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Abstract. A simple relation exists among the elements of <j>(T) when <J>

is an analytic function and T is triangular. This permits the rapid

build up of <J>(T) from its diagonal. An analogous relation holds for

block triangular matrices. This permits the formation in real arithmetic

of real functions of real matrices with complex eigenvalues. The

confluent case is included. Algorithms are given and some numerical

examples.
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1. Introduction

One of the most spectacular applications of the Jordan Canonical

form in the realm of matrix theory is the simple expression it yields

for a function of an arbitrary square matrix B, say. Let J be the

(upper) Jordan canonical form of B so that

-1
B = XJX

where J is a direct sum of blocks of the typical form

J4(A) =

X 1

X 1

X 1

X

See [3] for more details. For any analytic function $ which

is regular in an open region containing Bfs spectrum

-1
<(>(B) = X(J>(J)X

where (f>(J) is a direct sum of blocks of the typical form

<KJ4(X))

<KX) <j>*(A) <Ttt)/2 f"(X)/6

4>(A) <fr'(X) <Ttt)/2

<J)(X) 4>'(X)

<i>(X)

(1)

(2)

(3)

(4)

Consequently, when X, J, (J) and its derivatives are all given, formula

(3) specifies (J)(B) in a way that is useful both in theory and for

computation.



Things are not so simple in the usual case when only B and <{> are

given. The fact is that the computation of X and J from B is not a

routine matter. The difficulty here stems from the fact that J is not

a continuous function of B's elements when B has multiple eigenvalues.

In fact near any (defective) matrix with a multiple eigenvalue there are

other matrices whose eigenvalues differ in their leading decimal digits!

Consequently it is not clear what approximation to J a computer pro

gram should deliver. Recent results, see [1], suggest that the bigger

the size of the Jordan blocks the more robust will be the approximation.

This being the case it is attractive to consider ways of computing <}>(B)

without finding J and X.

We recall that (j>(B) = <j>j(B) where <j) is the polynomial which

interpolates (J> at B's eigenvalues (counting multiplicities). See [3],

The Lagrangian form of the interpolating polynomial gives

n n B-X,

<KB) = I n (-—l)<m) (5)
k=l j=l Ak"Aj K

where {X , i=l,...,n} is the spectrum of B. More economical in terms

of matrix multiplications is Newton's form of the interpolating polynomial

n k-1

(J>(B) =(KXJI + I n (B-X.)<j>[X1,...,X,] (6)
1 k=2 i=l 1 -1 '

where <J>[X, ,...,X ] is the divided difference of order k-1 which uses

data points A..,...,A, . Expression (6) requires (n-1) matrix multipli

cations and one extra matrix array for temporary storage of the partial

4
products. Techniques based on interpolation require 0(n ) basic



arithmetic operations and extra storage beyond that needed for B and

<j)(B).

For any similarity transformation B = GCG we have

<j)(B) = G(J)(C)G""1 (7)

and this suggests a compromise between the use of the Jordan decomposi

tion (3) and the interpolation formulae (5) and (6). There are available

today standard programs for effecting the Schur decomposition

B = PTP* (8)

* -1
where P is unitary (P = P ) and T is upper triangular. Between

3 3
lOn and 15n multiplications suffice for this robust factorization.

See [0, pp. 16,25],

The usefulness of (8) for the present purpose depends on the cost

of forming (|>(T). In Section 3 we present a simple relation among the

elements of <}>(T) which permits us to build up <j>(T), one superdiagonal

after another, going away from the main diagonal. The operation count

3
is only n /3 and no extra storage is required. The other sections

present the relation and expound the method in greater detail, covering

the treatment of multiple eigenvalues.

2. A Matrix Function as a Contour Integral

Let B be a square matrix with real or complex elements and let

(|)(z) be an analytic function which is regular inside and on some con

tour T which contains T's spectrum. One of the most elegant defini

tions of the matrix (|>(B) is attributed to E. Cartan; see [1, p. 44]

or [3] for more details.



♦(B) =^i <> (|)(z)(z-B)""1dz (1)
r

where the integral is taken counterclockwise along T. This formula is

very useful in theoretical work.

As an application of (1) we prove the following well known result.

Lemma 1. Let T be upper triangular. Then f = <J>(T)

is completely determined by <J> and those elements t of T

satisfying r < i < j < s.

Proof. The (r,s) element, u , of U = (z-T) is completely

determined by z and the elements of T specified above. This can be

seen by back-solving (z-T)u = e for u , the s-th column of U
s s s

with e denoting the s-th column of the identity I.

By (1) the (r,s) element of F = (J>(T) must inherit the same

dependence as u since

1

rs 2iri
o <j>(z)u (z)dz . •
Jp rs

3. A Relation Among the Elements of (j)(T)

Let T be an upper triangular matrix with real or complex elements

and let <j)(z) be an analytic function which is regular inside and on

some contour T which contains T's spectrum. Then the matrix F = <j)(T)

is well defined and also upper triangular. Although a typical element

f , r < s, of F is a complicated function of (J> and T it turns

out that it is simply related to the elements in its row and column

which are closer to the main diagonal, as the figure shows.



row r x x x x

i
XXX

XX

X

column s

The result is a simple consequence of the following well known

result.

Lemma 2. Any square matrix B comutes with <j)(B) for

any scalar function (j> for which <{>(B) is well defined.

Proof. The integral definition (Section 2) of the function z<j>(z)

evaluated at B yields

1 * z(f>(z)(z-B)"1dz = <J>(B)BB<j>(B) =
2iri

since z(j>(z) = <J>(z)z.

Theorem 1. Let F = (j)(T) be an analytic function of an

upper triangular matrix T. For r < s,

(t -t )f = (f -f )t
rr ss rs rr ss rs

s-r-1

.£- r,r+k r+k,s r,s-k s-k,s

Proof. By Lemma 1 F is upper triangular. By Lemma 2

•



FT - TF = 0

On writing out the (r,s) element of the left hand side and rearranging

terms the result is obtained. •

The formation of an nxn matrix <J)(T) from its diagonal elements

fjj =^jj** j=1»-**'n recluires (n-2)(n-l)(2n-3)/6+(n-l)2 multi
plications.

Theorem 1 is of no use when t = t and for completeness we
rr ss r

describe in the next two sections how to form cJ>(T) in the confluent

case on the assumption that all necessary derivatives of (f> can be eva

luated. In practice, however, the cases to consider are those in which

the diagonal elements are close and only 0 is available. We will not

pursue this topic here.

Corollary. Let- T = (T..) be block upper triangular.

Then F = <j)(T) will have the same block structure and, for

r < s »

T F -FT
rr rs rs ss

s-r-1

- I <*
k=0 r»

T
r+k r+k,s r,s-k s-k,s

Proof. Equate the (r,s) block of TF - FT to zero. D

This corollary gives a set of linear equations for the elements of

F in terms of T , T and the right hand side R . A solution
rs rr ss ° rs

exists provided that T and T have no eigenvalues in common.
rr ss

Equations of the form AX - XB = C have been studied quite extensively

and special methods for solving them have been devised. However if T
rr



and T are at most 2*2 then it is probably best to use an ordinary
ss

linear equations solver which uses pivotal interchanges. In the 1x2

and 2x1 case the solution should be written out explicitly.

This corollary is useful because it shows how real functions of

real matrices with complex eigenvalues can be evaluated in real arithmetic.

First the given matrix is reduced to block triangular form T by the QR

Algorithm [0, p.25], The diagonal blocks are either lxl or 2x2 and

the result of the corollary can be readily applied to T.

Another use of the corollary is in dealing with those cases in which

T has exactly multiple eigenvalues. These can be grouped into blocks

and the diagonal blocks of F can be evaluated by the algorithm described

in the next section.



4. The Confluent Case

Suppose that t = t and, further, that t.. = X for
rr ss ' ' ii

r £ i _< s. This stronger condition can be enforced by taking the trouble

to put all equal eigenvalues into adjacent positions down T's diagonal.

There exist plane rotations which exchange adjacent diagonal elements

and preserve triangularity.

By Lemma 1 it suffices to consider the (l,n) element in the case

when all the eigenvalues are identical and

T = X + N

where N is strictly upper triangular and therefore nilpotent of index

n, i.e. Nn = 0, Nn_1 f 0.

Theorem 2. Let T = X + N and suppose that (J> has

(n-1) continuous derivatives at X. Then

[*<T>]m •
n-1 .

/j)(X)/j! ,

where

(NJ>m "^ = I t t
a 0 1 V2,,,tflHffJ

and Q ranges over the set S (j) of all strictly increas-

ing sequences of integers with an == 1, a. = n.
3

Proof. z-T

-1
(z-T)

(z-X)[l-(z-X)"1N]

[1- (z-X)~1N]"1/(z-X)
n-1

= lNJ/(z-X)j+1
j=0



10

Recall [1, p. 45] that

4>(j)(X)/j! = o^T<> (f>(z)dz/(z-X)j+1 .
2-iri

r

Multiply (z-T) by (j>(z)/2iri and integrate round T to obtain

1

27Ti t
-1

4>(T) = ^7" *(z)(T-z) dz
r

=1nVJ)(z)/J! •
j=0

From the very definition of matrix multiplication restricted to strictly

upper triangular matrices

(Nj)n =Tk=Jt '-t
In j t anai a- ia-J a 0 1 j-1 3

Note that the term j = 0 contributes nothing to the (l,n) element

of (f>(T) and so may be omitted. In other words Tfi =0, by convention.

•

For Theorem 2 to be useful it must be possible to compute <|) J (X)

and we assume that such facilities are available. We observe that

Theorem 2 is the special case of Newton's interpolating formula when

all the X. coincide.
i

If an extra array of storage is available, beyond that required for

T and F = <|>(T), then there is a straightforward way to compute F.

Let N be the array which will contain the successive NJ. The follow

ing algorithm is self explanatory.
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Step 1. N «• I, F «- 0, <J)(X)I.

Step 2. For j = l,...,n-l

N +• N(T-X)

F«- F+N<J>(j)(X)/j!

The relevant part of N shrinks by one diagonal at each step.

Cost. At step j the last n-j+1 rows of N are zero. The

step N<- N(T-X) requires (n ^ ) multiplications. Summing this,

for j = 2,...,n-2, yields a total of ( ,) multiplications for all
A

the N's. This is 0(n ) but the leading coefficient is 1/24. The

second steps, F «- F + •••, require a total of () multiplications,

a lower order term.

In the next section we describe a slightly more complicated algorithm

which costs no more and requires no extra storage. Essentially it exe

cutes the above algorithm on one row of F and N at a time.

5. The T Array

In this section we describe what amounts to a programming device

r s
for building up the coefficients T.' in a manner that is economical

in both storage and in arithmetic operations. We leave the special case

r s
r = 1, s = n and observe that T.' is a sum of products of t's and

we can group together those products with the same last term t .

j-l 3
Formally

xr,s= T t t t '--t , a =r, o*. = s ,
J aeS.(r,s) 0 1 12 2 3 j-l j

3

s-1 .

= I t*'* t, . (1)
k^lJ"1 ks
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In order to build up tY,s for j = l,...,s-r, using (1), it will be

r knecessary to form and hold T ' for m = l,...,k-r; k = r+l,...,s-l.

In practice these T values can all be stored in that portion of the

array F = (j>(T) which is subtended by the (r,s) element.

"N_r.,! r,r+2 r,r+3 i\.r,s
lT2 T2 , L2

,Sr,r+3
T3 3

V,

r,s

V

The array is built column by column as indicated above, the first row

r k
is given by T_' = t ,, r < k _< s.

X J- y K.

Cost. For a confluent block with m rows, m >^ 2:

\~ ) operations for column m of x for row 1.

(r) operations for the whole t array for row 1.

(^« ) additional operations for the formation of row 1.

(a )+ Cv operations for the whole confluent block.

6. Functions of Matrix Pencils

An initial value problem which arises in many applications has the

form

Bu(t) = Au(t) , u(0) = u

where A and B are constant. When B is invertible the solution is,

formally,
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u(t) = exp(B~ At)u
o

When working with floating point arithmetic of fixed precision the explicit

inversion of B may sometimes provoke unnecessarily large roundoff errors.

The next theorem shows how exp(B At) can be computed without invert

ing B. The storage requirements of this phase are doubled but the "extra"

arithmetic operations are saved by avoiding the formation of B~ At. The

method is not confined to the exponential function.

The first step is to reduce A and B to upper triangular form by

unitary transformations. This is accomplished by the QZ algorithm [4].

Theorem 3. Let A and B*1 be upper triangular and let

* be a scalar function for which F = (KB^A) and F ==(KAB-1)

are well defined. The elements of the upper triangular matrices

F and F are given by

f.. = f..
JJ JJ

- ♦eJJ/bjj> » j = l,...,n ,

and, for r < s,

a f -f a
rr rs rs ss

= (f -f )a
rr ss rs

s-r-1

k=l r'
r+kar+k,s -a ,f i

r,s-k s-k ..>

b f -f b
rr rs rs ss

= (f -f )b
rr ss rs

s-r-1

k=l r>
r+kbr+k,s -b . f .

r,s-k s-k ..> •

Proof. Since AB 1 = B(b"" A)B*" , F = BFB~ . By Lemma 2,

B_1AF = FB_1A , AB_1F = FAB"1
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Thus

AF - FA = 0 , BF - FB = 0 . (1)

Moreover F and F are upper triangular (by Lemma 1). On equating the

(r,s) element on each side of (1) the given relations are obtained. D

By tolerating the storage of the auxiliary matrix F the pair

F, F can be built up together from the diagonal outwards, without ever

inverting B. When the two linear equations do not have a unique solu

tion, i.e. when

a b - a b = det
rr ss ss rr

( a a i
rr ss

b b
v rr ss J

= 0 ,

then the confluent form, involving derivatives of <J>, must be used,
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7. Programs and Examples

SUBROUTINE FiJNUPPDtRtSiT.F, 1M,PHI |
DIMFISIDN T(f«M,MM), F(KM,MM)
int—er RtS

.C. __THE. FUNCTIC.N (SlinPRHi-pAM) PHt IF THE HLOCK IM ROWS R THROUGH S OF
C THE Ml X J',M UPPfR TRIANGULA* MATRIX T IS STORED IN F

C THE DIAGONAL ELEMENTS APE ASSUMED TO BE DISTINCT. IF THIS CGNDITICN
C_ IS VIOLATED EXECUTION WILL BE INTERRUPTED AND MM WILL BE SET TO
C * ". -mm AS A FLAG

C

C INSERT FUNCTION VALUES ON THE DIAGCNAL
no To" i=r7s

10 F(I • I) = PHI(T(I,I))
C PROCESS THE KTH SUPERDIAGONAL

N = S-R +1
NN= N-1

IF (NN.EO.O) RETURN

00 l3K=ltNN •
LL = R - 1 * N - K

DO 12 I=R,LL
" 'OIFF "= T( I ,1 )-T(I+Kf I+K)

IF (ABS(OIFF) .EQ. 0.0) GOTO 14

G« T(I,I+K) * ( Ff 1« I) - FII+K,I«-K))
KK = K-1

IF (KK.EQ.O) GOTO 12
_____ DO 11 M=1,KK

.^ g„=..^_v (F{I,I<-M)*T("I+"M ; I+KI --"tf i'tI*.K-M)*F(.I*K-Mf 14-KI )
12 F(I,1+KI = G/DIFF
13 CONTINUE :

RETURN ' ' '
14. MM = -MM

_RETURN :•••:•-- __ _
END

The author wishes to thank Mr. Ron Feldman for programming assistance.
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SUBROUTINE FUNUPPC<R tS»T,FtMM,PHI I
DIMENSION T(MM,MM),F(KF,MMJ
IMTrr/?R R,R»,S,SS

. C CONFLUrMT CAS?! - EOUAL DIAGONAL -TLZMruTS
C" THE FUNCTION (SUBPROGRAM) PHI OF ThF. dLOCK IN ROWS R THROUGH S OF
C THE mm x MM UPPER TRIAWGULAR MATRIX T IS STORED IN F
C PHIIM.xi IS THE MTH DERIVATIVE OF PHUX), THE GIVEN FUNCTION
C

FAC = 1

F(_,R) = P'U(0,T(R,R))
"IF (R.EQ.'SI RETURN ~
RP = R+l

DO 10 K=P.R,S
FAC" ="~FAC' * (K-R) "*" ' """ * "

10 FKtK) = PHI(K-R,T(R,R))/FAC
C JH_E_0 IAGONAL IS A CONVENIENT STORE FOR DERIVATIVES

C GENFRATE TAU-SIGMAS
i SS_ =__S-l

D0'"l6" I=R,SS~" ' - '•'• "• "-"
II * 1*1.

00 13 NailVS
F(ItN) = T(I,N)
NN = N-1

JJ_J_NN.LT. II) GOTO 13
DO 12 K=II,NN
G=0

DO 11 M=K,NN
L = K-1'"

H G = G+ F<L»M)*T(M,N)
F(K,N) = G

12 CONTINUE
13 CONTINUE
C F NOW CfNTAINS THE CORRECT COEFFICIENTS

DO 15 ~N=IlV'S ' '
G =0

NN=N-1
"DO 14 k="iYnn

M a K-H-R+1

J-± ' G___G___I_(K,N)*FCM,M)
F("I,N"")' = G

15 CONTINUE
.16 CONTINUE
C RESTORE DIAGONAL" '"

RR=R*1

0.J_ 17 K=RR _S ^^
17 F(K~,K) a F{R,R)

RETURN

END
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Example 1. Distinct Eigenvalues

* = 2 S=. a
PHI =. X*X + 3.0*X + 2.0

:JPPF4 TPI ANGULAR MATRIX 1

3. -0 -2. oe L . i.ou -2 • uU

J. 2. 00 <t. 00 3.U0 2.00

0. '•J • 1. )0 5. CO 1.00

0. 0. c. -4.cn 1. 00

0.

RJMCTI •IN M AT-< IX r

0. 2.0U

"). 0. -. • o.

•j • 12. Go 24. )C 2 3.L-U 0.

•J. 0. o . )0 0. 0.

0. 0 . 0. 6. CO 0.

.1. 0. • • 0. 0.

Example 2. Confluent Case

H = 3. S~ 4

3HI = X*X + 2.0*X + 2.0

UPPfK TRIANGULAR M -\ T t*> IX T

•i .oo -2. 00 0. I.OC -:».00

o. 2. 00 ' 4. 10 5.0 0 -4. bo

0. 0. 2. JO % oc 1 .00

0. 0. 0. 2.00 1 • Ou

Jo 0 . 0. 0. 1.00

FUNCTION MATRIX F

0. 0 . 0. 0. 0.

J. LO . 00 2 4 . )0 3U.00 0.

Oo • 10. x.. 30.0.: 0.

0. L." . C. 1 0 . 0 0 0.

0, 0. 0. u.
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