

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

INGRES - A RELATIONAL DATA BASE SYSTEM (Revised)

by

G. D. Held, M. R. Stonebraker and E. Wong

Memorandum No. ERL-M477

November 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

INGRES - A RELATIONAL DATA BASE SYSTEM

G. D. Held, M. R. Stonebraker and E. Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

INGRES (Interactive Graphics and Retrieval System) is a relational

data base system that has been designed at Berkeley. The system is

being implemented on a PDP-11/40 based hardware configuration, using

the UNIX operating system developed at the Bell Telephone Laboratories.

The system was designed to accomodate users with diverse needs, ranging

from city planners to University administrators. In this paper the

principal components of the system will be described. These include:

(1) QUEL - a calculus based query language with powerful aggregation

capabilities. (2) A decomposition algorithm which reduces every query

to a sequence of one-variable queries. (3) A flexible storage struc

ture which permits data to be stored and accessed in a variety of modes.

(4) A technique for accomodating different "views" of the same data and for

enforcing integrity and security constraints.

Research sponsored by the National Science Foundation Grant GK-43024x,
U.S. Army Research Office — Durham Contract DAHCO4-74-G0087, the Naval
Electronic Systems Command Contract N00039-71-C-0255, and a Grant from the
Sloan Foundation.

INGRES: A RELATIONAL DATA BASE SYSTEM

by G. D. Held, M. R. Stonebraker and E. Wong

University of California
Berkeley, California 94720

INTRODUCTION

INGRES (Interactive Graphics and Retrieval System) is a relational

data base and graphics sytem which is being implemented on a PDP-11/40

based hardware configuration at Berkeley. INGRES runs as a normal

user job on top of the UNIX operating system developed at the Bell

Telephone Laboratories. The only significant modification to UNIX that

INGRES requires is a substantial increase in the maximum file size allowed.

This change was implemented by the UNIX designers. The implementation

of INGRES is primarily programmed in "C", a high level language in which

2
UNIX itself is written. Parsing is done with the assistance of YACC,

a compiler - compiler available on UNIX.

The advantages of a relational model for data base management systems

3 4 5
have been eloquently detailed in the literature, * ' and hardly require

further elaboration. In choosing the relational model, we were

particularly motivated by (a) the high degree of data independence that

such a model affords, and (b) the possibility of providing a high level

and entirely procedure free facility for data definition, retrieval,

update, access control, support of views, and integrity verification.

In this paper we shall describe most of the principal components of

INGRES. These include: the query language QUEL, an algorithm for processing

interactions based on the principle of "decomposition", the access methods

supported,and an approach to access control, views, and integrity

preservation via query modification. Not described in this paper are:

control of concurrent updates, the graphics facilities, the system utility

commands, and a more "friendly" graphics oriented user interface. These

topics are presented respectively in References 6, 7, 8 and 9.

-2-

BASIC CONCEPTS AND DEFINITIONS

Let Dl,D2,...,Dn be nonempty sets, not necessarily distinct. A

subset R of the product DlxD2*...*Dn is called a relation, and Di are

called the domains of R. Let r be an element of R, then r is an

n-tuple (rl,...,rn) where ri belongs to Di. It is convenient to

introduce the notation r[Di] = ri in terms of which the projection of R

on Di is defined as RfDi] = {r[Di]: r in R} where it is understood that

any duplicate values are eliminated. If one visualizes R as a table with

its elements appearing as rows, then R[Di] is just the column corresponding

to Di.

We have found it convenient to distinguish the projection R[D] from

the domain D itself, i.e., to distinguish a column from the set of its

possible values. To do this, we have introduced the term attribute to

stand for R[D], An attribute can be viewed as a function on R taking

values in D and its alternative notation {r[Di]: r in R} makes this clear.

This point of view is important in understanding the syntax of QUEL.

QUEL: A RELATIONAL QUERY LANGUAGE

QUEL is a calculus based language. Though closely modeled after the

data-sublanguage ALPHA of Codd, it has some significant differences.

Among these are the following:

(a) Rather than relying on a host language for arithmetical

operations, QUEL is closed under such operations.

(b) QUEL is free of all quantifiers.

(c) Aggregation operations such as SUM and MAX are treated with

much greater generality.

An initial version of QUEL became operational in October, 1974 which

used punctuation as delimiters. The system implementors found this

-3-

unnatural and the delimiters were changed to keywords. Since the

parsing of QUJEL is done by YACC, this modification was easily implemented.

The designers of SEQUEL are to be credited with emphasizing the

desirability of keywords in relational languages. Our experience has

confirmed that keywords are nearly universally preferred over alternative

delimiters.

Each query of QUEL contains one or more Range-Statements and one or

more Retrieve-Statements. We shall use {} to denote "one or more" and

[] to denote "zero or more". With these conventions the form of a query

in QUEL can be expressed as

Query = {Range-Statement}{Retrieve-Statement}

Range-Statement = RANGE of {Variable} IS Relation

Retrieve-Statement = RETRIEVE INTO Result-name (Target-List)

WHERE Qualification

Target-List = {Result-Domain = Function}

The goal of a query is to create a new relation for each Retrieve-

Statement. The relation so created is named by the "Result-Name" clause

and the domains in that relation are named by the "Result-Domain" names

given in the Target-List. In the frequent case where the Function is

simply Variable. Domain-Name, the Result-Domain name may be ommitted

and is then taken to be the same as the Doamin-Name in the Function. Also,

if the "Result-Name" is TERMINAL then the result of the query is displayed

on the user's terminal. To create the desired relation, first consider

the product of the ranges of all variables which appear in the Target-List

and the Qualification of the Retrieve-Statement. Each term in the Target-

List is a function and the Qualification is a truth function, i.e., a function

with values true or false, on the product space. The desired relation is

-4-

created by evaluating the Target-List on the subset of the product space

for which the Qualification is true, and eliminating duplicate tuples.

Example: CITY(CNAME, STATE,POPULATION,AREA)

"Find the population density of all cities in California

with population greater than 500k"

RANGE OF C IS CITY

RETRIEVE INTO W(C.CNAME, DENSITY «= C.POPULATION/C.AREA)

WHERE C.STATE « 'California1 AND C.POPULATION>50K)

(note the default used for CNAME = C.CNAME and that the result

of the query is a relation W(CNAME,DENSITY)).

It is clear from the above discussion that the basic quantities used

in QUEL are functions on products of relations. The allowed functions

can be exceedingly complex and fall into three categories: (a) Functions

resulting from arithmetical combinations of attributes, (b) Set valued

functions such as "the set of cities for each state", (c) Aggregate

functions obtained by aggregating set functions, e.g., "total population

of the cities of each state". The precise definition of the allowed

classes of functions will be given recursively as follows: Consider a

nested sequence of sublanguages of QUEL

QUELO, QUEL1, , QUELn,

Let Ci denote the class of all functions and Qi the class of all quali

fications allowed in QUELi. We first define CO and QO.

CO

(a) Any constant is in CO.

(b) Any attribute is in CO.

(c) If f and g are in CO then f+g, f-g, f*g, f/g, f**g and log(f)g

are in CO.

-5-

(Note: 'Hie functiontJ being combined need not have identical

arguments. The resulting function is a function of

the union of the variables).

QO

(a) An atomic formula in QO has the form f(comp)g, where comp is

any of the comparison operators: <, _<, =, ^, and f and g are

in CO.

(b) QO consists of all sentences made up of atomic formulas

connected by the Boolean connectives: NOT, AND, OR.

Comment: A function in CO will be referred to as an attribute-function.

The value of an attribute function for a tuple depends only on the data

contained in that tuple. This not true for functions in Ci for i>0.

A similar comment applies to QO as well.

We now proceed to define QUELn recursively. Suppose X = (XI,X2,...,Xm)

are the declared tuple variables with range R = R1XR2*.... *Rm. Let X.f

and X.qual be respectively a function and a qualification allowed in

QUEL(n-l). We define SET(X.f WHERE X.qual) as the set of f-values obtained

by evaluating f on the subset of R for which X.qual is true, i.e.,

SET(X.f WHERE X.qual) ={X.f: X is in R AND X.qual=»true}

Example: X CNAME STATE POPU

rl SF CAL 1M

r2 NYC NY 6M

r3 CHI ILL 4M

r4 LA CAL 3M

SET(X.POPU WHERE X.STATE=CAL) = {1M, 3M}

SET(X.POPU WHERE X.P0PU>3M) = {4M, 6M}

Comment: By definition a set contains no duplicate values. However,

it is useful to define SET*as the collection obtained by retaining

duplicates, for example,

-6-

SET'(X..STATE WHERE X.P0PU'4M) - (CAL, CAL)

The aggregation operators COUNT, SUM, AVG, MAX, MIN have an obvious

meaning when they operate on sets. If AGG is any of these operators,

we shall adopt the notation

AGG(X.f WHERE X.qual) = AGG(SET(X.f WHERE X.qual))

and AGG» will denote AFF(SET*).

We shall refer to quantities of the form AGG(X.f WHERE X.qual) as

aggregates. An aggregate depends on the data contained in the range

R but does not vary as X varies. The appearance of X merely serves to

indicate the range. In this way, it acts as a dummy variable not

unlike that in a definite integral. To put it more precisely, denote

a function in Cn by F(X,R) to indicate the fact that in general it

depends on both the tuple X and on R overall. Then, we can say that

constants depend on neither XnorR, functions in CO depend on X but

not on R, aggregates depend on R but not X.

Now suppose that f and g are in C(n-l) and qual is in Q(n-l). Define

SET(X.f BY X.g WHERE X.qual)

as a set valued function of X such that it is constant on any set of X

for which g is constant and on such a set it is given by

SET(X.f BY X.g WHERE X.qual)(X.g=alpha)

= SET(X.f WHERE (X.g=alpha) AND X.qual)

Example:

X X.STATE SET(X.CNAME BY X.STATE WHERE X.P0PU<5M)

rl CAL { SF, LA }
r2 NY empty
r3 ILL {CHI}
r4 CAL { SF, LA }

-7-

The notation AGG(X.f BY X.g WHERE X.qual) is now self-explanatory,

and so are the notations SET* (X.f BY X.g WHERE X.qual) and

AGG*(X.f BY X.g WHERE X.qual).

Example: X X.STATE MAX(X.POPU BY X.STATE WHERE X.P0PU<5M)X X.STATE MA

rl CAL 3M

r2 NY 0

r3 ILL 4M

r4 CAL 3M

Note that AGG(X.f BY X.g WHERE X.qual), unlike aggregates, is a function

of both X and R and will be called an aggregate-function. It is a

function of X through X.g and only through X.g. Thus, the three

appearances of X play a mixture of roles. This is an objectionable

syntactic feature, which however cannot be repaired by using a dummy

variable for the first and last term. AGG(Xf.f BY X.g WHERE X'.qual)

involves aggregation on the product of the ranges of X1 and X and means

something quite different from AGG(x.f BY X.g WHERE X.qual). Several

possible solutions have been considered but rejected for one reason or

another. In particular, if X is restricted to be a single variable, then

its presence can be suppressed in the first and third term. For the time

being we have chosen not to impose such a restriction.

Set functions of the form SET(X.f BY X.g WHERE X.qual) can be combined by

union, intersection, and relative complement. We can define the class

of set functions allowed in QUELn as follows:

Sn

(a) SO contains all constant sets.

(b) Sn includes S(n-l).

(c) If f and g are in C(n-l) and qual is in Q(n-l) then

SET(X.f BY X.g WHERE X.qual) and SET(X.f WHERE X.qual)

are in Sn as are SET*(X.f BY X.g WHERE X.qual) and

SET*(X.f WHERE X.qual)

-8-

(d) Sn is closed under union, intersection and relative

complement.

The classes Cn and Qn can now be defined as follows:

Cn

(a) Cn includes C(n-l).

(b) If s is in Sn then AGG(s) and AGG!(s) are in Cn.

(c) If f and g are in C(n-l) and qual in Q(n-l) then

AGG(X.f BY X.g WHERE X.qual) and AGG' (X.f BY X.g WHERE X.qual)

are in Cn.

(d) If f and g are in Cn, then f+g, f-g, f*g, f/g, f**g and

log(f)g are in Cn.

On

(a) Qn contains Q(n-l).

(b) If f and g are in Cn, then f(comp)g is in Qn,

where comp is any of the operators <,£,=,^.

(c) If u and v are in Sn then u(set-comp)v is in Sn where

set-comp is any of the set-comparison operators:

inclusion, strict inclusion, equality, and inequality.

(d) If s is in Sn and alpha is a value, then (alpha belongs

to s) is in Qn.

(e) Qn is closed under Boolean combinations.

Example: SUPPLY(S#,P#,PRICE)

Query: Find those suppliers whose price for every part

that he supplies is greater than the average

price for that part.

RANGE OF S IS SUPPLY

RETRIEVE INTO W(S.S#)

-9-

WHERE COUNT(S.P# BY S.S# WHERE S.PRICE

>

AVG*(S.PRICE BY S.P#))

= COUNT(S.P# BY S.S#)

Comments: (a) It is clear that the Qualification of the Retrieve-

Statement is in Q2.

(b) Instead of using COUNT, we could also have used the

operator SET. In terms of processing efficiency,

COUNT is preferrable.

UPDATE COMMANDS

In addition to RETRIEVE, QUEL permits three commands; REPLACE,

DELETE, and APPEND, which are update operations. The syntax of the

update statements is nearly identical to that of queries. Range

statements have the same form and interpretation. The update statements

have the same basic form as Retrieve-Statements:

Command: Result-Name(Target-List) WHERE Qualification

For the APPEND Command, "Result-Name" must be the name of some existing

relation, onto which qualifying tuples will be appended.

For the REPLACE(and DELETE) Command, "Result-Name" must be a tuple

variable which, through the qualification, indentifies the tuples to be

modified (or deleted).

The Target-List must contain explicitly (or by default) the existing

Domain-Names for the relation being changed (the DELETE Command has no

Target-List).

A few examples will indicate the usage of the Update-Commands. All of

the examples will use the following relations and RANGE statements

EMP(NAME,SAL,BDATE,MGR)

NEWEMP(NAME,AGE,SALARY)

RANGE OF E IS EMP

RANGE OF N IS NEWEMP

-10-

Example: All new employees over 35 are to work for SMITH

APPEND TO EMP(N.NAME,SAL=N.SALARY,BDATE=1975-N.AGE,MGR=»SMITH')

WHERE N.AGE>35

Example: Give all employees a ten percent raise who work for Jones

REPLACE E(SAL=1.1*E.SALARY) WHERE MGR=fJONES1

Note: The keywords BY and IS may be used interchangeably with ,=l

anywhere in INGRES to improve readability.

Example: Remove all employees who are in the EMP relation from the NEWEMP

relation.

DELETE N WHERE N.NAME=E.NAME

DECOMPOSITION

QUEL is obviously a very high level language and the success of

system implementation depends critically on how the commands are

12 13
processed. Palermo and Rothnie have considered the problem of

query-processing in a relational database system and have offered

interesting suggestions on its solution. Neither, however, has provided

an algorithm which is adequately general to process QUEL in its present

form. Our approach is both more general and simpler. For the time

being, we have opted for a uniform algorithm to deal with all queries

rather than special strategies for special situations. How the

algorithm can be tuned for each query is a problem that must be

addressed at a later date.

Our overall strategy can be simply stated. Rather than compiling

QUEL into a lower level language, we shall decompose an arbitrary

QUEL-query into a series of one-variable QUEL-1 queries,at which point

most of the difficult problems will have disappeared. Thus, for QUEL

the "optimization" which is necessary for all high level languages

-11-

lies nearly entirely in the decomposition. How "optimization" can

be achieved is a problem stillvery far from a satisfactory solution.

In the first version of our implementation, nothing more than some

common sense rules of thumb is being used in selecting alternative

paths at each stage of the decomposition.

Decomposition of QUEL queries is made difficult by an inconsistency

in the language, viz., set-valued functions are allowed in the

Qualification but not in the Target List. The role of set functions

in the Qualification is to take the place of the universal quantifier.

They are not allowed in the Target List because the result would be a

relation with set-valued elements, i.e., an unnormalized relation.

For example, the query

RANGE OF X IS CITY

RETRIEVE INTO W(X.STATE,CITIES-OF-STATE=SET(X.CNAME BY X.STATE))

is an illegal QUEL query because it would result in an unnormalized

relation

STATE CITIES-OF-STATE

W CAL {SF,LA}
ILL {CHI}

NY {NYC}

The only way of processing set functions which is consistent with the

restrictions of QUEL is to substitute specific values one at a time

for the conditioning function (i.e., the middle argument). For example,

SET(X.CNAME BY X.STATE) becomes successively SET(X.CNAME WHERE X.STATE=CAL),

SET(X.CNAME WHERE X.STATE=ILL), etc. This strategy, when carried out on a

multivariable query, can result in a combinatorial explosion in

complexity. At the present time the use of set functions in QUEL

statements is permitted but discouraged. Fortunately, a query involving

-12-

set functions can often be replaced by one without them. The following

example illustrates this point.

Query: which states have only cities with population less than 4M?

RANGE OF X IS CITY

RETRIEVE INTO W(X.STATE)

WHERE SET(X.CNAME BY X.STATE WHERE X.P0PU<4M)

= SET(X.CNAME BY X.STATE)

The Qualification in the above query can be replaced by

COUNT(X.CNAME BY X.STATE WHERE X.P0PU<4M) = COUNT(X.CNAME BY X.STATE)

For the remainder of this section we shall outline a general

decomposition algorithm for those queries in QUEL which do not contain

set functions. Sets, however, will be allowed. The overall strategy

has two parts: (a) A QUELn query will be replaced by a series of

QUEL(n-l) queries and one-variable QUELl queries, (b) A multivariable

QUELO query will be decomposed into a series of one-variable QUELO

queries. Thus, repeated applications ofthe algorithm will decompose

any QUELn query into a series of one-variable queries in QUELl or QUELO.

(a) QUELn -»• QUEL(n-l)

Consider a query involving one or more tuple variables

X = (Xl,X2,...,Xm) with range R = RlxR2*...xRm. Let its Qualification

be denoted by Q(X). Suppose the query contains (either in its Target

List or in its Qualification) an aggregate function AGG(X.f BY X.g WHERE X.qual)

where f and g belong to C(n-l) and qual belongs to Q(n-l).

(i) RANGE OF Y IS R

RETRIEVE INTO TEMPO(A=Y.f,B=Y.g) WHERE Y.qual

Comment: The purpose of this statement is two fold: to

convert the multivariable range R into a single

relation TEMPO and to delineate the tuples which

satisfy qual.

-13-

(ii) RANGE OF Yl IS TEMPO

RETRIEVE INTO TEMP1(Y1.B,0=AGG(Y1.A BY Yl.B))

Comment: Thus far, we have created the portion of

AGG(X.f BY X.g WHERE X.qual), for X.g belong to

SET(Z.g WHERE Z.qual).

(iii) RANGE OF Y IS R

RANGE OF Z IS TEMPO

RETRIEVE INTO TEMP2(B=Y.g,C=AGG(<i>))

WHERE Y.g does not belong to SET(Z.B)

Comment: AGG ((f)) means AGG operating on an empty set. We

shall adopt the following convention:

SUM(<f>) = 0 = SUM* (<j>)

COUNTS) = 0 = COUNT* (<J>)

AVG((f») = undefined = AVGf(<|>) (error if occurs)

MAX(<j>) = -co (i.e., the smallest possible value

for that domain)

MIN(<J>) = °° (i.e., the largest possible value

for that domain)

(iv) RANGE OF Z2 IS TEMP2

APPEND TO TEMPI(Z2.B,Z2.C)

Comment: We have finally created the desired aggregate

function

(v) In the original query we add RANGE OF Z IS TEMPI,

add the clause "AND (X.g=Z.B)" to the Qualification and substitute

Z.C. for AGG(X.f BY X.g WHERE X.qual).

Comment: (iii) and (iv) are omitted if either X.g or X.qual is

absent in the aggregate function.

-14-

(b) Multivariable QUELO ->• One-Variable QUELO

Suppose that the Qualification is expanded in a conjunctive

normal form so that it consists of clauses connected by AND with

each clause containing atomic formulas or their negation connected by OR.

(0) Stop if already one-variable.

(i) For each variable,say XI with range RI, collect all the

attributes which depend on XI and all the clauses in the

Qualification which depend only on XI. Say Dl,D2,...,Dk

are the attributes,and the clauses put together yield Q1(X1).

Issue the query.

RANGE OF XI IS Rl

RETRIEVE INTO Rl*(X1.D1,X1.D2,...,Xl.Dk) WHERE Q1(X1)

(ii) Replace the range Rl of XI in the original query by Rlf

Comment: The purpose of (i) and (ii) is to limit the range

of each variable in the original query to as small

a relation as possible by projecting and by

enforcing the part of the Qualification which

operates only on this variable,

(iii) Take the variable with the fewest tuples in its range and

substitute in turn the actual values of its tuples. This

reduces the number of variables by 1. After each substitution,

repeat (0), (i), (ii) and (iii).

Comment: Step (iii) will be referred to as tuple -

substitution and represents the most time consuming

step in the overall algorithm. The choice of which

variable to substitute for is critical. Our

criterion of choosing the variable with the fewest

values is by no means optimal in general.

-15-

This concludes the discussion of decomposition of queries. Update

statements are transformed into queries followed (perhaps) by a sequence

of insertions and deletions of tuples.

ACCESS METHODS

As a result of the steps in the preceding section a sequence of one-

variable QUELO and QUELl queries are generated. These queries can be

executed directly (in the worst case by a sequential scan of the relation

tuple by tuple). Often the relation will be stored in such a way that

a complete scan is not required. Also secondary indices can be declared

and are used if possible to limit the number of tuples examined. Currently

there are five modes of relation storage and more can be added easily

by implementing a common set of access calls (get next tuple, get unique

tuple with equality on offered key, find starting point of a scan, etc.).

These conventions are further discussed in reference 14. Currently, a

relation owner can decide both the relation storage and what secondary

indices (if any) to construct. Soon both decisions will be done

automatically by the system.

The current access methods are

1) Unsorted Tables. This access method is supported for ease of entering

relations into the system and is used for temporary relations

(workspaces).

2) Hashed Tables. * These are used when interactions almost always

specify equality on a given domain or set of domains. A division

algorithm is used, bucketsize is the page size used by UNIX and overflows

are handled by chaining.

3) Order Preserving Address Computation with a variable number of parameters.

This access method is useful when scans over portions of a relation must

be performed and the order preserving nature of the function can be

-16-

used to limit the scan. The number of parameters is data dependent

and ranges from none to the number of data pages used by the

relation. With no parameters it resembles the computed functions

17 18
of Rothnie and Rivest, With a maximum number of parameters it

resembles VSAM. This function and the choice of the number of

parameters is discussed in reference 14.

4) Compressed Access. Access methods 2) and 3) can optionally (and

5) transparently to higher level software) apply a compression scheme

to each data page. Currently only front compression is used but the

scheme will become more sophisticated in the future. These two access

methods are useful when a large space saving will result in decreased

I/O activity. Of course, the price paid is coding and decoding tuples

at each access.

QUERY MODIFICATION

A high-level and nonprocedural language has benefits beyond its power

and ease of use. For our purposes a major benefit will be the possibility

of solving a number of system problems in a unified way, viz., by query

modification. Here "query" is to be interpreted broadly to include the

update commands as well. The specific problem areas to be addressed are:

access control, integrity verification, and the support of "views."

20
A suggestion along similar lines was made by Boyce and Chamberlin.

Since the details of our approach to these problems are being reported

21 22
elsewhere, ' we shall confine ourselves to a brief account of the

basic ideas here.

Access Control

Problem: We wish to provide a means whereby the access of each

user to the database can be selectively restricted.

-17-

Solution: We define a pseudo QUEL command called RESTRICT which has

a syntax nearly identical to that of RETRIEVE. The access

control for each user is specified by a set of RESTRICT

statements. For example, suppose EMPLOYEE(NAME,DEPT,

SALARY, MANAGER) is a relation, and the restriction on

SMITH is given by

RANGE OF E IS EMPLOYEE

PERMIT ACCESS FOR 'SMITH* TO EMPLOYEE

WHERE E.NAME='SMITH' OR E.MANAGER='SMITH1

The interpretation here is that SMITH can retrieve only the data

on himself and on anyone whom he manages. Different

restrictions may be in force for the update commands, for

example,

RANGE OF E IS EMPLOYEE

PERMIT UPDATE FOR 'SMITH' TO EMPLOYEE

Execution: The Qualification of every RESTRICT statement for a given

user is appended to the Qualification of every one of his

interactions by conjunction (i.e., AND). For example, if

SMITH issues the query

RANGE OF E IS EMPOLYEE

RETRIEVE INTO W(E.SALARY)

WHERE E.NAME='JONES'

it is automatically executed as

RETRIEVE INTO W(E.SALARY)

WHERE E.NAME='JONES'

AND (E.NAME='SMITH' OR E.MANAGER='SMITH')

Comment: Queries involving aggregation are naturally more difficult

to handle, but nevertheless can be handled in a similar

-18-

21
way.

Integrity Assurance

Problem: We want to provide a means for maintaining certain

constraints or consistencyconditions on the data in

the face of updates. For example, suppose we require

that the data satisfy the constraints: "no

employee can earn more than 21K" which may

well be violated by the update operation "give everyone

earning less than 20K a 10% raise".

Solution: Introduce a QUEL command, called INTEGRITY which

expresses the constraint in the form of a QUEL

qualification, e.g.,

RANGE OF E IS EMPLOYEE

INTEGRITY CONSTRAINT IS E.SALARY<21K

Execution: Each update command which potentially violates the

integrity constraint will be filtered by the INTEGRITY

statement. This is done by appending qualification from

the INTEGRITY Statement. The algorithms become somewhat

complicated when the INTEGRITY Statement involves more

than one tuple variable or aggregation. Here, we

confine ourselves to an illustrative example.

Suppose that a command to "give everyone earning less than

20K a 10% raise" is issued. In QUEL this takes the form

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1*E.SALARY)

WHERE E.SALARY<20K

-19-

Views

This statement upon modification becomes:

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1*E.SALARY)

WHERE E.SALARY<20K

AND 1.1*E.SALARY<21K

Problem: We wish to accommodate queries referencing relations which

do not exist but can be derived from existing relations.

Due to reorganization of the database, existing programs

may have obsolete "views" that need to be supported

Solution: We introduce a QUEL command called DEFINE, which

relates a "view" of the database to reality. For example:

Suppose that at one time the database contained a relation

EMPLOYEE(E#,NAME,DEPT,SALARY,SPOUSE,#CHILD) . After

reorganization, this relation becomes two relations.

JOB(E#,DEPT, SAL) and FAMILY(E#,NAME,SPOUSE,#CHILD) . The

DEFINE statement is given by

RANGE OF J IS JOB

RANGE OF F IS FAMILY

DEFINE EMPLOYEE(J.E#,J.DEPT,SALARY=J.SAL,F.NAME,

F.SPOUSE,F.//CHILD)

Execution: Any interaction referencing a relation which is the "Result"

of a DEFINE statement is translated into an interaction

referencing the relations declared in the RANGE of the DEFINE

statement. For example, consider the statement

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1*E.SALARY) WHERE E.NAME='JONES'

-20-

Upon modification, it becomes

RANGE OF J IS JOB

RANGE OF F IS FAMILY

REPLACE J(SAL BY 1.1*J.SAL)

WHERE F.NAME='JONES'

AND F.E//=J.E#

CONCLUSION

The first, and a very primitive, version of our system is now

implemented. At the time of writing of this paper only QUELO queries

are permitted. A complete, but relatively unclever, implementation

for QUEL, is expected by April, 1975. Access control is the first of

the query-modification features to be implemented, and is now working.

Other query-modification features and strategies for greater efficiency

in processing are on the more distant horizon.

ACKNOWLEDGEMENT

Inplementation of INGRES is being undertaken by Jim Ford,

Peter Kreps, Nancy McDonald, Carol Williams, Karel Youssefi and Bill Zook.

Their dedication and resourcefulness never cease to amaze us.

REFERENCES

E. Ritchie and K. Thompson, "The UNIX time-sharing system," CACM, L7,

(1974), 365-375.

2
S. C. Johnson, "YACC - Yet Another Compiler-Compiler Bell Telephone

Laboratory, Murray Hill, N.J.

3
E. F. Codd, "A relational model of data for large shared data banks,"

CACM, 13 (1970), 377-387.

4
E. F. Codd and C. J. Date, "Interactive support for non-programmers:

-21-

the relational and network approaches," Proc. of the 1974 ACM-SIGFIDET

Workshop on Data Description, Access and Control, Ann Arbor, Mich., May 1974.

C. J. Date and E. F. Codd, "The relational and network approach:

comparison of the application programming interfaces," Proc. of the 1974

ACM-SIGFIDET Workshop on Data Description, Access and Control, Ann Arbor,

Mich, May 1974.

M. Stonebraker, "High level integrity assurance in relational data base

management systems," University of California, Electronics Research

Laboratory, Memorandum ERL-M473, August 1974.

N. MacDonald, M. Stonebraker, and E. Wong, "Preliminary design of INGRES,"

University of California, Electronics Research Laboratory, Memorandum

ERL-435-436, April, 1974.

o

M. Stonebraker and E. Wong, "INGRES - A relational data base system,"

University of California, Electronics Research Laboratory, Memorandum

ERL-M477, November, 1974.

9
N. MacDonald and M. Stonebraker,"CUPID - The friendly query language,"

University of California, Electronics Research Laboratory, Memorandum

ERL-M483, December, 1974.

E. F. Codd, "A data base sublanguage founded on the relational

calculus," Proc. of the 1971 ACM-SIGFIDET Workshop on Data Description,

Access and Control, San Diego, Calif., November 1971.

R. Boyce and D. Chamberlin, "SEQUEL - A structured English query language,"

Proc. of the 1974 ACM-SIGFIDET Workshop on Data Description, Access and

Control, Ann Arbor, Michigan, May, 1974.

12
E. P. Palermo, "A data base search problem," Proc. 4th International

Symposium on Computers and Information Science, Miami Beach,

December 1972.

-22-

13J. B. Rothnie, "A approach to implementing a relational data management

data management system," Proc. of the 1974 ACM-SIGFIDET Workshop on Data

Description, Access and Control, Ann Arbor, Mich., May 1974.

G. Held and M. Stonebraker, Access methods in the relational data base

management system - INGRES," Proceedings of ACM-PACIFIC-75, San Francisco,

Ca., April, 1975.

15R. Morris, "Scatter storage techniques," CACM, 11, (1968), 35-38.

V. Lum, "General performance analysis of key-to-address transformation

methods using an abstract file concept," CACM, 16, (1973), 603-612.

17J. B. Rothnie, Jr. and T. Lozano, "Attribute based file organization in

a paged memory environment," CACM, 17 (1974), 63-69.

18R. Rivest, "Analysis of associative retrieval algorithms," Institute

de Recherche d'Informatique et d'Automatique (IRIA), Rapport de Recherche

No. 54, February, 1974.

19D. Keehn and J. Lacy, "VSAM data set design parameters," IBM Systems

Journal, Vol. 13, No. 3, 1974.

20R. F. Boyce and D. D. Chamberlin, "Using a structured English query

language as a data definition faculity," IBM Research Report RJ1318,

December, 1973.

21
M. Stonebraker and E. Wong, "Access control in a relational data base

management system by query modification," Proc. 1974 ACM National

Conference, San Diego, Calif., November 1974.

22
M. Stonebraker, "Implementation of views and integrity constraints

in relational data base systems by query modification," to

be published.

-23-

	Copyright notice 1974
	ERL-477

