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ABSTRACT

In this thesis we present a new approach to waiting line

problems, using the theory of martingales and stochastic integration.

We show that this approach allows us to formulate and analyse more

general problems than the classical approach.

Some of the advantages of the martingale approach are as

follows: (1) the queueing problem for random and time-varying

arrival rates and service rates can be formulated in great generality

without the assumption of Markov property for the queue process.

(2) In many cases where the classical approach yields solutions,

the same solution can be obtained more directly. For example,

Laplace transform need not to be invoked. (3) Queueing with

feedback can be formulated, and thereby permitting optimal control

problems to be considered. (4) Recursive equations for estimators

of various kinds can be obtained.

The advantages cited above are exploited in this dissertation

in connection with single-server first-come-first-served queues to

yield a variety of results, the most important ones being on control

and estimation. Extension to queues of more general types is in

principle not difficult, but it is not considered in this dissertation.
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CHAPTER I

INTRODUCTION

Waiting line (or queueing) problems arise in a large number of

applications. These include: telephone congestion, air and road

traffic, operation of dams, analysis of particle counters, and design

of waiting room facilities. The basic problem in common involves a

process of arrivals, and a process by which they are served. The

interaction between arrivals and serving produces the queueing process

whose properties constitute the main objective of the theory of queues.

The standard model in queue, which we shall follow, involves:

a stochastic process representing the arrivals, a queue discipline

which determines how service is offered, and a process representing

the successive service durations.

The traditional goal of queueing has been one of analysis. The

emphasis has been to derive properties of the queue (e.g. average

queue length) under a given assumption on the queue discipline and the

probability, laws governing the arrival and service times. Possibly

a more important goal is optimization. Of the various problems in

optimization, the ones involving feedback control are probably the

most important and also the most difficult. A satisfactory formulation

of queues with feedback requires a modeling of the dynamics of the

queueing process itself as opposed to the dynamics of the probability

law, the latter being the starting point in most analyses involving

queues.

The basic approach of this thesis, which we believe to be new, is

to model the queue as the solution of a stochastic integral equation

driven by the arrival and service processes, which are in turn modeled
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by semi-martingales. This allows us to bring to bear on the problem

the powerful calculus made available by recent developments in

martingale theory. Our approach will be to deal with the queue process

itself rather than with its probability law.

Although our approach is in no way restricted to single-server

single-queue systems, the detailed analysis in this thesis will be

largely confined to such'cases. On the other hand a very general class

of arrival and service-time distributions will be allowed, including

cases where they depend on the queue (feedback).

In chapter 2 we will present the basic tools needed for our goal;

it will be a review of martigale theory, stochastic integration,

transformation of measure, stochastic calculus, etc. The modeling of

the waiting-line process will be done in chapter 3. Chapter 4 will

deal with the derivation of some properties of the queue. The control

problem will be treated in chapter 5 and problems related to estimation

and identification in chapter 6. We end in chapter 7 with discussion

and conclusions.
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CHAPTER 2

PRELIMINARIES

2.1. Introduction

In this chapter we shall summarize the basic mathematical material

needed in our work, and establish the notations used in the remaining

chapters. The main topics of the chapter will be definition and

properties of general stochastic processes, martingales, Poisson process

and related topics, stochastic integrals, martingale representation

results, absolute continuity of measures and transformation of

martingales.

2.2. Stochastic processes

Probability spaces

1. A probability space, denoted by (£3,93^?), is a triple consisting

of a set ft, a a-field 9T of subsets of ft and a probability measure ^P

defined on 9jk 9+ will be called complete with respect to^, iff

B C a and ^P(A) = 0 imply B€9J. A probability space is said to be

complete, iff <r is complete with respect to H\ In our work we will

deal exclusively with complete probability spaces.

2. T will denote the index set, which will be a subset of the real line

3. (^'t G T) is a family of a-fields satisfying:

a. T? C 9T for all t G T

b. 9J1 £-93-' for t, sE T, s <t
s t

c. n 93 = C}' for all t6 T (right-continuity)
s>t S C

d. 9? contains all the null sets of 9T.
o

4. We will denote 9jT = V 9T
00 ter t
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Stochastic processes

5. Given a probability space (ft,93,^) and an index set T, a stochastic

process X = (X ,t G T) is a family of random variables on (ft,93") indexed

by T, that is, X is a random variable on (ft,93) for any t in T.

6. (X »t G T) is said to be adapted to the family of a-fields (93"t»t G T)

if x is 9T-measurable for all t G T.
t t

7. If the stochastic process X has sample functions that are right

continuous with left-limits, we define:

AXt = X-Xt- = jump of X at time t

Stopping times

8. Let (ft,937P) be aprobability space and let (93j.,t G T) be an

increasing family of sub-a-fields of 9£ Apositive random variable

xdefined on ft is said to be astopping time if we have (x<t) G 93"t

for every t^T,

9. Let xbe a stopping time relatively to (93J.»t G T) then

Cy = {Ae 95f |A H {T<t} GCI for all tG T}

10. Given astochastic process (xt,9?t»t e T>» Tastopping time with

respect to (931 »t G T), we define:

\ax - XtI(x<t) + V(T<t)

This process is called the process X stopped at t.

11. A stopping time t is predictable, if there is a sequence of stopping

times t such that:
n

T + T
n

x < x on {t>0}, for all n
n
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12. A stopping time x is said to be totally inaccesible, if t is not

almost sure infinite and if, for every sequence (t ) G jj 9

4^(0): lim x (w) = t((o), t (o>) < t(w) < °° for every n G N} = 0
n n

n

13. The a-field ^4: on ft x T generated by all left continuous adapted

process on T x ft is called the predictable a-field.

14. A stochastic process (xt»9T ,t G t) is said to be predictable, if

it is measurable with respect to (Txft,^)

Increasing processes

15. A process A = (A ,t G t) is said to be an increasing process, if

its trajectories are right-continuous increasing functions and A - 0

16. .BV = {A/A is an increasing process}

17. BV= {A/A =A1-A2/A1,A2 GBV+}
18. IV+ = {A/A G BV+ and A is integrable}

19. IV ={A/A =A1-A2/A1,A2 Giv+}
20. LIV+ = {A/A G BV+ and 1 {t }, 11m t = « a.s., -%i :A G IV*

—' n n t^T
n n

Remark: EDr the definitions and notation of this section we follow

[Meyer,1966] and [Dellacher.ie,1972]

2.3. Martingales

In this section we shall introduce some definitions and results

concerning martingales. More details can be found in [Meyer, 1966],

[Kunita-Watanabe,1967] and [Doleans-Dade,Meyer, 1970].

1. A martingale M= (M ,93't.»t>P) is a stochastic process, such that:

a. M is <J -measurable, integrable

b. E(M./93T) = M a.s. for all t,s,t >. s
us s

2. A process M is a submartingale, if (b) in (2.3.1) is replaced by:
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b. E(M /9T) > M a.s. for all t,s,t > s
t ^s — s

3. A process M is a supermartingale, if (b) in (2.3.1) is replaced by

b. E(M /93- ) <. M a.s. for all t,s,t >. s
t s s

4. If (M ,9J »t>0) is a martingale and h is a convex function such

that h(M ) is integrable, then (h(Mfc) ,93Tt,t>0) is a submartingale.

5. If a function h is convex, increasing and (Mt»93L>tilP) is a

submartingale, then (h(M ),9^T ,t>^0) is a submartingale (if h(Mfc) is

integrable)

Remark: If M is a submartingale, then -M is a supermartingale.

Therefore, any property concerning submartingales can be extended

easily to supermartingales and vice-versa.

Let us define some classes of martingales:

6. u\L = {M/M is a right continuous with left limits martingale

with respect to some family (x$t,t G t), M »0 and M is uniformly

integrable}

7. <JA~ ={M G^U /sup E(M^) <oo} =class of L«-bounded martingales
A ii tfir8. ^2 ={M eJA2/M is sample continuous}

9« ^vl/l, = {M/M is a right continuous, adapted stochastic process,
loc

*L = 0, and there is an increasing sequence of stopping times {t },

lim t = «> a.s., such that for all n, on the set {t >0}, M GJ\J[ }
n n tAT jl

= class of local martingales

10. jU? = {M ^vW, /M is sample continuous}
loc loc

11. ui/L, » {M G Kj\ /there exists {x }, lim x = « a.s., such that
^ 21oc ^ loc n ^^ n

for all n,MtAT G^}
n

These classes of martingales will be used in the decomposition

results and in defining stochastic integrals.
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Decomposition of supermartingales

12. A uniformly integrable supermartingale (Xt»9Jt»til0) is of Ciass

D, if {X , for all stopping times x} is a uniformly integrable family.
x

13. Auniformly integrable supermartingale (X ,9jt»t>0) is of class
D , if {x , x a stopping time, x _< a} is a uniformly integrable family.

14. A uniformly integrable supermartingale (xt»93v»t£P) is locally

class D, if it is class D for all positive real a.

15. Theorem [Meyer,1966]: A supermartingale (X ,93Ft>t>0) is locally

class D, iff

Xt - Mt-At

where M is a martingale, A is a predictable process, right continuous

increasing paths, AQ = 0, EA < ». This decomposition is unique.

Decomposition of martingales

16. Two local martingales M and N are said to be orthogonal, if

MN = (M N ,9T >t>0) G^U . in the same way M,N ^JvL are orthogonal
ttt — loc *•

iff MN GjU Similarly, M,N e^iUloc are orthogonal, iff MN GMloc»

17. Theorem: [Doltfans-Dade,Meyer 1970]

If M GyU , then there is a unique decomposition of M in the

form:

M = MC + Md

where Mc and Md belong to^/Mloc» mC G~^loc and ^ is alocal
martingale, orthogonal to all local martingales belonging to^/U- .

18. Theorem: [Doleans-Dade,Meyer,1970].

If MGjM , then Mcan be decomposed uniquely in the form:

M= M(1) + M(2) + M(3>

where M^ ' G^lA2°C, M^ 'is asum of martingales, each having
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just one jump at a predictable stopping time; each of these martingales

orthogonal to any martingales having no common discontinuities with

it; M is a sum of martingales having only one jump; the jump is at

a totally unpredictable stopping time; each martingale is orthogonal

to any martingale having no common discontinuity with it.

Increasing processes associated with martingales

19. If Me_,U2, there is aunique, predictable, increasing process

called <M,M> ,such that M^ -<M,M>t is an^U -martingale [Meyer,1966,
VIII 23]

20. For M,N Gj^L we define

<M,M>t = j [<MfN,M+N>t - <M,M>t - <N,N>t]

21. If MG,M we define:
loc

[M,M]t =<MC,MC>t +2 (AMg)<av2
s<t

22. Similarly, if M, NeM^loc'-

[M,N]fc =\ ([Mt-N,MfN]t - [M,M]t - [N,N]t)

23. Theorem: [Doleans-Dade,Meyer,1970]

If M,N GJ^lloc» then MN - [M,N] belongs t°J&loc-
24. Theorem: [Doleans-Dade,Meyer,1970]

In the case MejU«, then both [M,M] and <M,M> are well defined.

Therefore, [M,M] - <M,M> Gj^ .
25. We can define <N,N> for any M,N G-M, c in the following way:
<M,N) is a predictable process, adapted, of bounded variation, and

such that [M,N] - <M,N> is in^Uloc«
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Semi-martingales

26. A process (X ,93 »t>0) is called a semi-martingale, if it can be

written in the following form:

X = X + A„ + M„
t 0 t t

where A^IV and M G^ll
loc

This decomposition is not unique, but Xn is unique and also the

continuous part Mc of M. We define <X°,XC> = <MC,MC>

2.4. Counting processes

1. A real valued stochastic process (N ,t G t) is a counting process, if:

a. Nq = 0

b. N is constant, except for positive unit jumps at random time

c. N has right continuous sample functions almost surely.

2. A stochastic process (M ,t G t) is a Poisson process with constant

rate X, iff:

a. N is a counting process.

b. N has independent increments.

c. N - N has a Poisson distribution with parameter X|t-s|, X > p.

for all t,s G t.

If A=l, we call N a standard Poisson process.

3. The Poisson process has the following properties:

a. N is a strong Markov process.

b. N is quasi-left continuous.

c. N -Xt is a martingale.

These properties of the Poisson process are a consequence of being

a process with stationary independent increments.
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4. Another way of defining the Poisson process is by saying that the

Poisson process is a right-continuous jump Markov process with the

infinitesimal conditions:

arnj t

h-H) t

where 93„ = a*N >0<s<t}Ht s

5. With the use of martingales, we can also define the Poisson process

as being the process (N ,93^*^0) which satisfies:

a. it is adapted.

b. it is a counting process.

c (Nt- t,93Tt,t>o) G^Uloc.

Extensions of Poisson Processes

6. In engineering we often deal with processes N = (N ,t>0) called

generalized Poisson processes or point processes with random rate

X = (X ,t>0), where X is a measurable, non-negative process. Such a

process can be defined as follows:

a. NQ = 0, N is a counting process

b. lim — E(I,„ .. VN ,0<s<t) = Xt a.s.
h-o h {Nt+h-Nt=iy s "-

c. 11m £ E(I,XT „ ,,/N ,0<s<t) =0 a.s.
h-K)h {Nt+h-Nt>l} S "-

In the section on trasformation of measures we will see that this

process really exists.

2.5. Stochastic Integration

We are interested in defining integrals of the form I C dX , where£yv
-10-



(X 93^ ,t>0) is a stochastic process and (C ,t>0) is a process adapted

to (93fc»t>0). In the case of adiscrete martingale (X ,93 ,n=l,2,3...)
n

we can define random variables Y = J^u^d, ,where d_ =X. , d« = X -X ...,
n=l

\ =^Sc^k-l' and ^un' n=1>2»«") is a family of random variables such

that un is 9}n_1-measurable; (vn>9} ,n=l,2,...) is also amartingale.
We should be able to obtain a similar result for continuous time

martingales, under certain conditions. The first person to define such

integrals for such a process was Ito [1944], that constructed an integral

for the case where X was the Brownian motion and C belong to a class of

functions. Later works extended the definition to other class of

martingales. Among them, we should mention [Kunita,Watanabe,1967],

where it is treated the case of square integrable martingales, [Millar,1968],

and [Doleans-Dade,Meyer 1970], where the results are extended to local

martingales.

We are going to state briefly the results of this last work.

1. If A G iv, we define L (A), the set of all the adapted, predictable

processes C, such that:

00

El |Cs||dAs| <«,
^0

2. If M€jU2, we define:

L (M) = {C/C is adapted, predictable, E\ IcJ^MjM) < «>}

-11-

:, El |Cg|2d<M,M:
•*o

3. Theorem: [Doleans-Dade,Meyer,1970]

Let us have MGjU2 and CGL2(M), then CGL2( M,N ) for all
N^JKK^* and tnere is a unique element CM of^l42> such that, for all
N G^U , we have:

<C.M,N> =[ Cd<M,N>
t Jo S S



We say that this element is the stochastic integral of the

process C with respect to the martingale M, and will denote (C,M)

< C dM
s s

4. Theorem: [Doleans-Dade,Meyer,1970]

If M GJvL, then the space L (M) is such that

L2(M) = {C/C adapted, predictable, 1 C2 d[M,M] <»}
is s

•'o
2

Also, if C G l (M), the stochastic integral CM is the unique

element o£<J\jL such that

[CM,N]t =1 Cg d[M,N]g a.s. for all N^jtt2, all t
**0

5. A process C is called locally bounded, if there is an increasing

sequence of stopping times {x }, lin x = °° a.s. such that for all n,
n v n

n-*»

lc«.A */_ ^\ I < M < °°> where {M } are real, positive constants.
1 tAx (x <»)' — n n ' r

n n

6. LB = {C/C is adapted, predictable and locally bounded}

7. Theorem: [Doleans-Dade,Meyer,1970]

If M G^\/l , C G LB, then there exists an unique element CM

^Jv\ »called the stochastic integral, such that, for all NG^VL ,

we have:

:.M,N]t =i[C.M,N], = I C d[M,N] for all t
s s

For a process M ev«M91 we can, by using stopping-time arguments,

define

8. L?1 (M) = {C/C adapted, predictable and there exists an increasing

sequence of stopping times {x }, lim x = », such that for all n,
n _ n

n-*»
x

E[l |C |2d <M,M> ] <«}
Jo S S
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9. If MG A/1 and C^L. (M), there exists a unique element
loc 2loc

CM ^W2lo * 8Uch that f°r a11 N̂ ^loc1
t

<CM,N> = 1 C d<M,N>
t 1 s

for all t > 0
s —

The Stochastic integral and the Lebesque-Stieltjes integral

In some cases, the stochastic integral coincides with the Stieltjes

integral

10. Theorem: [Doleans-Dade,Meyer,1970]

If MG_M HBV, CGL1(M), then the Stieltjes integral

£csdMs ejUr
11. Theorem: [Doleans-Dade,Meyer,1970]

If M G^U G iv and CG L2(M) H L1(M), then the stochastic integral

(CM) is almost surely equal to the Stieltjes integral I C
c Jo

dM .
s s

The differentiation rule

12. If X is a semi-martingale with values in R and f : R •+ R is a

twice continuously differentiable function with first partial derivatives
2

8f j f
—77T 9 i = l,2,...,n and second partial derivatives —-rrz—ttt ,
3xU; 8xV ;3xU;
i = l,2,...,n, j = l,2,...,n, then f(x) is a semi-martingale of the

form

n t

(i)
s

n t

(xt) =f(xo> +E ("TIT &-K
i=l •'O ^s

+££ I\ -^S^T d<X(i>C,X<J>C>.
i=l j=l •'o

^(J7 ™ •* '.
S S
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n

3f ,v w„tt)+E tfoc8)-f(xsj - E diy (X*-K }
s<t i»l 8Xs

[Doleans-Dade,Meyer,1970]

13. We can extended this formula for the case f(t,X ), where this

function satisfies the conditions of (2.5.12) and also is once

continuously differentiable in t. In this case:

n t

(i)
s

Ht,h) -f(o,xo) +(|| (s,xs.)ds +53 f-M_ (8,xs_)dx;
J0 i=l J0 3Xs

1=1 j=i "0 s s

n 3f(s,X^ )

Two important cases of application of this formula are:

14. If X, Y are semi-martingales in R, then:

t t

X[tYt *Vo +j Xs-dYs +j VdXs +IX'Y>t
15. If X = Y, we have in the above formula

t

X2 =2 1 X dX + [X,X1
t 1 s- s l ' Jti

+£ [f(s,Xs) -f(s,XsJ -£ ^*~ AX^]
s<t i=l 3Xs

2.6. Martingale representation theorems

We have seen that a stochastic integral is a martingale. Now our

problem is given a martingale M with respect to a family of a-fields

(93t)> generated by another martingale N, when does this martingale

M has a representation as a stochastic integral with respect to the

martingale N? Ito [1951b] was the first one to answer this question.
-14-



He considered square integrable functionals, on the °"-field generated

by a Brownian motion process, and obtained a representation as a

stochastic integral with respect to the Brownian motion. Wong [1916b]

has given a extension of the results to local martingales. Kunita

and Watanabe [1961] gave us results for the case where M ^JvL an<^

93 is generated by a Hunt process. Another work, dealing with

martingales generated by Brownian motion, was written by Clark [1970].

A recent work by Boel, Varaiya and Wong [1973] permits us represent

local martingales with respect to o-fields, generated by a certain

kind of jump processes in stochastic integral form.

1. Let (W ,t>0) be a standard Brownian motion, and let (9]L >t>0) be
Z Wt

the family of a-fields generated by it.

2. Theorem: [Ito,1951b;Kunita,Watanabe,1967]

If (Mj.»93vt »t>_0) Gj[\09 then M has the unique representation
ft Wt l

Mt "* I CsdWs* for a3L1 X- 0> where CG L2W'
3. Theorem [Clark,1970;Wong,1971b]

If (M ,93-tj »t>0) G^ll then M has a unique representation

Mt =JQ CsdWs for a11 '• Where C€L21oc(w)-
4. Let N »t>0 be a standard Poisson process and let (93w >C^P) ^et wt

the family of a-fields generated by it.

5. Theorem: [Kunita,Watanabe,1967]

lf (Mf-j'Txr 't^P) ^jUoj then M has the unique representation
rt Z t Z

M. = 1 c (dN -ds) a.s., for all t > 0, where C G L0(N -t)t jQ s s i t

Now we will state some results of the work by Boel, Varaiya and

Wong [1973,a]

6. A Blackwell Space (Z,^r) is a measurable space, such that ^i is

-15-



a separable a-field, and every measurable function f : Z*R maps Z

onto an analytic subset of R.

7. Let (X ,93 ,t>0) be a process with values in (Z,^). Suppose

that, with probability 1, all the sample paths of X are piecewise

constant, right-continuous, and have only a finite number of dis

continuities in every finite interval. If (Z,^) is a Blackwell

space and the jump times of the process are totally inaccesible,

then X is fundamental process.

8. Let us suppose that (X ,931>t G t) is a counting process, and there

exists a process X = (AJ_,93v »t G T), A. > 0, for all t G T,
ft t Xt *t

(I X ds,t G t) G LIV, such that (X - \ X ds,9Tjf »t G T) belongs to
ii° S t Jo S tJ\A1 . Then:

9. Theorem: [Borel,Varaiya,Wong,1973]

If M &U\Jl is a local martingale with respect to the family
Jt

C (dX -X ds), for all t
0 ?t S 8

JO

t G R.

where C is a predictable process, such that | |C |X ds < » for all
s s

2.7. Transformation of measure and translation of martingales

The purpose of this section is to examine absolutely continuous

transformation of measures and their relation with martingales. The

Radon-Nikodym derivative of an absolutely continuous transformation

has a natural interpretation as a martingale, and this connection gives

rise to some important representation results for Radon-Nikodym

derivatives. A second important connection arises in examining how

martingales are transformed under a charge in probability law. Results

of this type originated in the form of the theorem of Cameron and

Martin [1944] on translations of Wiener processes, and were generalized
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by Gursanov [I960]. Their expression in terms of local martingales

was obtained by Van Schuppen and Wong [1973].

1. The exponential formula: [Doleans-Dade,1970]

If (X ,93l»t e T) is a real valued semi-martingale, Xq =0, then

there exists a unique semi-martingale (X ,93f»t e T) satisfying

Z = 1 + I Z dX , and Z is given byt JQ s- s

1 -AX
Zt =* exp(Xt - ± <XC,XC>t) n (l+AXs)e S (2)

s<t

We will denote (2.6.2) by Z = e(X )

2. Theorem: [Van Schuppen,1973] If (Z ,93 ,t G T) is a semi-martingale,

and Z , Z > 0 a.s. for all t G T, and Zq = 1, then there is a semi-

martingale (X ,93t>t G T), XQ =0, AX >-1 a.s. for all tG T, such

that Zt = e(Xt).

3. Theorem: [Van Schuppen, 1973]

If a. (Xt,9Tt,t E [0,1]) ej\AlQc, XQ =0, AXt >-1 a.s. for
all t G [0,1], <XC,XC> < oo a.s.

b. (<X,X> ,9T.,tG [0,1]) exists and is a process of locally

integrable variation, and satisfies d<X,X> = to dt where (ij> ,9J\t e T)

GL-- (t) satisfies |i|/ | <^ k(t) a.s. for all t G [0,1] for some positive

valued function k : T -»• R, such that 1 k(s)ds < »
J0

then E(e(X1)) = 1

Two important corollaries of this theorem are:

2
4. If W is Brownian notion, $ G LB and if |* | <_ k(t) a.s. for all

t G t = [0,1], where k is a positive function, such that \ k(s)ds < »,

then E(e(\ $s dWs)) = 1

5. If N is a standard Poisson process, (* ,9T„ ,t e T = [0,1]) G LB
2 *and \\\> | _< k(t) a.s. for all t G T = [0,1], where k(t) is a positive

-17-



I k(s)ds < «, then E(e(l i|
JO JO

function, such that \ k(s)ds < «, then E(e(\ ♦ (dNg-ds)) = 1

Absolute Continuity of Measures and Translation of Martingales

6. Let us have a measurable space (ft,9r) and two probability measures

and ^P on this space. P is said to be absolutely continuous with

respect to <P ,if for all AG93 such that ^ (A) =0 we have that

^(A) =0 (notation ^P « ^P ). *P and *P are said to be equivalent
o o

iff <V « <?> and <V «<V (notation <P- <P )
o o o

7. If cp« ^P by the Radon-Nikodym theorem, we have P(A) = IA(w)^P (dw)
o J^ o

for all A G 9?

whereA(.) is a non-negative, 9jf-measurable function.

If {9J. ,t G t} is an increasing family of sub a-fields of 9?,we

have that A =E (A/93L) is a martingale with respect to (9ft)

8. Theorem [Van Schuppen,1973]

a. Given aprobability space (fi,^,^ ). Let (St>93^t e [0,1])
tJ\A, be such that Xn = 0, <XC,X°> <• a.s., Ax,. < -1 a.s. for all

loc u t

tGT, and EQ[e(x1)] =1, then (e(xt),93ft,t G [0,1]) e^. The formula
^t = e(x-i) introduces anew probability measure CP on (fi,<?) and P

is equivalent to cPq.

b. Let (&,93) be a measurable space with two equivalent probability

measures <T* and ^P defined on it. Let (9JL,t G t) be a family of

sub a-fields satisfying the conditions in (2.2.3), then there is a process

(Xt,9Tt,t GT) ^WlQc, XQ =0, AXt >-1 a.s. for all tG[0,1],
<XC,XC> <« a.s., such that Afc = e(Xt) for all tG [0,1].

Therefore, under certain conditions, a local martingale introduces

a new probability measure. Conversely the estimate of the Radon-Nikodym

derivative of two equivalent measures given some family of a-fields is

characterized by a local martingale X.
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Translation of martingales

9. Theorem [Van Schuppen,Wong,1973]

a. Let (to9rTt(~p ) be a probability space,

d<Pb. Define a transformation of measure by ,^ - e(x,)» where

(Xt>9rt»t G [0,1]) is areal-valued 4^ local martingale, such that

<XC,XC> ,<« a.s., Ax <-1 for all tG [0,1], and Eo[e(X1)] =1.

c. Let (Y ,9? ,t G [0,1]) be a local martingale under ^P with

values in R

d. Suppose there exists a predictable process, denoted by

«Y,X>t,93ft,t G [0,1]) GIV, such that ([Y,X]t -<Y^^^t G [X,l])
G^tl under ^P .

loc o

Then P is a probability measure on (ft,930 and the process M,

defined by Mt =Y -<Y,X>t, satisfies (M^^.t G [0,1]) ^->Mloc
under P. If, in addition, (Y,X) is sample continuous, then [M,M]

= [Y,Y].

Two important consequences of this theorem are as follows:

10. If a. (GjTr* P ) is a probability space,

b. (W ,931tt G t) is sample continuous Brownian motion in R ,

. (V9Tt,t GT> e L21oc(W) in **» f l$s|2(is <°° a'S* ^c
-1 J 0

Jo

c

and satisfies E [e(i $ dW )] = 1, and
o 1A s s

d<P r1d. We introduce a new measure ,>jk = e(l $ dWs)
o

Then ^r is a probability measure. Further, if

A C*
M- = W - \ $ ds

* Jo st

Then (Mt,93t,t GT) G^Uioc with <M,M>t =<W,W>t =t

Hence M is a sample continuous Brownian motion under P.
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11. Let (ft,9£(-P ) be a probability space [GursanoV,1960]

Let (N ,93|.»t G x) be a real valued standard Poisson process

(Nt-t,cyt>t e T) ^Wloc<q>o)

Let x= (\ ,<$f ,t e T) e Liioc(t)» xt *° a-s* for a11 te Ti

Jo
and satisfy EQ[e(l (Ag-1) (dNg-ds)] = 1

Suppose we introduce a new measure

(A -1) (dN -ds))
d(T>o 'Jo' S ' ' S

Then ^P is a probability measure, and if

=e(f <
Jo

Mt= \ -j A ds,
s

£
Then (Mt,9Jt,t GT) ^^^^P) with [M,M]t =» Nfc and <M,M>t
A ds. [Breinaud,1972]
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CHAPTER 3

THE MARTINGALE APPROACH FOR WAITING TIME PROBLEMS

3.1. Introduction

In this chapter we begin the study of waiting time problems using

the martingale approach. As it was said before, we will mainly study

the one-server queue with service in order of arrival. In section 3.2

we will show how the queue size can be represented as a stochastic

integral for a very simple kind of queue whose existance is already

known in the classical literature. In section 3.3 we will see that

this approach can be extended for a wide class of problems by the

use of transformation of measures. In section 3.4 we will show how to

use the martingale approach for the case when we have queues with

interarrival times independent, identicallydistributed andservice times

independent, identically distributed. The martingale approach to other

kind of queues will be discussed very briefly in 3.5, and we will end

with a summary and discussion in section 3.6, where we will show the

advantages of our approach.

3.2. Representation of the queue length as a stochastic integral for

single-server, first-come-first-served queues

Let us suppose that customers are arriving at a counter where there

is only one server and the customers are served in the order of their

arrival. Assume that the times between successive arrivals are mutually

independent, identically distributed random variables with distribution

function F(x) = 1 - e , x >_ 0, i.e., exponential distribution with

parameter 1. The service times are also assumed to be mutually independent,

identically distributed random variables with distribution function

G(y) =1-e~y, y>. 0. Let us define the process Z^ =(Z^ ,t>0) as
-21-



Z = number of customers in the system, that is, the number of

customers waiting plus the one that is being served. This process

Z will be called the queue length. By our description it is easy

to see that Z is a counting process.

Remark: We will always consider that, at time t = 0, no one is

in the system, that is, Z^ ' =0
The process Z , defined above, consists in a special case of the

processes called birth-and-death processes. They belong to the class

of jump Markov processes and, therefore, are strong Markov processes

[Breiman,1968]. The process Z^ ' has state space {0,1,2,...} and the

state 0 is reflexive. By the theory of the jump Markov processes we

know that the transition probabilities p (i,j) of Z must satisfy certain

infinitesimal conditions:

a. pt+h(i,i+l) = h + o(h)

b. pt+h(i,i-l) = h + o(h) for i > 1 (1)

c. Pt+h(i,D = 1 - 2h + o(h)

d. 0 is reflexive

where p (i,j) = probability that Z^j! =j at time t+h, given

that at time t, we have Z^ '= i.

From the infinitesimal conditions it is possible to obtain the

discrete density function of the process Z . Denoting by P (t)
t n

the probability that Z : ~ m we find the following differential

equations:

\^- =-2P<» (t) +P<» (t) +PU> (t) n>!

^2_i!i =_p(l)(t)+p(l)(t) (2)
-22-



for all t _> 0, initial conditions P (0) = 1, P (0) = 0, n > 1.
on —

Z(D
Defining P(1)(a,t) = £ P(1)(t)an =Ea t ,a<1, we have using

n=0 n
the equations above:

a- 3P ata,t> =(1_a) [d-a)P(1)(a,t) -P<1}(t)] (3)

Knowing P (u,t) is possible to calculate P.. '(t) for all n.
n

Above the value of P^ '(t) is not known. To get it we use the

fact that 2^ P (t) = 1. There are many ways of doing that (see e.g.,
n=0 n

[Tak£cs,1961], [Saaty,1961]).

The same problem has an alternative approach as follows:

Suppose that (Xfc,931,t>0), (Y »931>t>0) are independent standard

Poisson processes with 931 2 a((X ?Y ), 0 _< s _< t)

Define a counting process Z such that:

AZt = AXt - l(Zt_)AYt for all t > 0 (4)

where l(z) =0 if z < 0

l(z) =1 if z >1

We can write:

zt= E ^v1^41.5 =xt - T, 1(v)AYs (5)
s<t S£t

The -last term can be written as an integral

.t

E1(ZC )AYc = 1 l(za )dYe
s- s 1 s- s

sr<t 0

(6)

since Y is a process of integrable variation, 1(Z _) is adapted
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and predictable and E[l 1(Z )dY ] _< t. Therefore:
Jo S~

t

Z = X - I 1(Z )dY (7)
t t 1 8- 8

•'o

Equation (7) describes our queue length as a function of the arrival

and service processes. Comparing the two approaches we see that in the

first one we are interested mainly with the distribution of the process.

Now with equation (7) we should be able to work with the process itself

and apply the theory of martingales with its stochastic calculus to the

problems in queueing. We don't need to worry about distributions in a

very early stage which constitutes, in our point of view, a more

intuitive way.

To show how we can get the same results of the classical theory we

will calculate the discrete density function of the process Z. Rewriting

(7) we have

Zt = (Xt-t) - 1 l(ZsJ(dYs-ds) +1 (l-l(Zs_))ds (8)

and (Xt-t) ej[\
loc

1(Z )(dY -ds) G^U since l(z„ ) is adapted, predictable,
_ s- s loc t-\

|KZtJl 1 1^r all t >0, and (Yt-t) eJ4loc

(1-1(Z ))ds G iv$0
Then, by (2.3.26), Z is a semi-martingale. Applying the differentiation

zt
rule (2.5.12) to the function a , a < 1, we get:
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Z Jz z z z

(log a)a ^dZg +J2 (a S-a 8") - (log a)a 8~AZ£
0 s<t

t
JZ Z Z f Z

(log a) a S"dts +2 (a S-a S") - I (log a)a S"dZ£
0 s<t ^0

= 1 + V (a-l)a S~AX + V (l/a-l)a 1(Z )AY
/ * S £mmd S— S

s<t s<t

t t

= 1 +1 (a-l)a ° (dXs-ds) +1 (l/a-l)Z° l(ZsJ (dYg-ds)
0 0

t t

+1 (a-l)a sds +1 (l/a-l)a Sl(Zs)ds
0

Taking the expected value, we have:

Z C Z f Z

E a L = 1 + 1 (a-1) E a sds + 1 (l/a-l)E a Sl(z )ds (9)
O 1 O 1 o s

•'o "'O

This is equivalent to:

a aP<^t? =(l-a)[(l-a)P(a,t)-Po(t)] (10)

Initial condition P(a,0) = 1

Comparing the expressions of P^ (a,t) and P(a,t), we can see that

the two functions are the same.

3.3. Extension to a class of inter-arrival and service-time distributions

Equation (1) which relates the queue-length process Z to the arrival

and service processes clearly does not depend on the fact that X and Y

are Poisson processes with rate 1. Using the results on transformation

of martingales under a change of probability law, we can study the queue-

length process for a general class of processes x and Y. The overall
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plan is as follows: Let ^P denote a probability measure which respect

to which X and Y are independent, standard Poisson processes. Let Cp

be any probability.measure absolutely continuous with respect to ^P .

Clearly, expectation and conditional expectations with respect to

can be computed by integrating with respect to ^P using the density

d<P

Let us assume the following

a. (fi,9J» r ) is a probability space

b. (Xt,93rt,t G [0,1]), (Yt,9Jt,t G [0,1]) are real valued,

independent standard Poisson processes, hence Jr 3 a((X ,Y ), 0 _< s <_ t),
t "~~ s s

(xt-t,9yt,t g [o,i]) e^c(Hp0)> (vt.g^.te [o,iD e^0C^P0)
c X-(Xt,9Jt.t G [0,1]) GLUoc(t), Xt >0a.s. for all tG [0,1],

H=(Ut,9yt»t G [0,1]) GLUoc(t), yt >0a.s. for all tG [0,1] and

:\a -D(dx-ds) + [ (we -:
Jo s" s Jo s~

satisfies E [e(l (X -l)(dX -ds) + \ (u -l)(dY -ds))] =1
o JQ s- s Jo S"

d. We introduce a new measure

1

dOT =£(( <V1)(dXs"ds) +\(Ws_-l)(dYg-ds)) (11)

Then P is a probability measure, and using theorem (2.7.9),

we have that

Mt1} =xt" t" (\ (V"1)(dVds) +\ <V"'1)(dVd8),xt"t)>t

M<2>
t

=Yt - t - <1 (Xs_-D (<JXa-ds) +1 (Pa_-D (dYa-ds) ,Yt-t >fc

= X - I A ds
t 1 s

" Yt " ( H
Jn

0

t

ds
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are such that (M^,t3t,t €[0,1]), (M^r^t e[0,1]) G-/ULoc
under P.

Then, if we define in (Q,9r»*^P ) the process Z as we have done

in (3.2), we will get in (ft,93»P) a process Z that corresponds to,a

queue length process. To this process we can relate to other processes,

X and y; X is related to X that corresponds to the arrival process in

the queue, therefore, X will be called the arrival rate; u is related

to Y that corresponds to the service process, therefore, u will be

called the service rate. Then the process Z under ^P will be a queue

length with arrival rate X and service rate y.

Remark: For now on E will denote expectation with respect to

the measure ^P and E will denote expectation with respect to ^P.

So far, we have considered that the condition

:j"V8.-i)(dxs-d8) +£E re[l (X -l)(dX -ds) + I (y -l)(dY -ds)] = 1 is satisfied for theo JQ s- s JQ s- s
given X and y. To our knowledge there are no necessary and sufficient

conditions for X and y to be satisfied in order to the expectation to

be 1. The best we can get are sufficient conditions. We are going to

discuss some of these.

We have:

t t t

<1 (Xs_-l)(dXg-ds) +1 (ug_-l)(dYg-ds), 1 (Xg_-l)(dXs-ds)
0 0 ^0U U (12)

t

+I (ys_-l)(dYs-ds)>fc -I[(Xs-1)2 +(us-l)2]ds
0

By (2.7.3), a sufficient condition for the expectation of the

exponential formula being 1 should be:

-27-



i

(Xt"l)2 +(yt-l)2 <k(t) a.s. for all tG[0,1]
where k(t) is a positive-valued function on [0,1] such that

1

k(s)ds < ».
0

For |X | _< constant and |y | <_ constant a.s. for all t G [0,1]

we have the desired condition. Also for the case X = f(t) and y = g(t)

for all t, where f and g are bounded, non-random functions defined on

the interval [0,1], the condition is satisfied.

One case that does not satisfy the condition above is the case

where X = X = constant for all t and y = c(t)Z + d(t), where c(t)

and d(t) are non-negative functions on [0,1], bounded respectively

by constants c and d. However, this case can be handled by a special

argument as follows. Since R » e(\ (X -l)(dX -ds) + 1 (y -l)(dY -ds))
t Jo s" s Jo

e^^M1 ,there is asequence of stopping times (Tn>» lim tq a 1,

such that Rt G>^W,. But:
tAT 1

n

= n Xfc n y exp[-l (X +y -2)ds]
[n t,<T 'l- s.<t 8J- JO 8 8

i— n j n

where (t.) are the times that X jumps

(s.) are the times that Y jumps

R = n X n y expl-1 CX_+y -Z^dsj (13)
tAT

But

X. Y

Rw <X^(cX-+d) 1 exp(2) (14)
tAT — 1

n

and

X

EX1 (cXn+d) x exp 2« exp[Xec+d] (15)S Y11(cX^) exp 2=exp[Xe°+d]

Therefore, (R ,n >_ 1) is uniformly integrable. This Implies
n

that lim RtAT =1 since Eq RtAT = 1 for all n > 1.
n-*» n n
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Then

E[e(f (X -l)(dX -ds) +f(yo -l)(dY -ds))] =1
Jo s~ s Jn s" s'0 " JO

We should mention that it is not always necessary to prove that

E e = 1 for the method to be useful. It is undoubtedly true for many

cases which cannot be proved.

3.4. Waiting time process and renewal process

In this section we are going to show how to apply the martingale

approach to a particular kind of queue. The usual model for queues

assumes that the interarrival times and the service times are independent

and identically distributed with distribution functions F(.) and G(.)

respectively. The corresponding densities will be denoted by f(.) and

g(.).

Theorem: [Bremaud,1972]

Assume the same conditions (a), (b), (d) of section (3.3). In

condition (i) we assume

f(t-0J
X = £-,- (16)
t i-F(t-et)

yt 1-G(t-Ct)

where 6 is the last jump of X before t and £ is the last jump
t *-

of Y before t. In addition, assume that

Eo[e(((Xs_-l)(dXs-ds) +£ (ys_-l)(dYg-ds)] =1

Then, under Q, X is a renewal process with renewal distribution

function F(.) and Y is a renewal process with renewal distribution G(.)
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Proof: Let t = inf{t/X_ = n}. Then t is a stopping time and so isn t n «-«--«.

T + s, for any s G r .
n J

<P{X(Tn+s) - X(V =0/9FT }- K<1{ (T )=0}/CjFT )
n n n n

A.Tq+s

= Eo(1{X(T +s)-X(T )=0} TT~ T}
n n i n

n

rVs f(u-Tn)
=V-*<-]l i=F7uV)ds)/9r ]="W

JT nr n
n

T +s T +s

where AT +g = e(] (Xg--1) (dXg-ds) +j (yg_-l) (dYg-ds)
n

\ a -i)(dx-ds) +\
Jo s" s Jo

The same is true for Y. The, if we construct our process Z as

in (3.3), we will have Z as the queue length with the desired properties.

Remark: For the condition EQ[f (Xg_-l)(dXg-ds) +(Us_-1)(dYg-ds)]
•JO

= 1 we need to impose some conditions on X and y as we said before. In

this case, if TZpT^T is bounded for all n>. 0and ^gjfr) is bounded for
all y > 0, we have the desired property.

3.5. The martingale approach for other kinds of queues

Queues with service disciplines other than "one-server first-come-

first-served" can also be modeled by stochastic integral equations. For

example:

a. Two queues in series:

dZt = dX - 1(Z )dY = first queue length (18)
t t- t

dW = 1(Z )dY - 1(W )dP = second queue length

X,Y,P being standard Poisson processes

b. Two queues with the first one having priority over the second

(same server)
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dZt - dXfc - l(Zt_)dYt = first queue length (19)

dWt = dPfc - (l-l(Zt_)) l(Wt_)dYt = second queue length

X,Y,P being standard Poisson process

Analyses for these cases are similar. However, we will not treat

them in detail.

3.6. Summary and Discussion

We have seen above how, beginning with a very simple case of the

queue defined on the probability space P , we are able to find a

expression for the queue length relating the arrival and service

processes with it. Then, doing a transformation of measures, we could

define, under certain conditions, a new probability measure P, on

which our original queue length has associated with it two processes

X and y which we called the arrival and service rate respectively.

In obtaining the queue length Z on ^P we did not have to define

infinitesimal conditions, that is, there was no need of any Markov

assumptions concerning the process, as in the classical approach.

Besides that, as it was said before in section (3.2), we have the

possibility of working with the process itself, and not with its

distributions. These two main advantages will become more apparent

in the next chapters where we will deal with problems in optimization,

estimation and filtering of queueing processes.
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CHAPTER 4

CALCULATION OF CHARACTERISTICS OF A WAITING LINE

4.1. Introduction

We have seen in Chapter 3 how a queueing process with arrival

rate A = (Xfc, tGT) and service rate y = (y , t£T) can be constructed;

X and y are non-negative stochastic processes. This was done

starting with a probability measure ^P on our probability space

(fl,9z )under which the queueing process is a very simple one. We

then define a transformation of measure. Under the new probability

measure ^-p, the queueing process corresponds to one with an arrival

rate X and a service rate y. Since H/ is absolutely continuous

with respect to ^, expectation with respect to HP can be computed

working with <^P, exploiting the fact that, under <-£, the queue has

rather simple properties.

As we have seen in Chapter 3, we defined:

ft t

At =Eo <o4 i^t> "e() ^s^ (dVds) +JV^ (dVd8» =

= n X n u exp [- V (X +u -2) ds]
t±<t i- b«t i- J0

(1)

where: (t.) are the times that X jumps

(s.) are the times that Y jumps

93t 2.a(Xs,Yg), 0 <s< t)

If M is an QT -measurable random variable, it can be deduced
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(see [Loeve, 1963] or [Wong, 1971a]):

E (A„ E (M|9Jj|Cf)E(M|9}t) = o t o* UJt'ltJb'
(2)

A particular case of (2) happens when we want the mean:

EM = EQAt M (3)

The formula (3) allows us to compute expectation with respect

to <P working with ^ .

Our major objective in this chapter will be to obtain the

characteristics for the case where the interarrival times and

service times are independent and identically distributed with

distributions F(x) = \ f(u) du and G(x) = I g(u) du. In section
Jo Jo

(4.2) we will get the expressions for the queue length distribution.

In section (4.3) we will calculate the busy-period distribution.

In section (4.4) we will deal with the distribution of the nth

customer and in section (4.5) we will see how moments of the queue

size and an expression for the average waiting time can be computed

using stochastic calculus. We will end in section (4.7) with a

comparison with the classical method.

4.2 Queue length distribution.

We are interested in calculating the probability that at time

t our queue length Zfc is equal to m, a nonnegative integer. Using

(3), we can write:

«*W =E i,w =Vt *(w -w^> -1(w>
-33-



Let us suppose that (t., i>l) are defined in the following

way:

tx = {inf t: Xt=l

t0 = {inf t: X„. ,_ = 2}1 T1+t

t = {inf t: X ^ = n}
n t -+t

n-1

In the same way, (a., j>l) are defined:

a1 « {inf t: Yt = 1}

o0 « {inf-t: Y j. =» 2}1 ax+t

an = {inf t: YQ = n}
n-1

Then:

OO CO

Qtet.-J = £ £ Ert(X(t-) X(t-+t9) ...Xd.+r. + ... +t ) •
t=m k&,0 &b ° x 1 2 * 2 k

• y(a1) yfa-j+o^) ... yCo^+o^ + ... +a^) exp[-l (Xg+yg-2)ds] •
J0

*{T1+r2+...+Tfc<t, t-+t2+. . .+rk+1 >t} * {0^2+. ..+02<t,o1+a2+...

+ °*+l " t} • lI{Z <m} - Hz<m-1)»
t— t—

But

{t-+t2+. . .-K^t, t^+t^. ••+Tk+i>t^ iOj+o2+.. •+<'j£t ,0^2+* ••+0£+i>t^

{Z <m} ~ {T1+T2+-''+Ticit1T +T2+.....+Tk+1>t, a1+a2+...+aJl>_t,

al+a2+***"%+l>t} *1{a1+a2+-••a^ai+a2+#',+Vm '
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W* ••+°)l-liTl+T2+-' •+Tk-m-l W* ••+°Mrfto.+1±T1}

-<4f(t) (4)

In the same way, we find:

^Tl+T2+"*+Tk^tlTl+T2+** •"^k+l^' al+a2+* *•+0£—t* al+°2+*" •+0£+l—^

{Z =m-l} {T1+T2+...+xfc<t, T1+T2+•,*+Tk+l>t, ^"^^o"*"* *-+aji~t»

a1+a^...+<Ssi+1>t} *Ita1+02+...+o^>T1+T2+...+Tk_4n+1,

CTl+a2+* *•+a£-i^Ti+T2+-' -^k-m' ••" 'W* ••+aJUk+ -Tl} =

=Q^ri)(t) (5)

Since we must have Z = m, our expression for^p{Z asm} reduces

to

00 00

^{Zt=m} =£ £ Eo(X(T1)X(T1+T2)...X(T1+T1+...+rk) •

• p(o1)y(a1+ff2)...y(a1+o2+...+a£) • [Q^}X(t) - Q^"1}] •

• exp [- 1 (Xs+ys-2) ds]) (6)
•'o

The expression (6) is valid for any X and any u, satisfying the

hypotheses in (3.3). Under our assumptions on the interarrlval and

service times, we have:
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00 CO

<p{Zt»n} = £ E Eo(f(Tl) f(x2)...f(T )
k=m £=k-m

• [l-F(t-(T1+T2-Kk))]g'-(a1)jB(a2)...g(oJl) • [l-GCt-C^+a^.. ,+a£))]

[Q^(t) -Q^"1}(t)] •exp <-2t» (7)

Under ^, (xi,i>l) and (o.,j>l) use two independent families

of independent and identically random variables with an exponential

distribution having parameter 1. The density function of t_, t.+t-,

t1+t2+t3>...,t1+t2+. .,+t^, xk+1 is given by:

-Ui_ -t

P(ul>u2»"-»uk»t]c+i) = e e dtk+ldul du2 •" duk

Tl+T2+T3

(8)

The density function of o^,o^^^+o^+c^,... .a.+cu-h^-K. .+a£>a ^-,

is given by:

~V£ £+1
p(v-,v0,...,vn,sn,-) = e e dsrfl, dv, ... dv0 ds

r 2' £'°£+l £+1 ""1

Therefore:

t A.Vi ,u2 .t

'I "°A+i

k-n-1 K-m-1

7£-k+m+2 /fc-k+ntfl 72 «> «

I J $ ~\ "V£_tk+1 "S.£H
e e e

-36-
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f(u.^f(^-i^)f(u3-u2) ...f(\-\_j_) *

• [l-F(t-uk)] gCv^g^-v^gCv^gCvj-v^gCv^Vj^)..^^ -vA-1) •

• [1-G (t-v^)] exp(2t) ds£+1dtk+1dv1...dv^k+mdv£_k+llH.1...dv£_1

• dv. du, ... ^^2 duk_1 duj^.] -
£ 1

t \ \-l *2 t V'£ V£-k-hn4-l „V£-k-*in.

k=m »fc. J0J0 J0 JQJ J J ->(

v
2 00 00

H I
0 t-v^

"\ "V£ ^k+l *S£e e e e f(u^f(u^u^f(u3-u2) .. .f(i^-u^) •

•[1-FCt-u^.)] g(v1)g(v2-v1)g(v3-v2)...g(v£-vA_1)[i-G(t-vJl)]£2tds£+1 •

*dtk+ldvr '•dV£-k+m-ldv£-k4m-•-dv£-ldv£dur''dV2dVld\] (10)

The expression (10) allows us to calculate the queue size

distribution for queues with interarrlval times and service times

that are independent and identically distributed with distributions

f(x) = 1 f(u) du and G(y) = I g(u) du respectively. We did not
*o Jo

use generating functions, Laplace transforms and complex number

theory to get the desired results, as it is done in the classical

literature; the probability^{Zt =m}, is obtained directly as a

function of t. Besides that, we obtained a general .answer for the

problem, instead of a solution for particular cases (see, for
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instance, [Takacs, 1962] and [Saaty, 1961]. Therefore the answer

obtained in (10) is more general and, in our point of view, more

straightforward.

For the case where the distribution of X is exponential with

parameter X = constant, and the distribution of Y is exponential

with parameter y = constant, we have:

and

-X(s-0s)

s -X(s-0 ) A

-u(8-58>
y e

«• " -A(s-E) " "
e s

00 00

-p{Zt=m} -^ L, Xye (EQ Q^ - EQ Q^ )
k=m £=k-m

-v£-k+mf2 7*-k+mH „V2 » •

ul 0 0 t-u^t-v^

e~\. e'v£

k+1 £+1 2t, Jt . , . . . ,
• e e e dsn ,-dt. . ,dv,.. .dvn . . dv„ . . .-.. .dv0 -dv dun

£+1 k+1 1 £-k+m £-k+m+l £-1 1

u u u t v

0 0 0 0 "k-m+1 V-m
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Vk+mU/a-K+m /2 ,« ,» _

J I -U. J
ul ° ° '""k t_v)l

dVidWvr •^Vfc^A-w •-dVidVur ••duk-2duk-iduk) (11)

For the particular casern = 0 we get, with the expression (11):

00 ~ , 0 £+k
q>{Z =0} = exp [-(X+y)t] •£ I, xV ,p+nfkl (12)

U k=0 £-k U-i-i;iki

Rearranging the terms in the summation, we can find the classical

answer:

<p{Zt= 0} <= exp [-(X+y)t] • [IQ(2/\y~ t) +

-— 00 k

+</£ ) LjUAy t) +(1 - *•) £ (/^ ) 1^2/Xy" t)] (13)

Comparing the method used for obtainingH^{Zt = 0} ,we see

that there is no need to apply Rouche^s theorem, as it is done in

[Saaty, 1961]; or consider that we have a finite queue, then

calculate the answer for this case and, by limits, to obtain the

result for infinite queue, as in [Takacs, 1962].

4.3. Busy period distribution

A busy period is an interval of time during which there are

customers in the system. A busy period begins with the arrival of

a customer when the queue length is zero, and ends at the time the

queue length is zero again. Then, since we are primarily interested
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in the case of independent, identically distributed service times,

we can treat the problem as a queue which starts with Zft = 1 and

the busy period is the time where, for the first time, there is

noone waiting in the system.

Remark: If a queue starts with customers waiting at time 0,

the initial busy period will have different distribution than the

subsequent busy periods, which are the ones we will deal with

primarily. To get the distribution in that case will involve the

same reasoning, with some modifications, that we will apply.

We are interested in calculating

b— {T,<x} o x {T,<x} o T, {T, < }
d~~ b— b b x

where T. is the busy period,

Let us define:

xt

yt

X. if Z t 0, 0 < u < t
(«_' ' u • - -

1 otherwise

y. if Z / 0, 0 < u < t
(1) ' t U ~ ""

1 if not

Then we can express the Radon-Nikodym derivative by:

At1} =e(J (Xs-} "1} (^s^8) +1(X^J -1) (dXa-ds) +I (y^} -1) (dYs-ds) (14)
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and 4" =A^
Therefore:

CPtIb<*}-E0A<"l{t^ (15)
D—

and

^{T^x} =EQ( £ X(T1)X(T1+T2)...X(T1+T2+...+Tk)y(01) •
k=0

-1\i(o1+o2)...]i(o1+o2+...+o]ji+1) exp [-1 (Xg+yg-2) ds]

I{a1+o2+.. .+ak+1lx} (16)

Specializing to the case where the interarrlval times and the

service times are both i.i.d., we have for (16)

^{T^X} = £ (f(T1)f(T2)...f(Tk)[l-F(01-hJ2+...afcfl-T1-T2-...-Tk)]
k^O

2(a-+a„+.. •+o.)

8<01>8(02>-"8(V)8(<W e "I{o1-kJ2+...-hJk+1<X} =

x /k+1 \ >1 "2 Jfcfl ,vk 72 -

• f(uA)...f(VVl)[H(vwA)] g(v1)g(v2)...g(vk+1-vk)

2vk+l
duk+l ' dvl•••dvk-ldv2dul*••duk-2duk-ldvk+l =
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vk+i "k Vi "2 7k+i 7k 72

k=0 ^o }o }o }o Jo Jo Jo •'o

... f(v"k-l> • t^^k+l-V1 8(V8(v2)-"8(vk+l_Vk)

dvl''' dvk-ldul••*dV2dVldukdvk+1 (" }

Let us use the expression to calculate the busy period distribution

g(s-£s)
for the case X = X = constant and y = -, nr—£~~\"»s s l-G(s-£s;

„ x\+lfUk Vl U2 A+l 72

*"*•-£ U U. -U. -\
k "Xvk+1X e g(v ) • g(v2)...g(vk+1-vk)dy1...dvk_1du1...duk_2duk_1

x vk+i 7k Vi 72 _Xv
*k e k+ldGk+i<vk+i>

x k+1 Tt Hc-1

-^-•sU 11 •••).o"o o 'o '0

x

dui-dV2dvid\dvr,s„ 1 e w~ dGk+i(vk+i> (18)
k=0 J A

Remark: G (;x) denotes the kth iterated convolution of Q(tf)

with itself.

The expression (18) can be found in [Takacs, 1962, p. 58].

We can also specialize formula (17) for the case

f(s-es)
X = , t,/—r—r and y = y = constant. We obtain

s l-F(s-0 ) s
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x 7k+i 7k Vi 72 7k+i Ik v2
)^-sU. 10 -U. W."*

k+1 "UVk+l• fC^-u^.-.f^-u^^El-FCv^^Uj^)] y e dv^.-dv.
1 k-1

x k
-uv,^ (w. .-)^ f "uvk+l Cyvk+1}• dur ..duk_2duk_1dukdvk+1 =y 2^ j e (k-l) !

I^WW1 dvk+l (19)

This corresponds to the result given by Takacs [1962] in

page 124. Since (18) and (19) correspond to known results, we

know that (17) is the correct distribution. Moreover, we have

obtained a more general solution.

4.4 Calculation of the distribution of the nth customer waiting time

Let us define the waiting time a by

a « inf {t > 0: Z„ « n}
n ~~ t

a. is the arrival time of the nth customer. Then:
n —

a. n = inf {t>0: Z =0} = nth customer waiting time.
n'° " Vt

We are interested in calculating {a. Q <_ n}, the waiting

time distribution of the nth customer. Let us define:

>t«-
X if the number of arrivals up to time t is less than n

1 otherwise
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*<» -

C\ if t <on +a^

1 otherwiseV.-

If we define A using A^ , y , we get

Q{ct. ^x} = E A^' I, .
~ n,0— o t la„ ,v<nJ

(1) x

=E (S X(t1)X(t1+t2)...X(t1+t2+...+t ) via.)
£"=n

T-+T0+. . .+T
12 n

-Iy(a^,+a2).. .y(o1+a2+. ..+o^ ) • exp [-1 X ds -

1 2

-I Ms ds + (Tj+Tj-K . .•K.n)+(o1-kJ2+.. .+o£ )] •

{a^^.. •+a£.STi+T2+* •'"^V*11 ^ * *Tl+r2+" *,+Tn—ai+a2+'",+a£ *

Tl+T2+•,•+Tn-l-al+a2+•••+0J^,-l, "•» Tl-al+a2+*' •+a£-3+l* (20)

For the case where the interrival times and the service times

are both i.i.d., we have:

00

^Vo^nJ = £ Eo(f(T1)f(T2)...f(Tn)g(a1)g(a2)...g(a2)
£=n

exp[(T-+T0+.. ,+t. )+(a,+a0+. ..+an)] Ir •12 ny v 1 2 rJ {a1+a2+...+aA<T1+T2+...+Tn+x}

I{T1+T2+...+Tn<a1+a2+...+aJl, t1+t2+. ..+^£0^+.. .+0^, "•»
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- un U2 U*+X U* V&--n+l V^-n

T.<a1+...+o0 ...} =^ J J '•• I J I .. I I •.1- 1 £-n+l £n JQ JQ JQ J^ J^ J^ JQ

V2

... I f(u1)f(u2-u1)...f(uk_1) •g(v1)g(v2-v1)...g(v£-vJl_1)

dvl- •'d*n-n-ldYl-ri'' *dv£-ldv dur'-dun-l dun (21)

We have tried to compare (21) with the results in the classical

literature, but we have found it very difficult to do that because

the results are in Laplace transform form.

4.5 Calculation of the virtual waiting time

The virtual waiting time at time t is the time that a customer

would wait if he joined the queue at the instant t. Then, the

virtual waiting time is the difference between the time that all

customers, waiting at time t, are served and the time t.

Let us define:

x(1)
S

4
X if s < t
s —

^1 if s > t

ry if s < t on s > t and Z ^ 0 for t < u < s
s — u — —

'?'-
I otherwise

With X^ and v define A^ as usual. Then, if we called
s s t

the virtual waiting time at time t, n > we have:
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<P{N <x> - E A(^ I, < ,
r t— o t+ in <xl

00 00

ML H, X(t1)X(t1+t9)...X(t1+t9+...+t.) \i(o-)\x(o-+o0)
k=0 £=k x L L L z K ± J. z

°1^2+- • •-*£

y^+a^. ..+aA)exp[-| (Xg-1) ds - 1 ^s"1) dsJ

^Tl+T2+# *,+Tk—ai+a2+* **+a£' Tl+T2+#" ,+Tk-l —Cl+a2+*' •+a£-l' ***

'1-12 £-k+lJ i{a1+a2+...+e£_1<T1+r2+...Tk,

al+a2+#' •+a£-Tl+T2+#' ,+t£+k} (22)

For the case where the interarrlval times and the service times

are both i.i.d., we obtain:

co / \ U2 %+* ^£-k+l /£-k ^2

0 0 0 u, u. 0 0

dvr--dv£-k-idv£-k---dv£ dul-d\-l duk

For the case X = X = constant, y = y = constant, we have:
s s

t "k V* V*-n+l 7*-k VA
V*>=E E f f . ( ... f ( ... f<PW<n> = Z E I I .. I ... I I ... I xV*<

•l
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i£ V*'dv1 ... dv^^ dv^_n ... dv£ dux ... dVl du2 (23)

Rearranging the expression (22) we have:

k-1T>{V*> =q>{zt=o) +E<P(zt=k> ( e"^ W~x ydy (24)
k-1 JQ

This is the result obtained by Takacs [1962, p. 38]. For

other types of queues, the expression for the virtual waiting time

becomes to much complicated and it is difficult to compare with

expressions already obtained.

4.6 Calculation of the queue length moments and the average waiting

time

Knowing the distribution of the queue length, we can calculate

the moments, but, in some cases, it is possible to get expressions

for them simpler to calculate.

The moment of order n, n = 1,2,3,..., will be given by

,n „nEZ» = Eo At zTt (25)

Applying the differentiation rule to A Z , we get:

t t

AZ* = f nA Z11"1 dZ + J Zn dA +52 [A Zn-A Z* -
tt I s-s s Is-s *ri s s 8-8-

- N A Z^AZ - A Zn AA ] =
s-s s s- s- s

= I 2? dA +V* [(A +AA )(Z +AZ )n-A Z? -A Z* AA ]=
I s- s ^-» u v s- s' Ks- s' s- s- s-s- s '

J n s<t
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= Zs_dAs+£ «V+AV «!> ZsI1(AZs> +(2> C2^' +-+
^^ s<t

+ (AZg)n] =

t

( zs-dAs+ E^s-vvvv^ [(i} *T1(Av+ (2>zx"2(AZs)2 +
Jn S<t

0

+ ... + (AZ )n] =
s

t

=( z:-dA8 +fdA + 1 A A [(?) Z11"^ (n) Zn"2+...+l] dX +
1 S- 8-1 S- 2 8- 8

0

+\ vAs-[-<? c1 +(X:2+---+(-l)ni l(zs->dY<

Taking the expected value, we obtain:

t

EfA.Z*] =\ [AEnrtft EAX2?f2+...+E AX] ds
ott I losss L osss OSS

t

f [-£) EAp^t (») EApz"
11 o s s s 2 o s s s
J r\

~2+...+
8

+ £ .) (-1)11"1 EApZ] ds + 1 (-1)* E Ay n(n ) ds (26)
n-l osss i osss

0
J
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Using the formula we can calculate the mean:

t t

= 1 EAX ds - 1 E A u 1(Z ) ds =
t I OSS 1 OSS s

t t

j E(Xs-ys) ds +j Eyg I{Zg=0} ds (27)
"^'s "s' "| " ^s 1^S=UJ

0

For the case X = X = constant and y = y = constant, we have
t ^

t

EAX =1 L(t) AEZ11"1 +O XE2^~2 + ... + X] ds +>Vt =([(*:O t t | " J. S 2 S
0

t

f[-£). yEZP"1 +£> MEZ^'-2 +... +^X-lfVE Zg] ds +

-if u E 1(Z ) ds (28)

1.'
EZt = (X-y)t + y1^p{Zg =0} ds (29)

In this case, for calculating the mean, we only have to know

the value of cP(Zt =0}.
Another interesting case arises when X = X = constant and

y = c Z , where c is a constant. Then we find, after differentiating

n

the expression corresponding to E Z :
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d(EZ^)*•' n n-l n n_?dt— -A(x) EZt A+A(2) EZt + ... +A-

-C(J) EZn +c(») EZ^"1 +... +^(^(-D^EZ2 +c(-l)n EZt (30)

The mean is:

d(EZ.)

if^-c(EV (31)

A —ctThe solution of equation (31) is EZt =- (1-e )

The average waiting time is given by the expected value of

the virtual waiting time. In the case of i.i.d. service times, the

virtual waiting time is given by:

dTi = « dX_ - 1(Z_ ) dt (32)
t t t t—

where (a , t>0) is the waiting time of a customer arriving at

time t. The average waiting time will be given by:

Eri = E An (33>
t o t t

Using stochastic calculus in An., we get:

t t

A„Th =An+l A dn +1 n dA + /,t't 00 J s- 's 1 s- s- ff
J0 J0 -

dA_ +Zj An AA =
s s

=An +1 A dn +1 n Ad + 7^ (a AX )[(A -1)A AX +0 0 J s-s J 's- s ~v s s/lx s- s s
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+ (y -1) As- AYs] =

t t t

=Vo+( Vdl|. +f VdAs +)
Jo •'o Jo

Therefore:

(A -1) ct A dXe (34)
s- s s- s

EAn,. =EAnnn +I EAao ds - I EAQ l(n ) ds +
ott o 0 0 I oss I os s

+ \ E (A -1) a A ds =J Ox S S 8

t t

AnTln - I EA 1(Z ) ds + I EAa A
> 0*0 I oss I ossj

J o •'o

Since(P{nt =0} =rP{Zt =0}, we get

t t

EAn =EArtTU - t +I ^P(Z =0} ds +I EAa A ds
ott ou u l^s I osss

-'o •'o

If, under SP, (a ,t>0) and (A , 0 £ s *£ t) are independent, we

have,

Vt\ " EoVo " C +

t t

I ^{Zg =0} ds +I (Eas)(EAg) ds

Calling E a = a, we have:
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1 cp{Zg =0} ds +I aAverage waiting time « En = En - t +I <p{Zg =0}ds+l aE(Ag) ds
0

(35)
If we take A = A = constant, we will find the expression,

given by Takacs [1962]:

t

En„ = En + 1 0{Z = 0} ds - t (1-aA)t 0 J ^ s

-52-

(36)
s

0

4.7 Comparison with the classical method

The methods presented in the section (4.2), (4.3) and (4.4)

were intended to solve the case where the interarrlval and service

times are both i.i.d.. The main reason for doing that was that it

is the case treated in the classical literature and we would like

to compare the two approaches. The use of the transformation of

dQmeasures ^ppr- can be used in problems other than this; the complexity
ro

of the calculations, however, increases.

Comparing the two methods, we see that in the case of the

martingale approach, given the transformation of measure, we only

need to do some combinatorics and then, taking advantage of the

behavior of the processes X and Y in ^P , calculate the probabilities,

Instead in the classical approach we have to solve differential

equations using Laplace transforms and complex number theory to

obtain the desired results. Besides that the methods vary with the

case being treated. In the calculations of the moments and the

average waiting time, the expressions are obtained directly by use

of stochastic calculus and without the necessity of calculating



generating functions.

New results are obtained for the queue length,busy period, nth

customer waiting time and virtual waiting time distributions in

the case where the interarrlval times are i.i.d. with distribution

F(x) and the service times are also i.i.d. with distribution G(y)

(formulas (10), (17), (21), (22)). These results were checked with

particular cases given in the classical literature.
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CHAPTER 5

OPTIMAL CONTROL FOR WAITING-TIME PROCESSES

5.1. Introduction

Suppose that we have a waiting time process where it is possible

to vary, in some way, our service mechanism. Therefore we can consider

trying to adjust the service in order to improve the performance of

the system. This performance is usually measured by the number of

customers in the system and the cost of service. Our decision in

changing the service arrangement is usually based in our observations

of the behaviour of the queue length up to the time we do the adjustment.

The main objective of this chapter will be to derive a Hamilton-

Jacobi equation for the control of the waiting time processes. Our

work will be based mainly on the paper by Davis and Varaiya [1973] in

which the Hamilton-Jacob! equation is obtained for the Brownian notion

case.

In section (5.3) we will derive the Hamilton-Jacobi equations.

In sections (5.4) and (5.5) we will apply these equations to obtain the

optimal control for linear and for quadratic objective functions. It

is worth mentioning that the results obtained for the Hamilton-Jacobi

equations can be extended to any queueing process where the arrival

process X is a jump Markov process and the transformation of measure

dq>
exists.

*?>«o

5.2. Preliminaries

1. Let us start with a probability space (&,tT»4^ )• Under r ,

(X ,9J ,t G [0,1], (Yt>(^ftyt e [0,1]) are real valued, independent
standard Poisson processes.
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Let us define the process Z as in equation (7) in section (3.2).

Define:

are

>U(U) =£(f (A-
Js

l)(dX-ds)+\ (y -D(dY-ds)) (1)
s 1 s— s

K

2. The class of Markov controls, denoted by^ytl =^/lL, where^U is the

class of functions satisfying the following conditions:

a. y: [0,1] * [0,1,2,..] •* E c R is non-negative, jointly

measurable.

b. For each t, y(t,.) is adapted to a(Z )

c. EQ[pt(y)/c3fs] =1 a.s. <pQ for all t,s € [0,1]

Remark: If condition (c) is satisfied we know that (see (3.3))

the processes:

M(1) = X - At
t

M(2) =Y -\yds
t t 1 s

•'0

such that (M^^'t € [0,1]), (M^.^.t e [0,1]) €J4 under
loc

H^9 the measure defined by pn. Therefore the process Zwill have arrival

rate A = constant and service rate y = (y ,t ^ [0,1]) under r.

3. Let c: [0,1] x [0,1,2,...] x E -»• R be a non-negative real value

function satisfying:

a. c: [0,1] x [0,1,2,...] x £ ->- R is jointly measurable

b. For fixed (t,y), c(t,.,y) is adapted to Vj .

Then the cost ascribed to a Markov control y will be

fT i f1J(y) = E 1 c(s,tg,y(s,Zs))ds = Eo[pQ(y)\ cs(y)ds]
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*

Our objective will be to find an admissible control y such that

j(u) is minimized.

This way of formulating the problem is different from the approach

usually taken for optimization of Markov processes. (See for instance,

[Fleming,1969]). There, a probability space (ft ,9?,^) is given a

priori, and different processes have different sample paths defined by

having control-dependent coefficients in some differential equation.

This kind of formulation causes a number of theoretical problems, one

of them being the necessity of smooth controls, what usually does not

happen for the optimal control. The approach used in our work has the

following features: (i) the control is closed loop; (ii) admissible

controls need not to be smooth, (iii) the transformation of measures

P0(y) gives a measure corresponding to the queue with arrival rate

A = constant and service rate y = (y ,t £ [0,t]). More details about

this approach can be found in [Benes,1970].

5.3. The Hamilton-Jacob! equation for waiting-time systems

1. Suppose a control u £yvA is used on [0,t] and v ^LAi *s used on

[t,l]. Then the expected remaining cost at time t, given the value of

Z at time t-, is: -

. E[p*;(u)pj(v)f cfv)ds/Z ]
(1 ootjs t-

c ds/Z, ] = —^ (2)
t S fc" E[p/Zt ]

o o t—

Since, under H- , Z is a Markov process and u is Z -measurable,
o r t t

we have:

1 1

E0[p^(u)pJ(v)f csds/ZtJ - Eo[p£(u)/Zt]Eo[pJ(v)f csds/ZtJ (3)
JX. J t
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Then:

*uv(t) "Eo[pt(v)f C8d8/Zt-3 (4)
J t

Therefore, we can write

.1

*u(t) a Eo[Pt(u)f Cs(U)ds/Zt-] (5)
<* t

Let us define

Ut o U(t,Zt) » infimum * (t) (6)

*m\

In [Davis,Varaiya,1971] it is proved that this minimum exists

in L* for each t.

2. Markov principle of optimality [Davis,Varaiya,1971].

Let y^jU. Then, for each t,h:

•t+h

t - y J c^>ds/ZtJ +Ey[Ut^/ZtJ

3. Lemma: There exist measurable functions AU: [0,1] x [0,1,2,...] -»•

R, Ux : [0,1] x [0,1,2,...] + R and Uy : [0,1] x [0,1,2,...] + R,

such that:

Eq\ |AU(t,Zt)|dt <oo
o'

0

j iv^v'2^< •
]

J. |uY(t,zt)|2dt <
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t t

U(t,Zt) = JM +1 AU(s,ZsJds+f Ux(s,ZsJdXg
•'o •'o

+1 Uv(s,Z_)l(Zg_)dYs (7)
•'o

where J w = inf J (y), the minimum Markov cost.

M m
4. Theorem: y G^\A is optimal if and only if there exist a constant

J* and processes (nt,t e[0,1]), (^1},t G[0,1]), G^.t €[0,1]),
taking values in R, adapted to a(Z ), and satisfying the following

conditions

(1)i2dt <-«...
J0 z

[ IC^^dt <•a.s.
Jo *

b. X(l) =0a.s. where X(t) =j* +1 nds +l5* dX
Jo S JO S 8

Jo a 8"
>d*s

c. nt +5^1}X +5^2W,Zt_)l(Zt_) +c<p) >

-nt +cf>X +6t(2V(t,zt.)l(Zt_) +c<"*>

Then X(t) » U a.s. and J = J(y ), the cost of the optimal

Markov policy.

Remark: (5.3.3) and (5.3.4) are proved almost exactly as similar

results in [Davis,Varaiya*,1971]. The difference is that, here we are

dealing with Z, a counting process, and, in the mentioned work, the

process Z is a diffusion process. Therefore, in the proofs of

(5.3.3) and (5.3.4) we have to use the results given in (2.6.9),
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corresponding to the representation of processes that are martingales

with respect to a family generated by a jump process.

5. Suppose that the function U(t,z) has continuous first partial

derivative in t and continuous first and second derivatives in

then

Ux(t,z) = U(t,z+1) - U(t,z)

UY(t,z) = U(t,z-1) - U(t,z) (8)

AU(t,z) =^51

Proof: Under the measure*~P we have:

Xt -fAd. -X-At ^JUloc^Pp)
-'o

Yt-fy(s,Zs)ds^Uloc^y)
^o

Therefore:

t

' = X - 1 l(Zc )dY = t - 1 y(s,Z )l(Z)ds + X - At
t t 1 8-' s 1 S S t

-i l(Zc )(dY -y(s,ZJds)

is a semi-martingale under ^P
y

Then we can apply the differentiation rule to U(t,Z ):
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-•v-^fe-f 3D(S'Z8-) dZ
S

o 3Z°
3U(s,Z )

+22 [U(s,Zs)-U( s,ZsJ - ^ AZg]
8<t

.tf 3U(s,Z ) ('
= jm +\ —5T^ ds +\ tu<s'zs.+1)""u(s,zs-)]

•'o o
t

+I [U(s,Zs_-l)-U(s,Zs_)]l(Zs__)dYs
•^0

Comparing with (5.3.3), we find:

Ux(t,z) = U(t,z+1) - U(t,z)

Uy(t,z) = U(t,z-1) - U(t,z)

AU(t.z) =M|^l

dX
s

7. Hamilton-Jacob! equation for waiting time processes control

If the function U(t,z) satisfies the conditions given in

(5.3.6), then the condition (c) in (5.3.4) reduces to:

au<t>z) + A[U(t,z+l) - U(t,z)] +min {[U(t,z-1) - U(t,z)]l(z)v
3t v^Z

+ c(t,z,v)> = 0

for all (t,z) G [0,1] x [0,1,2,...] and the optimal policy y is

characterized by the property that

[U(t,z-1)-U(t,z)] l(z)v + c(t,z,v)

is minimized by v = y (t,z)
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Proof: The conditions of (5.3.4) are satisfied taking:

nt = A(t,zt)

5? =Vfc'V

5<2) =Vt,zt)

Since by (5.3.6), we have

ux(t,zt) = u(t,zt+i) - u(t,zt)

uY(t,zt) = u(t,zt-i) - u(t,zt)
au(t,z.)

A(t,Zj =
v at

The condition (c) in (5.3.4) reduces to:

3U(t,Z )
—3^-+ A[u(t,zt_+i) -u(t,ztj] + [u(t,zt_-i) -u(t,ztj]i(zt_)

•y (t,ZtJ + c(t,Zt_,y (t,ZtJ) = 0 a.s.

Since y(t,Z ) can take any value in E, we have:

3U(3;Z) +A[U(t,z+l)-U(t,z)]

+ min {[U(t,z-1)-U(t,z)]l(z)v +c(t,z,v)> = 0
vez

for all (t,z) e [0,1] x [0,1,2,...]

8. If the conditions of (5.3.4) are satisfied, we have:

inf J(y) = inf J(y)

whereJv is the class of non-antecipative controls, that is, the
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admissible controls are functionals of the past of Z (measurable

with respect to & = a(Z ,0 <_ s <_ t))
t s

Proof: By (5.3.7) we have:

AU(t,z) + AUx(t,z) + Uy(t,z)l(z)v + c(t,z,v) >_ 0

for all (t,x,v) e [0,1] x [0,1,2,...] x I

Let y eJvl, then the processes:

M(1) » x„ -I Ads
fc t JJ0

M(2)=Yt-j ysds
-J

belong to^Uloc(^).
But, by (5.3.3)

,t

Ut =JM +\ *"<•.*.>*• +(Ux(s,Zs_)dXg +[ UY(z,Z8_)l(Zs_)dYa
0

and U(l) = 0. Then

TAU(s,Zs)ds +(" U^1)(s,Zs_)dXg +fUY(s,ZsJl(Zs_)dYs)JM * ~E (

--E <f[AU(s,Zs) +AUx(s,Zs) +UY(s,Zs)y(s,Zs)l(Zg)]ds)
j

< E I c(y)ds = J(y)

Since was arbitrary:

JM < inf J(y)

Now JM >_ inf J(y) sinceuv\ c.Af. Therefore:

-62-



JM = inf J(y)

5.4. Optimal Control for Linear Cost

In this and in the next section we will apply the Hamilton-

Jacobi equation for special kinds of cost functions. First we

shall suppose that we can only vary our service rate from 0 to

c = constant, that is, E = {v : 0 <_ v <_ c}. Our cost will be

given by:

T T

J(p) =1c(s,Zg,y(s,Zs))ds =1(eZg+y(s,Zs))ds (9)
o •'o

where T = fixed time.

Therefore, our optimal control y*(t,Z ) must be such to

minimize (by 5.3.7):

vl(z)[U(t,z-l)-U(t,z)] + ez + v (10)

for all (t,z) G [0,1,] x [0,1,2,...]

Then:

TO if z = 0

y*(t,z) =< 0 if z > 0 and U(t,z) - U(t,z-1) -1 < 0 (11)

^c if z > 0 and U(t,z) - U(t,z-1) -1 > 0

Remark: y*(t,z), in this case, belongs to^l/l- since

y*(t,z) < c, for all (t,z).

We have to calculate (U(t,z) - U(t,z-1)-1) in order to know,

for z :> 1, what is the value of the optimal control. U(t,z) must

satisfy:
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au(t,o) + X[u(t,i) -u(t,o)] = o

3U<*>Z> + A[U(t,z+l) - U(t,z)] + cl(U(t,z) - U(t,z-l)-l)[U(t,z-l)

- U(t,z)]

+ ez + c l(U(t,z) -U(t,z-1)-1) = 0 for z > 1 (12)

U(T,z) = 0 for all z >_ 0

Since U(T,z) = 0 Vz ^ 0, we must have, near the terminal

time T, that U(t,z) - U(t,z-1) -1 < 0. Therefore, our optimal

service rate will be y*(t,z) = 0, Vz >. 0, for t very near to T.

Then calling:

U(t,z) - U(t,z-1) -1 = P(t,z) (13)

we have

3P(t,z) + AP(t,z+l) -AP(t,z) + e = 0 for all z > 0 (14)
31

P(T,z) = -1 for all z >_ 0

The solution to this equation is given by

P(t,z) = e(T-t)-l

Therefore, for t € [T-l/e,T], we have:

y*(t,z) =0 Vz > 0

since P(t,z) is positive

For t <_ T -1/e we have
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3P^I1} + XP(t,2) - (A+c)P(t,l) +e =
3t

0

3Pfo>z) +AP(t,z+l) - (A+c)P(t,z) +c P(t,z-1) +e =0 Vz >. 2

P(T,z) = 0 Vz >. 1 (15)

For solving the above equations we need to use the method

of generating functions (see [Pinney,1958]), we define:

00

Q(t) =2 ^(t'Z) a <1 <16>
Z=»l

Then we get by using (15)

^&-+£ Q(t) -£P(t,l) -(A+c)Q(t) +caQ(t) +6^=0

(17)

Q(T) = 0

Making the transformation u = T-t, we have

22&L -*- Q(u) +\ P(u,l) + (A+c)Q(u) - caQ(u) -f~- =0
3u a a J-—a

Q(0) - 0 (18)

Taking the Laplace transform of Q(u), we obtain:

--££[P (u,l)] +I2- -

Applying Rouche fs theorem to the Laplace transform (see

[Saaty,1961]), we get:

2 3

$£[P(u,l)] =f •\I3c (/X> u_1I3(2^Fu)
c

2 4

+4^ (»^) u"1I4(2Ac" u)+ ...] (20)
c
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Since I (2/Ac u) >_ 0 for all u _> 0, any n, we have:

P(T-t,l) > 0 VtG [0,T-l/e]

Substituting in the equation (19) the value of §P[P(u,l)],

we obtain

g2[Q<«)]=^[i[a+^+a2+^+ *!/£
11 10-

1 9i ei
00

*H (•§-* (21)
n=0 1

Therefore P(T-t,z) >, 0 Vt € [0,T-l/e], Vz >_ 1

We can now summarize:

TO for z = 0, Vt € [0,T]

y*(t,z) =< 0 for z > 1, t € [T-l/e,T] (22)

^c for z > 1, t € [0,T-l/e]

We have obtained a bang-bang control. It was obvious from

the beginning that the value of the service rate would be zero

when no one is in the system, but, now, we have found out that

for some period of time near the terminal time, we should also

have no service at all. The reason for this is the fact that,

for a small period of time, the probability of one person being

served is very small, and we will increase our cost by trying

to serve.
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5.5. Optimal dontrol for Quadratic Cost

Let us suppose that we have Z = R and our cost function is

given by:

fT fT 2 >|2(8>Z )
J(y) =\ c(s,Zs,y(s,Zs))ds =\ [eZ* + 2 ]ds (23)

^o o

Our control must be such that to minimize the following

expression:

2 v2
vl(z)[U(t,z-l) -U(t,z)]+ez +-=•

for all (t,z) e [0,1] x [0.1,2,...]

(24)

Then

,2
u*(t,z) =-y [U(t,z)-U(t,z-l)]l(z) (25)

and U(t,z) must satisfy the following equations:

3U<*>°> + X[U(t,l)-U(t,0)] = 0
dt

2

3U<fc>z> +A[U(t,z+l)-U(t,z)] - ~- [U(t,z)-U(t,z-1)]2 +ez2 =0
31 "

for z >. 1

U(T,z) =0 Vz >_ 0 (26)

We couldn't find a closed form solution for these equations.

Trying to solve using Picard's method, we realize that the optimal

control is almost linear with the queue length, that is, y*(t,z)

^ a(t)z + b(t), for z > 0. Now, if we change our cost function

by adding a cost f(t)/X , whenever there is a queue length

different from o, we should be able to obtain a linear control
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by finding a convenient f. Supposing that this cost is small

2 P2(t,Z )
in relation to eZ + « » we are in Position to state

y

that the optimal control for our original problem is indeed

approximately linear.

Therefore, our objective function is:

fT ? u (s'Zs) f(s}j^y) =I [ez2 + ;r-4- +̂ ir1 KZJ1[eZz + r-4- + ^ KZ )]ds (27)
s \2 A2 s

0 x A

The expression to be minimized is:

2

vl(z) + [U.Ct.z-D-U-Ct.z)] +ez2 +^+ l(z) ^- (28)
11 XZ Xz

for all (t,z) ^ [0,1] x [0,1,2,...]

Then:

2

y*(t,z) =-y [U1(t,z)-U1(t,z-l)]l(z)

and U1(t,z) must satisfy the following equations:

9U.(t,z)
—±gj + Xl^Ct.D-^Ct.O)] =0

au.(t,n) x2 2
3t " +MUjtt.z+D-U^t.z)] --y [^(t.z^U^t.z-l)]

+ez2 +l(z) ^- =0
X

Ux(T,z) =0 Vz >0 (30)

calling R(t,z) =X2[U1(t,z)-U1(t,z-l)],z >1, we have:

3R£,1? +XR(t,2) - XR(t,l) - 7 R2(t,l) + X2e + f(t) =0
at 4
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8R<*>Z> +XR(t,z+l) -XR(t,z) -j R2(t,z) +j R2(t,z-1)

+ X2e(z-1) = 0 (31)

R(T,z) = 0 for all z >_ 1

Let us try a solution of the form R(t,z) = a(t)z + b(t),

z j^ 1 for these equations. Then a(t), b(t), f(t) must satisfy:

a(t) +j a2(t) +2eX2 =0 a(T) =0 (32)

2
•/ \ . £/ \ . * /„\ 1 2. x a(t)b(t) b (t) , .2a(t) + b(t) + Xa(t) - j a (t) 2 4

+ f(t) = 0 (33)
2

f(t) =^"P" (34)

Solving the equations (32), (33) and (34) we get:

a(t) = 2X^i tanh[X»^i (T-t)] (35)

b(t) = 2X - 2X sech[X*/£ (T-t)] + ^e X sech[Xi/e" (T-t)].

• tan~1[sinh(X»^ (T-t))] (36)

f(t) =j (2X-2X sech[X»^e (T-t)] + Je Xsech[X*^ (T-t)]

• tan""1[sinh(X»^ (T-t))])2 (37)

Our optimal control is given by:

fx/e z tan[Xi/e (T-t)] + /f(t) if z > 0
y*(t,z) =

L 0 if z = 0 (38)

The optimal control obtained belongs to the classJ\A of

Markov controls since satisfies the conditions (a), (b) obviously

and conditions (c) is a consequence of a result proved in section
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(3.3)

Let us study the function f(t) and make comparisons with

2 2eZ^ + [y*(t,z)] . Since y*(t,zx) >. y*(t,z2) when z1 >. z2> we
2

only need to compare f(t) with e + [y*(t,l)] . Therefore, taking

X = 1, we find the following results for different e\s:

e = 0.25 e = 1

T-t f(t) (y*)2+e

0.2 0.0009 0.27

0.4 0.0049 0.32

0.6 0.0144 0.42

0.8 0.0324 0.56

1.0 0.0625 0.81

1.2 0.090 0.94

1.4 0.140 1.19

1.6 0.190 1.25

T-t f(t) (y*)2+e

0.2 0.024 1.10

0.4 0.063 1.40

0.6 0.16 1.98

0.8 0.28 2.42

1.0 0.40 2.93

1.2 0.52 3.40

1.4 0.62 3.82

1.6 0.71 4.10

e = 4

T-t f(t) (y*)2+e

0.1 0.04 4.18

0.2 0.21 4.71

0.3 0.53 5.61

0.4 0.98 5.01

0.5 1.32 7.65

0.6 2.04 9.11

0.7 2.69 10.35

0.8 3.17 11.29

0.9 3.57 12.01

1.0 4.16 13.00

By the data provided above, we can conclude that:

(a) for X = 1, e = 0.25 and T <_ 1.0, the function f(t) is very

2 y*(t,Zfc) 2
small with comparison to eZ + [ r ] . Then, if we use

t A

v(t,zj

T

2 MV«-»^fcy 2 MVi-,i ;
as objective function eZ + [ -——] instead of eZ. + [ ]

y(t,zj

t u T

+ f(t)l(Z ), our optimal control will be almost the same, that is

P*(t,z) =
/e z tanhtv^e (T-t)] + /f(t) z > 0

if z = 0
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(b) The same is true, if X = 1, e = 1, T £ 0.6 and X = 1,

e = 4, T <_ 0.3.

This implies that the optimal control for the quadratic case

will be almost linear depending on the values of T, X and e being

used.
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CHAPTER 6

IDENTIFICATION AND ESTIMATION IN WAITING LINE PROBLEMS

6.1. Introduction

In the chapter we shall deal with some problems in identification

and estimation related to queueing processes.

Concerning identification, we will find the maximum likelihood

estimators for unknown parameters related to the arrival and servicee

rates, based on the observation of the past of the queueing process.

The likelihood ratio for queueing processes will be derived as it

was done in [Van Schuppen,Wong.1973]

In estimation, we will be mainly interested in estimating the

random processes X and y, the arrival and service rates, at time t,

based in the past of the queue length and knowing the dynamical

equations that govern both X and y. In this case, we will apply

the unnormalized conditional density method, used by Wong [1971a]

for Brownian motion cases, and by Boel, Varaiya and Wong [1973b]

for jump processes. Another problem to be consider is the estimation

of the queue length given the input flow or given the output flow.

For this last problem, martingale methods apply directly. A case

in which approximated filtering is possible will be shown.

6.2. Maximum likelihood estimators:

In section (3.3) we introduced a transformation of measures

d<P,^-p. defined by:

dO " -j -S----S-' "j-s-—s^-= e(f (Xc -l)(dX -ds) +f(y„ -D(dY^-ds)) (1)
Jo s~ s Jo
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Also:

E0 {̂ "^t1 =£(f Ŝ-"1} <dXs"d8) +i 8̂-"1} (dYS-ds)}U)

We are interested in finding:

where ^ =a{ Z ,0<©<t}

By the martingale representation theorem, presented in (2.6.9), we

have:

t t

L =1+\a(+)(dX -ds) +IaW 1(Z )(dY -ds)
t 18-818- S- S

•'o •'o

where a and o are predictable processes, satisfying:

t

(+)

J-

Then:

ds < ~ for all t^T
s '

ds < «> for all t £ T
' s J

0

A_ dX_ + I X_ dA_ + I (X _-l)A _dXA,X = A dX + X dA +
tt 1 s-s 1 s-s 1

•'o Jo J\,
t t t

L X =I L dX +I X dL +I af"*
tt ls-s 1 s-s It

Jo Jo •'o

Since E0CAtXt/^t} =I^A.-, we must have:

E0(d(AtXt)/%) - E0(d(LtXt)/3;t)
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implying:

Eo (A t^t-*t+(X t-"1)As-dXt/^t)
=Eo(Lt.dXt+Xt_dLt+a<t)dXt/^t)

and

°t+) =W^t/Bt1 (4)

In the same way, we have:

at_) =Eo[(yt"1)At/C^t] (5)
Therefore:

t t

Lt-1 +J Eo[(Xs-l)As/^s](dXs-ds)+J Eo[(ys-l)Ag/^s]l(ZsJ
0 0

. (dYg-ds) (6)

But

E [(X -1)A /%' ] E [(X -1)A /^ ]
Xs-1 =E[(Xs-l)/ §1 =———_— =

OS ess s

_KoI0.,-DA,/9;.] Eo[(ys-l)A8/Q^
X.-l =E[(ps-l)/^s] - I £ Z

O S £7S S

Then:

t =1 +1 (Xg-l)Ls_(dXs-ds) +1 (ys-l)L8.KZs_XdYg-ds) (7)
0

Therefore L is given by the exponential formula:

Lt =
n A. n yo exp[- f ((X -1) + (y -l)l(Za))ds] (8)
t,<t fci s.<t V Jo 8 8 8
i- 3- J

Where (t.) are the times ofthe positive jumps of Z, and (s,),

the times of the negative jumps of Z.
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Let us suppose that A = X - unknown constant and u = y
t *-

unknown constant, and we want to find the maximum likelihood

estimators e(A) and e(y) respectively. In this case:

N M

Lt =A yt exp[-(A-Dt-(y-l)St] (9)

where N = number of positive jumps up to time t
t

M^ = number of negative jumps up to time t
t

S = busy period up to time t

The maximum likelihood estimates for A and y will maximize

L . Differentiating with respect to A and y, we get:

N

e(A) = -± (10)

Mte(y) =-^ (11)
St

Suppose now that A is known and y = y-+y.I, ,, that is,

we have two servers in parallel with service rates y.. and y ,

constant and unknown. Then

N M P

Lt = X yl ^1^2* exp{-XX-1)^(^^1)3^282} (12)

where: M = number of jumps from 1 to 0 up to time t.

P = all other negative jumps up to time t.

s^ = busy period up to time t.

s« = period of time up to time t, when there are more than

one costurner waiting.

The differentiation of the likelihood ratio gives us:

Mt(e(y1) + e(y2)) + P^V "V^^V + e(y2)) - 0

Pt - s2(e(y1) + e(y2)) = 0
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Therefore:

MP M„
e(u ) = LJE =-JL_ (13)e(V Pt(sr82) 8l-s2

P Mfc
e(p ) =_£ __JL_ (14)
(V s2 sr82

Another case happens when A is constant and y = cZt_»

where c is an unknown constant. Then:

Lt

N ft ft
= At n cZ exp[-\ (A-l)ds - \ (cZ -1)1(Z )ds] (15)

s,<t Sj Jo Jo

and the maximum likelihood estimator for c is given by:

,(c)o(m n z ).—x
S.<t J
3" J \ Z ds

6.3. Estimation of the arrival rate and service rate of a queue

using the unnormalized conditional density method

We are interested in estimating the pair(1 given Q^

= a(Z ,0<s<t). For this purpose, we begin as in section (3.3),

defining a transformation of measures .^ ,using as <J~^

//»\ \- (( 8)»Qls£t)v/ cr((X ,Y ),0<s?t). To the hypothesis already

imposed in(3.13) we have to add the following:

(a) (( t),(3F >(-P) is aMarkov process whose sample paths
are right continuous and have left-limits, and the jump times of

I 1are totally in acessible.

(b) The processes (X,Y) and ( Jare independent under ^Po
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Let us define:

(A = a((X,Y ),0<s<t) (17)
t So

If a function g(X ,y ) belongs to G = {space of all bounded,

measurable functions, defined on (AxB)", where A x B is the range

of ( J}, we define:

nt(g) =Eog(xtjyt)At/C^t] (18)

where

it =e( f(As_-l)(dXs-ds) +| (ys_-l)(dYs-ds))

and therefore, satisfies:

At =1+iAg_(Ag_-l)(dXs-ds) +1As_(y8_--l)(dYs-ds)
•^o •'o

Then:

^(X^y^/jg =Eo[g(Xt,yt)Ut] +Eq[J g(Xt,yt)A8_(Xs_-l)(dX8-ds)

\ g(Xt,yt)As_(ys_-l)(dYs-ds)/^t] (19)
t

+

0

Since (X ,Y )and ( t) are independent under ^p ,we obtain:

E0[g(Xt,yt)Ut] =V(Xt'yt) (20)

Also

B[g(XeM^^.(X^-DiUtl =E0[E0(g(Xt,yt)A8_(Xa_-l)MtV QjiAj
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where 3 =a(( P)»°iP£s) • sinceJ^. and 9S are indePendent>

=Eo[Eo(g(Xt,yt)/g8)Ag_(X8_-l)at]

/Xt\Using the Markov property of I 1, we have:

= E
o

o

[».k-^ C8s))v<xs--1)/A]
"EotEo(6(Xt»,1t)/(^))As-(Xs--1)/^sV °«VYu'8^t)]
But (X,Y) has independent increments

•VEo(8(VV'Cj) V'V-"'-*.1
In the same way, we can get

E[g<Xt,Pt)As_(us_-l)/jg =E0[Eo/g(Xt,wt)/(^)jA9(Ma_-l)/Jl8]
Therefore:

E
o

[g(Xt,Ut)Atat] =Eog(Xt,Mt) +jEo[E/g(Xt,Pt)/(^)jAs(X8-l)aa]
•(dXs-ds) +jEo[Eo/g(Xt,yt)/(^)ys(ps-l)a8](dY8-ds)

Now:

VtfWV&i - VV^V^MA^t1 =Eo8(xf"^

+V£Eo[Eo(8(AfV/Cl))As( V^-CAsHdX^ds)
jVEo(*<VV^fs*V^s1 (dY8-ds)/%]+

0
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Let us define

Pt =jV^VV^/J/VV^s^V*8'
Pt =EQ(Pt/^t)

«t •jEoiEo(«<AfV/C;))x.<vi>^.](d,t.-d,)

By the martingale representation theorem, we should have:

P. -I*+ (dX_-ds) +i*T l(Z8J(dYs-ds)

z
t t 1

o •'o '0

t t t

ts (C(dvds) +(v
•'o •'o

t t

Q. =1 C_(dx»-ds) +1 V1(Zs-)(dYs"d8)t =(C(dvds>+l
•'o ^

Defining Z* =Xt-t and Z~ =1 l(Zg_)(dYs-ds), we obtain:

t t rZ I X \

tPt =\ CdPs +jVdZs +J^o^oft^K^^"1^^'

Z+P =I Z+ dP +i P dZ+ +I ^ dXo
tt IS- 8 18-S 1 T8- S

Jo ^0 Jo
+ T +"Since E [ZP/A] - Z Pt,we must have

Eo(d(Z>g)/^H) =Eo(d(Z^P8)/^B) (21)
o S S (Sq' OSS ^s

Therefore:

E [Z+dP + P dZ(+) + E
oss s— s o ^(^•^Kyl))^^^^.1".^1
=E [Z+dP +P dZ(t)+i|,+ dX /%]

OSS S-S S- S ^8
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Using equality (21), we find:

**. -Eo(Eo!Eok^t)/Cj)As(Xs-1)/A1/^)
=Eo[Eo^(Xt,Pt)/(/jys(X8-l)/^s]

In the same way, we obtain:

ib = 0
rs

< =°

(22)

(23)

(24)

«; -^^^t-^^;))1.^^^.1 (25)
We can write:

t

V =V +(V(Vs8)(\f1)](dvds)

+f it 10L ag)(u -D1KZ )(dY -ds) (26)
1 S t,S S S o

•'o

where the operator tt is defined in (18), and

Ht8(g)=Eo[g(Xt,yt)/(iJ8)]

Hence:

(27)

, ,, wQfi Eo[8(Xt'W^t3E[g(Xt,yt)/^t] E0[At/<^t]

j^t,s8)<V1} ](dVd8)+f *8[ (Ht ,s8)(V1} U(Zs-) <dVds)
1+f it [(X -l)](dX -ds)+f tt [(y -1)]1(Z )(dY -ds)

JQss s J0SS 8 s
(28)
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Let us take a set C, belonging to A x b, and let us choose

g(xt,vt) =VVV- If we suppose ^R^W Gc}
=<-P{(X ,y )^ C} = 0, we have:

Eo[IcV%] "°

Therefore, there exists a measurable function Ut :A x b -»• R

such that, for any C £ A x b, we have:

Eo[AtIc/(gt] =fUt(a,b)Pt(da,db)
•'c

where P is the marginal distribution of \ Junder cPq and P^.
Then, for any h € C), we have:

^V^VV'^t1 =\ Va,b)h(a,b)pt(da,db)
J&.X-R

E
3" Z ' Z~ z ^z

'AxB

and:

(29)

Eo
(g(Xt,yt)At/^t) =\g =1 g(a,b)Pt(da,db)

JaxB
t

[ [ (a-l)[f g(a',b,)P(daf,db,,t/a,b,s)]Us<a,b)Ps(da,db)(dX8-ds)

.t

+ \ (b-l)[ I g(a,,b,)P(da,,db,,t/a,b,s)]Ug(a,s)P8(da,db)l(Z8J(dY8-ds)
]Axb

t

( (b-1)[f
0 (30)

where P(da* ,db',t/a,b,s) = transition probability of the Markov

process

""t

Rearranging the order of integration and using:
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P(da,,db,,t/a,b,s)P8(da,db) =Pjda'.dV)

= P(da,db,s/a,,b,,t)Pt(da,db),

we have

J g(a,b)Pt(da,db)
•^AxB

+

AxB ' 0 ~AxB

f g(af,b») J i (a-l)Ug(a,b)P(da, db^/aSb'.tMdXg-ds^da',db')

+

"*AxB

[ g(a\b') f (b-l)U8(a,b)P(da,db,8/a,,b,,t)l(Z8J(dY8-d8)Pt(da^db,)

Since g is arbitrary:

.t

(31)

Ut(a,b) =1+i 1 (a-DU^a1 ,b,)P(da,,db,,s/a,b,t)(dXs-ds)
•'A /avu0 "AXB

•'O •'AxB

l)Us(a' ,b,)P(dat ,db' ,s/a,b,t)l(ZgJ (dY8-ds)

(32)

The equation (32) is similar to the results obtained in

[Wong,1971a] for the case of Brownian motion processes. (32) represents

the "equation of motion" for a system with infinitely dimensional

state space. In some special cases, (32) can be implemented. We

will show one of them in example (a) below.

With some additional assumptions is possible to obtain a more
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convenient form for the "equation of evolution" (32) . Let us

suppose that the operators Ht ghave the following properties:

(a) lim H = I, I = identity matrix (33)
s+t t,S

(b) there exist operators £it, t>Oon 9 such that

^7<«t+e,S-Ht,s><S>=Ht,s^> (3A)
£yU

The operators 3l are often referred to as infinitesimal

generators.

Using the above assumptions, we obtain:

E0g(Xt,yt) =f (Ht>0(g))(a,b)P0(da,db) =VHt,s(g)) (a0,bQ)
AxB * (35)

and

E
o
(8(WW -8<Vyt}) =( (Ht+£>0-Htj0)(g)(a,b)P0(da,db)

•'AxB

=e( (Ht>09^(g))(a,b)P0(da,db) =eK^g))(X^)]
^AxB

(tt -Trt)(g) =eEo(9!t(g)) +eTrt[(Xt-l)g(Xt,yt)]
t+e

.t

+ei TTg[(X8-l)Ht>s4£t(g)](dX8-ds) +eTTt[(yt-l)g(Xt,yt)]

(36)

+ ei

0

(tts[ (us-DHt>sS£t(g) ]l(Zs_) (dYg-ds) (37)

Hence:

*t(g) = V8) +1 »8[<Vl)g<As,P8)](dX8-d8)
-'o
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t

+

0 "0

i tt [(y -l)g(X ,y )]1(Z )(dY -ds) +1 ir (if g)ds (38)
• So 3 S S-" d 1 S S

The equation (38) is similar to the result obtained for jump

processes in [Boel,Varaiya,Wong,1973b]. If we repeat the same

procedure using the expression for U (a,b) given in (38) and defining

V.(a,b,£i ) = P (a,b)U (a,b), we should be able to get a similar

result to the one given by Wong [1971a], Doing this, we find

t

Vt(a,b,^t) =PQ(a,b) +1 (a-l)V8(a,b,^8)(dX8-d8)

1(b-l)V8(a,b,^8)l(Zg_)(dY8-d8) +j S£sVs(a,b,(g8)<
(39)

Hence:

~ V <a,b,# )
Pt(a,b/^A) =? S _£ (40)

\ V (a,b,^)dadb
Jaxb

The advantage of the equations (39) over (32) are the following:

(a) the term involving the observation depends only on VA'>'>of.)

at (a,b) (b) the change due to dt is local in the sense that <-4-

is a local operator. These two factors cause considerable savings

in computation.

Let us apply the formulas arrived to some problems:

a. Let us suppose our queue has the following characteristics:

a stream of Poisson-type customers arrives at a single service station.

The arrival rate is not homogeneous; there exist two arrival
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intensities corresponding to two kinds of customers that alternate.

The time interval that the system receives customers of type i,

i = 1,2, is exponentially distributed possessing the expected value

1. It is assumed that any realization of a time interval associated

with uniform arrival rate X± is independent of previous history.

Service time is exponentially distributed; if the system is at

level i, that is, it is servicing customers type i, the service

intensity possesses the value \i±, and, as before, statistical

independence between two realizations is assumed. This model can

be applied in computers (i.e., one computer that services two

kinds of sources, each one feeding the computer with programs)

and other areas; for more details see [Yechialy, Naor, 1971].

By the description, we see that X behaves as a random telegraph

signal with levels X and X2; ybehaves in the same way and the

only difference is that we have levels yx and y2 whenever X is at

level X- and X.., respectively. The random telegraph process

satisfies all hypothesis needed in our analysis, and we have the

following properties:

<p{e:H:)B("-"-')

Then, using (32), we get:

t

Ut(X1,y1) =1+\ [ [l+e-(t-s)](X1-l)Us(X1,y1)(dXs-ds)
•*o
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it

[1-e-(t-8)](X9-l)Ufl(X9,y7)(dXH-ds)
2 ' sx 2P 2'* s

0

t

1 (
+

0

+I I [l-e-(t"-8)](y0-l)Uc(X9,y9)l(ZGJ(dYg-ds) (42)

t

±f [l+e"(t"s)](y1-DUs(X1,y1) l(ZgJ(dY8-ds)

and

l2 ^"sx"2,H2,-N s-'N s

0

\ i [l-e"(t"8)](X1-l)Yg(X1,y1)(dX8-ds)Ut(X2,y2) =1 +- \ [1-e

\ 1 [l+e*,(t"s)](X2-l)U8(X2,y2)(dX8-ds)

t

i f
+ \ f [l-e"(t-s)](y1-l)U8(Ai,yi)l(Zs-)(dYg-d8)

^0

•'o

By (28), we obtain

xt e E<V<V " l/2Ut(A1,y1)+l/2Ut(A2,y2) ^;

'(t"S)](Po-l)Ua(A9,P9)l(ZQJ(dY -ds)
l2 J-'usv"2,H2'*x 8

0

tVVV+t-VVV

y2 ,. . y2

(43)

Pt =E(V4} = l/2Ut(A1,y1)+l/2Ut(A2,y2) (45)

Denoting:

A1Ut(A1,y1)+A2Ut(A2,y2)
At= 2

(46)

y U.(A ,y )+y U (A ,y )B = 1t 1 1^ 2t 2 2 (47)
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U (X ,y )+U (X ,y )c = t 1 1 t 2 2 ^ (48)
z £•

We obtain, using (42) and (43),

t

= 1 + 1 (A -C )(dX -ds) + I (Be -C )l(Ze )(dY -ds) (49)
t IS- S- S 1 S- 8- S- S

Jo o

•'o

+e"(t"8) ((X1+X2-2)Ag_+(X1+X2-2X1X2)Cs_)](dX^ds)

+ 2J^Ai+X2)Bs--(Xl+X2)Cs-+e"(t"S)((2yr2)As-+(X2-Xl)Bs-

+ (X1+X2-2X2y1)Cs_)]l(Zs-)(dY8-ds) (50)

-*o

+ (2X1-2)Bs_+(y1+y2-2y2X1)CgJ] (dXg-ds)

[(u1+y2)Bs--^i+^2)Cs-+e~(t"8) <<VV2)V+^l+V2^^-1
t

i 1
+

z ]
0

KZ« )(dY -ds) (51)
S~ s A. B.

Since, by (44) and (45), X «-- and 5t a ^- ,we can use the

differentiation rule to get:

ct - -t

dXt =-[(X1+A2-2)Xt-X1X2+X^]dt -[X2St-(M1-2)Xt-X2P1+Xti;t;]l(Z(:_)dt
(i-xt.)[(x1+x2-i)xt_-x1x2]

- e D dt + — dX

' l+(X1+X2-l)At_-A1A2
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(1-X. )[X y +(V1)Xt-~X2yl]+- £= 1_J=I 1 t z ! l(Zt__)dYt (52)
l+(y1-l)At_-A2y1

and

dyt =-[y2At+(A1-2)yt-y2A1+Atyt]dt - [y^+^+y^-y^]l(Zt_)dt

(i-yt.)[(y1H-y2-i)yt_-y1y2^
- e E dt + dXt

l+(y1+y2-i)yt-y1y2

+ £=—3LE-—1 t- l z i(zt_)dYt
l+u^ +(x1-i)Jlt_-P2x1

where

(53)

Dt =23" [fteS((Xi+X2-2)V+(Xl+X2-2XlX2)C8-)(dVds)

+f es((X2-X1)Bs_+(2y1-2)As_+(X1+X2-2X1X2)Cs_)l(Zs_)(dYs-ds)] (54)

and

Et. " 2C~ [(teS((y2-yl)As-+(2Xr2)Bs-+(yl+y2"2y2Xl)Cs-)(dXs-d8)
c t Jo

t

+

0

f es((y1+y2-2)Bs_+(y1+y2-2y1y2)C8_)l(Zs_)(dYg-ds)] (55)

Again using the differentiation rule in D and Efc, we get:

dDt ==j- [(X1+X2-2)Xt+(X1+X2-2X1X2)]dt - [DtXt-Dt]dt

-"V [(VXl)yt +(2yr2)At+(A1+A2-2A1A2)]l(Zt)dt - [D^-D^KZ^dt
(56)
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and

dEt '^ [(y2-y1)At-(2A1-2)yt+(y1+y2-2y1y2)]dt -[E^-E^dt

-\ [(y^^y^y^y^y^^lKZ^dt -[E^-E^KZ^ dt

(57)

With equations (52), (53), (56) and (57) we have a set of

/Mrecursive equations for the pairl J . By recursive we mean

that we have equations for the dynamics that depend on A , y ,

D and E .

(b) Let us suppose that a queue is servicing different kinds

of customers; first, it serves customers of type 0 that arrive with

arrival rate AQ and are served with service rate yQ; then, customers

of type 1 with arrival rate A and service rate y_; and so on.

Therefore the queue will serve a infinite number of kinds of

customers. We will consider that the time that customers of type

i can arrive is exponentially distributed with mean 1. In this case:

H t,s(8)(W =E<8<W/xs= v ys - V

- E 8<wye+k> *£?- -(t-8) ™
k=0

Then:

-k Ht,.(8)(V".> " £ kf- •-(t")i«<WrWi)
k=0

" *<WW>1 (59)

and we can say:
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6£t(g))(Xe,ye) = (S£g)(Ae,ye) =g^e+l'V^ " 8(Xe'ye} (60)

Let us define:

VVt>" ^ W (61)

Using formula (38), we obtain:

t

irt(6e) -ir0<«e) +j ^e-l)^(5e^dXs"ds)
t

+

0

t t

( (ye-l)Ts(6e)L(Zs_)(dYs-ds) +[ [ir8(6e_1)-ir8(6e)]d8 (62)

Therefore:

t

irt(60) = 1 + \ <V1)lTs(,S0)(dXs~ds) +\ ^0*1)irs(60)1(Zs-)(dVd8)
•^o •'o

,t

+ \ ir_(6rt)ds (63)

0

jW

(A -l)Tr„(6j(dX„-ds) +1 (y -l)ir(6 )l(Ze ) (dY -ds)
e s e s— s

$t 1

(A -1)tt(6J(dX -ds) +|
e s e s 1

0 J (

t

+ \ [*_<«__•, )-ir_<6J] ds for I > 1 (64)

0

t

I ^o<«Q ,)-TTa(6 )] ds for l > 1
1 s e—i 8 e —

Solving (63) and (64), we have:

t

eSrt(60) =1+1 (A0-l)eSTrs(60)(dXs-ds)
•*o

t

j (y0-l)eSiT8(60:+ \ (yft-l)eSTTj6n)KZs_)(dYs"d8)
0
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(t ft
(A -l)ds - I (yQ- 1(Z )ds]

_ ~fc », w o Jo
j (65)

W =\ e"(t"S>%(6e-l>t " . Xe " ye "**' f<V1)du
1

(y -1)1(Z )du]ds, e > 1 (66)
e u

where (t.) are the positive jumps of Z

(s.) are the negative jumps of Z.

In this case we are unable to find a workable expression for

A and y but, at least, we can find (65) and (66) that can completely

determinate A^ and y^ at time t.
t t

6.4. Estimation of the queue length given the input flow or the

output flow

Sometimes we can not observe the queue length, itself, but;

instead, the arrival process (input flow) or the output folw

(customers that are leaving the queue). We will be interested in

estimating given one of these flows.

Let us first obtain E(Z /Q ), where £ = a(X ,0<s<t), X

being the input flow. We consider that the arrival and service

rate are constant. Then:

Zt =E[Zt/^t]=E[Xt-^l(Z8JdYs/Jt]

"Xt "E[ £1(Zs-)dYs^t] =Xt -|^^>ds +E<Mt^t) (67)
where M = \ 1(Z )(dY -ds)t J0 s-/v s
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1(Z )=E(l(Zs)/^s)

By the representation theorem, we have:

t

gt) =jvE(Mt^t) =I *1(dXs-Ads) (68)

To obtain iK, we calculate:

Z dX + 1 X dZ_ + | dXg
0 '0 '0

t t _t

+l)dX

z z i

; X =\ZdX+\XdZ+l
tt ls-s ls-s 1

J n J n J t

ZX =\ZdX+lxdZ+i (*-•
t t ls-s ls-s 1 rl

•'o Jo •'o

Since E(d(ZtXt)/J)t) =E(d(ZtXt)^t), we have:

Then

*x =0 (69)

--A 1(Z )yds (70)
s

In the expression (70) we don't know 1(Z ). In order to obtain

it, we have to calculate a .

Z

a

fc z f1 z
'=1+\ (a-l)a S-Xds +\ (l/a-l)a l(Zs_)iids +Nt

t ° z °,
t=1 (a-l)a s"(dXs-Xds) +I

t ° ° t
Z i z

where N^ =\ (a-l)a s~(dXe-Xds) +\ (l/a-l)a s"l(Zs_)(dYg-ds) (71)

-.-$:

0 0

Using the martingale representation theorem, we get

^2(dX -Xds)
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and

Sbs cz /*>
a

\ c /zs r 'z ^

* =1+1 (a-l)a sXds +I (l/a-l)a sl(Zg)yds +Nfc

To get ij>9, we use the same procedure used before, calculating:

\ =JXg_daZs +jaZs-dXs +jz f z rz r z
a V =I X_da S+\ a 8~dX„ +\ (a-l)a S"dXg

0 "0

/z\ r^ /zA ^A <•'
aX " \ xs-da ' +) a8" dxs + *ldXs

•'o ^o •'o

By equating E(d(a Xt)/Jt) = E(d(a Xt)/Jt), we obtain:

^ =* (a-1) a s (72)

and y\
y£\ f /z\ f A \ f' /z\
a * =1+1 (a-l)a sXds +I (l/a-l)a sl(Zg)yds +I (a-l)a s(dXg-Xds)

•^o 0 •'o
(73)

Zt 2Since a = I{z =Q} + a I{z =1} + a I{z =2} + ..., and can use
w t **

(73) to obtain:

dI{zt=o>= ^=1} dt " ^=0} ""t (74)

dI{Z =e> " W[I{Z =e+l} " ^Z =e>]dt + "{Z =e-lTI{Z =e}]dXt (75)
U U t t ^

m A a ^

Taking Jfc = (I{z =0}»1{Z =i}»I{Z =2},*") We can put (74) and (75)
t t t

in the form:

dJ = yBJtdt +AJfc_ dXfc (76)
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where:

B =

0 1 0 0...

0-1 10...

0 0-11...

L -j L
Solving equation (73), we get:

A =

-10 0

1-10

0 1-1

j .ePBt n (I+e-yBtAeyBt)(,

where e = initial condition for J , I = identity matrix

Remark: Since B is an infinite matrix, we define:

yBt t^ _l «^ 22B2 x 3«.3 B3 ,e' =I+y+B + yt -^ + y t -ry + ••*
2!

(77)

Let us obtain now E(Z /j<J where Kt =I l(Zg_)dY ,the output
flow, andtX = °(K »QisLt). We consider that X and y are constant,

t s

Then:

E(Zt/Xt) =E(Pt/Kt) +IXds -jl(Zs_) dY

where P„ = X - At
t t

By the martingale representation theorem, we have:

1

HP„ = \ iP3(l(Zg_)dYs - l(Zs)ds)

where 1(T) =E(1(ZJ/JC)

Calculating
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:K = \ K dKs + 1 K dZ - 1
t t 1 s- I s- s J

•'o 0 ^0
t t t

ZK„ - \ Z dK +|K dZ + (i|» -1)1(Z
tt IS- 8 18-8 1 3 8-

1(Z )dYs
s-

)dY,

and equating E(d(ZtKt) (J^) =E(d(ZtKt)0(t), we have

zti(zt)-zti(zt)
*3 =

Therefore:

(79)

rt=[Xds -I
•'0 JI

ze (l-KZfl)) /^
Z. =1 Ads -1 KZ„_)dY„ +J 8"^^^S (l(Z8_)dYs-l(Zt)ds)

8- S

KZ )0 8-

^
We need to know the value of 1(Z ). Calculating a , we

5

have:

* = i + V (a-l)a sXds + I(a-l)a sAds +\ [a 8l(Zg)-a sl(Zs)]yds
0 "0

t a S"KZc_)-a 8~1(Z_ )1(Z )

and finally

J.+ I 1/a

0

s- s-
dY

^V

dI{z =0} ="XI{z =0} +""{z-o> (1_1{z =o>)]dt
t t z »-

(80)

(81)

+[Itzt_=1} " 1{zt-=s0} VX i{zt-=0} 1- I(1-1/„ ««!>] ' l(ZtJdYt
{zt_=o>

(82)

dI{Zt=e} " [I{Zt=e-l} " ^e)3^
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+ ^{Z -.J^Cz =0}>-I{Z =e}ldt

+[V -^ir^z-.}(1-;{z,. =o})]' TT"1 1(zt-)dYt
t- fc t_ 1-1{z,. =0}

• (83)

In this case we are not able to get a closed form solution,

as in the preceding case, and, therefore, the equations (82) and

(83) are not too useful.

6.5. Approximate filtering

Let us suppose that our provess is such that both our service

rate and arrival rate are functions of a parameter a. It is

supposed that a takes values in a specified set A and the distribution

of parameter values in A is known. Therefore, we can calculate:

V%> =T (84)Qt

where:

fR8_(As_(a)-l)(dXg-ds) +fRt = PQ(a) +I R8_(As_(a)-l)(dXg-ds) +I Rg_(yg_(a)-1).

. 1(Z HdY -ds) (85)
s s

{t =1+jQs-(V1)(dXs-ds)+jQ_(A_-l)(dX_ds) +\ Qg_(ys-l)l(Zg_)(dYs-ds)
0

R.

Applying the differentiation rule to — , we obtain:
^t

(86)

dPt(a/%) =[Xt(a)-At]A^1Pt(a/^t)(dXt-Atdt)

+Pt(a/^.) [yt_(a)-St_]y^l(Zt_)(dY^dt) (87)

Using the martingale representation theorem, we obtain:
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t

fV
J A

at =Ea +| ^(dX^A^s) +\ *2KZg_) (dYg-ygds)

Calculating:

aX. = 1 adX•>•[

hdha X = 1 a dX + 1 X da + \ i\
tt lss ls-s l1

•'o •'o Jo
Equating E(d(aX )/^t) =E(d(atXt)/^t), we find:

♦l"

aAt(a)-atAt

In the same way, we obtain:

*2 =

ayt(a)-atyt

and the expression (88) becomes:

dat =!aXt(a)-atAt]A^1(dXt-Xtdt)

.—1+ [ayt(a)-atyt]ytx(dYt-ytdt)

a = E(a)
o '

Using the same approximations done in [Snyder, 1973a], that is:

(a) Take:

(88)

(89)

(90)

(91)

* /axt(at> V^(a) =At(at) +f \ Z J (a-afc) +higher order error (a-a )

- terms.
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(b) Replace A by A (a )

With the approximations, we find:

[aX^ - aAt ] = [a-at]At(a)

=E[(a-at.)(At(at)+( *** J(a-at)T +...)/%>

3Xt(atA - A Tcr—L-L-)E[(a-at) (a-at)T/L4l
3at

In the same way we will get:

ay

--\ /9y (a )\ T ^t(a) . ^ •^rL-j E[(a-at)(a-at)T/%]

The equation for the approximated estimator a is:

* * * . *

* V* 3Xt(at) V- 9yt(at}

t 3at

* 3(*nA (a*)
+ X,—V^*X

3a.

da
t t

7C *v

„ a(£np (a )
t + 2J * KZ_)dY

3a.

*

where L =E[(a-at) (a-at)T/St]

idt

t-' t

Repeating the same procedures, we find:

* * /3X(a*)\/3X(a*)\ T * _9 *

. \ 3a^

3w(a )\ ^ _2 *
—5T-) 2^ (at)KZt.)dYt
3at / t
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*,2*\* */2*\*

t X 3(aJ * t t X3(aJ t

* , 2 *v* */2 *v*

-Ef^4£.«-£^4Z
t X 3(aJ ' t t X 3(aJ ' t

1(Z )dt (96)
5^

The euqation (94) and (96) are recursive equations for the
*

* v^
approximated estimator a and the covariance matrix 2-r •

z t
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CHAPTER 7

DISSCUSSIONS AND CONCLUSIONS

The goal of this dissertation was to apply the theory of

martingales and stochastic integrals and, at the same time, compare

this approach with the classical one. We think that we made our

point in showing that the martingale approach is really both more

general and intuitive. The advantages are apparent in optimal

control, estimation and identification. Besides that, in relation

with the calculation of the characteristics of the queueing process,

we gave a procedure to obtain them for the case were both the

interarrival and service times are i.i.d.. This same procedure

can be modified in order to solve other particular problems.

The main results in chapter 3 are the representation of the

queue length in a semi-martingale form and the subsequent extension

for a more general class of processes. The new points presented

are that we don't need to assume Markov properties for the queueing

processes and we can deal with the processes more directly.

In chapter 4 we calculated some characteristics of the queueing

systems using the transformation of measures and compared it with

the classical results. In doing that we were able to find more

general results, besides checking some already known expressions.

Contrasting with usual methods, we had not to use Laplace transforms

and complex variable results and we were able to use the same kind

of approach for different kinds of service and arrivals.

Chapter 5 and 6 are the ones in which the theory of martingales

and stochastic integration proves indeed its usefulness. We could
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formulate the optimal control problem, obtaining a Hamllton-Jacobi

equation for the Markov case and applying it to cases where the

cost function were linear and quadratic. In estimation, some

results in recursive filtering were obtained.

We think that the major areas of future research could be:

a. Application of the martingale approach to other types

of queues.

b. Calculation of the conditions for the existence of a

steady state behaviour for the single-server single queue and the

solution of optimal control problems, estimation and identification

in this case.

-104-



tc-^

REFERENCES

V. E. Benes, "Existence of optimal stochastic control laws," SIAM

J. Control 9^, 3, (Aug. 1971), pp. 446-472.

R. M. Blumenthal, R. K. Getoor, "Markov processes and potential

theory," Academic Press, N. Y., 1968, 313 pp.

R. K. Boel, "Optimal Control of Jump Processes," Memorandum No.

ERL-M448 (July 3, 1974), Elec. Res. Laboratory, Berkeley.

R. K. Boel, P. Varaiya, E. Wong, ''Martingales on Jump Processes I:

Representation Results "Memorandum No. ERL-M407, (Sept. 6, 1973a),

Elec. Res. Laboratory, Berkeley.

R. K. Boel, P. Varaiya, E. Wong, "Martingales on Jump Processes II:

Applications,"Memorandum No. ERL-M409, (Dec. 11, 1973b), Elec.

Res. Laboratory, Berkeley.

L. Breiman, "Probability," Addison-Wesley, Reading, Mass.

P. M. Bremaud, "Martingale Approach to Point Processes;" Memorandum

No. ERL-M345, (Aug. 4, 1972), Elec. Res. Lab., Berkeley, Ca.

R. S. Bucy, "Non-linear filtering theory," IEEE Tr. AC 10, 2

(Apr., 19.65), p. 198.

D. L. Burkholder, "Martingale transforms," Ann. Math. Stat., 37, 6

(Dec, 1966) pp. 1434-1504.

R. H. Cameron, W. T. Martin, "Transformations of Wiener integrals

under translations," Ann. Math., 45, 2, (April, 1944), pp. 386-

389.

W. H. Chan, "A Computer Processing Queueing System with Feedback,"

Information and Control, 16, (1970), pp. 473-486.

-105-



.«*

J. M. C. Clark, "The representation of functionals of Brownian

motion by stochastic integrals," Ann. Math. Statist. 91, (1970),

pp. 1285-1295.

R. R. Cox, W. L. Smith, "Queues," Mathews and Co., Ltd., London,

1961.

M. H. A. Davis, P. P. Varaiya, "Dynamic programming conditions for

partially obscurable stochastic systems," SIAM J. Control 11, 2

(May, 1973), pp. 226-261.

C. Dellacherie, "Capacit£s et processus stochastiques," Springer

Verlag, Berlin, 1972.

C. Dole*ans-Dade, "Quelques applications de la formule de changement

de variables pour les semi-martingales," Z. fiir Wahrsch. Th.

verw. Gb. 16, 3 (1970), p. 181-194.

C. Dole*ans-Dade, P. A. Meyer, "Integrales stochastiques pour rapport

aux martingales locales," Seminaire de probability IV, University

de Strasbourg, Lecture Notes in Mathematics, 124, Springer-Verlag,

Berlin, pp. 77-107, 1970.

J. L. Doob, "Stochastic Processes," John Wiley, New York, 1953.

T. E. Duncan, P. P. Varaiya, "On the solutions of a stochastic

control system," SIAM J. on Control 9_, 3 (August 1971) pp. 354-

371.

E. B. Dynkin, "Markov processes," Vol. I and II, Academic Press,

N. Y., 1965.

P. Fishman, "Estimation in Multisaver Queueing Simulations,0

Operations Research 22, (Jan-Feb. 1974), pp. 72-78.

-106-



P. A. Frost, T. Kailath, "On innovations approach to least squares

estimation Point III: Nonlinear estimation in white Gaussian

noise," IEEE-T-AC 16, 3, (June 1971) pp. 217-226.

M. Fujisaki, G. Gallianpur, H. Kunita, "Stochastic differential

equations for the non-linear filtering problem," Osaka J. Math.

9, 1, (Apr. 1972), pp. 19-40.

I. V. Girsanov, "On transforming a certain class of stochastic

processes by absolutely continuous substitution of measures,"

Theory of Probability and Applications .5, 3, (1960) pp. 285-301.

R. Hogg, A. T. Craig, "Introduction to Mathematical Statistics,"

The Mac Millan Company, Collier-MacMillan Limited, London, 1970.

K. Ito, "Stochastic Integral," Proc. Imp. Acad. Tokyo, 20, 8

(Oct. 1944) pp. 519-524.

K. Ito, "On Stochastic differential equations," Mem. Am. Math. Soc,

No. 4, (1951a).

K. Ito, ''Multiple Wiener Integral," J. of Mathematical Soc. Japan

1, 1, (May, 1951b), pp. 157-169.

K. Ito, S. Watanabe, "Transformation of Markov Processes by

Multiplicative Functionals," Ann. Inst. Fourier, Grenoble, 15, 1,

(1965), pp. 13-30.

T. T. Kadota, L. A. Shepp, "Conditions for absolute continuity

between a certain pair of probability measures," Z. Wahrsch. Th.

verw. Gb. 16, 3, (1970), pp. 250-260.

T. Kailath, "An innovations approach to least squares estimation,

part I: linear filtering in additive white noise," IEE-T-AC

13, 6, (Dec. 1968), pp. 646-655.

-107-



T. Kailath, "The innovations approach to detection and estimation

theory," Proc IEEE 58, 5, (May, 1970a) pp. 680-695.

T. Kailath, "Likelihood Ratios for Gaussian processes," IEE-T-IT

16, 3, (May, 1970b) pp. 276-287.

T. Kailath, "A further note on general likelihood formula for

random signals in Gaussian noise," IEEE-T-IT 16, 4 (July 1970c)

pp. 393-396.

T. Kailath, "Some extensions of the innovations theorem," Bell Syst.

Technical J. 50, 4, (Apr. 1941a) pp. 1487-1494.

T. Kailath, "The structure of Radon Nikodym derivatives with respect

to Wiener and related measures," Ann. Math. Stat. 42, 3, (June

1941b), pp. 1054-1067.

T. Kailath, "A note on least squares estimation by the innovations

method," SIAM J. on Control 10, 3, (Aug. 1972), pp. 477-486.

T. Kailath, P. Frost, "An innovations approach to least squares

estimation - part IV: linear smoothing in additive white noise,"

IEEE-T-AC 13, 6, (Dec. 1968), pp. 655-680.

T. Kailath, M. Zakai, "Absolute continuity and Radon Nikodym

derivatives for certain measures relative to Wiener measure,"

Ann. Math. Stat. 42, 1 (Feb. 1971), pp. 130-140.

R. E. Kalraan, R. S. Bucy, "New results in linear filtering and

prediction theory," Trans. ASME, J. Basic Energy, Ser. D, 83, 1

(Mar., 1961) pp. 95-108.

H. Kunita, S. Watanage, "On square integrable martingales,"

Nagoya Math. J. 30, (1967), pp. 201-245.

H. J. Kushner, "Dynamical Equations for optimal nonlinear filtering,"

J. Diff. Eq. 2» (1967a) pp. 179-190.

-108-



H. J. Kushner, "Approximations to optimal nonlinear filter," IEEE-

T-AC 12, 5 (Oct., 1967b)), pp. 546-556.

H. J. Kushner, "Introduction to Stochastic Control," Holt, Rinehart

and Winston, Inc., New York, 1971.

E. Lehmann, "Testing Statistical Hypothesis," Wiley, New York (1959).

M. Loeve, "Probability Theory," 3rd edition, Van Nostrand, New

York, 1963.

P. A. Meyer, "Probability and Potentials," Blaisdell, Waltham, Mass.,

1966.

P. A. Meyer, "Integrales stochastiques I, II, III, IV, Seminaire

de Probabilites I, Univ. de Strasbourg, Lecture Notes in Math.,

Vol. 39, Springer Verlag, Heidelberg, (1967a), pp. 72-162.

P. A. Meyer, "Processus de Markov," Lecture Notes in Math, Vol. 26,

Springer Verlag, Berlin, (1967b).

P. A. Meyer, "Guide detailie de la th€orie g£n£rale des processus,"

Seminaire de probability II, Lecture Notes in Math., Vol. 51,

Springer Verlag, Berlin, 1968, pp. 140-165.

P. A. Meyer, "Square integrable martingales, a survey," In "Lecture

Notes in Mathematics," Vol. 190, "Martingales," Springer Verlag,

Berlin, (1971a), pp. 32-37.

P. A. Meyer, "Non-square integrable martingales, etc.," In "Lecture

Notes in Mathematics," Vol. 190, "Martingales," Springer Verlag,

Berlin (1971b), pp. 38-43.

P. A. Meyer, "Sur un probleme de filtration," Sem. de Probabilites,

Univ. de Strasbourg, (1971/72), Lecture Notes in Mathematics, Vol.

321, Springer Verlag, Berlin.

-109-



P. W. Millar, "Martingale Integrals," Trans. Amer. Math. Soc.

133, 1 (Aug., 1968), pp. 145-166.

P. W. Millar, "Stochastic integrals and processes with stationary

independent increments," Sixth Symposium on Math. Stat, and Prob.,

Vol.111, Univ. of Calif. Press, Calif. (1972), pp. 307-331.

M. Motoo, S. Watanabe, "A class of additive functionals of Markov

processes," J. of Math. Kyoto Univ., 4, 3 (July, 1965), pp. 429-

469.

Pinney, "Ordinary difference differential equations," University of

California Press, Berkeley, 1958.

R. C. Regis, "Multiserver Queueing Models of Multiprocessing Systems,"

IEEE-T-C 18, 8 (Aug. 1973), pp. 736-744.

J. R. Riordan, "Stochastic Service Systems," Wiley, New York, 1962.

S. M. Ross, "Applied Probability Models with Optimization Applications,"

Holden-Day, San Francisco, Ca., 1970.

T. Saaty, "Elements of Queueing Theory," McGraw Hill, New York, 1961.

A. P. Sage, T. L. Melsa, "Estimation Theory with Applications to

Communication and Control," McGraw Hill, N. Y., 1970, 523 pp..

G. S. Shedler, "A Queueing Model of a Multiprogrammed Computer with

a Two-Level Storage System," Communications of the ACM 16, 1,

(Jan.,1973), pp. 3-10.

A. V. Skorokhod, "Differentiability of Measures Corresponding to

Random Processes I: Processes with Independent increments," Th.

of Prob. and Applic_2, 4, (1957), pp. 407-432.

D. L. Snyder, "Filtering and Detection for Doubly Stochastic Poisson

Processes," IEEE-T-IT 18, 1 (Jan., 1972a), pp. 91-102.

-110-



D. L. Snyder, "Smoothing for Doubly Stochastic Poisson Processes,"

IEEE-T-IT 18, 5, (Sept. 1972b), pp. 558-562.

D. L. Snyder, "Statistical Analysis of Dynamic Tracer Data," IEEE-

T-IT, 20, 1, (Jan.,1973a), pp. 11-20.

D. L. Snyder, "Information Processing for Observed Jump Processes,"

Information and Control 22, 1 (February 1973b), pp. 69-78.

L. Takacs, "Introduction to the Theory of Queues," Oxford University

Press, New York, 1962.

A. Thomasian, "The Structure of Probability Theory with Applications,"

McGraw Hill, New York, 1969.

J. H. Van Schuppen, "Estimation Theory for Continuous Time Processes,

Martingale Approach," Memo No. M-405, Electronics Research

Laboratory, University of California, Berkeley, September 1973.

J. H. Van Schuppen, E. Wong, "Transformation of Local Martingales

under a Change of Law," Memo No. M-385, Electronics Research Lab.,

University of California, Berkeley.

P. Varaiya, "The Martingale Theory of Jump Processes," to appear in

IEEE-T-AC, February 1975.

S. Watanabe, "On Discontinuous Additive Functionals and Levy

Measures of a Markov Process," Jap. J. Math. 34, (1964), pp. 53-40.

E. Wong, "Stochastic Processes in Information and Dynamical Systems,"

McGraw-Hill, N. Y., 1971a.

E. Wong, "Representation of Martingales, Quadratic Variation and

Applications," SIAM J. on Control 2, 4 (Nov., 1971b), pp. 621-632.

E. Wong, "Martingale Theory and Applications to Stochastic Problems

in Dynamical Systems," Research Report, Imperial College, Dept. of

Computing and Control, London, England, June 1972.

-Ill-



E. Wong, "Recent Progress in Stochastic Process - a Survey,"

IEEE-T-IT 19, 3, (May, 1973), pp. 262-275.

W. M. Wonham, "Random Differential Equations in Control Theory,"

In, "Probabilistic Methods in Applied Mathematics," Vol. 2,

Banucha-Reid ed., Academic Press, N. Y., 1970.

V. Yechialy, P. Naor, "Queueing Problems with Heterogeneous Arrivals

and Service," Operation Research 19, 3, (May-June, 1971), pp. 722-

734.

M. Zakai, "On the Optimal Filtering of Diffusion Processes,"

Z. Wahrsch. Th. verw. Geb. 11, 3, (1969), pp. 230-243.

-112-


	Copyright notice 1974
	ERL-475 (1 of 3)
	ERL-475 (2 of 3)
	ERL-475 (3 of 3)

