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Abstract

It may be argued, rather persuasively, that most of the concepts

encountered in various domains of human knowledge are, in reality, much

too complex to admit of simple or precise definition. This is true, for

example, of the concepts of recession and utility in economics;

schizophrenia and arthritis in medicine; stability and adaptivity in

system theory; sparseness and stiffness in numerical analysis; grammati-

cality and meaning in linguistics; performance measurement and correctness

in computer science; truth and causality in philosophy; intelligence and

creativity in psychology; and obscenity and insanity in law.

The approach described in this paper provides a framework for the

definition of such concepts through the use of fuzzy algorithms which

have the structure of a branching questionnaire. The starting point is a

relational representation of the definiendum as a composite question whose

constituent questions are either attributional or classificational in

nature. The constituent questions as well as the answers to them are

allowed to be fuzzy, e.g., the response to: "How large is x?" might
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be not very large, and the response to "Is x large?" might be quite true.

By putting the relational representation into an algebraic form,

one can derive a fuzzy relation which defines the meaning of the

definiendum. This fuzzy relation, then, provides a basis for an inter

polation of the relational representation.

To transform a relational representation into an efficient branching

questionnaire, the tableau of the relation is subjected to a process of

compactification which identifies the conditionally redundant questions.

From a maximally compact representation, various efficient realizations

which have the structure of a branching questionnaire, with each

realization corresponding to a prescribed order of asking the constituent

questions, can readily be determined. Then, given the cost of constituent

questions as well as the conditional probabilities of answers to them,

one can compute the average cost of deducing the answer to the composite

question. In this way, a relational representation of a concept leads

to an efficient branching questionnaire which may serve as its operational

definition.
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*

L. A. Zadeh

1. Introduction

The high standards of precision which prevail in mathematics, physics,

chemistry, engineering and other "hard" sciences stand in sharp contrast

to the imprecision which pervades much of sociology, psychology, political

science, history, philosophy, linguistics, anthropology, literature, art

and related fields. This marked difference in the standards of precision

is due, of course, to the fact that the "hard" sciences are concerned in

the main with the relatively simple mechanistic systems whose behavior can

be described in quantitative terms, whereas the "soft" sciences deal

primarily with the much more complex non-mechanistic systems in which

human judgment, perception and emotions play the dominant role.

Although the conventional mathematical techniques have been and will

continue to be applied to the analysis of humanistic systems, it is clear

*

Computer Science Division, Department of Electrical Engineering and
Computer Sciences and the Electronics Research Laboratory, University of
California, Berkeley, California 94720. This work was supported in part
by the Naval Electronics Systems Command under Contract N00039-71-C-0255,
the Army Research Office, Durham, N.C., under Grant DA-ARO-D-31-124-71-
G174, and the National Science Foundation under Grant GK-10656X3. Some
of the results described in this paper were obtained while the author was
a visiting member of the International Institute for Applied Systems
Analysis in Vienna, Austria.

By a humanistic system we mean a non-mechanistic system in which human,
behavior plays a major role. Examples of humanistic systems are political
systems, economic systems, social systems, religious systems, etc. A
single individual and his thought processes may also be viewed as a
humanistic system.
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that the great complexity of such systems calls for approaches that are

significantly different in spirit as well as in substance from the

traditional methods - methods which are highly effective when applied to

mechanistic systems, but are far too precise in relation to systems In

which human behavior plays an important role.

In the linguistic approach [1 ],[2]- which represents one such

departure from conventional methods - words or sentences are used in place

of numbers to describe phenomena which are too complex or too ill-defined

to be susceptible of characterization in quantitative terms. For example,

if the probability of an event is not known with precision, then it may

be characterized linguistically as, say, quite likely, not very unlikely,

highly unlikely, etc., where quite likely, not very unlikely and highly

unlikely are interpreted as labels of fuzzy subsets of the unit interval.2

Such subsets may be likened to ball-parks without sharply defined

boundaries which serve to provide an approximate rather than exact char

acterization of the value of a variable.

The use of the linguistic approach in the case of humanistic systems

is dictated by the fact that as the complexity of a system increases, our

ability to make precise and yet significant statements abouts its behavior

diminishes until a threshold is reached beyond which complexity, precision

and significance can no longer coexist. The essence of the linguistic

approach, then, is that it sacrifices precision to gain significance,

thereby making it possible to analyze in an approximate manner those

2
As a fuzzy subset of the unit interval, quite likely would be characterized
by its compatibility or, equivalently, membership function yquite likely1

[0,1] -»• [0,1]. Thus, Uqtilte likely (°«8) = °«9 means that if the proba
bility of an event is 0.8, then the degree to which 0.8 is compatible
with quite likely is 0.9. Additional details may be found in the Appendix.
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humanistic as well as mechanistic systems which are too complex for the

application of classical techniques.

A key feature of the linguistic approach has to do with its use of

the notion of a primary fuzzy set as a substitute for the basic notion of

3
a unit of measurement. More specifically, much of the power of mathe

matical techniques for dealing with mechanistic systems derives from the

existence of a set of units for such basic parameters as length, area,

weight, force, current, heat, etc. In general, such units do not exist

in the case of humanistic systems, and it is this fact that contributes

significantly to the difficulty of analyzing humanistic systems through

the use of techniques which depend so essentially on the existence of

units of measurement.

In the linguistic approach, a role comparable to that of a unit of

measurement is played by one or more primary fuzzy sets from which other

sets can be generated through the use of linguistic modifiers such as

very, quite, more or less, extremely, essentially, completely, etc. To

4
illustrate, consider a property, say beautiful, for which we have neither

a unit nor a numerical scale. The meaning of this property may be defined

via exemplification by associating with each member, u, of a subset of

objects in a given universe of discourse, U, the grade of membership of

u in the fuzzy subset labeled beautiful. For example, the grade of

membership of Fay in the class of beautiful women might be 0.9, that of

Jillian 0.85, of Helen 0.8, etc. This set of women, then, would constitute

3
A thorough discussion of the concept of a unit of measurement may be
found in [ 3].

4
At this point we do not differentiate between a property (intension) and
the set which it defines (extension). (See [ 4]-[19] for a discussion of
this and other issues relating to concepts, meaning and denotation.)
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a primary fuzzy set which serves as a reference for defining the meaning

of very beautiful, quite beautiful, more or less beautiful, extremely

beautiful, etc. as fuzzy subsets of U. Thus, in terms of these subsets,

an assertion of the form "Nora is very beautiful," may be interpreted as

the assignment of a linguistic rather than a numerical value to the

beauty of Nora. In this way, the linguistic values beautiful, very

beautiful, quite beautiful, etc. which are generated from the primary

fuzzy set beautiful, play a role which is roughly similar to that of the

multiples of a unit of measurement, when such a unit exists.

Our main purpose in the present paper is to apply the linguistic

approach to the definition of concepts which are too complex or too

imprecise to be susceptible of exact definition. In general, such concepts

are fuzzy in the sense that they correspond to classes of objects or

constructs which do not have sharply defined boundaries. For example, the

concepts of oval, in love, young and masculine are fuzzy whereas those of

straight line, married, brother and male are not. Note that oval is a

more complex concept than straight line, in love is more complex than

married, friend is more complex than brother, and masculine is more

complex than male. Indeed, most complex concepts tend to be fuzzy, and

it is in this sense that fuzziness may be regarded as a concomitant of

complexity.

Note 1.1 In most cases, the question of whether a concept is fuzzy or

not may be resolved by examining the applicability of a simple modifier

such as very to the concept in question. Thus, for example, very is

The computation of the meaning of a term of the form m u, where m is a
modifier and u is a primary term (i.e., a label for a primary fuzzy set),
is discussed in [20]-[22] and, more briefly, in the Appendix.
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applicable to masculine but not to male. Similarly, very ill, where

ill is a fuzzy concept, is acceptable whereas very dead is not. Also,

very much greater is acceptable (much greater is fuzzy), while very

greater (greater is nonfuzzy) is not.

How can a fuzzy concept be defined? The conventional approaches

are: (1) Giving a dictionary type of definition; (2) Writing an essay;

and (3) Approximating to a fuzzy concept by a nonfuzzy concept and giving

a precise definition for the latter. To illustrate, a typical dictionary

definition of a fuzzy concept such as democracy might read, "A form of

government in which the supreme power is vested in the people and

exercised by them or by their elected agents under a free electoral

system," while a more detailed definition might occupy a chapter in a

text on political science. A typical example of (3) is the definition

of a recession [23] as a condition which obtains when the gross national

product declines in two successive quarters. In this case, what is in

reality a fuzzy concept is defined as one which is both nonfuzzy and simple

to understand. The price, of course, is a definition that is oversimpli

fied to a point of uselessness.

An alternative and more systematic approach which is described in

the sequel is based on the notion of a fuzzy algorithm [25]-[27], that is,

an algorithm (or a program or a decision table) in which some of the steps

involve the execution of fuzzy instructions, which in turn may require the

verification of fuzzy conditions. More specifically, in the fuzzy-algo

rithmic approach the definition of a fuzzy concept F is expressed as a

fuzzy recognition algorithm which acts on a given object u and upon

A recognition algorithm is essentially an algorithmic representation of
the membership function of a fuzzy set.
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execution yields the degree to which u is compatible with F or, equiv

alently, the grade of membership of u in the fuzzy set labeled F.

As an illustration, suppose that the concept of an economic reces

sion is defined by a fuzzy algorithm labeled RECESSION. Then, acting on

relevant economic data, RECESSION would yield the degree - expressed

numerically, e.g., 0.8, or linguistically, e.g., very true — to which the

data in question are compatible with the concept of recession as defined

by the algorithm. Similary, a fuzzy-algorithmic definition of a disease,

say arthritis, would yield the degree to which a given patient belongs

to the class of arthritics. Similarly, a fuzzy-algorithmic definition

of the concept of sparseness would yield the degree to which a given

matrix is sparse. And so on.

As will be seen in the following sections, a fuzzy-algorithmic

definition has the form of a branching questionnaire, Q, in which both

the questions and the answers are allowed to be fuzzy in nature. For

example, to a question such as "Is Valentina tall?" (which will be

abbreviated as tall?) the answer might be "quite tall," which may be

viewed as being equivalent to the assignment of the linguistic value quite

high to the grade of membership of Valentina in the class of tall people.

A question, Q , in Q may be either classificational or attributional.

In the case of classificational questions, Q. is concerned with the grade

of membership of the subject in a fuzzy set F , or, equivalently, with the
"7

truth-value of the predicate which corresponds to F±. For example, Q±

The term predicate (or, more generally, fuzzy predicate) as used here is
essentially synonymous with the membership (or compatibility) function.
To simplify the notation, the label of a predicate and the label of the
set which it defines will be used interchangeably.
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may be "Is Rahim honest?" An answer such as very high would mean

that the grade of membership of the subject in the class of honest people

is very high. Equivalently, an answer of the form very true would be

interpreted as the assignment of the truth-value very true to the

o

predicate labeled honest evaluated at x 4 Rahim.

In the case of attributional questions, Q. relates to the value of

an attribute of the subject. For example, an instance of Q. may be "How

old is Norman?" with the answer being either numerical, e.g., 24 or

linguistic, e.g., quite young. Thus, in this case the answer may be

viewed as the assignment of either a numerical or a linguistic value to

an attribute of the subject.

The totality of the questions in Q constitues a basis for Q, or,

more specifically, the fuzzy concept defined by Q. If all of the questions

in Q are classificational in nature, then the basis for Q defines a

collection of fuzzy sets each of which corresponds to a question in Q.

In this case, the questionnaire may be viewed as a way of defining the

fuzzy set corresponding to Q in terms of the fuzzy sets corresponding to

the questions in Q. As a simple illustration, if the predicate big is

defined as the conjunction of the predicates long, wide, and tall, i.e.,

big = long and wide and tall (1.2)

then Q-, Q« and Q- may be expressed (in abbreviated form) as

Q± A long? (1.3)

Q2 A wide? (1.4)

Q3 A tall? (1.5)

g

The symbol A stands for denotes or ±s defined to be or is equal by
definition.
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and (1.2) is equivalent to

big = long H wide O tall (1.6)

where big, long, wide and tall are interpreted as the fuzzy sets corre

sponding to Q, Q , Q. and Q , respectively, and the intersection is

defined in the fuzzy-set-theoretic sense. Thus, (1.6) expresses the

fuzzy set big as a function of the fuzzy sets long, wide and tall, which

implies that from the knowledge of the answers to Q , Q and Q_ one can

determine the grade of membership of the object under test in the fuzzy

set big. For example, if the answers to specific instances of Q., Q«

and Q~ are true, very true and very true, respectively, then from (1.6)

it follows that the answer to the question big? is true. A more detailed

discussion of this aspect of fuzzy-algorithmic definitions will be

presented in Sec. 3.

By their nature, fuzzy-algorithmic definitions are best suited for

the characterization of concepts which are intrinsically fuzzy, that is,

fuzzy to a degree which makes it unrealistic to approximate to them by

nonfuzzy concepts. For example, in law, insanity and obscenity are

intrinsically fuzzy concepts whereas perjury is not. Similarly, in

system theory the concepts of large-scale, reliable and adaptive are

intrinsically fuzzy, whereas those of observability and controllability

are not. In numerical analysis, the concept of a sparse matrix is

intrinsically fuzzy while that of a bounded error is not. In medicine,

most degenerative diseases are intrinsically fuzzy while the infectious

diseases, for the most part, are not.

In addition to the intrinsically fuzzy concepts, there are many

concepts in various fields which though fuzzy in nature are at present

•8-



defined in nonfuzzy terms, largely because of a lack of alternative

modes of definition. This is true, for example, of the concepts of

recession and equilibrium in economics; complexity and approximation

in mathematics; structured programming and correctness in computer

science; stability and linearity in system theory; arthritis and

hypertension in medicine, etc. It is very likely that, in time, the

use of fuzzy-algorithmic techniques for the characterization of such

concepts will become a fairly common practice.

In what follows, our discussion of fuzzy-algorithmic definitions

will begin with the notion of an atomic question. This notion will

serve as a basis for the definition of a composite question, which in

turn will lead to the concept of a fuzzy-algorithmic branching question

naire. In order to make the discussion self-contained, a brief summary

of the relevant aspects of the linguistic approach is presented in the

Appendix.
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2. Atomic Questions

Our focus of attention in this section is the concept of what

might be called an atomic question, that is, a question which has no

constituents other than itself. By contrast, a composite question - as

its name implies - is composed of a collection of constituent questions.

The manner in which the constituent questions are combined to form a

composite question as well as other issues relating to the concept of a

composite question will be discussed in Sec. 3.

Example 2.1 The question Q A Is Ruth tall? is an atomic question

if no other questions have to be asked in order to answer Q.

The question Q A Is x big? where x is some object, is a composite

question if big is defined as the conjunction of long, wide and high

(as in (1.2)), and the answer to Q is deduced from the answers to the

constituent questions Q A Is x long?, Q2 A Is x wide?, and Q. A Is x high?

A questionnaire is, in effect, a representation of a composite

question, and a branching questionnaire is a representation in which the

order in which the constituent questions are asked is determined by the

answers to the previous questions.

In what follows, we shall examine the concept of an atomic question

in greater detail with a view to providing a basis for a systematic

representation of fuzzy-algorithmic definitions in the form of branching

questionnaires.

Notation and Terminology

Definition 2.2 An atomic question, Q, is characterized by a triple

Q A (X,B,A), where X, the object-set, is a set of objects to which Q

applies; B, the body of Q, is a label of either a class or an attribute;

-10-



and A, the answer-set, is a set of admissible answers to the question.

Where necessary, specific instances of Q, X and A will be denoted

generically by q, x and a, respectively. When X and A are implied,

Q will be written in an abbreviated form as

Q A B ?

and a specific question together with an admissible answer to it will

be expressed as

Q/A A B ? a (2.3)

or equivalently

q/a A B ? a

The pair Q/A will be referred to as a question/answer pair (or simply

Q/A pair). Graphically, an atomic question (with implied x) will be

represented in the form of a fan as shown in Fig. 2.1.

Example 2.4 Consider a specific instance of a question Q, e.g., "Is

Nancy well-dressed?" In this case, with the subject x A Nancy implied,

the specific question may be expressed as

q A well-dressed? (2.5)

where well-dressed is the body of Q. Correspondingly, a specific Q/A

pair might be

q/a A well-dressed? true (2.6)

in which true, as an admissible answer, is an element of the answer-set A.

To avoid a proliferation of symbols, Q and q will be used interchangeably
when no confusion is likely to arise.
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If the other elements of the answer-set are false and borderline, then

A may be expressed as

A = true + borderline + false (2.7)

where + denotes the union rather than the arithmetic sum.

The linguistic truth-values in (2.8) are, in effect, names of fuzzy

subsets of the unit interval. In terms of their respective membership

functions, these subsets may be expressed as (see the Appendix)

true =I u.(v)/v - (2.8)
~ I *

borderline =1 yfe(v)/v (2.9)
0

and

false = I yf(v)/v (2.10)

where y , y, and t- are the membership functions of true, borderline
t b i •

and false, respectively, and an expression such as (2.8) means that the

fuzzy set labeled true is the union of fuzzy singletons y (v)/v in which

the point v in [0,1] has the grade of membership y (v) in true. Typical

forms of y , y, and \ic are shown in Fig. 2.2
t d i

Note 2.11 For the representation of y , y, and yf it is frequently

convenient to employ standardized functions with adjustable parameters,

e.g., the S and II functions which are defined below (see Figs. 2.3a

and 2.3b).

S(v; a,3,Y) =0 for v <_ a (2.12)
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(t^)= 2 I for a < v < 3

-1 -if^i 3 < v < y

= 1 for v >_ y

n(v; 3,y) =S(v; y~3, Y-f, y) for v£y (2.13)

= 1 - s(v; Y, Y + 2» y+^ for v- Y

In S(v; a,3,Y)» the parameter 3, 3 = (a + y)/2 , is the crossover

point, that is, the value of v at which S takes the value 0.5. In

H(v; 3, Y)» 3 is the bandwidth, that is, the distance between the cross

over points of II, while y is the point at which II is unity.

In terms of S and n, y , y, and yf may be expressed as (suppressing

the argument v)

\ = S(a, 3, 1) (2.14)

yb = n(3\ 0.5) (2.15)

yf = 1 - S(0, 3, Y) (2.16)

where the use of the symbol 3f in (2.15) signifies that the bandwidth of

b need not be equal to the value of 3 in (2.14).

Note 2.17 In cases in which the three linguistic truth-values true,

borderline and false do not offer a sufficiently wide choice, it may be

convenient to use, in addition, the truth-values rather true and rather

false, abbreviated as rt and rf, respectively.

As a fuzzy subset of [0,1], rather true may be defined as

rather true A not very true and not (false or borderline)
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and its membership function may be approximated by a II function with y

at, say, the crossover point of very true. Rather false may be defined

similarly in terms of false and borderline.

Classificational and attributional questions

A question, Q, is classificational if its body, B, is the label of

a fuzzy or nonfuzzy set.

A question, Q, is attributional if B is the label of an attribute.

In the case of a classificational question, an answer, a, represents

the grade of membership of x in the fuzzy set B. The answer might be

numerical, e.g., a A 0.8, or linguistic, e. g., a A high. Equivalently,

2
the answer may be expressed as the truth-value of the predicate B(x),

e.g., true, borderline, false, very true, etc.

In the case of an attributional question, Q = B?, an answer, a,

represents the value of the attribute, B, of an object x, e.g., B A age

and x A Haydee. Again, a may be numerical, e.g., a A 35, or linguistic,

e.g., a A young, a A very young, etc.

Comment 2.18 As defined above, a question Q = (X,B,A) may be viewed as

a collection of variables {B(x)}, x € x. From this point of view,

answering a classificational question addressed to an x in'X corresponds

to assigning a value, at x, to the membership function of the fuzzy set

B (or, equivalently, assigning a truth-value to the fuzzy predicate

B(x)). Similarly, answering an attributional question may be interpreted

as the assignment of a value to the attribute B(x). In either case,

2Depending on the circumstances, the arguments of a predicate may be
displayed, as in B(x), or suppressed, as in B.
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answering a question with body B may be represented as an assignment

equation

B(x) = a

in which a numerical or a linguistic value a is assigned to the variable

B(x).

Example 2.19 Suppose that X is the set of objects in a room and Q = red?

is a fuzzy classificational question. Furthermore, suppose that the set

of admissible answers is the interval [0,1], representing the grades of

membership of objects in X in the fuzzy subset red of X. In this case,

an answer such as true 0.8 to the question "Is the vase red?" may be

represented as the assignment equation

red (vase) =0.8

which implies that the truth-value of the predicate red (x) evaluated

at x A vase is 0.8 or, equivalently, that the grade of membership of the

object x 4 vase in the fuzzy set labeled red is 0.8.

Example 2.20 Same as Example 2.19 except that the set of admissible

answers, A, is assumed to be expressed by

2 1/2 2 1/2
A = low + low + low + medium + medium + medium +

high + high2 + high1/2 (2.21)

where high and medium and low are primary fuzzy subsets of the unit

interval which are defined in terms of the S and n functions by (2.14),

2 1/2
(2.15) and (2.16), and w and w are abbreviations for very w and more

or less w, respectively. Thus, if w is a subset of a universe of

discourse U, then
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w2 = j(yw(u))2/u (2.22)

and

*1/2 - fOi»)1/2/u, (2.23)j W
2 1/2which means that the membership functions of w and w are equal

respectively, to the square and square root of the membership function

of w.

Example 2.24 Same as Example 2.19, but with the question assumed to be

worded as, "Is it true that x is red?" and the set of admissible

answers expressed by

2 1/2 2 1/2
A = true + true + true + false + false + false +

2 1/2
borderline + borderline + borderline (2.25)

where true, false and borderline are defined in the same way as high,

low and medium and may be used in the same manner. Thus, for example,

if the answer to the question "Is it true that the vase is red?"

2
is true (A very true), then the grade of membership of the vase in the

class of red objects is given by the assignment equation.

2
y , (vase) = true (2.26)
red

where the right-hand member of (2.26) represents a linguistic truth-

value whose meaning is defined by (2.22), and the left-hand member is

the membership function of the fuzzy set red evaluated at x A vase.

Example 2.27 As an illustration of an attributional question, suppose

that X is the set of employees in a company and Q A age? is an attribu

tional question (e.g., "What is the age of Elizabeth?"). If the set
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of admissible answers is the set of integers

A = 20 +"21 + ... + 60 (2.27)

then the answer to the question "What is the age of Elizabeth?" might

be

age (Elizabeth) « 32

On the other hand, if the admissible answers are linguistic in nature,

e.g.,

A = young + not young + very young + not very young +

old + very old + ... (2.28)

then an answer might have the form

age (Elizabeth) = very young

with the understanding that very young is a linguistic value which is

assigned to the linguistic variable age (Elizabeth). It should be noted

that in (2.28) young and old play the role of primary fuzzy sets which

have a specified meaning, e.g.,

Vung ' 1' S(20,30,40) (2.29)

yold = s(50»60»7°) (2.30)

where the S and n functions are defined by (2.12) and (2.13), and

u u and y .,denote the membership, functions of young and old,

respectively. The meaning of the other terms in (2.28) may be computed

from the definitions of the modifiers not and very. Thus,

y = 1 - y (2 31V
not young young v ,J '

o

y = (y ) (2.32)very young young v '
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2
y = 1 - (y j (2 3Ti
not very young young' v ;

and so on. Note that A may be viewed, in effect, as a minilanguage with

its own syntax and semantics.

Nested questions

Consider an attributional question of the form "How old is Francoise?"

to which a linguistic answer might be, "Francoise is young," with young

defined by (2.29).

At this point, one could ask a classificational question concerning

the answer "Francoise is young," namely, "Is it true that (Francoise is

young)?" to which a linguistic answer might be very true. Continuing

this process, one could ask the question "Is it true that ((Francoise

is young) is very true)?" to which a linguistic answer might be more or

less true. On further repetition, we are led to a nested question which,

in general terms, may be expressed as

Is it true that (..(((x is w) is T-) is t0) ... is t ) ? (2.34)
1 £. n

in which w is an attribute-value and T-, t-, ..., t are numerical or

linguistic truth-values.

How should the meaning of an answer of the form

a A (...(((x is w) is O is t ) ... is t ) (2.35)

be interpreted? A clue is furnished by the following example. Suppose

that the answer to the question "Is it true that (Francoise is young)?"

is a numerical truth-value, say 0.5. As stated earlier, this implies

that the grade of membership of Francoise in the class of young women

is 0.5, which in turn implies (by (2.29)) that Francoise is 30 years old.

Thus, we have
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(Francoise is young) is 0.5 true =* Francoise is 30

years old. (2.36)

More generally, let u be a base variable for an attribute B and let

y denote the membership function which defines the answer a A young
young r = * tt

as a fuzzy subset of the universe of discourse, U, which is associated

with the attribute B (e.g., if B A age, then u is a number in the

interval [0,100] and U = [0,100] is the universe of discourse associated

with age). Now suppose that v is a numerical truth-value of the answer

Francoise is young. Then, the age of Francoise is given by

B(Francoise) = u" (v) (2.37)

-1 3
where yD is the function inverse to the function y_. Thus, in the

particular case where v = 0.5, (2.29) gives

B(Francoise) = y"1(0.5) (2.38)
15

= 30

At this juncture, we can employ the extension principle (see the

Appendix) to compute the meaning of the answer a A (Francoise is young)

is t, where t is a linguistic truth-value which is characterized by a

membership function y . (E.g., if t is true, then y is given by

(2.14).) Thus, substituting t in (2.37), we obtain

B(Francoise) = y"1(x) (2.39)
D

-1

= H ° T

3 -1
If the mapping yB: U -*• [0,1] is not 1-1, then yg is the relation

-rather than the function - that is inverse to yg. In any case, the
graph of ygl is the same as that of yB, but with the abscissae of u ~1
being the ordinates of yg and vice-versa.
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which should be interpreted as the composition of the binary relation

y and the unary relation t. In more general terms, this result may be

stated as the following proposition.

Proposition 2.40 An answer of the form

a A (x is wj is t (2.41)

where x is an object in X, w- is a fuzzy subset of U, and t is a truth-

value (numerical or linguistic), implies the answer

a A x is w„ (2.42)

where w. is related to w- and x by

w2 =y^1 ox (2.43)

In (2.43), y is the relation inverse to y , where y is the member-
wi wi wi

ship function of w , and the right-hand member of (2.43) represents the

composition of y with the unary relation (fuzzy set) t. (See Appendix.)
Wl

Repeated application of Proposition 2.40 to an answer of the form

(2.35) leads to the general result

*

ai(...(((x isw.) is t.) is t.) ... is t ** a A x is w ,. (2.44)
'!' r r •*" ~ n =" n+1

where

w ., =y"1 ot (2.45)
n+1 w n

n

-1
w = y o x ,
n w - n-1

n-1

^Fhe composition of a binary relation R in U^x^ with a unary relation S in
U2 is a unary relation RoS in Ux whose membership function is given by
yRoS(u^) = vu Ur(u;l> U2)/Nys(u2), where v A max and a A min.
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w2 = \ ° Tl

and y ,i=l,...,nis the membership function of w, .
wl

As a simple illustration of (2.43), a graphical representation of

the composition y o x., is shown in Fig. 2.4. Here y is the
r w. 1* & young

membership function of w. = young , with the base variable being the

numerical age u. x- is assumed to be very true, whose membership function

is plotted as shown, with v playing the role of abscissa. The point, a,

on y _ which has the abscissa v has the ordinate y (v),
very true very true

and, correspondingly, the point, 3, on y which has the abscissa

-1
v has the ordinate VvmiT10> (v). Now, from a and $ we can construct a

point y on y with abscissa y~ (v) and ordinate y (v).
r youngs young.. very true

In this way, by varying v from 0 to 1, we can generate the plot of

y , which is the membership function of w« as defined by (2.43).

An important conclusion which is implicit in (2.44) is that any nested

assertion of the form

((x is w.) is T..) ... is t ) (2.46)
11 n

may be replaced by an equivalent assertion of the form

•x is w .. (2.47)
n+i

which does not contain any truth-values. Thus, the use of truth-values

in (2.46) serves indirectly the same function as a linguistic modifier m

which transforms w into mw .

The relation between classificational and attributional questions

In the case of a nonfuzzy classificational question, the answer-

set, A, has only two elements which are usually designated as {YES, NO},
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{TRUE, FALSE} or {0,1}. By contrast, the answer-set of an attributional

question is usually a continuum U or a countable set of linguistic values

defined over U. Thus, in general, an answer to an attributional question

conveys considerably more information than an answer to a nonfuzzy

classificational question.

In the case of fuzzy classificational questions, however, the

answer-set may be the unit interval [0,1] or a countable set of linguistic

values defined over [0,1]. In such cases, the distinction between

classificational and attributional questions is much less pronounced and,

in fact, there may be. equivalence between them.

To be more specific, let us assume for concreteness that U is the

real line and F is a fuzzy subset of U. F will be said to be amodal if

its membership function y_ is strictly monotone, which implies that the
, F

5
mapping y : u -*• [0,1] is one-one. If F is not amodal but is convex or

r

concave, then F will be said to be modal. Typically, the membership

function of an amodal fuzzy set has the form shown in Fig. 2.5, whereas

that of a modal set has the appearance of a peak, or a valley (Fig. 2.6).

Let Q i F? be a classificational question which has the same body

as an attributional question Q A F? For example, a specific question
a

q may be worded as "Is Jeanne young?" while the wording of q might be

"How young is Jeanne?" Clearly, if young is an amodal fuzzy set, then

from an answer to q such as "Jeanne is 0.9 young" we can deduce the age

of Jeanne and, conversely, from the age of Jeanne, say age A 32, we can

A fuzzy set F in U is convex if y„ satisfies the inequality
yF(X u;l + (1-X)u2) >_ min(yF(u1), yp-^)) for all u^, U2 -in U and all
X in [0,1]. A fuzzy set F is concave if its complement is convex.
Additional details may be found in [28].
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deduce her grade of membership in the fuzzy set young. Thus, when F is

an amodal fuzzy set or, more generally, a fuzzy set whose membership

function is a one-one mapping, the answer to a classificational question

conveys the same information as the answer to an attributional question.

Now suppose that F is a modal fuzzy set, e.g., F A middle-aged,

whose membership function has the form shown in Fig. 2.7. In this case,

from the specification of the grade of membership in middle-aged, one

cannot deduce the value of the attribute age uniquely. Thus, if F is

modal, an answer to the classificational question "Is x F?" e.g., "Is

Frieda middle-aged?" is less informative that an answer to the attribu

tional question "What is the age of Frieda?"

It should be noted that Comment 2.18 implies that a classificational

question Q A B? may always be regarded as an attributional question whose

body is the label of the membership function of B. Thus, what the above

discussion indicates is that although it is not true in general that an

attributional question is equivalent to a classificational question with

the same body, this is the case when B is a modal fuzzy set.
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3. Composite Questions and Their Representations

The concept of an atomic question which we discussed in the preceding

section provides a basis for the definition of the more general concept

of a composite question. This concept and its representations will be

the focus of our attention in the sequel.

Stated informally, an n-adic composite question Q, with body B, is

a question composed of n constituent questions Q.,...,Q with bodies

B., ,B , respectively, such that the answer to Q is dependent upon the

answers to Q-,...,Q . Thus, a monadic question has a single constituent,

a dyadic question has two constituents, a triadic question has three

constituents, etc. A constituent question may be atomic or composite.

An n-adic composite question or, simply, an n-adic question, Q, is

characterized by its relational representation, B(B-,...,B )(or simply

B, when no confusion with the body, B, of Q can arise), whose tableau

has the form shown in Table 3.1. In this tableau, r^ and r± range over

the admissible answers to Q. and Q, respectively, with A. and A representing

the answer-sets associated with Q. and Q, and e? and a denoting their

generic elements. Thus, if Q is an n-adic question, then B is a nonfuzzy

(n+l)-ary relation from the cartesian product A* ... *A to A. In

particular, if Q is a monadic question, then B is a binary relation, and

if Q is atomic then B is a unary relation

\ % Qj % Q

1 2 j n
r r„ r^ r„ r,

1 1 1 1 1

1 2 j n

r2 r2 r2 r2 r2

1 2 j n
r. r. r. r. r.

l i i l i

1 2 j n
r r rJ r r

m m m m m

Table 3.1. Relational representation of Q. (Depending on the
circumstances, the columns of B may be labeled
Q1,...,Qn, Q, or Bx,...,Bb, B.)
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Generally, we shall assume that the entries in B are linguistic in

nature, i.e., are linguistic attribute-values and/or linguistic truth-

values and/or linguistic grades of membership. Thus, if U. is a universe

of discourse associated with A., then an answer a?. £ A. will, in general,
J i J

be a label of a fuzzy subset of U.. The generic elements of U. and U

will be denoted by u. and u, respectively, and will be referred to as the

base variables for A. and A. When it is necessary to differentiate

between attributional and classificational questions, the universes of

discourse for the latter will be denoted by V instead of U.

Example 3.1 Consider a composite classificational question Q A big?

which is composed of two classificational atomic questions Q. A wide?

and Q« A long?, and one attributional atomic question Q„ A height? The

answer-sets associated with Q,,Q„,Q~ and Q are assumed to be given by

(f, b, t, £, m, h are abbreviations for false, borderline, true, low,

medium and high, respectively)

A1 = A2 = A=f + b + t (3.2)

A = SL + m + h (3.3)

where f, b and t are fuzzy subsets of the unit interval defined by (2.8),

(2.9) and (2.10), and £, m and h are fuzzy subsets of the real line

defined by expressions of the form (2.16), (2.15) and (2.14) with

parameters a, 6, and y.

The relational tableau for B(B.,...,B ) is assumed to be given by
l n

(in partially tabulated form) by Table 3.2.
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wide? long? height? Ma?

t t h t

t t ro t

t t 4 b

t t I f

t b h 1?

t f h 1?

t f h f

b f l b

f

• • •

f

Table 3.2. Relatipnal representation pf big (wide, long, height)

There are two important observations to be made concerning

B(B1,.,.,Bn). First, in general ^(B,,...,B ) is a relation rather

than a function. In Table 3.?, this manifests ^self by the fact that

the entries in the column labeled big? are not uniquely determined by the

entries in the columns wide?, long? and height?. For example, corre-

12 3
sponding to a = t, a « t and a •«= A, we have both a - b and] a «* f,

This implies that if the answer to wide? is. true, to long? is true and to

height? is low, then the answer to big? could be either borderline or

false.

Second, the tableau may not; be complete, that is, certain combinations

of the admissible answers to constituent questions may be missing from

1 2 3the table. For example,, a = f, a p b and a • f b n*ay not be in the

table. This may imply that (i) the particular combination of answers

cannot occur, or (ii) the answer to Q corresponding to the missing

entries is not known - which is equivalent to assuming that the answer is
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the union of all admissible answers, i.e., is the answer-set A.

Case (i) implies that there is some interdependence between the

constituent questions in the sense that the knowledge of answers to

some of the constituent questions restricts the possible answers to

others. If the Q. are viewed as variables as in (2.18), then (i) implies

that the Q are X-interactive in the sense defined in [ 1 ]. Unless stated

to the contrary, we shall assume that the missing rows imply (i) rather

than (ii). A more detailed discussion of this issue will be presented

in Sec. 4.

Alternative representations of B: Algebraic representation

The relational representation, B, of a composite question Q may in

turn be represented in a variety of ways of which the most useful ones

are: (a) The tabular representation, which we have described already;

(b) the algebraic representation, which we shall discuss presently; the

analytic representation, which we shall discuss following (b); and the

branching questionnaire representation, which will be discussed in Sec. 4.

In the algebraic representation, the i*- row, i = 1,2,...,m of the

tableau of B is expressed as a Q/A sequence of the form

Ql riQ2 ri ••• ^nrl^ Qri <3-4>
or, more simply as a Q/A string

riri---ri^ri <3-5>
where it is understood that r|, j=1, .,,, n is an admissible answer to'

the constituent question Q., and r is an admissible answer to the

composite question Q. B as a whole, then, may be expressed algebraically

as the summation (i.e., the union) of the Q/A strings corresponding to
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the rows of the tableau of B. Thus, we may write

B=r}r? ... r" /r. +rlr? ... rVr, +... +rV ... r° /r (3.6)
11 l 1 z z L l mm mm

or, more compactly,

B= 7] rjr? ... rn //r. (3.7)
^7* i i 1 1

Example 3.8 In the algebraic form, the tableau of the relational

representation defined by Table 3.2 may be expressed as

B = tth it + ttm IIXL + ttfc lib (3.9)

+ tt£. IIf + tbh Hb + tfh Ob

+ tfh IIf + bffc Hb +...+ ffil //f

As in the case of regular expressions, an important advantage of

representations of the form (3.9) is that the operations of union (+) and

string concatenation may be treated in much the same manner as addition

and multiplication. Thus, the terms in (3.9) may be combined or expanded

in accordance with the replacement rules which are illustrated below by

examples.

ttf/f + tff/t = t(tf Ht + ff Ht) (3.10)

ttf Ht + ftf Ht = (t + f)tf Ht (3.11)

tfb Ht + ttb Ht = t(f + t)b Ht (3.12)

tfb lit + tfb Ub =tfb//(t + b) (3.13)

(t + f)(f + b)t Ht = tft Ht + fft lit + tbt lit + fbt H (3.14)

For example, using the above identities in (3.9), we can write B in a

partially factored form as

B = tt(h + m) Ht + tt£ ^(b + f) + t(b + f)h /b + (3.15)
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+ (tfh + ffJl) Hi + ... + bt% Hb

It should be noted that the replacement of the left-hand member by

the right-hand member involves a factorization in (3.10), (3.11), (3.12)

and (3.13), and an expansion in (3.14). In general, factorization has

the effect of raising the level of an expression (in the sense of

decreasing the number of operations that have to be performed for its

evaluation), while an expansion has the opposite effect. For example,

the evaluation of the arithmetic expression xy + xz requires three

operations, while that of the factored form x(y+z) requires only two. In

this case, the representation of B in the normal form (3.9) has the

lowest possible level among all algebraic representations involving the

admissible answers to the Q. and Q.
3

The meaning of B

The question of what constitutes the meaning of B may be viewed as

2
a special case of the following problem in semantics. Suppose that we

are given a string of terms (words) W W2...W with the meaning of each

term defined as a subset of a universe of discourse U. What is the

meaning of the composite term W^^.W - that is, what is the subset of

U whose label is W,Wrt...W ?
12 n

As a special instance of this problem consider two finite nonfuzzy

sets G and H whose elements are S1»---»gm and h-,..., h ,respectively.

This usage of the term normal form is consistent with that of E.F. Codd in
his work on relational models of data [29]. A related concept is that
of a characteristic set in the Vienna definition language [30]-[31].

2
A more detailed discussion of this problem may be found in [22] and [32].
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When we write

G = g +...+ g (3.16)

H = h, +...+ h (3.17)
1 n

3
the right-hand side of the equation defines the meaning of the label

on the left-hand side. Now, if we write the cartesian product G*H as a

string GH, then the meaning of GxH may be obtained very simply by

expanding the algebraic product of G and H. Thus,

G x H = GH (3.18)

= (gx +...+ gm)(h1+...+ hn)

= g h +...+ g h
1 1 m n

where g.h. should be interpreted as the ordered pair (g^h ).
i j J

Now suppose that G and H are finite fuzzy sets defined by

G = y,/g., +...+ y /g (3.19)
1 1 m m

H - \>Jh, +...+ v /h (3.20)
linn

where y./g. means that the grade of membership of gi in G is y^, and

likewise for H. Then, for the cartesian product of G and H we obtain

GxH= (\i1lg1 +...+ Vgm)(vl/hl +*"+ W (3'21)

=(y^h^/g^ +...+ (vmAvn)/gmhn

where

yAv. Amin(y±,v ) (3.22)

3The term meaning is used here in the sense of denotational semantics
[4]-[9].
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More generally, let G-9..,fG be fuzzy subsets of U,,...,U defined
in in

by

""j
G, =E p{/u^ (3.23)
J i=l

Then

G- x...x G = G-...G (3.24)
1 n 1 n

= 2 (y. A...A yn )/u ... un
.1, I i- l
i 1 n 1 n

which implies that the right-hand member of (3.24) constitutes the meaning

of the string G....G (or, equivalently, G- x...x G ).

Returning to the question of what constitutes the meaning of B, let

us focus our attention on the algebraic representation of B as expressed

by (3.6). If the r^ and r. in (3.6) are assumed to be fuzzy subsets of

U.,...,U , U, then each term in (3.6) is a cartesian product of fuzzy sets
l n

in the sense of (3.24), and B as a whole is the union of such cartesian

products. Thus, upon the expansion of each term in accordance with (3.24)

and summing the results, we obtain the expression for a fuzzy (n+l)-ary

relation from U„ x...x u to U which may be viewed as the denotational
In J

A
meaning of B. This fuzzy relation will be denoted by B and will be

referred to as the $-representation of B, with $ - standing for base

variable - serving to signify that B is a fuzzy relation from U-x...xu

to U whereas B is a nonfuzzy relation from A-x...xA to A.

In summary, the main points of the foregoing discussion may be stated

In performing the expansion and summation of terms in B, we are tacitly
assuming that, the constituent questions Qi,...,Qn are B-noninteractive
[1 ] in the sense that the base variables u^,...,un are jointly unconstrained
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as follows.

Proposition 3.25 Let B be an (n+l)-ary nonfuzzy relation from A.^ x...x Ar

to A which constitutes a relational representation of a composite question

Q. If the answers to Q and the constituent questions in Q are fuzzy sub

sets of their respective universes of discourse U, U.,...,U , then B

induces an (n+l)-ary fuzzy relation B. which may be derived from B by
p

the process of expansion. The fuzzy relation B constitutes the denotational
5

meaning of B in the universe of discourse U- x...x Un x u.

Example 3.26 As a very simple illustration of (3.25), consider a B whose

algebraic representation reads

B = tt IIf2 + ff Ht (3.27)

2
where t(A true), f(A false) and f (A very false) are fuzzy subsets of the

universe of discourse

V = 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1 (3.28)

and are defined by

t = 0.6/0.8 + 1/1 (3.29)

f = 1/0 + 0.6/0.2 (3.30)

and

f2 = 1/0 + 0.36/0.2 (3.31)

On substituting (3.29)-(3.31) into tt Hf and expanding, we have

In cases in which the body, B±, of a classification question, Q±, is a
fuzzy subset of a universe of discourse which does not possess a numerically-
valued base variable (e.g., Q± A beautiful), it may be necessary to define
B± by exemplification [22],[65]. In general, exemplificational (or ostensive)
definitions are human - rather than machine-oriented.

-32-



tt Hi2 = (0.6/0.8 + l/l)(0.6/0.8 +1/1) //(I/O + 0.36/0.2) (3.32)

= 0.6/(0.8,0.8,0) + 0.6/(0.8,1,0)

+ 0.6/(1,0.8,0) + 1/(1,1,0)

+ 0.36/(0.8,0.8,0.2) + 0.36/(0.8,1,0.2)

+ 0.36/(1,0.8,0.2) + 0.36/(1,1,0.2)

Performing the same operation on the other term in (3.27) and summing

the results, we obtain the desired expression for B.
p

B^ = 0.36/((0.8,0.8,0.2) + (0.8,1,0.2) + (1,0.8,0.2) + (1,1,0.2)) (3.33)

+ 0.6/((0,0,0.8) + (0,0.2,0.8) + (0.2,0,0.8) + (0.2,0.2,0.8)

+ (0,0.2,1) + (0.2,0.2,1)) + 1/((0,0,1) + (1,1,0))

as a ternary fuzzy relation in [0,l]x[0,l]x[0,l].

Interpolation of B

Knowledge of B is of importance in that it provides a basis for an
p

interpolation of B, that is, an approximate way of deducing answers

to Q corresponding to entries in B which are not elements of the answer-

In

To illustrate, suppose that Q is a dyadic classificational question

whose constituent classificational questions Q- and Q„ have the answer-sets

A1 = A2 = A=t+b + f

Let B be a relational representation of Q and assume that we wish to

find the answer to Q when the answers to Q_ and Q« are, respectively

a = not very true (3.34)

and

2
a « rather true (3.35)
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1 2Since a and a are not among the entries in the Q- and Q« columns

of the tableau of B, we cannot use B to find the corresponding entry in

the Q column. On the other hand, if we have B as a fuzzy ternary
p

relation in V- x v x v (which is [0,l]x[0,l]x[0,l] in the case under

consideration), then by interpolating B we can obtain an approximation

1
to the answer to Q which corresponds to the answers a = not very true

and a = rather true.

Specifically, the desired approximation is given by the composition

12 12of B with the fuzzy sets a and a , treating a and a as unary fuzzy
p

relations in [0,1]. Thus,

12Answer to Q = BD o a o a (3.36)
p

The significance of (3.36) becomes somewhat clearer if the right-

hand member of (3.36) is interpreted as the projection on V of the inter-

1 2 7
section of B0 with the cylindrical extensions of a and a . Thus, if

p

1 ^ 2
B is visualized as a fuzzy surface in V x v x V, then a and a may
3 •*• *•

be likened to fuzzy points on the coordinate axes V- and V^, and their

cylindrical extensions play the role of fuzzy planes passing through

these, points. The intersection of these planes with the fuzzy surface is

a fuzzy point in V. x v x v which upon projection on V becomes a fuzzy

subset of V expressed by the right-hand member of (3.36). A two-dimensional

version of this process is shown in Fig. 3.3.

6It is understood that the right-hand member of (3.36) should be approximated
to by an admissible answer to Q.

7The cylindrical extensions of a1 and a2 are, respectively, the ternary
fuzzy relations aixVxV and Vxa2xV. The definition of the projection of a
fuzzy relation is given in the Appendix. (Additional details may be found
in [1] and [28].)
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Analytic representation of B(B.,...,B )
1 n

Consider a composite classificational question Q = B? whose

constituents are classificational questions Q- = B ?, Q = B ?,...,

Qn = Bn ? in which the body, B±, of Q±, i = 1,...,n, is a specified fuzzy

subset of the universe of discourse V . Furthermore, assume that the

relation B(B ,...,B ) is a function from A. x...x a to A. This implies that
in In

an answer to Q - which may be interpreted as a specification of the grade

of membership of a given object x in B - is a function of the grades of

membership of x in Q.,...,Q . In this sense, the B, form a basis for Q.
in i

When a collection of fuzzy sets B ,...,B forms a basis for Q, it

may be convenient to express B, the body of Q, as an explicit function

of B-,...,B . Such a function may involve such standard operations as

the union, B^1^; intersection, B H B ; complement, B|; product, BB„;

cartesian product, B-xB-; etc. In addition, it may involve other specified

operations - in particular, the interactive versions of + and H, which
o

will be denoted by <+> and <H> , respectively. The expression for B as

a function of B.,..•,B will be referred to as an analytic representation

of B.

Example 3.37 Suppose that we wish to define the concept of HIPPIE. To

this end, we form the classificational question Q = HIPPIE? and assume

that the basis for HIPPIE is the collection of fuzzy sets B. A LONG HAIR,

B2 A BALD, B3 A DRUGS and B, A EMPLOYED, which will be abbreviated as LH,

B, D and EMP, respectively.

8
In general, the angular brackets are used to identify an interactive

version of an operation, e.g., <and> is an interactive version of and.
A brief discussion of interactive operations is given in the Appendix.
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An analytic representation for B which constitutes the definition
9

of HIPPIE in terms of B , B2> B and B^ might be

HIPPIE = (LH + B) H DRUGS H BMP' (3.38)

or equivalently

HIPPIE = (LH or B) and DRUGS and not EMP (3.39)

which implies that the grade of membership of a subject x in the fuzzy

set HIPPIE is related to the grades of membership of x in the fuzzy set

of LONG HAIR subjects, BALD subjects, DRUG TAKING subjects and EMPLOYED

subjects by the expression

yR(x) = (PLH(x) VyR(x)) AyD(x) A (1 -yEMp(x)) (3.40)

where v A max and a a min. A representation of (3.39) in the form of a

flowchart is shown in Fig. 3.4, with the understanding that YES and NO

are answers of the form YES y and NO (1-y), where y is the grade of

membership of x in the fuzzy set which labels the question.

Note 3.41 If (3.40) does not constitute an acceptable approximation to

the expression for yH(x) as a function of yLH(x)» ^b^* yo^ and

y (x), it may be possible to improve on the approximation by employing

interactive versions of and and/or or. For example, we may write

HIPPIE = ((LH or B) <and> DRUGS) and not EMP (3.41)

where <and> is defined by a linguistic relation of the form

9This definition is used only for illustrative purposes and has no
pretense at being a realistic definition of the concept of HIPPIE.
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u V u <and> v

t t t2
t b b

t f f

•
•

•

f f f2

2 2
in which t, b, f, t and f are abbreviations for the linguistic truth-

values true, borderline, false, very true, and very false.

Basically, the interactive versions of and and or serve to extend

the usefulness of these connectives by providing a means of taking into

account the trade-offs that might exist between their operands. However,

it should be noted that, in general, <and> and <or> will not possess such

properties as associativity, distributivity, etc., and hence could not

be manipulated as conveniently as their noninteractive counterparts.

We turn next to the representation of B by means of branching

questionnaires.
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4. Branching Questionnaires

In one form or another, the concept of a branching questionnaire

plays an important role in many fields, especially in taxonomy, pattern

recognition, diagnostics and, more particularly, the identification of

sequential machines [34]-[48]. In what follows, the term branching

questionnaire will be used in a more specific sense to refer to a

representation of a composite question, Q A B?, in which the constituent

questions Q ,...,Q are asked in an order determined by the answers to

the previous questions. A branching questionnaire representation of

Q A B? will be denoted by Q* or, more explicitly, by B*.

A branching questionnaire, Q*, may be conveniently represented in the

form of a tree as shown in Fig. 4.1 (or, alternatively, in the form of a

block diagram, as in Fig. 4.2). The root of this tree is labeled with

the name of the composite question, Q, or with the name of the body of

Q; the leaves are labeled with the admissible answers to Q; and the internal

nodes are labeled with the names of the constituent questions or the names

of their bodies. Thus, each fan of the tree represents a constituent

question, with each branch of the fan corresponding to an admissible answer

2
to that question. If a branch such as a of question Q« terminates on Q^,

2
it means that if the answer to question Q2 is a-, then the next question

2
to be asked is Q,. This implies that if the answer to Q is a_ the

1 z i,

1 3answer to Q. is a^ and the answer to Q3 is a^ then the answer to Q is a.^.

Each path from the root of the tree to a leaf represents a particular

Q/A sequence, e.g.,

1By the fan of a tree we mean a node of the tree together with the branches
connected to it.
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Q2 al Ql al Q3 al^Q al (4'1)

which may be written more simply as

al al al ^al (4'2)

if the names of the answers to the constituent questions are labeled in

a way that makes it possible to associate each answer in the sequence

with a unique constituent question.

It is important to note that the only condition on the structure of

a branching questionnaire is that on any path from the root to a leaf

each constituent question is encountered at most once. A prescription

of the order in which the constituent questions are to be asked (without

regard to the answers to Q) is characterized in the manner shown in

Fig. 4.3.

The summation (union) of all Q/A sequences of the form (4.2)

constitutes an algebraic representation of Q*. For example, for the

branching questionnaire of Fig. 4.1, we have the representation (using

Q* in place of B*)

Q* =a2 a* a^ II a^ +a2 a* a\ Ha2 +a2 a\ Ha2 (4.3)

+a2 a* al IIa2 +a2 a* a^ Ha± +a2 II a^

A Q/A sequence which terminates on an internal node of the tree

defines an access path to that node and thereby uniquely identifies it.

2For example, the Q/A sequence a- identifies the node Q1 in the tree of

Fig. 4.1. Similarly, the leftmost Q« in Fig. 4.1 is identified by the

rt/A 2 1 2
Q/A sequence a. a .

2
It should be noted that such Q/A sequences serve a role similar to that of
composite selectors in the case of a Vienna definition language object [31].
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Each internal node of the tree may be viewed as the root of a sub

tree which corresponds to a subquestionnaire of Q*. Thus, on factoring

2
a in (4.3), we obtain

Q* =a2(a* a^ i&± +a\ a\ Ua% +a\ Ia2 (4.4)

+a* a31'la2 +a13a32Ha1) +a2 II a^

in which the expression within the parentheses may be regarded as an

algebraic representation of a subquestionnaire which has Q_ and Q~ as

its constituents.

Comment 4.5 By analogy with the concept of a derivative in the case of

2 2regular expressions [49]-[51], the coefficients of a. and a2 in (4.4)
2 2

may be defined to be the derivatives of Q* with respect to a. and a«,

respectively. Thus, on denoting these derivatives by D 2 Q* and D « Q*»

the expression for Q* may be rewritten as

al a2

Q* =a^ D2Q* +a^ D2Q* (4.6)
al a2

2 1
More generally, let w denote a Q/A sequence (e.g., w A a- a-), and let

S denote the subtree of Q* which is uniquely determined by w. Then, we
w

may write

D Q* = S (4.7)
w w

o

Now let N,,... ,N be the nodes in a cut of Q* and let Q/A..,. .. ,Q/A
1 r l r

The cut of a tree is a set of nodes with the following properties:
(a) No two nodes in the cut are on the same path from the root to a
leaf; and (b) No other node of the tree can be added to the cut without
violating (a) [40],[52].
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denote the Q/A sequences which lead from the root of Q* to N, ,...,N ,
1 r

respectively. Then in consequence of (4.7), we can assert the identity

r

Q*.- E Q/At D^ Q* (4.8)

of which (4.6) may be viewed as a special case.

Note 4.9 It should be observed that the constituent questions in Q* may

be X-interactive in the sense defined in [1 ], that is, the answers to,

say, Q. ,...,Q. , where (i_,...,i,) is a subsequence of the index sequence
1 Tc ik

(l,2,...,n), may restrict the possible answers to Q. ,...,Q. , where
31 3Z

(ji»-»»»jn) is a subsequence complementary to (i_,...,i,). (E.g., for

n = 5, (i1»i2,i3) = <2>4»5) and (VV = <1'3)-> For example, if

the answer to an attributional question Q. A mother of Julie? is Frances,

then the answer to Q A sister of Julie? cannot be Frances if there is

2just one Frances in the universes U- and U*2. Thus, the answer a = Frances

is conditionally impossible given a = Frances.

In the tree representation of a branching questionnaire, the

conditional impossibility of an answer to a single question is indicated

by associating 9 (empty set) with the leaf of the corresponding branch

(Fig. 4.4). Thus, in the example under consideration, a is conditionally

2
impossible given a-. Note that any conditionally impossible answer must

of necessity be a leaf of the tree since a Q/A sequence is aborted when

a conditionally impossible answer is encountered.

The set of all possible answers to Q,,...,0 constitutes a restriction

on Q.,...,Q . Correspondingly, the conditionally possible answers to

Q. »»«»»Q. given the answers to Q. ,...,Q. constitute a conditioned
31 3l \ \
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4
restriction on Q. ,...,Q. given Q. ,...,Q. . In terms of restrictions,

31 2l H \

the constituent questions Q_,...,Q are X-noninteractive iff the

restriction on Q-,...,0 is the cartesian product of the answer-sets

A.,... ,A . Stated more simply, the noninteraction of Q-,... ,Q means

that the answers to any subset of constituent questions, say Q. ,...,Q. ,
1 k

do not affect the possible answers to the complementary questions

Q. ,...,Q. . In what follows, we shall assume, unless stated to the
31 2Z
contrary, that the constituent questions in Q are X-noninteractive.

Conditional redundance

In comparing the algebraic representations of B and Q*, (3.6) and

(4.3), we observe that every term in B involves the answers to all of

the constituent questions in Q, whereas a term in Q* involves, in general,

a subset of the answers to Q.,...,Q .
l n

More specifically, a term such as a„ 9a.. in Q* implies that if the

2answer to Q« is a , then regardless of the answers to Q. and Q^, the

answer to Q is a.. Thus, in this instance we may say that Q- and Q~ are

2
conditionally redundant given a . Similarly, Q3 is conditionally redundant

2 1
given a- a . By implication, then, a constituent question, Q., is

unconditionally redundant iff the answers to Q are independent of the answers

to Q..
^i

A constituent question Q. will be said to be conditionally redundant

1 *1 ik
given Q. ,...,Q. iff for every set of possible answers a. ,...,a. , Q.

*1 Tc 1 k

h *k
is conditionally redundant given a ,...,a. . As we shall see in

Al Ak

A more detailed discussion of conditioned restrictions may be found in

[ 1].
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Sec. 5, the detection of conditional redundancies plays an important role

in the construction of efficient branching questionnaires.

Comment 4.10 It should be noted that if the answer to Q is uniquely

determined by the answers to Q ,...,Q , then Q is conditionally
1 He 1

redundant given Q. ,...,Q . However, in general, conditional redundance
1 \

of % given Q ,...,Q. is weaker than the dependence of Q. on Q. ,...,Q. .
1 h \ x V \

Tabular representation of a branching questionnaire

As was pointed out already, a term such as a„ H'a. in (4.3) signifies

2
that if the answer to Q„ is a«, then the answer to Q is a., no matter what

the answers to Q_ and Q. might be. Now, "no matter what" or, equivalently,

"don't care" may be interpreted as the answers a A a + a„ + a. to Q_

3 3 3
and a A a. + a„ to Q_. Thus, more generally, a "don't care" answer to

Q. may be interpreted as the answer a AAA answer-set of Q .

For simplicity, it is convenient to represent an answer of the form

a A A.by * or, if necessary, by *.. With this notation, the tableau

of Q* (see (4.3)) assumes the form shown in Table 4.5. (The dotted line(s)

in this tableau serves to identify the groups of rows which have the same

entry in the Q column.)

\ \ % Q

12 3

al al al al

1 * 3a3 * a2 ax

a2 * al

12 3

a3 al al a2

12 3

al al a2 a2

1 2 *
a2 al * a2

Table 4.5. Tableau of Q*
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as

A row such as *a * in this tableau may be presented algebraically

* 2^ / 1 ^ 1 j_ lx 2, 3 , 3N*a2* = (ax + a2 + a3) a2(a1 + a2)

1-23.123.123- ax a2 a± + ax a2 a2 + a2 &2 a±

_112 3_I12 3.12 3+ a2 a2 a2 + ^ *2 a± + ^ a2 a2

(4.11)

On performing similar expansions for all rows in Table 4.5 which

contain stars, we obtain the complete tableau of Q*, as shown in

Table 4.6.

.3

al

3

a2

3

al

3

a.

Table 4.6. Complete tableau of Q*f

5In the terminology of switching theory, the terms on the right-hand side
of (4.11) are covered by *a|*, and *a|* constitutes aprime implicant of
Q*[53],[54],[51].
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The preceding discussion indicates that the tableau of Table 4.5

may be derived from that of Table 4.6 by a factorization of terms in the

algebraic representation of Q*, (4.3), and replacing by *'s those

factors which have the form of the sum of all admissible answers to a

constituent question. A systematic procedure for carrying put such

factorizations will be described in the following section.

Note 4.12 If the constituent questions in Q are X-interactive, then in a

1 3term such as a3* a2, the star would represent the conditioned restriction

on Q2 given a3 sl^. More generally, in a term of the form a ... a

*. ... * , the sequence * ... *. would represent the conditioned
Jl 3i Jl J£

*i Srestriction on Q ,...,Q given the Q/A sequence a. ... a. .
Jl 2a Al \
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5. Construction of Branching Questionnaires

In constructing a fuzzy-algorithmic definition of a concept B, the

first step would normally involve a tabulation of the relational repre

sentation, B(Q ,...,Q), of a composite question, Q = B?, which has B as

its body. The second step, then, would involve the construction of a

branching questionnaire realization of Q which is efficient in the sense

of minimizing a cost function whose components are the costs of answering

the constituent questions in Q. In practice, such a cost function would

usually be prescribed in a highly approximate fashion.

As an illustration of the first step, suppose that we wish to

construct a fuzzy-algorithmic definition of the concept of recession.

Using our intuitive knowledge of the factors which enter into this concept

and the interrelations between them, we construct in an approximate fashion

a linguistic relational representation for RECESSION which might have the

1
form shown in Table 5.1. In this table, the observation interval is

assumed to be a two-quarter period; GNP4- denotes the decline in the gross

national product; UNEMP denotes unemployment; BANKR+ represents the increase

in bankruptcies; and DJ+ denotes the decline in the Dow Jones stock average

in relation to its maximum value over the observation interval.

GNP+

small

moderate

high

hiSh

high

UNEMP

low

low

low

moderate

high

BANKR+

small

small

small

moderate

large

DJ+

small

small

small

large

large

RECESSION

false

not true

borderline

rather true

very true

Table 5.1. Tableau of relational representation of RECESSION

This representation is used merely for illustrative purposes and should
not be taken as a realistic definition of the concept of recession. A
brief but informative discussion of recessions may be found in [23] and [24]
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It should be noted that the composite question Q A RECESSION? is treated

as a classificational question in Table 5.1, although all of the constituent

questions in RECESSION are attributional in nature. Normally, the meaning

of the linguistic values of the attributes would be defined in terms of

their compatibility functions, which can be computed from the knowledge of

the compatibility functions of the primary fuzzy sets. For example, in the

case of unemployment, the compatibility functions of the primary fuzzy sets

labeled low and high might be of the form shown in Fig. 5.2. From these,

one can compute, if needed, the compatibility functions of very low, more

or less high, etc., by the use of (2.22) and (2.23).

There are several basic problems which are ancillary to the trans

formation of a relational representation of the definiendum (i.e., the

concept under, definition) into an efficient branching questionnaire. Of

these, one is that of determining the conditional redundancies and/or

restrictions which may be present in the relational representation.

Another is that of determining the order in which the constituent questions

must be asked in order to minimize the average cost of finding the answer

to Q.

These and related problems have many features in common with the

minimization of switching circuits [53]-[55], optimal encoding [56],

feature selection in pattern recognition [57]-[60], and the optimization

of decision tables [61]-[64]. However, the construction of an efficient

branching questionnaire for the purpose of defining a concept presents

some special problems relating to the fact that the efficiency of a

branching questionnaire is influenced not only by the conditional

redundancies but also by the cost of the constituent questions as well as

by the conditional probabilities of the admissible answers - probabilities
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which are conditioned on the answers to the preceding questions in the

questionnaire.

In what follows, our discussion of the construction of efficient

branching questionnaire will be quite restricted in scope. Thus, we

shall focus our attention mainly on the determination of the conditional

redundancies in a relational representation and an illustration of the

computation of the average cost of finding an answer to Q for a given

branching questionnaire realization of B.

Compactification of Q

By the compactification of Q (or B) we mean the process of putting

the representation of Q (tabular, algebraic or graphical) into a form that

places in evidence the conditional redundancies and/or restrictions in

the relational representation of Q, and thereby achieves a greater degree

of compactness in its mode of representation. Thus, the transition from

the tableau of Table 4.6 to that of Table 4.5 is an instance of com-

pactification of a tabular representation of a composite question.

If the initial representation has the form of a graph or, more

specifically, a tree, than the following rule - which is both general and

simple to apply - may be employed to compactify the representation.

Rule 5.1 (merger rule) Let Q* be a tree representation of a branching

questionnaire, and let S_, S2,...,Sk be subtrees of Q* which are identical

(i.e., have the same structure as well as branch and node labels)

S1 =S2 = ... eS£ =S (5.2)

Then S-,...,S. may be merged into a single subtree S, as shown in Figs,
l *

5.3 and 5.4.
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Comment 5.3 It should be noted that the structure resulting from a

merger is not a tree but an acyclic graph (with the branches oriented

downward) which, for convenience, may be referred to as a semitree.

More generally, then, in the statement of Rule 5.1 the term tree should

be replaced throughout by semitree.

The basis for the merger rule is provided by the following obser

vation. Let Q/A-,...,Q/Ap be the Q/A sequences which terminate on the

roots of S-,...,S and let Q* be an algebraic representation of Q (see

(4.3)). Then by (4.7)

h =DQ/A,Q* (5.5)

where D . denotes the derivative of Q* with respect to Q/A,, X = l,...,Jl
A

Now let Nn,...,N , r > £,, be a set of nodes in Q* which form a cut,
J- r —

with the roots of S-,..., S identified with N ,...,N , respectively.

Then by (4.8), we can express Q* as

Q* "0/Al VA^* +-•-+ Q/\ DQM,Q* +-""+ V\ DQ/A <** <5-6>
1 JC I"

From (5.6) and the assumption that S. = ... = S. = S, it follows

that the common factor D . Q* may be factored from the first I terms in

(5.6), yielding the simpler expression

Q* = (Q/A1 +...+ Q/A£) DQ/ Q* +.. .+ Q/Ar DQ/A Q* (5.7)

The conclusion that follows from (5.7), then, is that the result of

application of Rule 5.1 is a semitree whose algebraic representation is
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expressed by (5.7).

The conditionally redundant questions in Q* may readily be deduced

by a straightforward application of the merger rule, as illustrated in

Fig. 5.5. Thus, assume that the roots of S..,...,S., where S- = ... = S. = S

are the leaves of a fan which represents a constituent question, say Q..

Then from (5.7) it follows at once that Q. is conditionally redundant

given Q/A-. More generally, if some of the answers to a constituent

question are conditionally impossible (e.g., as in Q« in Fig. 5.5), then

the condition S = ... = S need hold only for the conditionally possible

answers to Q„. Thus, in Fig. 5.5, Q2 is conditionally redundant given Q/A2»

It is helpful to summarize the foregoing discussion in the form of

a proposition.

Proposition 5.8 Let Q. be a constituent question in Q* whose conditionally

possible leaves (i.e., the leaves corresponding to conditionally possible

answers) are N. ,...,N., and let Q/A denote the Q/A sequence terminating
1 \

on Q.. Then Q. is conditionally redundant given Q/A± if the subtrees (or,

more precisely, the semitrees) with roots at N ,...,N are identical.
1 \

Compactification of a tabular representation

Like most graphical procedures, the merger rule discussed above

serves to provide a visual and hence more readily comprehensible idea of

how it works. For computational purposes, however, it is preferable to

employ compactification techniques which operate on tables rather than

graphs.

2
A technique of this type which is described below is a straight-

2For simplicity, we shall assume that the constituent questions are non-
interactive in the sense of [ 1 ].
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forward adaptation of the well-known Quine-McCluskey algorithm [53]-[55]

for the minimization of switching functions. More specifically, suppose

that we wish to compactify a given tableau Q(Q ,...,Q ), e.g., that of

Table 4.6, in which the rows which have the same entry in the Q column

are grouped together as shown. The steps described below, then, would be

applied to each such group. (For easier comprehension, the algorithm is

expressed in informal terms.)

Algorithm 5.9 The following steps are performed successively for each

column in Q, starting with j = 1. r3 denotes an admissible answer in the

ith row of the jth column.

1. Starting with i=l, check if r^ can be replaced by * (i.e., by the

answer-set A^. (The answer is YES if there are rows in Q which upon

addition (treating the rows as strings, as in (3.6) and factoring the

common factor r ...r- yield the term A r-...r-.) If the answer is YES, add

the row * r1««-r1 to the tableau, yielding what will be referred to as an

augmented tableau.

As an illustration, in the tableau of Table 5.6, the answer is NO

1 1 2 3
for r- and YES for r„. Consequently, * a„ a is added to the tableau as

shown in Table 5.6.

2. Step 1 is applied in succession to all of the entries in column 1 of

Q which fall into the group under consideration.

This conclude Pass (1) of the algorithm, yielding an augmented tableau

which consists of the original rows together with rows in which the entry

in column 1 is a star.

3. Steps 1 and 2 are applied successively to the entries in Columns

2,3,...,n, with the understanding that the initial tableau for Pass (i + 1)
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is the augmented tableau obtained at the conclusion of Pass (i), with *

treated as if it were an element of an answer-set. Furthermore, in

applying Step 1 to an entry in column j, all of the rows augemented up

to that point must be considered.

4. In the final augmented tableau obtained at the conclusion of Pass (n),

each of the rows is checked to see if it is contained as a term in an

expansion of a starred term in the final augmented tableau. If the answer

is NO, the row in question is transferred to a tableau labeled Q**, with

the corresponding answer to Q being the same as for the group under

consideration.

12 3
As an illustration, in Table 5.6 a- a_ a. is contained as a term in

2 3
the expansion of * a„ a- and hence is not transferred to Q**. The row

12 3
a- a. a_ is not contained in the expansion of any starred term and hence

is transferred to Q**, with a- being the entry in column Q. The row

12 2
a- a„ * is contained in * a« * and hence is not transferred to Q**.

5. On applying Steps 1,2,3,4 to each group in the original tableau, we

obtain the final form of Q**. The tableau of Q** represents the desired

compactified form of Q. It can readily be verified that Q** places in

evidence all of the conditionally redundant questions in Q. For this

reason, it will be referred to as a maximally compact representation of Q.

Note 5.10 The rows in Q** correspond to the prime implicants of a switching

function. For our purposes, it is not necessary to compactify Q** still

further by deleting the nonessential prime implicants, that is, those terms

in Q** which are contained in sums of expansions of some of the starred

terms in Q**.

Example 5.11 Intermediate results of the application of Algorithm 5.9 to
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the tableau of Table 4.6 are shown in Tables 5.6 and 5.7. The final

result, Q**, is shown in Table 5.8.

Ql Q2 «. Q

1

al

1

al

1

a2

1

a3

1

a3

1

al

1

a2

1

a3

2

31

2

a2

2

a2

2

a2

2

al

2

a2

2

a2

2

a2

3

al

3

al

3

al

3

al

3

a2

3

a2

3

a2

3

a2

al

al

al

al

al

al

al

al

*

*

2

a2

2

a2

3

al

3

a2

al

al

1

a3
*

3

a2 al

1

al

1

a2

1

a3

*

2

a2

2

a2

2

a2

2

a2

*

*

*

*

al

al

al

al

Group 1 (initial)

Pass (1)

Pass (2)

Pass (3)

Table 5.6. Intermediate results of Algorithm 5.9 for
group 1 of rows of Q.
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\ *2 <>3 Q

1

a2

1

a3

1

al

1

a2

2

al

2

al

2

al

2

al

3

al

3

al

3

a2

3

a2

a2

a2

a2

a2

1

a2
2

31
*

a2

Group 2 (initial)

Pass (3)

Table 5.7. Intermediate results of Algorithm 5.9
for group 2 of rows of Q.

<k *2 % Q

1

al

1

a3

*

2

al

*

2

a2

3

al

3

a2

*

al

al

al

1

a3

1

al

1

a2

2

al

2

al

2

al

3

al

3

a2

*

a2

a2

a2

Table 5.8. Maximally compact representation of Q.

Computation of the average cost of finding an answer to Q

Given a branching questionnaire, Q*, together with (a) the

conditional probabilities of the admissible answers to each constituent

question given.the answers to the preceding questions; and (b) the cost
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of each constituent question, it is a simple matter to compute the

average cost of finding an answer to Q through the use of Q*.

Specifically, let B* be an algebraic representation for a branching

31 h
questionnaire Q* (see (4.3)), and let a. ... a., ^a. be a term in B*

Xl "k Ak+1 j j
corresponding to a path from the root to a leaf of Q*. Let p. ,...,p

. . X, X,
31 3\c1 k

be the probabilities associated with the branches a. ,...,a. along this
Al \

path, and let C. ,...,C. be the costs associated with Q. , ,Q. . Then

the expected cost of an answer to Q through the use of Q* is given by

=2p/ ••• P*k <c4 +---+ c- ) (5.12)
Al Ak 31 3k

C
av

where the summation is taken over all possible paths from the root to the

leaves of Q*.

Example 5.13 Consider the branching questionnaire shown in Fig. 5.9, in

which C^^ « 2, C2 = 3, C3 = 1 and the conditional probabilities have the

indicated values. (Note that the probabilities associated with the root

are not conditional.) Then using (5.12), we have

C = 0.04 x 6 + 0.01 x 6 + 0.125 x 5 + (5.14)
civ

0.045 x 6+0.03 x 6+0.75 x 3

= 3.625

Clearly, the determination of a realization of Q** in the form of

maximally efficient branching questionnaire - that is, a realization which

minimizes C - is a nontrivial problem. However, since in most
civ

situations the conditional probabilities and the costs of constituent

questions are likely to be known imprecisely, if at all, highly

approximate solutions which yield merely reasonably efficient realizations

are likely to be adequate. This may well be the case, for example, in the
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construction of efficient branching questionnaires for purposes of

medical diagnosis, in which both the costs and the probabilities of

constituent questions are likely to be both highly variable and poorly

defined.

We shall not dwell further upon this problem in the present paper.

6. Concluding Remarks

The ideas presented in this paper are merely a first step toward

the development of a much more comprehensive theory of fuzzy-algorithmic

definitions. We have not considered, for example, fuzzy-algorithmic

definitions in which the answers to Q have the form of a probability

distribution over an answer-set A. Nor have we considered more complicated

types of definitions in which the object, x, is not the same for all

constituent questions, or in which the order in which the questions are

asked is fuzzy or probabilistic.

Although lacking in complete generality, the relatively simple types

of definitions which we have discussed may find useful applications in a

variety of fields. Experience with such applications may well suggest

many improvements in the approach described in this paper and point to

areas requiring further exploration.
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7. Appendix

For convenience of the reader, a brief summary of some of the

relevant aspects of the theory of fuzzy sets and the linguistic approach

is presented in this section. More detailed discussions of the topics

touched upon in the sequel may be found in the appended list of references

and related publications.

Notation and terminology

The symbol U denotes a universe of discourse, which may be an

arbitrary collection of objects or mathematical constructs.

If A is a finite subset of U whose elements are un,...,u , A is
1 n

expressed as

A = ux +...+ un (Al)

A finite fuzzy subset of U is expressed as

F = u^ +...+ y u (A2)

or, equivalently, as

F = yJxx +...+ y /u (A3)
i. ± n n

where the y., i=l,...,n, represent grades of membership of the u. in F.

Unless stated to the contrary, the y are assumed to lie in the interval

[0,1], with 0 and 1 denoting no membership and full membership, respec

tively.

More generally, a fuzzy subset of U is expressed as

= Iyp(u)/uF - I uF(u)/u (A4)
U

where yp: u+ [0,1] is the membership (or compatibility) function of F,

and yp(u)/u is a fuzzy singleton. In effect, (A4) expresses F as the

union of its constituent fuzzy singletons.
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The points in U at which y«(u) > 0 constitute the support of F.

The points at which yF(u) =0.5 are the crossover points of F.

Example A5 Assume

U = a + b + c + d (A6)

Then, we may have

A = a + b + d (A7)

and

F = 0.3a + 0.9b + d (A8)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U = 0 + 0.1 + 0.2 +...+ 1 (A9)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 (A10)

If U = [0,1], then F might be expressed as

F= J ^ /u (All)
JQ 1+u2

which means that F is a fuzzy subset of the unit interval [0,1] whose

membership function is defined by

PF<u) =-±-2 (A12)
1 + U

Operation on fuzzy sets

If F and G are fuzzy subsets of U, their union, F+G, and intersection,

F H G, are fuzzy subsets of U defined by
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F+G A JPF(u) vyG(u) /u (A13)

fngA fVu) A^G(u)/u (M4)
U

where v and A denote max and min, respectively. The complement of F is

defined by

F' =J*(l -yF(u)) /u (A15)
U

Example A16 For U defined by (A6) and

F = 0.4a + 0.9b + d (A17)

G = 0.6A + 0.5b (A18)

we have

F+G » 0.6 + 0.9b + d (A19)

F n G = 0.4a + 0.5b (A20)

F' = 0.6a + 0.1b + c (A21)

The linguistic connectives and (conjunction) and or (disjunction) are

identified with n and +, respectively. Thus,

F and G A F O G (A22)

and

F or G A F + G (A23)

As defined by (A22) and (A23), and and or are implied to be noninter-

active in the sense that there is no "trade-off" between their operands.

When this is not the case, and and or are denoted by <and> and <or>,

respectively, and are defined in a way that reflects the nature of the

trade-off. For example, we may have
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aM> GA Iyp(u) yG(u) /u (A24)

F <or> G A

U

whose + denotes the arithmetic sum. In general, the interactive versions

of and and or do not possess the simplifying properties of the connectives

defined by (A22) and (A23), e.g., associativity, distributivity, etc.

If a is a real number, then F is defined by

Fa AJ(yF(n))°7u (A26)
V

For example, for the fuzzy set defined by (A17), we have

F2 = 0.16a + 0.81b + d (A27)

and

J(yF(u) +yG(u) -yp(u) yG(u))/u (A25)

1/2
F ' = 0.63a + 0.95b + d (A28)

These operations may be used to approximate, very roughly, to the effect

of the linguistic modifiers very and more or less. Thus,

and

very FA F2 (A29)

1/2
more or less F A F ' (A30)

If F ,...,F are fuzzy subsets of U-,,...,U , then the cartesian

product of F ,...,F is a fuzzy subset of U- x...x u defined by

Fl X**-X Fn = I(% <ul) A-"A yF (V^V-'-'V l*31)J.i
U-X...XU
1 n

As an illustration, for the fuzzy sets defined by (A17) and (A18),
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we have

FxG = (0.4a + 0.9b + d)x(0.6a + 0.5b) (A32)

= 0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/<d,b)

which is a fuzzy subset of (a + b + c + d)x(a + b + c + d).

Fuzzy relations

An n-any fuzzy relation R in U- x...x u is a fuzzy subset of

U. x...x u . The projection of RraU, x...xU. , where (i.,...i, ) isin ±1 3^ l k

a subsequence of (l,...,n), is a relation in U. x...x u. defined by
1 *k

r

V ,...,u4 wr(v--uii)/(ui---'uii) (A33)
31 h

U. x...xu

where (J1,...,j&) is the sequence complementary to (i.,...,i ) (e.g., if

n=6 then (1,3,6) is complementary to (2,4,5)), and V denotes

Proj RonU, x...x U, A
•1
U '" -^

u. ,...,u.

the supremum over U, x,,,x n .
ji h

If R is a fuzzy subset of U. ,...,U ,then its cylindrical extension
*1 k

in U- x...x u is a fuzzy subset of U. x...x u defined by
In J In J

R= VR(u± ,...,u± )/(u1,...,un) (A34)
•i. it,

Un x...x U
1 n

In terms of their cylindrical extensions, the composition of two

binary relation R and S (in U xu2 and U2 xu, respectively) is

expressed by

-61-



R o S = Proj R n S on U- x n (A35)

where R and S are the cylindrical extensions of R and S in U. x n x n .

Similarly, if R is a binary relation in U x \j and S is a unary relation

in U , their composition is given by

R o S = Proj R H S on U (A36)

Example A37 Let R be defined by the right-hand member of (A32) and

S = 0.4a + b + 0.8d (A38)

Then

Proj R on U (A a + b + c + d) = 0.4a + 0.6b + 0.6d (A39)

and

R o S = 0.4a + 0.5b + 0.5d (A40)

Linguistic variables

Informally, a linguistic variable,^, is a variable whose values

are words or sentences in a natural or artificial language. For example,

if age is interpreted as a linguistic variable, then its term-set, T(Q() ,

that is, the set of linguistic values, might be

T(age) = young + old + very young + not young + (A41)

very old + very very young +

rather young + more or less young + ... .

where each of the terms in T(age) is a label of a fuzzy subset of a

universe of discourse, say U = [0,100].

A linguistic variable is associated with two rules: (a) a syntactic

rule, which defines the well-formed sentences in T(Q(); and (b) a semantic

rule, by which the meaning of the terms in T(Q() may be determined. If
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X is a term in T(Q(), then its meaning (in a denotational sense) is a

subset of U. A primary term in T(Q() is a term whose meaning is a primary

fuzzy set, that is, a term whose meaning must be defined a priori, and

which serves as a basis for the computation of the meaning of the non-

primary terms in T(^X). For example, the primary terms in (A41) are young

and old, whose meaning might be defined by their respective compatibility

functions y and y , ,. From these, then, the meaning - or,
young old °

equivalently, the compatibility functions - of the non-primary terms in

(A41) may be computed by the application of a semantic rule. For example,

employing (A29) and (A30), we have

U = (U )2 (A42)
very young young

1/2

ymore or less old ~ ^old^ (M3)

2
y = 1 - (y ) (A44)
not very young young

For illustration, plots of the compatibility functions of these terms

are shown in Fig. Al.

The extension principle

Let f be a mapping from U to V. Thus,

v = f(u) (A45)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = ynu. +...+ y u (A46)
linn

or more generally
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= fyF(u)/uF= I Ul,(u)/u (A47)

U

By the extension principle [1 ], the image of F under f is given by

f(F) = p f(u-) +...+ u f(u ) (A48)
11 n n

or, more generally,

= fyF(u)/f(u]f(F) = I yi:i(u)/f(u) (A49)

U

Similarly, if f is a mapping from U x v to W, and F and G are fuzzy

subsets of U and V, respectively, then

f(F,G) = T(uF(u) AyG(v))/f(u,v) (A50)
W

Example A51 Assume that f is the operation of squaring. Then, for the

set defined by (A10), we have

f(0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1) = 0.3/0.25 + 0.6/0.49 +

0.8/0.81 + 1/1 (A51)

Similarly, for the binary operation V (A max) we have

(0.9/0.1 + 0.2/0.5 + 1/1) v (0.3/0.2 + 0.8/0.6) - (A52)

= 0.3/0.2 + 0.2/0.5 + 0.3/1

+ 0.8/0.6 + 0.2/0.6 + 0.8/0.6
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Fig. 2.1. Graphical representation of an atomic question.
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Fig. 2.2. Membership functions of true, borderline and false.
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Fig. 2.3. Plots of S and II functions.
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Fig. 2.4. Composition of u~ with x A very true,
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Fig. 2.5. Amodal fuzzy sets.
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Fig. 2.6. Compatibility functions of modal fuzzy sets,
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Fig. 3.4. Flowchart representation of HIPPIE,



Fig. 4.1. An example of a branching questionnaire,
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Fig. 4.2. Block diagram representation of a branching questionnaire.
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Fig. 4.4. Illustration of conditional impossibility.
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Fig. 5.5. Application of the merger rule to the identification of

conditionally redundant questions.
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