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Abstract

Let P be any non-trivial monotone property which applies to the

class of v-vertex graphs. We show that, if gr: ohs are represented by

adjacency matrices, any algorithm for deciding if P holds or not of

2a given graph must, in the worst case, take time proportional to v .

This provides a positive answer to the question raised by Aanderaa and

Rosenberg in [5],
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I. Introduction

Trying to relate the computational complexity of graph properties

to the data-structure chosen for representing graphs is a natural and

important question. Despite its many mathematical advantages, the

adjacency matrix representation of graphs does not appear to be a good

choice, if one is expecting to produce graph algorithms whose running

time is faster than Q(v ), v being the number of vertices (nodes)

in the graph.

It has been conjectured by Aanderaa and Rosenberg in [5] that recog

nizing if a v-vertex graph has any particular non-trivial monotone

property from its adjacency matrix requires, in th< worst case, on the

order of v operations, A yrap 4oropirty P is ihonotoi.a ii cding

edges to a graph where P holds does not make P false; it is non-

trivial if P holds of the complete graph Kv and does not hold of it

complement E = K , the empty graph.

In this paper, we provide a proof of the validity of Aanderaa-

Rosenberg's conjecture.

II. Notations for Graphs and Groups

Before attempting to establish any result, we need to set up some

notations and definitions. We shall usually conform to traditional usage,

as defined by Biggs [2] and Harary [3] for example, although this has

not always been possible.

+The notation f(v) = fi(g(v)) means g(v) = 0(f(v)), i.e., there exists
K > 0, for all v, f(v) > Kg(v); it is the natural inverse of the
*vbi#-oh" notation.
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2.1. Graphs

A v-graph or graph G (finite undirected labelled graph without

self-loops or multiple edges) is a pair (V(G),E(G)) where V(G) is

a finite set of vertices, labelled 1 through v = |v(G)|, and

E(G) CV(G)'2' is asubset of V(G)'2I -Ui,j}| l<i,j<v, i^j> of the

symmetric cartesian product V(G)xV(G). Elements of E(G) are edges

and, if e = {u,v} e E(G), we say that e joins u and v. For

l2lexample, the complete v-graph K has v = |v(K )| and E(K ) = V(K )' ';

it is composed of v vertices and «v(v-l) edges. Its complement, the

empty v-graph E = K has E(E ) = 0; the complement G of a graph

G is the graph (V(G),V(G)l2'-E(G)).

Two v-graphs G- and G« are i£ oiaorpbic if there exists a permu

tation o of {l,...,v} such that {a(u),o*(v)} e E(G„) if and only

if {u,v} e E(G-). Graph isomorphism, denoted G_ JI G~, is an equiva

lence relation over the class of v-graphs. An unlabelled graph is an

equivalence class of graphs under isomorphism.

Graph G- is a subgraph of G«, denoted G- <_ G_, if there exists

Gj ~ G± such that V(G|) = V(G2) and E(G') C E(G2). Relation < is

a partial ordering of v-graphs; it has a minimal element E and a

maximal element K .
v

The adjacency matrix M(G) = [m. .] of a v-graph G is a symmetric
i» J

v*v boolean matrix such that m. . = 1 if and only if {i,j} e E(G).
i»J

Two v-graphs G- and G« are isomorphic G- 2. G2 if and onlv if tne*e

exists a permutation matrix P such that M(G-) = P~ m(G«)P.

Consider G a v-graph and G« a v„-graph. Their sum G.,+G2

is the (v-+v2)-graph G formed by placing a v--graph G. and a

v2-graph G2 side by side, i.e., {i,j} e E(G) if and only if



- 4 -

C1 1 i'l 1 vx and {i»j> e E^)) or (y± < i,j <v +v£ and

{i-v^j-v.^ e E(G2)). The product G.xG is obtained from the sum

Gl +G2 by Joinin8 eve*v vertex in G to every vertex in G2, i.e.,

E^xGp » E(G1 +G2)U{{i,j}| l<i<v1<j<v1+v2}. Clearly,
G +G9 < G- xg and gT +gT » G- xE; also, E +E = E _^ while
12—12 12 12 nm n+m

KnxKm ~ K^^* We denote by K = E xE the complete (n,m)-bipartite

graph. A graph G is bipartite if and only if G < K for some

n, n > 1,

2.2. Groups

In order to minimize <:onfur:ior\ Te i je Crsek letters ror «?r %?ps and

permutations. If T is i permitet^m- y ^v w- 41:.. d} . say that

d is the degree of V and we denote ay jf| t £ k _J T. If I\

and T2 ere two permutation groups of degree d, I\. <_ Y- means that

I"- is a subgroup of T„. We use < for proper inclusion, and denote

by Z. the symmetric group of degree d and order |E,| = d!.

Let T. and T« be two permutation groups of degrees d- and d2

respectively. The sum T +T- is the group of degree d-+d2 and

order |r-+r2| = IrJ'IrJ resulting from the action

a, (i) if 1 < i < d- f a, e T-/ulwitlW i
f °t U) it l£ii a-

(a.+aj(i) = \ L
1 z l^a-d^+d if d <i<d ++d„ La2 e T2

of T and T2 on {l,... .dj-H^}. The product r^T, is the group

of degree d- xd2 and order |T-|•|T^| resulting from the action

(a1xa2)<i,j> =<a1(i),a2(j)> with l<i<d1, l<j£d2,

a- e T and a2 e T2>

of t^ and T2 && {l9.;'.9£j$ ${{,... ^i;
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|2|
If T is a permutation group on {l,...,d}, the pseudo-square T1

1 l2lis the permutation group of degree -jKd-l) and order |r' '|= |T*|

resulting from the action a({i,j» = (a(i),a(j)} for 1 < i,j <. d

and a£T of T over {l,... ,d}'2l. If |r| >1, then r'2l<rxr.
A permutation group V on {l,...,d} is transitive if the orbit

i.T = {j| l£j<d, 3aeT: j=a(i)} of any i e {l d} in V has
|2|

size |i.r| = d, i.e., i.T = {l,...,d}. For example, Z, and Z^ '

are both transitive. If T, T- and ?2 are transitive, T xT2 is
l2l

also transitive but T1 ' is not transitive in general.

An automorphism of a graph G is an isomorphism of G with itself.

The set of automorphisms of a v-graph G is a permutation group

T(G) = {aeZ I U,j}eE(G) iff (a(i),a(j)} eE(G)} called the automorphism

group or the point group of G. The automorphisms of G also induce a

permutation group r(G)'"' on th<; edges (lines) of C5 cssled the lim

group of G. For example

T(K )=T(E )=I and T(K )I2I =T(E )'2' =z'2J;
V V V V V v > '

T(K )=Z +Z and T(K )l2' =Z xZ if n^m.
m,n m n m,n m n

In general T(G) = T(G).

2.3. Symmetric Graphs

Graph G is point-symmetric (respectively line-symmetric) if T(G)

|2|
(respectively T(G)1 ') is transitive. If G is both line and point

symmetric, we say that graph G is symmetric. For example, E , K and

K are symmetric. If n ^ m, K is line symmetric but not point

symmetric, while (K +K ) x (K +K ) is point symmetric but not line

symmetric for n > 1. If G is symmetric, G + G is also symmetric;
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if G is point symmetric, so are G, G + G and G*G.

We now define a family of symmetric graphs which will be useful

later on. Let v = 2 , where p is a non-negative integer.

Definition Dl: For each 0 <_i <_p, the graphs B are defined by,

(i) iP = K with v = $;
p v •*

(ii) B* = & +tf for 0 <i <p.

For example, BQ = •, B„ = ||, B~ =D Q, etc. In general, B

consists of 2P~ copies of K .. It is easy to establish that these
21

graphs have the following properties:

Lemma 1: The family {B \ 0<_i<_p} of graphs defined by Dl ha

the properties:

(a) E = B° and A = i? vth v - $;
v p v ip

(bj B1 < BUl for 0 < i < p;
P P ~

(c) B is symmetric;

(d) Bi+1 <Bi ,*Bl 7 for 0 <i <p.
v — v-1 v-1 —

III. The Argument Complexity of Boolean Functions

3.1. Monotone Non-trivial Properties

Let {0,l}d represent the set of all (boolean) d-tuples over {0,1}.

For any two elements x=<x1,...,xd> and y=<y1»...»yd> of {0,1} ,

we write x < y whenever x. < y. for all 1 < i £ d. For example, a

v-graph G can be represented by a boolean vector g e {0,1} with

d=^v(v-l), where g is the upper non-diagonal part of the adjacency

matrix M(G) of G. If another v-graph G1 is represented in a

similar fashion g*, then G^ Gf if and only if i' « ag1 for some

3 e Z"lr'? similarly, #<C?' ii and only if g< ag1 for some ae ti '.
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d
Consider a boolean function (property) P: {0,1} •*• {0,1} mapping

the set of boolean d-tuples into {0,1}. If x£y implies

P(x) <P(y) for all x, ye{0,l}d, we say that P is monotone. We

denote by Md ={P: {0,l}d -* {0,1}| Pmonotone, P(6) =0, P(l) El} the
class of monotone non-trivial properties. "Property" will now mean

"monotone non-trivial boolean property".

We say that property PeMd with d=|v(v-l) is "invariant under
graph isomorphism", or simply that "P is a v-graph property" if, for

any ge{0,l}d and aezj2', P(g) =P(o(g)). This boolean vector
ge {0,l}d can be regarded as the upper non-diagonal part of the adja

cency matrix M(G) of some v-graph G. We write P(G) rather than

P(g) or P(M(G)); this notation however means that graph G is repre

sented as a boolean vector of ^(v-l) entries. Th« Jars of v-graph

properties is denoted by P = 'PeMj d=2v(v-l), P is av-graph

property}.

To any property P e M,, we can associate a permutation group

T(P) ={aeZj Vxe{0,l}d: P(x) =P(a(x))} which is the maximal group of
d

permutation of the argument positions leaving P invariant. For

example, P is a v-graph property if it is invariant under graph-isomor

phism, i.e., z|2l <T(P).
Similarly, we say that P is an (m,n)-bipartite property if

Z xZ < T(P); the class of (m,n)-bipartite properties is denoted by
m n —

P = {PeM v | Z xE < r(P)}.
m,n mxn1 m n —

3.2. Algorithms and Complexity of Properties

An algorithm for evaluating P(x1,...,xd) with Pelld must

examine some of the individual arguments x±, since P is non-constant.
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On any reasonable model of machine, the number of arguments which need

to be examined determines a lower bound on the execution time of the

algorithm. In order to formalize this idea, we define a decision-tree

T for property P to be a binary tree whose internal nodes specify

arguments to be tested and external nodes are marked according to the

appropriate value of P.

For example, if P is the 3-graph property, P(G) = "3-graph G

is connected", the following is a decision tree for P, where {i,j}

in an internal node means the algorithm is to test the entry m . of

M(G).

Figure 1

In general, we denote by c(T,x) the number of tests made in deter

mining P(x) according to the decision tree T. For example, if graphs

G. and G2 are given respectively by the adjacency matrices
[0 1 1] 0 10

10 1 and M(G2) = 10 0

[l 1 oj [o 0 oj
M(G1) , then c(T,Gx) • 2 and c(T,G2) - 3.

The maximum number of tests made, max c(T,x), or, equivalently
xe{0,l}d, n t

the maximum depth of the tree representation of t will be our measure
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of the cost of a particular decision tree T. The argument complexity

C(P) of property P will be the cost of the cheapest decision tree T

for P:

Definition D2: The argument complexity C(P) of property P is

defined by:

C(P) = min max ic(T,x)} .
T a decision- xe{0,l}^

tree for P

As mentioned earlier, the argument complexity of property P is a

lower bound on the time complexity of P. If ECM, is a class of

properties, the complexity C(E) = min{C(P)} is the minimum complexity
PeE

of properties in the class. We are interested in graphs and bipartite

properties:

Definition D3: We denote by F(v) and F(n,m) respectively the

complexity of the classes of v-graph and (n,m)-bipartite properties,

i.e., F(v) = min {C(P)} and F(n,m) = min {C(P)}.
Pe?% Pe?

v n,m

In general, if a class of functions is defined by an invariance

permutation group,

Definition D4: The complexity C(T) of a permutation group is the

least complexity

C(T) = min {C(P)} of properties P left invariant by T .
{PeMd\ T<T(P)}

l2l
Using this notation gives F(v) » C(Z' ') and F(n,m) = C(Z xZ ).

v m n
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It follows directly from (D4) that T £ V and deg(T ) = deg(r«)

implies C(I\^) £ C(r2). It is an easy exercise to show for example that

C(Zd) = d.

In [4], Rivest and Vuillemin have shown that:

Theorem 1: If the permutation group T is transitive and has degree

d = q a prime power, then C(T) = d.

This result has no direct implication as to the complexity of graph

1 l2l
properties since the degree -rvCv-l) of Z1 • is never a prime power

unless v = 2 or 3. For bipartite properties however, we obtain

CL ft fY+ft
F(q ,q ) = q for any prime q and a, Ml as a corollary. The

rest of the paper describes a way to embed some forms of bipartite properties

2
into graph properties, so as to show F(v) > Kv for some constant K.

IVo Proof of the Main Theorem

4.1. Embedding Technique

The general idea is to extract a subset of the entries in the adja

cency matrix, and "give away" the other entries. We must keep enough

l2l
symmetry into the problem so that Z1 ' acts transitively on the chosen

, x 2
subset and we can apply Theorem 1 in order to get F(v) >_ Kv . More

precisely, we use:

Lemma 2: Let P e P be a v-graph property, G- and G„ a v~-

and v^-graph respectively, with v^+v* - v. If P(G1+GJ = 0 and

P(G1 xG£) = 1, then C(P) > CfTfG^ xT(G£)).

Proof: Let EQ denote those edges in G- xG2 but not in G- + G2,

i.e. E is the set of edges joining vertices in G- with vertices in G2,
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and is a subset of E(K ):
V1,V2

EQ ={{i,j}| l£i£v1< j£vx+v2 where V;L= \V(G±) |, v2 =|V<G2> |> .

Consider the function Pf, a restriction of P, mapping subsets S of

EQ into {0,1} defined by:

Pf(S) = P(G) , with G =» (V(G1+G2),E(G1+G2)US) .

By hypothesis, P? is a nontrivial, monotone function of S, since

E(G +G2)UEQ = E(G xg ). By the definition of Pf it follows that

C(P') £ C(P), since any decision tree for P can also be used for Pf

(P1 is just P on a restricted domain).

It remains to show chat C(Pf) > C(r(G-)xT(G2)) by showin?
l2lr(P') > T(G1) xT(G2). Now P is left invariant by T(P) >Z^ ', thus

l2lalso by the subgroup I" of Z1 ' which fixes E(Gj+G2). But

T1 >(r(G1)+r(G2))'2l (acting on (V^) UV(G2)) '2'), which contains
the subgroup r(Gjxr(G ) acting on EQ. D

In order to apply Theorem 1, we need that r(G-) x r(G«) be tran

sitive and v. xv2 be a prime power. As noticed earlier, it is suffi

cient, in order for T(G ) x r(Gj to be transitive, that T(G-) and

T(G2) be both transitive, i.e., that G- and G2 be point symmetric.

For the requirement v- xy is a prime power, we first consider v-graphs

where v is a power of 2.

4.2. Graphs of Size 2P

Using Lemma 2, it is now easy to prove

Lemma 3: If v = 2V, p > 1, then F(v) >_%) '.
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Proof: Consider the graphs B for 0 £ i £ p defined by (Dl).

Any graph property P e P must be such that 0 £ i £ j implies

P(B ) = 0 and j < i £ p implies P(B ) = 1 for some j such that

0 £ j < p (this follows from mbnotonicity of P and Lemma 1, (a) and

(b)). In particular, P(B:i) = P(Bj -+BJ -) =0 and P(Bj+1) = 1.
P P-1 P-l P

Since we proved in Lemma 1, (d) that B^ < B ,•* B^ -, and P is
P — P-l P-l

monotone, P(Bf~1xb£ ) = 1. Applying Lemma 2 then yields

C(P) >C(r(B:,_1) xr(Bi}-j-))l As noticed in Lemma 1, (c), graph B^
i • f'-'i-i if) f

is symmetric, therefore T(BJ -)xT(Br i) is transitive. Since the
P-l .j Pjl?

degree of this group is 2P~ x2P~ =~ty which is a prime power,

Theorem 1 gives us C(P) >jv . This bound is valid for any P e Pv*

thus F(v) >|v2. •

This proves F(v) >^ Kv for v « 2P a power of two. The con

struction can be adapted (at some cost) to powers of 3, and prime

powers in general. What to do with numbers v which are not prime

powers is not clear however. Instead of following this approach, we

shall prove that F(v) is more or less increasing with v, thus

obtaining F(v) >^ K'v for all v, the constant Kf being lower than

the one (K=7) which applies for v = 2P a power of two.

4.3. General Case

+

Proving directly that F(v) >. F(v-l) is not easy, no matter how

intuitively obvious this appears to be. We prove the following weaker

result, which will be sufficient for our purposes:

As a matter of fact, this question is unresolved as far as the authors
*are concerned. This might not be much simpler than proving

F(v) - ^v(v-l).
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Lemma 4: For all v e ffl,

9V-.9
F(v) > min(F(v-l),2 )

where / < v < &+1.

Proof: For an arbitrary property P e P , one of three cases holds:

(i) PO^+K^) = 1,

(ii) P^xE^) =0, or

(iii) neither of the above.

Cases (i) and (ii) imply that F(v) >^ F(v-l) directly, since we may

induce a function P' e P 1 from P by suitably restricting the domain:

Pf(G) = P(IL+G) in case (i) and P'(G) = P(KxG) in case (ii). In

either case P' is a monotone nontrivial graph property.

K—1
In case (iii), using u to denote 2 and r to denote v-2u,

we have

P((K xk )+E ) » 0 since P(K,+K J = 0
u r u 1 v-1

and ((K xk )+E ) < K.+K . ; and
u r u — 1 v-1

P((K +E ) xk ) = 0 since P(K, xE -) * 1
r u u 1 v-1

and ((K +E ) xk ) > K- xe - .
r u u — 1 v-1

The function P* defined as P restricted to those edges between K
u

and E satisfies all the requirements of Theorem 1: We have just shown

that it is nontrivial, it is monotone since it is a restriction of the

monotone function P, and it is invariant under the action of Z x £ ,
u u

acting on the vertices of K and E , a transitive group. Since

C(P) _> C(Pf) and P1 is exhaustive, this proves the lemma. •



(K xk )+E
u r u

14 -

(K + E ) x K
r u u

Figure 2

Combining lemmas 3 and 4 yields directly:

Theorem 4: If P is a nontrivial monotone graph property of

v-graphs, then

C(P) > i)2/16 .

Proof: If v = 2 +r with 0 £ r < 2 , then lemmas 3 and 4 give

C(P) > 22K~2 >v2/16. D

Of course, this result also applies to other classes of graphs,

directed, or multi-edges. It can be used directly as a lower bound, or

the construction can be adapted so as to improve the constant.

V. Conclusion

The tantalizing remaining question is the exact value of F(v). It

is widely conjectured that F(v) =^v(v-l) and this has been proved in

[4] for v = 1,2,4,5,7,11,13. This is part of a more general problem

discussed in [4]: Is it true that any transitive permutation group Y

of degree d has complexity C(D = d? The results of the paper indi

cate that it might be easier to prove the existence of a constant K

such that any transitive Y of degree d has C(Y) >^ Kd.
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The monotonicity requirement is also discussed in [4] and, in fact,

2
there is nothing to stop us from believing that C(P) >^ Kv for any

(monotone or non-monotone) v-graph property, provided P(E ) ^ P(K ).

t
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