

32

36

29

47

58

The above indicates an EMPLOYEE relation with domains NAME, DEPT, SALARY,

-4-



MANAGER and AGE. Each employee has a manager (except for Harding who is

presumably the company president), a salary, an age and is in a department

Each column in a tabular representation for R can be thought of as

a function mapping R into D±. These functions will be called attributes.

An attribute will not be separately designed but will be identified by

the domain defining it.

The second relation utilized will be a DEPARTMENT relation as

follows. Here, each department is on a floor, has a certain number of

employees and has a sales volume in thousands of dollars.

DEPARTMENT

DEPT FLOORtf #EMP SALES

toy B

candy 1

tire 1

admin 4

complaints 2

10 1,000

5 2,000

16 1,500

10 0

3 0

A QUEL interaction includes at least one RANGE statement of the

form:

RANGE Relation Name (Symbol,....Symbol):

Relation Name (Symbol,...,Symbol):

»

Relation Name (Symbol,....Symbol)

The symbols declared in the RANGE statement are variables which

will be used as arguments for attributes. These are called tuple variables.

The purpose of the statement is to specify the relation over which each

variable ranges.

Moreover, an interaction includes one or more statements of the

form

-5-



RETRIEVE

REPLACE

COMBINE i Result Relation: Target List: Qualification

DELETE

The following suggest valid QUEL statements. A Qomplete description of

the language is presented in Appendix 1.

Example 2.1

Find the salary of the employee Jones.

RANGE EMPLOYEE(X)

RETRIEVE W :X. SALARY:X. NAME = Jones

Here, X is a tuple variable ranging over the EMPLOYEE relation and all

tuples in that relation are found which satisfy the qualification

X.NAME = Jones. The salary attribute for all qualifying tuples is put

in a workspace named W.

Example 2.2

Insert the tuple (Jackson, candy, 13000, Baker, 30) into EMPLOYEE.

RANGE EMPLOYEE(X) : TERMINAL(Y)

COMBINE EMPLOYEE:ALL(X,Y)::(Jackson, candy, 13000, Baker, 30)

Here, the result relation EMPLOYEE is formed by combining EMPLOYEE and

the indicated tuple. TERMINAL is a reserved symbol indicating the user's

terminal. The two colons before the tuple indicate that the qualification

field for this statement is blank.

Example 2.3

Delete the information about employee Jackson

RANGE EMPLOYEE(X)

DELETE EMPLOYEES.ALL:X.NAME = Jackson

Here, the tuples corresponding to all employees named Jackson are deleted

from EMPLOYEE.

-6-



Example 2.4

Give a 10% raise to Jones

RANGE EMPLOYEE(X)

REPLACE EMPLOYEES.SALARY = 1.1*X.SALARY:X.NAME = Jones

Here, X. SALARY is to be replaced by 1.1*X.SALARY for those tuples in

EMPLOYEE where X.NAME = Jones. Note that lil*X.SALARY is an

A-function. Valid A-functions include those with any of the QUEL

operators and any attributes.

Also, QUEL contains aggregation operators including COUNT, SUM,

MAX, MIN, AVE and the set operator SET. An example of the use of

aggregation follows.

Example 2.5

Replace the salary of all employees in the toy department by the

average toy department salary.

RANGE EMPLOYEE(X)

REPLACE EMPLOYEE: X.SALARY = AVE(X. SALARY;;X.DEPT = toy): X.DEPT = toy

Here AVE is to be taken of the salary attribute for those tuples

satisfying the qualification X.DEPT = toy.

Note that AVE(X.SALARY;;X.DEPT = toy) is scalar valued and consequently

will be called an aggregate. More general aggregations are possible as

suggested by the following example.

Example 2.6

Find those departments whose average salary exceeds the company

wide average salary, both averages to be taken only for employees

whose salary exceeds $10000.

RANGE EMPLOYEE(X)

-7-



RETRIEVE W: X.DEPT: AVE(X,SALARY;X.DEPT;X.SALARY>10000)>AVE(X.SALARY;;

X.SALARY>10000)

Here AVE(X.SALARY;X.DEPT;X.SALARY>10000) is an aggregate function

and takes a value for each value of X.DEPT. This value is the aggregate

AVE(X.SALARY;;X.SALARY>10000 AX.DEPT = value). The qualification state

ment then is true for those departments for which this aggregate function

exceeds AVE(X.SALARY;;X.SALARY>10000). Syntactically, note that an aggregate

is simply an aggregate function with a null second argument.

In the sequel there will be several integrity control algorithms

applied to COMBINE, DELETE and REPLACE statements. Consequently, we

indicate their general form and interpretation at this time.

A COMBINE statement is of the following general form.

RANGE W^): ...: ty^)
COMBINE W: D^ ..., D. (R) :Q

Here X-, ..., ^ are tuple variables over relations W-, ..., WN

R is a subset of {X., ..., X^}.

D , ..., D. are domain names in each relation specified by each

tuple variable in R.

Q is a qualification statement in variables X., ..., X^, i.e.,

Q = Q(X.,..., X^), or a subset thereof.

W is a relation not necessarily distinct from W-, ...,WN.

Note that D,, ..., D. may be replaced by the keyword "ALL" if all

domains are meant.

Conceptually, the interpretation of a COMBINE statement is the

following. For each tuple of the cartesian product C = W x W„ x ... x W , Q

is a qualification statement that is either true or false. For the sub-

relation of C that satisfies Q, project on the domains D^ ..., DR for

each tuple variable in R. Merge these relations and name the result w.

-8-



Of course, the actual processing of a COMBINE statement should streamline

this process considerably. Our algorithms for processing COMBINE, DELETE

and REPLACE statements are discussed in a subsequent section.

The general form of a DELETE statement is the following.

RANGE VL^): ...: W^)
DELETE W: X.D^ ..., X.DK: Q

Here X^, ..., X^ are tuple variables ranging over relations W , ..., WN.

W 1b a relation not necessarily distinct from W., ..., W„.
1 N

X is a tuple variable ranging over W or W. for some i.

Dp ..., D are domains in the relation specified by X

Q is a qualification statement in variables X , ..., X^, i.e.,

Q " Q^, ..., Xjj), or a subset thereof.

Conceptually, Q specifies a qualification that is true or false for

each tuple in C = V^x... xWN. For the subrelation of C not satisfying Q,

project on domains D^ ..., DR of the relation specified by X. Name

this relation W.

The general form of a REPLACE statement is:

RANGE W1(X1): ...: M^)
REPLACE W: X.D. = a., ..., X.D. = a.:Q

Here a., ..., a. are valid QUEL A-functions

X, D_, ... D., Q, W are as above.

The interpretation of this statement is the following. Find all

tuples in W1 x ... x WN satisfying Q. For each such tuple calculate

o^t ••• a4 an£* replace X.D1, ... X.D. appropriately. Project the

resulting relation on X.D^ ... X.D and name it W, if X does not range

over W. Otherwise project on all domains of W.

Note that REPLACE statements have one potentially undesirable

property which will be illustrated by example.

-9-



Example 2.7

Replace the salaries of all toy department employees by the salary

of their manager

RANGE EMPLOYEE(X,Y)

REPLACE EMPLOYEE: X.SALARY * Y.SALARY: X.MANAGER = Y.NAMEA X.DEPT = toy

Suppose, however, that there are two managers of the toy department.

In this case, one desires to replace each toy department salary by two

other salaries. The above algorithm handles this situation by creating

two tuples for each employee,one with each salary. Obviously, this is

undesirable. This problem arises when a REPLACE statement does not

specify a function on the tuples of the relation indicated by X. Instead

of restricting the syntax of a REPLACE statement to guarantee this

functionality (for example, by restricting a,, «.., a. to be functions

only of X) we simply detect non functionality during processing and

abort the command.

Note for DELETE and REPLACE statements the usual situation will be

that X ranges over W. In this case an existing relation is to be

modified. If X ranges over another relation W. then some subset of the

tuples in W. are to be modified and copied into W. Similarly, the usual

case for COMBINE statements will be that a tuple variable in R ranges

over W. This situation is appropriate for insertions into existing

relations.

It can be noted that DELETE and REPLACE statements can always be

expressed equivalently as a sequence of one or more COMBINE and RETRIEVE

commands. This redundancy is supported for the convenience of the users.

III. ENFORCEMENT OF INTEGRITY CONSTRAINTS OF THE FIRST TYPE

In this section we indicate the mechanism to enforce constraints

concerning the ways a process may update a data base.

-10-



For each data base we allow assertions to be stored. Each assertion

is (logically) a RANGE statement and a valid QUEL qualification expression

in variables specified in the RANGE statement. This qualification

expression is true or false for each tuple in the cartesian product of

the relations specified by variables in the range statement. In the

next four sections we indicate algorithms which guarantee that the

qualification is true for all tuples in the product space after each

update. The general mechanism is to modify each user interaction so

that updates which violate an assertion are disallowed. In the remainder

of this section we indicate examples of possible assertions.

Example 3.1

Employee salaries must be non-negative:

RANGE EMPLOYEE(X)

X.SALARY>0

Example 3.2

Everybody except Harding must have a manager

RANGE EMPLOYEE(X)

X.MANAGER t none VX.NAME = Harding

Example 3.3

Everybody in the toy department must make at least $8000.

RANGE EMPLOYEE(X)

X.SALARY>8000 V X.DEPT ^ toy

Example 3.4

Employees must earn less than 10 times the sales volume of their

department if their department has a positive sales.

RANGE EMPLOYEE(X):DEPARTMENT(Y)

(X.SALARY<10*Y.SALES) V (X.DEPT i Y.DEPT) V (Y.SALES « 0)

-11-



Example 3.5

No employee can make more than his manager

RANGE EMPLOYEE(X,Y)

X.SALARY<Y.SALARY V (X.MANAGER * Y.NAME)

There are two types of qualifications. Those not containing

aggregates as above and those with aggregates as below.

Example 3.6

Harding must make more than twice the average employee salary.

RANGE EMPLOYEE(X)

X.NAME + Harding V X. SALARY>2*AVE(X. SALARY)

Example 3.7

Name must be a primary key

RANGE EMPLOYEE(X)

COUNT1(X.NAME) - COUNT(X.ID)

Here the ' indicates that duplicates are to be deleted before the

enumeration. Also X.ID is a tuple ID which is guaranteed unique.

Example 3.8

FLOOR # is functionally dependent [18] on DEPT

RANGE DEPARTMENT(Y)

COUNT (Y.DEPT;;COUNT(Y.FLOOR//;Y.DEPT) * 1) - 0

There will be four algorithms of increasing complexity (and cost)

for dealing with

1. one-variable aggregate-free assertions as in examples 3.1-3.3,

2. multivariate aggregate-free assertions with only one tuple

variable on the relation being updated as in example 3.4.

-12-



3. multivariate aggregate-free assertions with two or more tuple

variables on the relation being updated as in example 3.5.

4. assertions involving aggregates as in examples 3.6 - 3.8.

We deal with each case individually in the next four sections. For all

sections we deal with COMBINE, DELETE and REPLACE statements in their

general form indicated previously in Section 2. One could argue that

integrity constraints should be applied only when an existing relation

is updated (i.e., when W = Wi for some i) and not when a new relation

is created (when W ^ W± for all i). The additional difficulty of allow

ing constraints in the second case is small so we see no reason to pro

hibit them.

IV. ENFORCEMENT OF ONE-VARIABLE AGGREGATE FREE ASSERTIONS

Intuitively, a one-variable aggregate-free constraint specifies

an assertion which is true or false for each tuple of a relation. Hence,

integrity assurance reduces to checking each tuple that is inserted or

modified to ensure the truth of the assertion. Tuples may, of course,

be deleted with no checking whatever.

Hence a DELETE statement can be processed with no regard for such

integrity constraints if X ranges over W (in which case tuples are to

be deleted from an existing relation). Otherwise, a new relation is to

be formed and the DELETE statement will be converted to an equivalent

form^

RANGE W1(X1), ..., WN(XN)
COMBINE W: D^ ..., DR(X) :~Iq

The following algorithm can be applied to this and all other COMBINE

statements. .

-13-



Algorithm 1

a. Find all one-variable aggregate-free assertions with a RANGE

statement of W(Y) for some tuple variable Y. Call the corresponding

qualifications Q-^Y), ..., Qh(Y)

b. Replace Q, the qualification given in the COMBINE statement, by

QAQ* where Q* =p^R ^ {1 _ h}VP) and VP) is the ^ualifica~
tion Q. with the tuple variable Y replaced by P. Here, A ( ) means

* P G R
the logical AND of the terms resulting from P iterating over R.

The COMBINE statement can now be processed normally assured that

W will satisfy all one-variable aggregate-free assertions after

execution. The tuples which do not satisfy the conditions and hence are

not added to W may be found as follows.

RANGE W1(X1), ..., WN(XN)
COMBINE TEMP: All (R) : Q A~lQ*

Appropriate action may now be taken for tuples in TEMP. Note that when

a variable in R ranges over W, qualifications in that variable can be absent

from Q* since W will assuredly satisfy the assertions before the update.

The following algorithm effectively deals with the common case of

REPLACE statements where X ranges over W (in which case an existing

relation is to be modified).

Algorithm 2

a. Find all assertions with a RANGE statement of W(Y) for some Y.

Call the appropriate qualifications Q,, ..., Qn.

b. Replace Q by Q A Q* where Q* = A Q. (cti, ..., a^). Here
i={l,.,.,h}

Q^0^. ...» aj) results from Q±(Y) by substituting X for Y and

then ct^ for X.D^, wherever X.D« appears in Q .

-14-



The tuples not altered because of the integrity constant can be

found as follows

RANGE WX(XX): ...: WN(XN)

RETRIEVE Z: X.A11: QA ~Iq*

In the much less common case that X does not range over W, the pro

cessing is more complex because tuples from another relation are moved

into W and some are altered in the process. Algorithm 2 would insure

that tuples which had values changed would satisfy the assertions. How

ever, tuples not changed can not be checked in this fashion. An overly

conservative (but simple) strategy which insures the assertions is to

first execute

RANGE W1(X1): ...: W^)
COMBINE W: All(X)

and then execute the REPLACE statement with X ranging over W. This

policy is overly cautious because the COMBINE statement may be modified

to disallow tuples that would have subsequently been changed by the REPLACE

statement to have valid values. In other words the end result of

the REPLACE statement may satisfy the assertions yet the intermediate

result, that of the COMBINE statement, may not.

To overcome this deficiency, algorithm 1 or 2 can be applied to

each of the following statements to guarantee the assertions.

RANGE WX(XX), .... WN(XN)
COMBINE W: D^ ..., DR(X): ~lQ
RETRIEVE TEMP: X.ALL, TL: Q

RANGE TEMP(Y): W(Z)

REPLACE TEMP: Y.D1 « a , ... Y.D = a^
COMBINE W: D ,...,D (Y,Z)

J- &

Here TL represents any additional attributes on which c^,...,^ depend.
-15-



Two examples illustrate these algorithms. Consider the enforcement

of the constraint X.SALARY>0 as in Example 3.1

Suppose a user issues the following

RANGE EMPLOYEE(X) :T(Y)

COMBINE EMPL0YEE:A11(X,Y): Y.NAME = Jones

Here Jones record is to be added to EMPLOYEE (assuming that it is in the

relation T).

This statement will be automatically modified by algorithm 1 to

RANGE EMPLOYEE(X) :T(Y)

COMBINE EMPLOYEE: All (X,Y) : Y.NAME = Jones A Y.SALARY>_0

Hence Jones' record will be added only if he has a non-negative salary.

Tuples disallowed by the integrity constraint can be found by

RANGE EMPLOYEE(X):T(Y)

COMBINE TEMP: All(Y): Y,NAME = Jones A~) Y.SALARY>_0.

In fact the following format issues both statements at once.

RANGE EMPLOYEE(X):T(Y)

COMBINE EMPLOYEE A11(X,Y): X.NAME = Jones: ERRORS to TEMP

Suppose another user issues the statement

RANGE EMPLOYEE (X)

REPLACE EMPLOYEES.SALARY = X.SALARY - 500: X.NAME = Jones: ERRORS

to TEMP

This will be expanded to

RANGE EMPLOYEE(X)

REPLACE EMPLOYEE: X. SALARY = X. SALARY - 500:

X.NAME = Jones AX.SALARY - 500>_0

RETRIEVE TEMP:X.All: X.NAME = JonesA~l X.SALARY - 50G>_0

V. ENFORCEMENT OF MULTI-VARIABLE AGGREGATE FREE ASSERTIONS, I

Here, we consider the case that all assertions have two or more

-16-



tuple variables but only one ranging over W. In this case each tuple

which is inserted or modified in W will add or change many tuples in the

product space for which the assertion must be guaranteed. As a result

the algorithms in this section are more complex than previously. Note,

however, that tuples may still be deleted from a relation with no check

ing. Therefore DELETE's can be handled in the same way as previously.

The following algorithm must be applied to COMBINE statements.

Algorithm 3

a. Find all multivariate assertions which contain W(Y) for some Y.

Let these qualifications be Q , ..., Q..

b. For the i-th qualification let Q be a qualification in variables

Y, Ulf' ..., Uq ,i.e. Q^ Q±(Y, Ur ..., Uq)

c. Replace Qby QA [p/^ COUNT (^.ID, ..., U .ID; P.ID; Q±(P)) =
COUNT (U-.ID, ..., U .ID)].

1 q

d. Repeat c for each i

Here Q^P) is Q. with the variable indicated by P replacing Y where-

ever it appears. Again if X. ranges over W for some i, it can be deleted

from the variables considered in step c since W satisfies the assertion

at the start of the update.

The algorithm for REPLACE statements in which X ranges over W is

the following.

Algorithm 4

a. Find all multivariate assertions which contain W(Y) for some Y.

Let these qualifications be Q., ..., Q
1 h

b. For the i-th qualification let Q. have tuple variables

Y, U^ ..., Uq, i.e., Q± = Q±(Y, Ur ..., Uq)

-17-



c. Replace Q by QA COUNT^.ID, ..., U .ID; X.ID; Q±(a1» ••• <*K>

U-, ..., U )) - COUNT (UrID, ... U .ID)

d. Repeat c for each i

Here note that Q±(<*v ••-» V Ul» '"> V ±S Qi with Y rePlaced bv
X and then X.D. replaced by a. wherever it appears.

The previous complications concerning REPLACE statements when X does

not range over W are present in this situation. The same mechanism

applied in Section IV must also be applied here.

The following examples illustrate these algorithms.

Suppose one wishes to enforce the constraint of example 3.4 that an

employee must earn less than 10 times the sales volume in thousands of his

department if sales is positive. The previous two examples will be restated

to conform to this constraint.

RANGE EMPLOYEE(X) : T(Z)

COMBINE EMPLOYEE: A11(X,Z): Z.NAME * Jones:

ERRORS to TEMP

becomes

RANGE EMPLOYEE(X) : T(Z) : DEPARTMENT(Y)

COMBINE EMPLOYEE:All(X,Z): Z.NAME = Jones A

C0UNT(Y.ID; Z.ID; (Z.SALARY < 10 * Y.SALARY) V (Z.DEPT $ Y.DEPT)V

(Y. SALES = 0)) = COUNT(Y.ID)

COMBINE TEMP: All(Z) : Z.NAME = Jones AC0UNT(Y.ID; Z.ID;

(Z.SALARY < 10 * Y. SALARY) V(X.DEPT t Y.DEPT) V (Y.SALES «= 0)) 4

COUNT(Y.ID)

The replace statement

RANGE EMPLOYEE(X)

REPLACE EMPLOYEES.SALARY - X.SALARY - 500:X.NAME = Jones

becomes

-18-



RANGE EMPLOYEE(X) :DEPARTMENT(Y)

REPLACE EMPLOYEES.SALARY = X.SALARY - 500:

X.NAME = Jones A COUNT (Y.ID; X,ID; (X.SALARY - 500 < 10 *

Y.SALARY) V (X.DEPT ^ Y.DEPT) V (Y.SALES = 0)) = COUNT(Y.ID)

VI. ENFORCEMENT OF MULTIVARIATE AGGREGATE FREE ASSERTIONS, II

We now consider the case of assertions, such as Example 3.5, which

contain two or more tuple variables ranging over W. This situation differs

from the cases considered above in the following respect. In effects

Integrity control was exercised by examining each tuple to be updated

allowing updates for those tuples satisfying the assertions and denying

them otherwise. Unfortunately, updates subject to assertions considered

in this section must be allowed or disallowed as a whole and decisions

cannot be made incrementally. The following example illustrates the

problem which arises.

Consider the combination of two relations on employees (which might

happen if two companies merge), i.e.

RANGE EMPLOYEE(X), EMPLOYEE 1(Y)

COMBINE EMPLOYEE: A11(X,Y)

Moreover, suppose one wishes to enforce the constraint of Example 3.5,

i.e., that each employee makes less than his manager. Lastly, suppose

most or all of the employees in the relation EMPLOYEE1 violate this

condition.

Now, suppose one inserts tuples from EMPL0YEE1 into EMPLOYEE in an

order such that each employee is inserted before his manager. Each

employee who is not a manager can be inserted without a violation while

each manager will not be allowed. On the other hand, if managers are

inserted first, at least one will satisfy the constraints while all non-

managers will fail. Hence the order in which tuples are inserted will

-19-



affect which ones are not in violation of the constraints. Since ordering

of tuples in a relation should not affect the outcome of any operation, one

must treat an update subject to this form of integrity constraint as an

entity and allow or disallow the whole procedure. Consequently, the al

gorithms are somewhat different than those in previous sections.

It can easily be noted that DELETE's can be processed in the same

manner as before. The integrity assurance algorithm for COMBINE's how

follows.

Algorithm 5.

a. Find all multivariate assertions which have two or more tuple

variables ranging over W. Let these qualifications be Q1 ..., Q .

b. For the i-th qualification let Q± have variables Y, ...,Y.,

Ul»,,,,Uk wnere Yj_ ranges over W and U. does not for all i. •

c Replace Q by Q [y Gr... ^GrCOUNT (YrlD, ... Y^.ID;;

Qi(Y1, ..., Y£, Ulf ...,Uk) = COUNT (Y^ID, ..., Y£.1D)].

d. Repeat c for each i.

The reader can note if X^ ranges over W for some m that the COUNT term

when y± =? X^ for all i can be eliminated since W satisfies the constraint

before the update. Also note that when Y. = X. for all i only one of the
i 3

A permutations need be included since the rest would be redundant. Also,

when y± = Ym for some i,m, X. can be assigned to Y. and a new variable

ranging over W. must be assigned to Y in order that the constraint be
j m

correctly stated. Note finally that aggregates appear in this algorithm

instead of the aggregate functions in algorithm 3. In this way the added

qualification has either the value TRUE or FALSE and the update as a

whole is allowed or disallowed as a result..

-20-



The reader can easily note the changes that must be made to create

a working algorithm for REPLACE statements. We now indicate an example

of the algorithm at work ensuring example 3.5.

The statement

RANGE EMPLOYEE(X) :T(Z)

COMBINE EMPLOYEE A11(X,Z)

becomes

RANGE EMPLOYEE(X):T(Y,Z)

COMBINE EMPLOYEE A11(X,Z):

COUNT(X.ID, Z.ID;;X.SALARY < Z.SALARYVX.MANAGER £ Z.NAME) =

COUNT(X.ID, Z.ID)A COUNT(Z.ID, X.ID ;;Z.SALARY < X.SALARYVZ;MANAGER ^

X.NAME) = COUNT(Z.ID, X.ID)ACOUNT(Z.ID, Y.ID ;;Z.SALARY < Y.SALARY

VZ.MANAGER ^ Y.NAME) = COUNT(Z.ID, Y.ID)

VII. CONSTRAINTS INVOLVING AGGREGATES

The reader will note that constraints involving aggregates have the

same problem that occurred with the previous class of constraints: updates

must be allowed or disallowed as a whole. Again, the reason is that the

tuples which do not violate the constraints depend on the order in which

they are changed or added. What is more perilous is that the previous

mechanisms cannot be applied to allow or disallow the whole update.

For example, the assertion AVE(X.SALARY) <_ 500 might be applied to

the following update

RANGE EMPLOYEE(X):W(Y)

COMBINE EMPLOYEE: All(X.Y)

as follows

RANGE EMPLOYEE(X):W(Y)

rnMRTNF fmptOYPF•aiWy y^. SUM(X. SALARY) ~+ SUM(Y.SALARY)COMBINE EMPLOYEE.All(X,Y). C0UNT(X#ID) + COUNT(Y.ID) - 5°°

In this fashion, the revised average salary would be computed and

checked for the Integrity constraint. Unfortunately, there may be tuples

-21-



in EMPLOYEE which are also in W. If 8o, the COMBINE statement will, of

course, delete the duplicates. However, the appended qualification is, in

effect, the integrity statement with the duplicates present. There is no

easy way to express in QUEL the fact that the aggregate constraint is

taken with duplicates deleted. Therefore the algorithm involving aggregates

must simply be to try the update, test the resulting relation for the

integrity constraints and undo the update if one is not satisfied.

VIII. EFFICIENCY CONSIDERATIONS

Efficiency considerations can only be discussed in view of the

strategy employed to decompose QUEL interactions.

a. DELETE

If X ranges over W the following statement is issued

RANGE W1(X1): ...: W^)
RETRIEVE TEMP: X.A11: Q

Tuples in TEMP are then deleted one by one from W by calls to the

appropriate access method.

If X ranges over another relation, a DELETE is translated to a COMBINE

statement as previously indicated.

b. COMBINE

For each tuple variable X. in R the following statement is issued

RANGE W1(X1): ...: W^Xg)
RETRIEVE TEMP±: X^-D^ ..., X±.D :Q

The set union of the resulting TEMP's is taken and named W. If Q does not

depend on X^, for some tuple variable X_ in R, the procedure can be shortened

by omitting the RETRIEVE for x&.

-22-



c. REPLACE

If X ranges over W, the statement

RANGE W1(X1): ...: W^X^)
RETRIEVE TEMP: X.All, TL: Q

is executed. Here TL stands for any attributes not in W on which

a-, ...f a. depend. For each tuple in TEMP the projection on the domains

of W is deleted from W, a substitution for the a-functions performed, and

a new typle inserted into W.

If X ranges over another relation, the sequence of statements indicated

earlier is performed.

A RETRIEVE statement is processed by breaking it into a sequence of

RETRIEVE statements each of which involves only a single tuple variable.

As such it resembles the one used in [19 ]. These single variable queries

involve only a single relation and can be directly executed (in the worst

case by a sequential scan of the relation tuple by tuple). Often the

relation will be stored in such a way that a complete scan is not needed.

Also redundant indices which can be used profitably to speed access are

utilized.

The addition of single variable aggregate-free integrity constraints

will usually result in the same decomposition to a sequence of one-variable

queries that would result otherwise. Each such one-variable query is

further qualified by one or more integrity qualifications. Such one-

variable RETRIEVE's are usually at least as efficient to process as those

without constraints. In fact the added clauses may be employed in speeding

access. Hence the cost of integrity for one-variable aggregate-free controls

should be negligible.

Unfortunately, that is not the case for the other forms of constraints.

All involve testing for equality, pairs of aggregates or aggregate

-23-



functions. These operations are usually very costly. Consequently, the

user may enforce more complex controls but only at considerable cost.

Note that our algorithms generally have the effect of testing

constraints for only small subrelations for each update. Of course, this

is to be preferred to examining the whole relation each time.

Also, if controls are desired at each update, we believe the proper

approach is to append them at as high a level as possible. In this way

checks in the access paths can be avoided and any information available

can be utilized to perform the update as efficiently as possible. Also

note that schemes whichappend integrity at lower levels have considerable

difficulty enforcing complex controls (such as those involving more than

a single variable).

Lastly, note that the power of RETRIEVE statements can also be used

to ascertain the truth of Integrity constraints. Thus, users who do not

wish to pay the price of checking each update may less frequently make

their own checks and take appropriate action.

IX. CONCURRENCY CONTROL

The following example illustrates the problem that arises during

concurrent update of a data base by two or more processes.

Ul RANGE EMPLOYEE(X)

REPLACE EMPLOYEE: X.DEPT = toy: X.DEPT ° shoe

U2 RANGE EMPLOYEE(Y)

REPLACE EMPLOYEE: Y.DEPT = shoe: Y.DEPT = toy

Notice that if Ul precedes U2 then all employees end up in the shoe

department, while if U2 precedes Ul, all finish in the toy department.

If they are processed concurrently some employees may end up in each

department, and the particular results may not be repeatable. This

-24-



illustrates two unsafe updates. The notion of unsafe is defined formally

as follows.

Tor a relation WCD. x ... x D define C(W) to be D. x D0 x ... x D .
1 n l z n

Any update, U, in the QUEL language can be thought of as a function

H. C(W)xC(W1)x...xC(Wn)+C(W)

Here W is the result relation and W-, ..., W are the relations specified

in a RANGE statement.

Consider two such updates

U: C(W) x C(WJ x ... x C(W ) -• C(W)
J. n

V: C(S) x C(SJ x x C(S ) -»• C(S)
1 m

Denote by J the product space C(W) x C(S) x C(W.) x ... x C(W ) x C(S-) x ..
l n l

x C(S ) and uniquely extend U and V to U' and V such that

U',V: J •* J

U'Lastly, let { ,} (J) represent the (perhaps simultaneous) application of U'

and V' to J. Now, two updates U and V will be said to be safe if

{*]} (J) - U' oV (J) or V oU' (J)

Consequently, two updates are safe if their outcome is the same as

would result from their sequential execution in either order. Note that

other less restrictive notions of safety exist. One such notion is

pursued in [11].

A date base management system that guarantees all updates are safe

will be said to preserve integrity for concurrent updates. It is evident

that safety can be assured by processing updates sequentially with no

parallelism. However, performance can be improved by finding updates

that are assuredly safe and processing them concurrently. There are at

least two approaches that can be taken. First, a process may apply a

lock or semaphore to any entity (data item, tuple, page, file) which it

will alter or whose alteration by another process might compromise the

-25-



safety of the update. Using this approach update Ul must ensure that the

DEPT column of the EMPLOYEE relation is locked and must set whatever

locks are required to do this. Hence, U2 could not proceed concurrently

since it must also lock the same column. An algorithm along these

lines is suggested in [3]. This approach has two disadvantages. First,

a set of perhaps millions of locks must be managed if locks are to be

on small enough entities to allow considerable concurrency. Second, dead

lock is possible and must be detected and one or more processes backed up,

if necessary. The second approach is to implement concurrency control at

the user language level. It will be seen that both of the deficiencies

of the storage locking scheme can be avoided. In order to present our

algorithm, we must indicate the actual sequence of functions that are

performed. In the remainder of; this section we consider only updates

where W = W.^ for some i in which case an existing relation is being

updated. Otherwise a new relation is being created and no concurrency

can be allowed without compromising safety.

In INGRES such updates are processed by executing one or more RETRIEVE

statements followed by a sequence of operations each of which inserts or

deletes a tuple from W. Consider the result of these RETRIEVE statements

for a given update, U, as TEMP^ ..., TEMPK and denote these retrievals

formally as

UR: C(W) xC(W1) x... xC(Wn) •*• C(TEMP^) x... xC(TEMP^)

Then, a sequence of operations U_, ..., U, is performed on W. Each involves
i n

the addition or deletion of a single tuple. Consider each as function

U±: C(W) xC(TEMP") x... xC(TEMP^) -* C(W)
Hence an update, U, is the sequence of functions

Vur •••• uh •

-26-



Similarly, a second update V is the sequence of functions

V V •••' Vg

VR: C(S) xC(SX) x... xC(Sm) -»- C(TEMp][) x... xC(TEMP^)
V VV±: C(S) x C(TEMP ) x... x C(TEMP ) -*- C(S)

Denote by J* the cartesian product C(S) x C(S ) x ... x C(S ) x C(TEMP )

x ... xC(TEMP^) xC(W) xC(W )x ... xC(W )xC(TEMPU) x ... xC(TEMp")
Uniquely extend UR, U]L, ..., Uh, VR, V^ ... Vg to

UR, Uj, ..., U^, VR, V', ..., V: J* + J*

Assume only that the operating system guarantees that U.,, ..., u. and
1 h

Vl' •••» vg are atomic operations. This requires that the access methods

can do a read-modify-write sequence from a physical page of memory without

interruption or that locks or semaphores can be applied to single

physical pages for this interval. If so, two updates U and V will be safe if

1. ^viv;_r..V[(J*)] = UR(J*) for all i

2. VR[U^_1...UjU*)] = VR(J*) for all i

The proof of this statement appears in Appendix 2. Note that

the two'conditions specify that no alteration of the data base

by one update can affect the set of qualifying tuples for the other update.

Stated differently no process can alter the data base so that tuples

either enter or leave the set to be changed by the other process. Also,

they do not allow two REPLACE statements to change the same tuple. An

easily demonstrated consequence of 1 - 2 is that U o V(J) = V o U(J).

We now turn to conditions that guarantee 1-2.

For any update, U, (COMBINE, DELETE, REPLACE) denote by Q the

qualification expression and by L(Q ) the set of attributes in Q . Let

-27-



T be the list of variables in the target list (for DELETES the list
u

given, for COMBINES the list given duplicated for each tuple variable in

R, and for RETRIEVES those appearing in an A-function or being replaced

by an A-function).

A. Two updates U,V (COMBINE, DELETE, REPLACE) are safe if

ar Tu AL(Qv) = 0

ar TvAL(Qu) = 0

V QuAQvs0 or %^%~% or QuAnQv = Qu
Note that Q AC- , 0 , Q specify conditions true or false on J. Note

also that certain cases always fail statement A such as a COMBINE and

a REPLACE on the same relation and a COMBINE and a DELETE on the same

relation.

Two other points should be made about statement A. First, there are two

cases which fail statement A yet are automatically safe. They aife two DELETE's

with the same W and two COMBINE'S with the same W. Secondly, safety only

requires a~ in other special cases. One such case is two DELETE's on

different relations.

Other more elaborate conditions for safety are also possible. However

they appear infeasible to check quickly. Hence, only statements A will be

investigated in INGRES. The first two conditions in A are simple to

check; however, a« may be exceedingly complex and its truth data de

pendent. Nevertheless, there are cases where a~ is easy to demonstrate.

These include the case where tuple variables in Qu and Q^ do not range

over the same relation and where Q and 0 consist of clauses of the

form attribute = value for which the attributes are the same but the

values differ. We consider now our integrity algorithm.

-28-



Algorithm 6

For an arriving update U such that updates V-, ..., V are currently

in progress

a. Attempt to demonstrate statement A for (U,V,), ..., (U,V )
J- n

b. Ifa. is satisfied add U to the list of updates in progress; exit.

c. Ifa. fails add U to a wait list for each update for which statement

A cannot be proved.

For an update V which finishes execution

a. Delete V from those updates in progress

b. Activate as arriving updates any elements only onV'swait list.

This algorithm has at least two potential disadvantages

1. Updates may wait a very long time

2. The algorithm blocks updates which cannot be shown to be safe

and hence may be too conservative.

The following two modifications improve both situations.

1. Attach a count field to each update. Let the count field be

decremented by one on each activation. When the count reaches 0

execute step d instead of step c of the previous algorithm

d. If a. fails add U to a wait list for each update for which

statement A cannot be proved. In addition add U to the list

of those updates in progress.

Notice that the next time the update is activated it is guaranteed

not to conflict with any updates in progress and can assuredly proceed.

Hence, the count reflects the number of times an update can be forced to

activate itself before being allowed to proceed. Note that the count can be

-29-



made larger for those updates which should get a lower priority or which

are judged to tie up a large portion of the data base (for example, updates

with several tuple variables).

The second Improvement concerns updates for which a cannot be shown

because its truth is data dependent. Consider, for example, the following

two updates

RANGE EMPLOYEE(X)

REPLACE EMPLOYEE: X.SALARY = 1.1 * X.SALARY:

X.AGE > 39

REPLACE EMPLOYEE: X.SALARY = .9 * X.SALARY:

X.AGE < 40

These updates are unsafe only if some employee is 40 years old. There may

be updates of this sort (especially complex ones) which one might wish

to process in parallel on the good chance that they do not conflict.

Modification 2 allows such a possibility.

2. Suppose a REPLACE, U, arrives and can be shown not to conflict

with all updates in progress except V for which a~ cannot be shown.

In this case add U to the update list and issue two RETRIEVE statements:

RANGE W1(X1), .... WN(XN)
RETRIEVE Tl: T: Q

u

RETRIEVE T2: T: Q ^"lO

The first statement is simply the RETRIEVE portion of U (which would

be done anyway). The second is similar except tuples satisfying

Q^ are excluded. When both RETRIEVES finish, Tl and T2 can be

tested for equality. If so, U and V are safe and U can finish its

update unimpaired. Otherwise U must enter the wait state until V

finishes.

-30-



It should be noted that an update is never started until its safety

with all other updates in progress is assured. This scheme avoids dead

lock and therefore guarantees that an update need never be backed up to

resolve a deadly embrace. This is in contrast to locking strategies applied

at lower levels which suffer this drawback. Also only the target list,

qualification list, and qualification statement for each update need be

manipulated. This should be contrasted with the difficulty of managing

storage locks.

X. EFFICIENCY

The efficiency of this scheme depends primarily on how "smart" the

program ascertaining safety can be made. Certainly a tradeoff exists

between the time required to execute a sophisticated theorem prover and

the time saved by finding non obvious safe pairs of updates. However,

it should be noted that statement A is trivially true for two updates

of non primary key [18] attributes of tuples specified by a primary key.

Hence, concurrency is allowed in common situations where it is possible.

Consider now updates involving more than one tuple variable. Since

it may be difficult to prove safety for multivariable updates, there may

be little parallelism in this situation. Fortunately, we expect this

case to be rare. Hence, less than the most possible parallelism may be

acceptable.

The overhead of modification 2 may not be as severe as one might

expect since both RETRIEVE statements access many of the same tuples.

In a virtual memory environment in which the statements are executed by

-31-



separate processes with shared relations, it may be that few extra page

faults are caused by the addition of the second RETRIEVE statement.

Consequently, the overhead may be much less than the factor of two one

might otherwise suspect. This overhead may be unattractive for simple

updates where the option is to wait a short time. However, for complicated

updates, especially ones with more than one tuple variable which may take

a long time, it may be reasonable.

XI. SUMMARY

The advantages of these integrity control schemes are briefly

recapitulated here.

- In both cases control is placed at the source language level. As

such access control, integrity checks and support for "views" can

all be accomplished at once. Also, at this level the algorithms are

conceptually simple and easy to implement. This should be contrasted

with lower level schemes (such as [3]).

- Little storage space is required to store integrity assertions and

necessary information about interactions in progress.

- Only minimal synchronization need be done in the access methods to

support concurrent updates.

- Deadlock is avoided so no code for checking this condition need be

included.

- These algorithms involve small overhead at least in the simpler

more common cases.

-32-



, REFERENCES

1. Stonebraker, M. and Wong, E., "Access Control in a Relational Data

Base Management System by Query Modification", Proc. 1974 ACM National

Conference, San Diego, Ca., Nov., 1974.

2. Brinch Hansen, P., Operating Systems Principles, Prentice Hall,

Englewood Cliffs, N.J., 1973.

3. Chamberlin, D., et al., "A Deadlock-Free Scheme for Resource Locking

in a Data-Base Environment," IBM Research Laboratory, San Jose, Ca

March 1974.

4. Coffman, E. et_ al., "System Deadlocks," Computing Surveys, vol. 3,

no. 2, June 1971.

5. Havender, J., "Avoiding Deadlocks in Multilasking Systems," IBM

Systems Journal, vol. 7, no. 2, 1968.

6. CODASTL, "Data Description Language", Handbook #112, U.S. Department

of Commerce, January, 1974.

7. Everest, G., "Concurrent Update Control and Data Base Integrity,"

1974 IFIP Conference on Data Base Management Systems, Cargese

Corsica, April 1974.

8. Nolman, J., "Data Base Integrity as Provided for by a Particular

Data Base Management System," Proc. 1974 IFIP Conference on Data

Base Management Systems, Cargese Corsica, April 1974.

9. Florentin, J. J., "Consistency Auditing of Data Bases," The Computer

Journal, vol. 17, no. 1, February 1974.

10. Boyce, R. and Chamberlin, D., "Using a Structured English Query

Language as a Data Definition Facility," IBM Research Laboratory,

San Jose, Calif., RJ 1318.

-33-



11. MacDonald, N., Stonebraker, M. and Wong, E., "Preliminary Specifica

tion of INGRES", University of California, Electronics Research

Laboratory, Memorandum //M435-436. April 1974.

12. Codd, E.F., "A Data Base Sublanguage Founded on the Relational Cal

culus", Proc. 1971 ACM-SIGFIDET Workshop on Data Description, Access

and Control, San Diego, Ca., Nov., 1971.

13. Boyce, R., et al, "Specifying Queries as Relational Expressions:

SQUARE", IBM Research, San Jose, Ca., RJ 1291.

14. Chamberlin, D. and Boyce, R., "SEQUEL: A Structured English Query

Language", Proc. 1974 ACM-SIGFIDET Workshop on Data Description,

Access and Control, Ann Arbor, Mich., May 1974.

15. Codd, E.F., "Relational Completeness of Data Base Sublanguages",

Courant Computer Science Symposium S9 May, 1972.

16. Stonebraker, M., "A Functional View of Data Independence", Proc. 1974

ACM-SIGFIDET Workshop on Data Description Access and Control, Ann

Arbor, Mich., May 1974.

17. Codd, E.F., "A Relational Model of Data for Large Shared Data Banks",

CACM, Vol. 13 #6, June, 1970.

18. Codd, E.F., "Normalized Data Base Structures: A Brief Tutorial",

Proc. 1971 ACM-SIGFIDET Workshop on Data Description Access and

Control, San Diego, Ca., November, 1971.

19. Rothnie, J., "An Approach to Implementing a Relational Data Base

Management System", Proc. 1974 ACMr-SIGFIDET Workshop on Data Description

Access and Control, Ann Arbor, Mich., May 1974.

-34-



APPENDIX 1 - Syntax of QUEL

For simplicity the language is described without allowed precedence

altering parentheses and assumes standard precedence conventions.

INTERACTION SEQUENCE = range STATEMENT

INTERACTION SEQUENCE

RETRIEVE STATEMENT

INTERACTION SEQUENCE

COMBINE STATEMENT

INTERACTION SEQUENCE

DELETE STATEMENT

INTERACTION STATEMENT

REPLACE STATEMENT

INTERACTION STATEMENT

DESIGNATE STATEMENT

INTERACTION SEQUENCE

RANGE DECLARATION

VARIABLE LIST

DESIGNATE DECLARATION

RETRIEVE STATEMENT

TARGET LIST

RANGE RELATION-NAME

(VARIABLE LIST) :...:

RELATION-NAME (VARIABLE

LIST)

VARIABLE,....VARIABLE

DESIGNATE

NAME = A-FUNCTION

NAME = A-FUNCTION

RETRIEVE : RESULT-NAME :

TARGET LIST : QUALIFICATION

TARGET LIST, NAME

••35-



QUALIFICATION

CLAUSE

A-FUNCTION

ATTRIBUTE FUNCTION

AGGREGATE FUNCTION

ATTRIBUTE SEQUENCE

A-SEQUENCE

ATTRIBUTE

TARGET LIST, A-FUNCTION

<j>

"I QUALIFICATION

QUALIFICATION V CLAUSE

QUALIFICATION A CLAUSE

CLAUSE

A-FUNCTION * A-FUNCTION

A-FUNCTION * A-FUNCTION * A-FUNCTION

SET CLAUSE

- I > I > I < I <

ATTRIBUTE FUNCTION

AGGREGATE FUNCTION

A-FUNCTION $ A-FUNCTION

LOG CONSTANT (A-FUNCTION)

# A-FUNCTION

+ I- I *.| / I**

+ I-

CONSTANT|ATTRIBUTE

2*(SET FUNCTION)

£(SET FUNCTION)

2*(ATTRIBUTE SEQUENCE;
ATTRIBUTE SEQUENCE: QUALIFICATION)

£(A-FUNCTION; ATTRIBUTE SEQUENCE:

QUALIFICATION)

ATTRIBUTE FUNCTION, ..., ATTRIBUTE FUNCTION

A-FUNCTION, ..., A-FUNCTION

VARIABLE.DOMAIN NAME

COUNT |COUNT'

-36-



SET CLAUSE

SET FUNCTION

@

&

COMBINE STATEMENT

TL

DELETE STATEMENT

REPLACE STATEMENT

SUBSTITUTION

Terminal Symbols

KEY WORDS"

NAMES

CONSTANTS

VARIABLES

LOGICAL CONNECTIVES

COMPARISON OPERATORS

SPECIAL FUNCTIONS

ARITHMETIC OPERATORS

AGGREGATION OPERATORS

SET OPERATOR

SUM | SUM' | AVG | AVG' |MAX | MIN

SET FUNCTION @ SET FUNCTION

SET(A-FUNCTION;

ATTRIBUTE SEQUENCE; QUALIFICATION)

SET FUNCTION & SET FUNCTION

- Ic |c | z> | 2

AIVI--

COMBINE RESULT NAME

: TL : QUALIFICATION

ATTRIBUTE SEQUENCE (VARIABLE LIST)

DELETE RESULT NAME :

ATTRIBUTE SEQUENCE : QUALIFICATION

REPLACE RESULT NAME :

SUBSTITUTION : QUALIFICATION

<l>

SUBSTITUTION, ATTRIBUTE = A-FUNCTION

RANGE, DESIGNATE, RETRIEVE

COMBINE, DELETE, REPLACE

V, A, 1

~t i

LOG

+• -, *, /, **

COUNT, COUNT', SUM, SUM', AVG, AVG',

MAX, MIN

SET

-37-



SET CONNECTIVES =, D, D, C, C,V»A»

PUNCTUATION : ; . ,

PARENTHESIS ( )

-38-



APPENDIX 2

Two updates U and V are safe if

1. UR[V^_1....V[(J*)] = UR(J*) for all i

2. VR[UjU^r...U|(J*)] = VR(J*) for all i

Proof

Consider the following execution sequence.

»1 V2 V3

vRv v ,

Here V-,...,V and U.,...,U are denoted by a fixed time since they are

atomic. On the other hand V and U_ are denoted by the intervals over
K R

which they are accomplished.

S±nCe Vl Vg and ui "i ^sert or delete tuples from arelation
(or relations) and since neither set of updates is deleting a tuple

inserted by the other as a result of 1. and 2., they are commutative,

(i.e. V£ U.J « U' V| for all iand j). Hence, the above diagram is

equivalent to

Vl V2 Vg

As a result of 1, this is equivalent to

-39-

T I ^ t
ui u2 ...uh



V-
"V"

v_

"V
J u • u u.

u.
R

i.e. to U' • V'(J)

•The alternate diagram for which VD overlaps U. for some i is
R 1

considered analogously.

-40-


	Copyright notice 1974
	ERL-473

