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ABSTRACT

Optimization aspects in designing and operating a parallel
processing system ofvsuper computing power are investigated.
Specific subjects studied or results obtained include: practical
tools for parallelism indication, technical foundation for detect-
ing useful parallelism hidden in parallel programs, a2 modular
architecture for effective parallelism utilization, optimization
techniques relevant to machine design, static sequencing and
static storage allocation, cost-effective vaiidation of parallel
programs, a scheme for concealing run-time overhead incurred in
dynamic optimization.

Control parts of parallel programming languages, one at the
machine level and the other at the source level, are defined.
Technical foundation is established for detecting useful parallel-
ism hidden in a source parallel progrém as well as for restructur-
ing a program into the one lending itself to easier analysis and
more effective execution.

A modular architecture of a machine which is capable of effi-
cient execution of parallel programs and also amenable to easy
expansion is described. Optimization aspects in designing such a
machine are investigated. Concerned with the design of efficient
parallel programs, aspects of static sequencing and static storage

allocation are investigated. Techniques are developed for partial
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but practical validation of source parallei programs.

A scheme for concealing run-time overhead incurred in dynamic
optimization behind the execution of functional tasks is described.
The scheme is analyzed to derive a suitable implementation. A
simple ﬁacro—level simulation demonstrates the effectiveness of

the scheme.

-iii-

™ d



@ R

AN

ACKNOWLEDGEMENTS

This author has been greatly helped by a number of individuals
throughout the course of this investigation. Prominent among
these are Professors L.A. Zadeh and M.D. Cooper. Professor Zadeh's
constant encouragement and Professor Cooper's valuable guidance
are deeply appreciated. Professors D. Ferrari and I. Lee are also
acknowledged for their kind advice.

A note of special thanks is due to his supervising professor
and dissertation committee chairman, Professor C.V. Ramamoorthy,
who has been much more than a friend and a teacher to him through-
out his graduate study. Without his help none of this would have
been possible.

He wishes to express his gratitude to both the National
Science Foundation and the U.S. Army Research Office at Durham
for their support through grénts NSF GJ-35839 and DA-AROD-31-
124-73-G157.

Thanks are also due to four women, Ms. Ruth Suzuki, Evelyn
Roberts, Doris Simpson and Barbara Kerekes, for their excellent
typing and drafting.

Finally, and most importantly, the author acknowledges his
family in Korea for their financial and spiritual support during
the period. His wife, Innsook, is the most appreciated for her
many sleeps lost for typing drafts and her successes in having his

and her year-old son, Ernest, convinced of happier days to come.

—-iv-



TABLE OF CONTENTS

10 INTRODUCTION € 5 0000000000000 00000000000P0 0000000000000 0000Ne l

1.1 Parallel Processing and Problem-Oriented
Real-Time Computingeccceececescececeeccessscssscesasccsnoasa
1.2 Phases of Parallel ProcessSing....ecececesesescccccesasd
1.2.1 Problem-Characteristics to be Exploited........5
1.2.2 Design of a Parallel Processing System......... 6
1.2.3 Operational Management of Parallel
Processing SystemSeceeceeecceecrecsscacesasasecccscens 17
1.3 Scope of Investigation.eeceeeceecess Gevenses ceseenans 20

104 NOtation-.o.--...................................--.-22

2. INDICATION AND DETECTION OF COMPUTATIONAL PARALLELISM-:--.- 26
2.1 The Basic Set of Initiation Control Primitives
and the Basic Parallel Program:cscceccccccesscscccsscecnses
2.2 The Structured Set of Initiation Control
Primitives and the Structured Parallel Program::.-.:......36
2.3 Detection of Useful ParalleliSme-cccececssoscccecsss b
2.3.1 Parallelism Detection in a PAR=blockessssse...51
2.3.2 Parallelism Detection in a SEQ~blockss«s««.s..65
2.3.3 Parallelism Detection in a SEQDO-block:-......70
2.3.4 Parallelism Detection in a PARDO-block.:-.....90
2.3.5 Parallelism Detection in a WHILE-REPEAT-block-I91

2.4 GOTO-Less Structured Parallel Program----‘--~-°---~-97

-’v—

e

c‘éwj‘ g

]

A



¥ &

¥,

3. STATIC OPTIMIZATION IN PARALLEL PROCESSING....ceocseecsesss99

3.1 Basic Machine DeSign ceeeecesecsccscccscsssanassssss100
3.1.1 Arithmetic and Logic Processing
Subsystem (ALPS)ceeeeeeeeecescsossoscncessscssossss 100
3.1.2 Instruction Processing Subsystem (IPS).......138
3.1.3 Memory Subsystem (MS)ececsececsccccccceesesss159
3.2 Static Sequencingecccceccccececcrccetcetoiacaanann 165
3.2.1 A Sequencing Model .cccocevevscccnans. cecsssalbb
3.2.2 Optimal Sequencing for the ALPS of
a Single Pipeline cceeeeeecccnnn P i &
3.2.3 Optimal Sequencing for the ALPS of
Multiple Pipelines cccoececcceens Cetettsetsnsrrennns 176
3.2.4 Sequence Indication and Removal of
Redundant Dependencies ¢cceoccsccccceccecs cetesssans 177
3.2.5 Mimimization of Reconfigurationg............. 179
3.3 Static Storage Allocation PP £ . X |
3.3.1 Static Program-Storage Partitioning ««...... .187
3.3.2 Static Data-Storage Partitioning «-:e+ec.....193
3.4 Program Validationee.«s«.:. ceessersscsnasann ceeeeses.196
3.4.1 Testing of a SEQ-Block Bececreocee ceeessanans 198
3.4.2 Testing of a PAR-BloCK Beeecocsoscssessasss..220
3.4.3 Testing of Other Blocks ««.--. cerereneaenes..229
4. DYNAMIC OPTIMIZATION IN PARALLEL PROCESSING ecccccceceee. .231
4.1 Dynamic Lookahead Model (DLM):cccccccccere. ceeeaeen .232

4.1.1 Dynamic Segmentation Cheteerenanensaeneanasss236

-vi-



4.1.2 The Analysis Of the OCF .e.veveeceencoansesss242
4.1.3 Simulation of the DIM ...eevesecncecenens ese. 245
4,2 Statistical Analysis of the DIM ceeceeeescscscscssss230
4.3 Priorities of Tasks Related to BRANCH's .......,.‘...258

5. CONCLUSION AND EXTENSION ¢ sceseoscoccsvesssanseacacanesesa259

REFERENCES.....0.l.I....0.'.......0.'..‘00.I.OQ......... oooooo 266

~vii-~

g



(Y

MO NNMDNMNDDNDDN
L] . * o

1.1 ..... 8
1.2 .....13
2.1 .....33
2.2 ..... 35
2.3 co.ne 37
2.4 .....43
2.5 .....44
2.6 .....48
2.7 conee 50
2.8 .....57
2.9 .....67
2.10.....69
2.11.....76
2.12..... 78
2.13..... 84
2.14..... 86
2.15..... 89
2.1 ..... 59
2.2 .....61
2.3 ceeee 61

1 .....53

2 ti...0b

3 e 55

4 ..... 58

5.....60

6 .....61

T ceene 70

8 ..... 73

2.9 0.‘0074

2.l1ac.... 55a
2.2 ceeen 64
2.3 .eves 82

Figures

2.16.....92 3.15....137
2.17..... 94 3.16....140
2.18..... 95 3.17....141
3.1 .....101 3.18....143
3.2 ....103 3.19....147
3.3 ....106 3.20....148
3.4 ....109 3.21....156
3.5 ....110 3.22....160
3.6 ....112 3.23....161
3.7 ....113 3.24....164
3.8 ....115 3.25....169
3.9 ....116 3.26....172
3.10....119 3.27....175
3.11....122 3.28....181
3.12....125 3.29....190
3.13....128 3.30....195
3.14....133 3.31....202

Theorems
2.4 eu.. 62 3.1 ....174
2.5 * e ‘.63 3.2 L] ..lgl
2.6 coene 87 3.3 ....214

Lemmas

2.9 eodllb 2.17.....85
2.10. ...75 2'18 ..... 85
2.11..... 77 2.19.....87
2.12..... 80 2,200....87
2.13.....81 2.21..... 88
2.14..... 81 2,220 88
2.15.....82 2.23.....91
2.16.....83 3.1 ....171

Corollaries
2.11.....77

Algorithms

2.4 .....90 3.3 ....178
3.1 ....130 3.4 ....200
302 ....134 3.5 ....210

-viii-

3.32....208
3.33....211
3.34....212
3.35....217
3.36....219
3.37....228
eee.235
AN XY
.e..239
ee.s243
cee.248
eee.255
«e.+256

o O R
[ ] L] L] .

oo~ WwN

3.4 ....224

3.2 ....180
3.3 ....213
3.4 ....213
3.5 ....214
3.6 ....215
3.7 ....218
3.8 ....218
3.9 ....224
3.6 ....215
3.7 ....226
4.1 ....245



&’y

9

CHAPTER 1

INTRODUCTION

The main objective df this investigation is to establish some
foundation on the basis of which parallel processing can be suc-
cessfully accomplished to solve important application problems
requiring computing power beyond that achievable without thorough-
ly utilizing computational parallelism. Based on the principle
that successful parallel processing can be realized only with all
of its constituent phases suitably optimized, various optimiza-
tion techniques relevant to both design and operation of a parallel
processing system are discussed.

In this chapter, current background for parallel processing
as well as current demands for super computing power are briefly
reviewed. Subsequently, .phases of parallel processing are iden-
tified in section 1.2 and background is established for the main
discussion of this investigation. The scope of this investigation
is defined in section 1.3 and notations of frequent usage are

introduced in section 1.4,



1.1 Parallel Processing and Problem-oriented Real-time Computing

With no exception contemporary computing systems utilize
computational parallelism in one way or another. Any computing
system in which more than one logical operation is simultaneously

carried out in executing one computing job is a parallel process-

ing system by definition.

The conventional distinction between the parallel processing
system and the serial processing system comes into being only in a
relative sense. That is, it can be made when the level of primi-
tive operations is accepted and any parallelism between operations
below the level is ignored. If primitive operations are taken as
an operation performed continuously by a CPU and an operation per-
formed continuously by an I/0 processor, any multiprogrammed sys-
tem or any system using more than one CPU's simultaneously in
executing one computing job belongs to the category of a parallel
processihg system, and any system in which more than one of those
primitive operations cannot be performed simultaneously belongs
to the category of a serial processing system.

It was not long after the imminence of a modern electronic
computer that the concept of parallel processing began
to attract the attention of architects who envisioned the barrier
of computing power achievable under the ultimate component tech-
nology but without utilizing parallelism. Since then numerous
computers have been built with the variable, but progressively
increasing degree of parallelism utilization. However, a brief

examination of contemporary systems reveals that there is more
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parallelism to be advantageously utilized in future systems than
one already utilized in those existing systems.

Despite the important potential of parallel processing in
amplifying computing power, parallelism utilization has been ham-
pered by several factors. The most fundamental and influential
one has been the complexity involved in identification and manipu-
lation of computational parallelism, which has been often beyond
tolerance in most computing environments. In the past, the cost
required for parallel processing has also been playing a major
role in neutralizing the enthusiasm about it. However, there are
problems of extreme importance requiring computing power not
achievable without thorough parallelism exploitation for their

solutions. Those problems are typically found in problem-oriented

real-time computing (PRC) systems. The term PRC system here is

adopted without its rigorous definition but it is used to refer to
a system with requirements for response time within a critical
limit, a large amount of computations for problem-solving and
continuous system availability during the critical period [adr 67].
Typical examples are systems dedicated to weather prediction, air
traffic control, military weapon control, manufacturing control,
information analysis, etc.

The situation has developed so far such that one can now more
easily foresee proliferation of PRC systems with further parallel-
ism utilization in the near future. Besides that importance of
problems in those environments dominates the cost consideration, the

continuous decrease of hardware cost, the conspicuous progress of



LSI technology and the innovation of micro-processor (processsor-

on-a-chip) technology have further degraded the impedance of the

~

design cost during recent years [lee 74]. Processors, or even

primary memories, no longer play a dominant role in contributing

"’A

to the cost of the system. This substantially reduced the neces-
sity of sharing those resources as well as the management overhead
involved in sharing them. In addition, recent active research in
fields such as theory of computation, programming languages, oper-
ating systems and computer architecture, have produced solutions
to many problems concerning parallel processing. Thus a signifi-
cant amount of complexity involved in parallelism utilization has
been removed [bae 73].

The amount and type of computational parallelism is problem-
dependent. That is, any parallel processing system should be
adaptive to the characteristics of problems to successfully
achieve its goal, parallelism utilization. Naturally there are
more chances for successful parallel processing where job-charac-
teristics are relatively static between jobs or the number of jobs
is limited. PRC environments typically meet this desirable condi-
tion. In such environments, a few types of jobs are repeatedly
executed taking the most part of system-running time, algorithms
emplo?ed in each job are well defined and often their execution i
times are precisely known.

Successful parallel processing is a composi&e process which
can be realized only with all of its constituent phases suitably
optimized. Efficient optimization at each phase of parallel pro-

cessing is the main subject of this investigation.
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1.2 Phases of Parallel Processing

In principle, achievement of high computing power through
utilization of problem-characteristics can be realized through
the following three phases, First, useful problem-characteristics
need to be thoroughly identified. Second, a suitable set of
resources (both hardware and software) must be provided and con-
figured into a powerful processing system by utilizing the iden-
tified characteristics. Third, the configured system must be

efficiently managed to carry out the computing jobs.

1.2.1 Problem-characteristics to be Exploited

Among a number of characteristics, the most important ones in

a PRC environment seem to be computational parallelism and function-

usage, that is, proportional usage of each type of function, A (task-)
function here is a generic term referring to any type of computa-
tion which can be performed by a single instruction of the machine

to be implemented. Information on function-usage can serve as a
basis for selecting a cost-effective implementation of each

(function) processing unit capable of computing the function.

This optimization is discussed in section 3.1.

Computational parallelism plays a role of utmost importance
when super computing power is required, which is a typical situa-
tion in PRC environments. Thus useful parallelism inherent in
application problems or algorithms must be fully recognized. Then
recognized parallelism must be reflected in designing the process-

ing system. This aspect is discussed in chapter 2 and section 3.1.



1.2.2 Design of a Parallel Processing Systém

The next phase in parallel processing is concerned with the
design of a powerful parallel processing system capable of fully
utilizing the recognized parallelism. A PRC system is essentially

a basic machine coupled with programs composed of instructions of

the basic machine. The basic machine is characterized by its
rigid internal organization. That is, its inside is not amenable

to modification.

In one extreme, the basic machine can be a primitive machine
capable of executing only simple operations such as SHIFT, STORE,
INCREMENT, etc. In such a case, an extremely large space is avail-
able to the designer for exercising optimizations in the course of
designing programs. In other words, programs will be the major
portion of the system in terms of both size and functional com-
plexity. The optimal design of such a large and complex system
in a global sense is practically an infeasible task due to the
unmanageable number of parameters affecting the optimality. Conse-
- quently, a feasible alternative aiming at the nearly-optimal design
should be searched for.

The most useful principle in dealing with complexity in dis-

crete systems is to control complexity by hierarchical ordering of

function and variability [dij 69]. Application of this principle

to the design of a PRC system results in an iterative process of
building up a hierarchy of virtual machines. Each iteration struc-
tures a new virtual machine at the higher level in the hierarchy,

using available machines located at the lower level., Here a
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virtual machine means a machine represented only by its capabili-

ties excluding internal organizations. That is, each machine is

characterized by its instruction-set, or capability-set.

Onée a new high-level machine is built, it is not expected to
go through a non-trivial modification of its internal organization.
It becomes a new basic machine in effect. Then programs making up
the PRC system in conjunction with the new basic machine can be
constructed using high-level instructions of the new basic machine,
Optimization in the course of designing programs becomes less
complex than the case of using a low-level basic machine, since it
does not concern the internal behavior of each high-level instruc-
tion. Of course, optimization must have been applied to the design
of a new basic machine, i.e,, each new instruction must have been
implemented with the incorporation of optimization techniques,

In short, what is essentially achieved is level-by-level

optimization. Thus structuring a high-level machine is a process

of designing a control system configuring low-level machines,
i.e. current basic machines into a new machine possessing high-
level instructions. Fig. 1-1 depicts this process. Initially
low~-level (level-1) machines capable of executing simple opera-
tions such as SHIFT, STORE, INCREMENT, AND, etc. are structured
with a set of logic gates. Then a level-2 machine capable of
executing typical machine language instructions such as ADD A,
MULT B, etc. is structured with a set of level-l machines. Simi-
larly a level-3 machine can be structured by configuring a set of

level-2 machines with a new control system.
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As mentioned above, the design of programs uses only instruc-
tions of the current basic machine. As the level of a basic
machine is higher, more static characteristics of application-
problems are embedded into its interior, i.e. hierarchy of virtual
machines, énd essentially dynamic characteristics are left to be
embedded in programs. |

The successful design of a powerful parallel processing sys-
tem requires the efficient implantation of parallel processing
power inside the basic machine. It also requires the design of
programs exhibiting useful job-characteristics including
parallelism in a form amenable to efficient utilization. The
recent technological advances have standardized a significant
number of low-level machines. On the basis of these, the design
of the basic machine can be achieved by the selection of (stan-
dardized or special purpose) components and the design of the

internal control unit configuring those into the basic machine.

1.2.2.1 Parallelism Implantation in the Basic Machine

The basic machine contains a finite set of function
processing units, each capable of carrying out one or a set of
computing functions. A job can be viewed as a combination of pro-
gram and data to be executed by the basic machine. A task is a
generic term referring to the portion of a job requiring one of
those capabilities. That is, a task is a combination of an ins truction,
i.e., description of a task~function to be executed, and operand-data.

In principle, power of utilizing computational parallelism



can be embedded in the basic machine in two ways: (1) by replicat-
ing the processing unit required by several parallel processable
tasks, and (2) by decomposing the processing unit into a number of
component subunits and embedding an autonomy inside each subunit

so that autonomous subunits can operate in an overlap mode with
each other.

That is, the first method called processing unit replication

is intended for parallel processing of multiple tasks through
multiple processing units. It is more easily justified in two
kinds of situations. One is where the processing unit is a

unifunctional unit capable of executing only one specific type of

function and the representative job contains large sets of
parallel processable tasks, each requiring the capability.

The other is where the processing unit is a multifunctional

unit capable of executing various types of functions and the repre-
sentative job contains large sets of parallel processable tasks,
each requiring one of those capabilities. Replication of a pro-
cessing unit must be economically feasible especially in the case
of a multi-functional unit, In addition,replicatidn of a multi-
functional unit would inevitably accompany the low utilization

of its components,

On the other hand, the second method called processing unit

decomposition is intended for processing multiple tasks with a

set of autonomous subunits constituting one processing unit.
A portion of a task executable by each subunit is called a

subtask. Similarly, a portion of a function performed by each

10
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subunit is called a subfunction. If the processing unit is the
unifunctional unit, then every task executed by this processing
unit requires the same set of subunits in the same order, and
multiple tasks can be processed through a line of subunits in
the same order but two adjacent tasks must be separated from each
other by at least one subunit. This case has been called pipe-
lining. [cot 65, che 71]

If the processing unit is the multifunctional unit, then dif-
ferent types of tasks can be executed in overlap with each other
when they require different subsets of subunits bélonging to the
same processing unit.

Therefore, précessing unit decomposition is an approach to
economic realization of parallel processing. But provision of
autonomy into each subunit in it is subject to cost-increases in
terms of management overhead.

In principle, unlimited computing power for parallelism utili-
zation can be obtained by incorporatipg replication to any extent
required, while the maximum degree of decomposition is limited up
to the level of logic gates, which in turn limits the amount of
computing power achieved.

Obviously, the above two approaches, replication and decom-
position, are not mutually exclusive. Some subunits of a processing
unit after decomposition may be replicated, while each replicated
processing unit may in turn be decomposed into a set of autonomous
subunits. In fact, it is believed that optimal parallelism exploi-
tation'can be achieved by a suitable combination of both process-

ing unit replication and decomposition.

11
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Management overhead in parallel processing typically includes
administrative computation involved in the assignment of resources
to tasks. As mentioned above, this is more severe in parallel
processing with processing unit decomposition called overlapped
processing. On the other hand, it is not always feasible to
replicate processing units to the same degree as the maximum

degree of computational parallelism inherent in application jobs

which varies often drastically between jobs. Here the maximum
degree of computational parallelism means the maximum number of
tasks which are parallel processable at one time.

Pipelining is the specialized form of overlapped processing
‘intended for the compromise adaptive to the trade-off between

the management overhead and the amount of replication. It

aims at the reduction of management overhead by restricting
the composite structure of autonomous subunits such that
the order of subunits a task passes through is fixed

and linear. Such a processing unit is called a

pipeline. Thus in general, a multifunctional processing unit in
overlapped processing is functionally equivalent to a set of pipe-
lines each of which corresponds to a certain subset of subunits in
the multifunctional unit. That is, it can be transformed into a
set of pipelines through replication of its subunits shared for
executing different tasks (Fig. 1-2).

Each subunit in a pipeline is called a pipeline-segment or

p-segment. The management overhead is much reduced due to
the simple restricted communication between p-segments in contrast

to the case of managing a set of autonomous subunits configured

Say
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in a complicated structure.

Primarily, pipelining is oriented for increasing throughput
with high resource utilization, which in turn becomes synonymous
with the overall improvement of computing speed. In order to
achieve both high phroughput and resource utilization, it is
required that p-segments take an equal amount of execution time.
Although this requirement cannot be strictly imposed on the imple-
mentation of a pipeline in general, it is one of the most critical
parameters affecting the success of pipelining.

As implied by the general nature of processing unit function
and task, principles of replication, decomposition and pipelining
can be effectively employed at various levels in the computer
structure. Examples of pipelining at different levels can be
found in section 3.1. Current technological background as well as
fhe advantages of pipelining enable us to foresee that pipelining
should be extensively incorporated in future parallel processing
systems aimed at the amplification of computing power. At the same
time, processing unit replication can be simultaneously employed
to the extent satisfying cost-constraints. Then the major por-
tion of such a system is essentially composed of a set of pipé~

lines, some of which may or may not be of the same type.

1.2.,2.2 Design of Parallel Programs

Programs should be designed such that all useful parallelism
inherent in application problems or algorithms is clearly exhibited

in a form amenable to efficient utilization by the basic machine.

~
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A program in which computational parallelism is explicitly

indicated is called a parallel program. A programming language

containing tools for explicit indication of parallelism is called

a parallel programming language.

Thus, what mainly distinguishes a parallel programming lan-
guage from a non-parallel one is the repertoire of initiation

control primitives, i.e. ones describing rules for initiating

functional tasks. In other words, a parallel programming language
contains additional initiation control primitives which can be
used to simultaneously initiate more than one task.

There are numeréus sets of initiation control primitives
which can be incorporated into a non-parallel programming language
to make it a parallel programming language, Thus selection of a
suitable set of primitives is an optimization process,

In general, two parallel programming languages will be uéed
in the course of designing programs. One is a machine language
and the other is a source language. Due to the difference in their
purposes, the set of initiation control primitives in one language
may be different from the other. 1In chapter 2, a set of primi-
tives to be incorporated into each language is presented.

Next, parallelism remaining hidden in a program must be tho-
roughly detected out. Techniques for this should be amenable to
automation. In regard to the practice that a source program is
manually prepared whereas a machine language program is mostly
obtained from the automated translation of a source program, the
main task becomes to detect parallelism hidden in a source program.

Techniques for this are discussed in section 2.3.

15



In addition, it is desirable to embed some information in a
program which can be used to improve the execution efficiency.
The detail is as follows.

There are normally a large number of sets of parallel pro- i
cessable tasks in a PRC job. Capabilities (processing units) of
the basic machine are finite and possibly less than the cardinality
of some set of parallel processable tasks in a job, due to the
economic factor. Thus it is often necessary that parallel pro-
cessable tasks must be serialized in execution by the basic ma-~
chine because of this limitedness of capabilities. This seriali-
zation process is called sequencing. It has been well known that
the performance of a parallel processing system is highly sensi-
tive to the way sequencing is performed.

The performance may be sensitive not only to sequencing but

also to mapping between processing units and tasks. The latter

situation arises typically where several processing units in the
basic machine are functionally equivalent but are different in
efficiencies. This optimization of mapping and sequencing belongs
to the broad category of optimization, generally called resource

(or capability) allocation. Resource allocation is achieved through

two steps. The first one is to make a priori decisions about the
efficient allocation strategy and the second one is to perform =

actual allocation with final decision at run-time.

g

In this report, any optimization performed at the design phase

is called static optimization, while any optimization performed at

the job-execution phase is called dynamic optimization. Basically,




@aJ'

3.

o

17

dynamic optimizatioﬁ should be minimized since the run-time over-
head involved in it is subject to high cost. -

Thus the design of an efficient program should incorporate an
efficient procedure for static (a priori) resource allocation.

The sequence or mapping derived from static optimization must be
efficiently represented with respect to the interpretation by the
basic machine. In chapter 3, techniques related to these optimi-
zations are discussed under the subjects of sequencing, storage
allocation and program restructuring.

There is another important aspect in designing programs.
Almpst without exception, the malfunction of a PRC system is very
disastrous. Furthermore, the size of a program in a PRC system
becomes very large. Although reliability of the system is appar-
ently a combination of reliabilities of both the basic machine and
programs, the latter is becoming an increasingly critical problem

nowadays due to the immense complexity involved in validating such

a large program. Since the program considered here is a parallel
program, severity of the problem gets worse., In section 3.4, this
problem is discussed in detail and practical appfoaches to the
solution are presented. Realizing the infeasibility of complete
validation of absolute correctness, significances of those tech-

niques cannot be overlooked.

1.2.3 Operational Management of Parallel Processing Systems

As indicated before, the major activity in the operatiomal

management of a parallel processing system is the allocation of



basic machine capabilities to tasks. It is preceded by the inter-
pretation of a program, i.e. representation of capability-require-
ments of tasks and inter-task dependencies. Since capability
allocation is an object of optimization, various types of dynamic
optimization at the job-execution or operational phase can be
performed. Although it was mentioned that this dynamic optimiza-
tion should be minimized, there is one fundamental factor which
makes a certain amount of dynamic optimization essential. It is
the data-dependent characteristics of computing jobs. Thus capa-
bility-requirements and task-execution times become data-dependent
to a certain extent, if not too much.

Static optimization is generally based on the use of reason-
able prediction about those dynamic characteristics. But, dynamic
optimization can better benefit from more precise information
about dynamic behavior of the job as it becomes available at the
operational phase. The need for dynamic optimization becomes
further essential in the multiprogrammed system because the input
to such a system (i.e. a set of jobs called job-mix instead of a
single job) is a dynamically varying object and further complicates
the prediction of its dynamic behavior.

Therefore, it becomes highly desirable to develop a mechanism
by which dynamic optimization can be advantageously incorporated
without accompanying the effect of its overhead. Chapter 4 is
concerned with such an attempt. - It is conceivable that the maximum

gain can be obtained by a suitable combination of both static and

18
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dynamic optimization. The harmonious cooperation of both activi-
.ties is an important subject of decision-making at the design

phase.
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1.3 Scope of Investigation

With the objective stated in the beginning of this chapter,
optimization aspects in designing and operating a parallel pro-
cessing system are investigated.

In chapter 2, two sets of initiation control primitives are
synthesized. One is intended to be the control part of a parallel
programming language at the machine level, while the other is
intended to be the control part of a parallel programming lan-
guage at the source level. Then technical foundation for detect-
ing parallelism remaining hidden in a parallel program at the
source level is established. 1In addition, developed techniques
include ones for restructuring the program into the one possess-
ing additional parallelism as well as lending itself to easier
analysis and operational management.

In chapter 3, optimization aspects in basic machine design
are studied. Viewing the basic machine as a composite of three
subsystems, a general and modular architecture of each subsystem
is presented. Subsequently, optimization techniques relevant to
design of parallel programs are studied in addition to the ones
developed in chapter 2. Techniques studied range over two cate-
gories, namely ones oriented toward the improvement of job-
execution efficiency and ones toward the improvement of program
reliability. Static sequencing and static storage allocation
techniques are studied under the first category, and cost-effective
techniques for program validation are studied under the second

category.
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Studies in chapter 4 are concentrated on the aspect of rﬁn—
time overhead incurreq in dynamic optimization. A scheme is
developed for effectively concealing the overhead behind the exe-
cutioﬂ of functional tasks so that the overhead does not serve as
critical overhead. .A simple macro-level simulation demonstrates
the effectiveness of the scheme. The statistical analysis with
the macroscopic queueing model provides some'insight in select-
ing a suitable implementation of the scheme.

Finally, results of this investigation are summarized in
chapter 5 and several future research problems in connection with

this investigation are stated.
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1.4 Notation

Notations and terminologies frequently used throughout this
report are introduced in this section.

The following symbols from elementary set theory and logic
will be used: { | } (set brackets), € (membership), = (equality),
C (inclusion), C (proper inclusion), ¢ (empty set), U (union),

N (intersection), \ (set difference or relative complement),

x (cartesian product), "iff" (if and only if), T (there exists),

V (for every), and for any finite set A, #(A) denotes the number

of elements in A. Given a set A = {a}, a[i] is the i-th element

in A, where 1 < i < #(A). 2A

denotes the power-set of A, i.e.,
the set of all subsets of A.

If A. and B are sets, a relation p between A and B
is a subset of A x B. If A and B are sets, a function (res-
pectively partial function) from A to B is a relation
f CA x B such that for each a € A there exists exactly (res-
pectively at most) one b € B such that (a,b) € £. The
notation f: A + B may be used to mean either that f is a

function or a partial function from A to B, the particular case

being stated explicitly.

Definition 1l.1.

(1) A directed graph G is a pair (N,A) where N is a set of

elements called nodes and A is a relation on N called the set
of arcs.
(2) Given a relation A, the set of elements N = {n|(n, n[k]) € A

Vv (n[k], n) € A}, is called the node-set of A and denoted by N(A).

L) N
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(3) Given a relation A, the directed graph G = (N(A), A) 1is

called the graph of A and denoted by G(A).

Definition 1.2. Given G = (N,A),

(1) Vv n[i]l € N,(qg(n[i]) and Cp-l(n[i]) are defined as:
RaaliD) ::= (ali}] Italkyl, nligl, ..op nlig D

[ky=1irk =3~

0
v1<e<m, (nfky .1, nlke]) € Al}
R L(aril) ::= {ali] | nlil e R[N}

{R(n[i]) is called the reachable-node-set of n[i] and

Cié‘l(n[i]) is called the reaching-node-set of nl[i].

(2) The (node-) reachability relation denoted by R is defined as:

R ::= {(a[i], nl3]) | nlil € “R@liD}

R is also called the transitive closure of A, and denoted by R =€jé(A).

(3) G 1is said to be strongly connected, if A% ¢ and R = NxN.

Definition 1.3. Given G = (N,A),

(1) A subgraph g is a pair (N(A'), A') such that A' C A.
(2) A strongly connected subgraph g = (N(A'), A') is called

a maximal strongly connected (MSC) subgraph if § A" [A' C A" A

(N(A"), A") is strongly connected]. N(A') is called a MSC node-

subset.

Definition 1.4. Given G = (N,A),

(1) V (n[il, n[j]) € A, n[i] 1is called an immediate predecessor

of n[jl] and n[j] is called an immediate successor of nfi].

(2) Vv n[i] € N, the immediate successor-set of n[i] denoted by

tg(n[i]) and the immediate predecessor-set of n[i] denoted by
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-1
J) (n[i]) are defined as:

Oalil) ::= {al3] | (@ldl, nl5]) € a}
I @iy ::= {al3] | @lil, nlil) € a}
(3) V n[i] € N, AIN(n[i]) called the incoming-arc-set of n[i]

is defined as: ¥
Ay @D ::= {(alj], nliD) | (alj], nli]) € A}

Similarly, (n[i]) called the outgoing-arc-set of n[i]

AOUT

is defined as:

Ayyr@IiD) ::= {(alil, n[3]) | (m[i], n[i]) € A}

Definition 1.5. Given a partial ordering A CN x N, where

N is a set of nodes, the transitive reduction of A denoted by

gj;(A) is defined as:
TTg@ ::= {@lil, nl3) | @lil, nliD) € A A
Baalkgl, nlk,1, «ovs nlkc D) [ky =1 A

ky =3 Am2> 2AV1<2<m, (n[kl?,-l]’ n[kz]) e All}.

Definition 1.6. Given G = (N, A),

(1) nMSC repfesents a MSC node-subset, and NMSC(G) denotes

the family of all MSC node-subsets in G.

(2) nWC represents a set containing one weakly connected node,
p

C
i.e., a node n satisfying that s e ¢ NMSC(G) [n e 'S0y,

NWC(G) denotes the family of all nwc's in G.

(3) The cyclic reduction of A denoted by CI)(A) is defined as: ff
D) ::= {(N[i], N[3D | N[L] € FC(e) UN'C(@))

AN[i] e (M5Ce) U@y A

(N[i] x N[j]) NA # ¢} .

(4) The cyclic reduction of G denoted by () 1is defined as:




4

o

D) ::

(1, (©), D)), where  (G) = € ) U NC(e).

Efficient techniques for deriving the reachability relation,
the transitive reduction and the cyclic reduction are available
from literature. [war 62, aho 72, ram 66, ram 66, tar 72]

In addition, the following notations are used.

Given a variable x, CONT(x) denotes the content of x at
one time, and SIGN(x) is equal to 1, if x>0 and -1,
otherwise. Given a function f and a set A, MAX f(a) denotes

acA

the maximum among £(a), V a € A. Similarly MIN f(a) denotes

acA
the minimum among f(a), V a € A.
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CHAPTER 2

INDICATION AND DETECTION OF COMPUTATIONAL PARALLELISM ‘o

This chapter is concerned with synthesis of tools for parallel-

ism indication as well as establishment of technical foundation
for detection of useful parallelism.

Two sets of initiation control primitives are synthesized.
The first one called the basic set is synthesized in section 2.1
and it is intended to be incorporated into a machine language.
The basic set possesses sufficient generality in indicating
various parallelism, while it is subject to efficient interpre-
tation by the basic machine. A program written in a machine
(assembly) language incorporating the basic set of primitives is

called a basic parallel program.

The second one called the structured set is synthesized in

section 2.2 and it is intended to be incorporated into a source
language. The principle underlying this synthesis is that source
programs should be structured such that the relationship between
their components spread out in their structures and the dynamic
processes taking place under their controls becomes as visible as
-possible. [dij 68 ] Such programs are amenable to efficient analysis for

various optimization. That is, the structured set of primitives

0

are associated with various rules forcing source programs to have

desirable structures. A program written in a source language

Ry p "

incorporating the structured set of primitives is called a struc-

tured parallel program.

In section 2.3, techniques for detecting parallelism in a
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structured parallel program are discussed. A decisive policy is
adopted by viewing useful parallelism as one which can be indi-
cated in a structured parallel program.

The fdllowing terminologies are frequently used throughout

this chapter. A program-element is a generic term referring to a

set of instructions with a single entry point and single exit
point. If a program-element contains nothing but an initiation

control primitive, it is termed a control program-element and

otherwise, it is termed a functional program-element. Thus initia-

tion control primitives, i.e. control program-elements are used to
explicitly indicate rules on initiations of functional program-

elements. If a program-element does not contain any initiation

control primitive in it, it is termed a basic functional program-

element. When it is possible to execute two program—elements

€[i] and €[j] in a parallel program consecutively in the order
of (g[i]l,e[j]) but when it is never possible to execute them in the

reverse order (e[jl,e[i]), €[i] is called an immediate prede-

cessor of e[j], and €[j] 1is called an immediate successor of

el[i].

27
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2.1 The Basic Set of Initiation Control Primitives and the Basic

Parallel Program

The basic set synthesized in this section is an outcome of a
compromise between generality in parallelism indication and effi-
ciency in interpretation by the basic machine. It has been synthe-
sized from previous works by a number of other authors [con 63,
gos 66]. It contains seven initiation control primitives: FORK,

JOIN, BRANCH, XOR, PARDO, PARDOEND and FUNCTION-CONTROL. Formats

and semantics of these are described in the following. Throughout
this section, P[i] represents the i-th one of immediate prede-
cessors and S[i] represents the i-th one of immediate successors.

First, the FORK primitive has the following format.
FORK P, S[1],S[2],...,S[k] , where k >1

The semantics of this primitive is such that either when its imme-
diate predecessor P is completed or when P has enabled this
FORK primitive for initiation(where P is a control program-ele-
ment), it is initiated. Then its function is to enable all of its
immediate successors S[1],S[2],...,S[k] for their initiatioms.
Upon enabling all of them, its execution is completed. Therefore,
program-elements S[1],S[2],...,S[k] are parallel processable,
once the FORK is executed.

The JOIN primitive has the following format.
JOIN P[1],P[2],...,P[k], S, where k >1 .

The semantiés of this primitive is such that either when all imme-

diate predecessors P[1],P[2],...,P[k] are completed or when all

By
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of thém have enabled the JOIN primitive, it is initiated. Then
its function is to'enabie the immediate successor S for initia—
tion.
The BRANCH primitive has the following format.
BRANCH BRIX, P[1], P[2], ..., P[k], S[1], s[2],..., S[%],
where k > 1, 2 > 2

and BRIX'represents the integer variable called the branch-index.

The semantics of this primitive is such that it is initiated in

the same way the JOIN primitive is initjiated. Then its function

is to enable exactly one S[i] such that 1 <i< 2 and

i = CONT(BRIX) where CONT(x) denotes the content of the variable
x. Upon enabling S[i], its executidh is completed.

The XOR primitive has the following format.

XOR P[1], P[2], ..., P[k], S[1], S[2], ..., S[R],
where k> 2 and £ > 1.
The semantics of this primitive is such that either when any one
of its immediate predecessors, P[i], is compieted or when P[i]
has enabled this XOR primitive, it is initiated. Then its func-
tion is to enable 311 immediate successors S[1],S[2],...,S[%].

The PARDO primitive is used in conjunction with the PARDOEND
primitive to represent a parallel DO-loop in which all iterations
are parallel processable. A DO-loop in this report means a loop
(1) whose number of iterations is variable but determined and
fixed upon entry to the loop, and (2) which contains a single
entry-point and a single exit-point. Formats of PARDO and PARDOEND

primitives are:
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PARDO SCOPENAME, P[1], P[2], ..., P[k], S, DOVAR,ITERNO,

PARDOEND SCOPENAME, P, S[1], S[2], ..., S[%]

where (1) k > 1, & > 1, (2) SCOPENAME represents the label called the
scope-name common to both PARDO and PARDOEND primitives, (3) DOVAR

represents an integer variable called a loop-variable, (4) ITERNO

- represents either an integer constant or an integer variable..
CONT(ITERNO) is not changed between initiation of the PARDO
primitive and completion of the PARDOEND primitive. The
PARDO AND PARDOEND primitives having the same scope-name
are said to be in partnership with each other,

The semantics of these two primitives are as follows. The
PARDO primitive is initiated in the same way the JOIN primitive
is initiated. Then its function is to enable all iterations so
that they can be executed in parallel. Here an iteration means
- execution of program-elements from one initiation of S to
completion of P during which DOVAR is not changed. Thus each
iteration is associated with an unique CONT (DOVAR) which is equal
to an integer k, 1 <k < CONT (ITERNO).

The partner PARDOEND primitive plays a similar role to the
one of the JOIN primitive but its immediate prédecessors are all
iterations of P . That is, when all iteratioms of P are
completed, the PARDOEND primitive is initiated. Then its function is
to enable all immediate successors S[1], S[2],..., S[%] for
~initiation.

The last member In the basic set is the FUNCTION-CONTROL

primitive which is equivalent to a combination of FORK and JOIN

4
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primitives. It has the following format.
FUNCTION CONTROL F, P[1],P[2],...,P[k], S[1],S[2],...,S[2]

wheré 'F represents the functional program-element under the con-
trol of the FUNCTION-CONTROL primitive. Execution of this primi-
tive is equivalent to consecutive execution of the following two

primitives.

FORK P[1],P[2],...,P[k], F

JOIN F, S[1],S8[2],...,S[%]

Thetefo;e, it is a functionally redundant member in the basic set.
However, it is very useful in that without using it, the basic
parallel program containing abundant parallelism becomes intolera-
bly voluminbus due to the excessive number of FORK's and JOIN's
used.

Connectivity among FUNCTION-CONTROL primitives can be recog-
nized in a straightforward manner. On the other hand, connecti-
vity between FORK and JOIN primitives substituting for FUNCTION-
CONTROL primitives can be traced only throughllabels (or addresses)
of fuﬁc;ional program—eleﬁents appearing in FORK and JOIN primi-
tives.- Then incorporation of the FUNCTION-CONTROL primitive into
the basic set leads to efficient interpretation of the basic
parallel proéram by the basic machine. This becomes clearer in
section 3.1.

Thus it is desirable to restrict use of FORK and JOIN primi~

tives to inevitable cases. The inevitable FORK primitive is the

31



one whose immediate predecessor is either a BRANCH or a PARDO pri-
mitive. The inevitable JOIN primitive is the one whose immediate
successor is either a XOR or a PARDOEND primitive. Then every
functional program-element can be viewed as nested inside a
FUNCTION-CONTROL primitive. In additionm, immediafe prédecessors
or successors of each initiation control primitive are élways ini-
tiation control primitives. That is, the complete structure of

a program can be represented by connectivity among control program-
elements. Fig. 2-1 introduces graphical representations of seven
initiation control primitives in the basic set, The basic set of
primitives is sufficiently general in that every possible
parallelism can be indicated in a basic parallel program. On the
other hand, the basic set contains a minimal number of primitives
in that no member except the FUNCTION-CONTROL primitive is redun-
dant.

The basic set of primitives has been described with their
generic forms in this section. Some optimization can be incor-
porated into a particular implementation of the basic set of pri-
mitives. More specifically, control program-elements in immediate
predecessor-successor relationship are doubly linked with each
other through both predecessor-lists and successor-lists. A pre-

decessor-list (successor-list) means a list of labels of immediate

predecessors (successors) in each primitive. Therefore, a prede-
cessor-list in each primitive €[i] can be replaced by an integer
equal to the number of immediate predecessors required to be com-

ﬁleted before €[i] 1is initiated. The integer is called an
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~ s[1) s[2] s(k]

FORK P, S[1],S[2],...,S[k]

‘P[1] P(2] P[k]

- s[1) s{2] s(k]

BRANCH BRIX, P{1],P[2],...,
P(k],s[1],...,S(%2]

P[1] P(2] P(k}

S

PARDO SCOPENAME, P[1],P[2],
...,P[k], S, DOVAR, ITERNO

s{1] SI;] s(2]

P[1] P[3] P[k]

S.

JOIN P[1],P[2],...,P[k], S

P{1] P[2] P[k]

s[1) s[2] S[l]

XOR P[1],P[2],...,P[k],
s{1],...,S[2]
SN: scope-name

s[1] s[2] s[2]
PARDOEND SCOPENAME,

] P, s[11,s[2],...,5(2]

FUNCTIONAL-CONTROL F,P(1],P(2],...,P[k],
s{11,s(2],...,S[2]

rigo 2"1-

Graphical representations of initiation

control primitives in the basic set.



initiation-threshold.

Apparently, in the case of a FORK, a XOR or a PARDOEND primi-
tive, its initiation—fhreshold is always 1. Modified formats of

primitives in the basic set become as follows,

FORK 1, S[1],S[2],...,S[k]

JOIN k, S°

BRANCH BRIX, k, S[1],S[2],...,S[k]

XOR 1, S[1],s[2],...,S[%]

PARDO SCOPENAME, k, S, DOVAR, ITERNO
PARDOEND SCOPENAME, 1, S[1],S[2],...,S[2]

FUNCTION-CONTROL F, k, S[1],S[2],...,S[2]

The graphical representation of the structure of a basic

parallel program cbmposed of representations introduced in Fig.2-1

is called the basic parallel program graph (BPPG). Fig. 2-2

illustrates a BPPG.
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s
BRANCH L1,3,4
BRANCH 12,11,12
PARDO L3,15,L4,L5
- PARDOEND L3,16
4
- STOP

Fig. 2-2. A BPPG
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2.2 The Structured Set of Initiation Control Primitives
and the Structured Parallel Program

The structured set synthesized in this section is an outcome *
of an effort to impose some rules on the structure of a source L
program such that the structured parallel program lends itself to
efficient analyses for various kinds of optimizations, Thus, the
most fundameﬁtal requirement of a structured parallel program is
that it should clearly exhibit parallelism in a form subject to
efficient analysis,

Certain rules must be observed in any program whether it is a
basic parallel program or a stfuctured parallel program. Fig.2-3
illustrates them. First, the program-element 18 can never be
completed because it will never happen that both 16 and 17 are
executed. Secondly, if 8 and subsequently 10 is initiated as a
result of the execution of 5, then the ambiguity arises as to how
many iterations should be followed from that point. These ambi-
guous, or non-terminating, programs should be treated as incorrect
programs resulting from the incorrect use of the basic set of pri-
mitives. Rules on the correct use of them are rather obvious but
the validation that the given machine-language program does not
violate rules becomes an exhaustive process. These rules are
enforced by the structured set of initiation control primitives to .-

be described below.

The structured set contains the following initiation control

primitives:
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Fig. 2-3. Erroneous BPPG
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FUNCTION-CONTROL
PARBﬁGIN and PAREND
A-BRANCH and XOR
SEQBEGIN and SEQEND
PARDO and PARDOEND

SEQDO and SEQDOEND
WHILE-REPEATkand WHILEEND

SUBROUTINE and RETURN

Formats and semantics of‘these are described in the following.
First, the FUNCTION-CONTROL primitive is the same as the one
contained in the basic set.
Next, the PARBEGIN and PAREND primitives are variants of FORK

and JOIN primitives in the basic set. Their formats are:

PARBEGIN SCOPENAME, P, S[1],S[2],...,S[k]

PAREND SCOPENAME, P[1],P[2],...,P[%], S

where k > 2 and £ > 2. A PARBEGIN and a PAREND having the same
scope-name are said to be in partnership. Each PARBEGIN is asso-
ciated with an unique scope-name and with an unique PAREND.
Semantics of PARBEGIN and PAREND are the same as ones of FORK
and JOIN except that the following additional rule is associated
with PARBEGIN and PAREND: (1) once PARBEGIN is initiated, suc-
cession of program-element initiations must always reach to the

point of initiating the partner PAREND, and (2) every succession
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of initiations reaching to the initiation of PAREND must include
the initiation of the partner PARBEGIN in the earlier position in
it. This rule is called the scope-rule in this report. A set of
all program-elements which can be executed duripg the period
between initiation of PARBEGIN and completion of its partner PAREND

is called the PAR-block belonging to PARBEGIN and addressed by its

scope-name. PARBEGIN is called the block-head and PAREND is
called the block-tail of the PAR-block.

In the sequel, other blocks are introduced. Blocks may be
nested in general. Within a block, there may be pairs of PARBEGIN's
and PAREND's. The smallest block to which a program-element be-
longs is called the scope of the program-element. The scope-
rule applied to a PAR-block is applied to other blocks to be intro-
duced in the rest of this section. The scope-rule ié the most
fundamental one in the structured parallel program.

A rule associated with the FUNCTION-CONTROL primitive in the
structﬁred set is that every FUNCTION-CONTROL primitive whose
successorflist or predecessor-list contains more than one program-
element must have a PAR-block as its scobe.

The A-BRANCH and XOR primitive; in the structured set are the
same aszRANCH and XOR primitives in the basic set, except that
(1) the A-BRANCH cannot be used to form a loop, (2) the A-BRANCH
has only one immediate predecessor, and (3) the XOR has only one
immediate successor.

Tﬁe SEQBEGIN and SEQEND primitives are s;milar to BRANCH and
XOR primitives but they are associated with the scope-rule. Their

formats are:
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SEGBEGIN SCOPENAME, BRIX, P[1],P[2],...,P[k], S[1],...,S[%]

SEQEND SCOPENAME, Q[1],Q[2],...,Q[m], T[1],...,T[n]

where k >1, £ >2, m>2 and ﬁ > 1. Semantics of these primi-
tives are the same as ones of BRANCH and XOR primitives. In
addition, SEQBEGIN cannot be used to form.é iodp. The scope-rule

is applied to a pair of SEQBEGIN and SEQEND in partnership. Simi-
lar to a PAR-block, a SEQ-block is defined as a set of all program-
elements which can be executed during the period between initia-
tion of SEQBEGIN and'completion of SEQEND.

A rule associated with A-BRANCH aﬁd XOR pfimitives in the
structured set is that every'A-BRANCH and every XOR must have a
SEQ-block as the scope.

The PARDO and PARDOE&D primitives are the same as ones in
the basic set. As defined in the preceding section, these primi-
tives are clearly associated with the scope-rule. Thus, a PARDO-
nggg_is defined similar to a PAR-block.

Since the A-BRANCH primitivé in the structured set cannot be
used to form a loop, additional primitives are included in the
structured set to form sequential loops.

Two kinds of sequential loops are allowed in the structured
parallel program. One is the sequential DO-loop structured by

using the SEQDO and SEQDOEND primitives. Their formats are:

SEQDO SCOPENAME, P[1],...,P[k], S, DOVAR, ITERNO

SEQDOEND SCOPENAME, P, S[1],S[21,...,S[%]

where k >1 and & > 1. These primitives are sequential analogs

-G,



of the PARDO and PARDOEND primitives. That is, all iterations must

" be execuﬁed sequentially such that an iteration associated with

the smaller CONT(DOVAR) is executed before the iteration associated
with the larger CONT(DOVAR). Clearly this sequential DO-loop is
subject to the scope-rule and thus a SEQDO-block is defined in the

same why as other blocks are defined.

' The second type of sequential loop is called the WHILE-REPEAT-

loop. 1Its number of iterations cannot be determined prior to
entry into it. It is constructed in the structured parallel program

by the WHILE-REPEAT and WHILEEND primitives. Their formats are:

WHILE-REPEAT SCOPENAME, BOOLVAR, P[1],...,P[k],
s, s[1i],s(2],...,s(2]

WHILEEND SCOPENAME, P

whEre‘(l) k>1, £ >1, (2) BOOLVAR repfesents a boolean variable,
'(3) S[i] represents the i-th immediate successor outside the
WHILE-REPEAT-loop.

The semantics of these primitives are as follows. The WHILE-
REPEAT primitive is initiated either when all of its immediate pre-
deceséors P[1],P[2],...,P[k] have enabled it for initiation, or
when its partner, the WHILEEND primitive has enabled it. Then its
functioﬁ is to check if CONT(BOOLVAR) is O or 1. If CONT(BOOLVAR)
= 0, it enables S, the immediate successor inside tﬁe WHILE-REPEAT-
loop. If CONT(BOOLVAR) = 1, it enables all of its successors out-
side the loop, S[l],StZ],...,S[Q].

The WHILEEND primitive is initiated when P has enabled it and

then its function is to enable its partner, the WHILE-REPEAT
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primitive. The scope-rule is again associated with a pair of
WHILE-REPEAT and WHILEEND primitives in partnership and the block

belonging to the WHILE-REPEAT primitive is called the WHILE~-REPEAT-

block.

Lastly, the structured set includes the SUBROUTINE primitive
and the RETURN primitive. These two primitivés are included in
the structured set for the sake of completeness, but without a
specific definition. Although several definitions can be borrowed
from various algorithmic languages, these two generic primitives
may be regarded as equivalent to the ones in FORTRAN except
prohibition of using COMMON variables. For various analyses dis-
cussed in this report, each subprogram structured by these primi-
tives may be treated as either an independent program or a single
functional program-element. Thus a subprogram is not explicitly
dealt with in this report.

Fig. 2-4 shows graphical representations of initiation con-
trol primitives in the structured set, except the SUBROUTINE and
the RETURN. The graphical representation of the structure of a

structured parallel program,composed of representations introduced

in Fig. 2-4, is called the structured parallel program graph (SPPG).
Fig. 2-5 illustrates a SPPG.

The structured parallel program eases its analysis to a great
extent by allowing the analysis of each block in isolation from
others. That is, the structured parallel program lends itself to
the level-by-level optimization. Parallelism exhibited in it can
be efficiently utilized. Reliability of the produced program is

much” enhanced by suppressing a lot of sources of ambiguity and
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non-termination. Merits of the 'structured parallel program will
become increasingly evident as discussion of various analyses pro-

ceeds.
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2.3 Detection of Useful Parallelism

rManual detection of parallelism made in the course of design-
- Ing a structured parallel program is highly likely to be insuffi-
cient in that a great deal of usefﬁl parallelism may be hidden in
the user-produced structured parallel program. In this section,
techniques for detecting useful parallelism that remains hidden
in the structured parallel program are considered. In the discus-
sion that follows, it is assumed that the initial program is
correct in that its execution always produces correct results.
Detection of hidden parallelism and its indication in the
program leads to the new structure of the program. Thus it is
essentially a process of restructuring the initial program into
the one in which more parallelism is explicitly exhibited. 1In
order to enable efficient utilization of parallelism indicated in
it, the restructured program must possess the desirable structure,
i.e. it must still be a structured parallel program. With this
motivation, techniques for parallelism detection developed in this
section incorporate the level-by-level optimization strategy.
More specifically, each block is analyzed independently of its
environment and all nested blocks in it are treated as single
program-elements during its analysis. If a total program is not a

single block, it is regarded as a block called a program-block.

The nesting relationship between blocks can be represented by a

tree called the hierarchy of block-heads and denoted by HB' In HB,each

block is represented by the primitive it belongs to, i.e., the block-head.



The root in HB corresponds to the outermost block and leaves in
HB are innermost blocks in the structured parallel program. To
each block an arc is drawn from its scope. Each block is said to
be at the lower level than its scope in HB. Fig. 2-6 shows the
HB of the program in Fig. 2-5 . HB is a compact représentation
of nesting relationship.

For parallelism detection, the direct analysis of the program
text becomes quite cumbersome because the text contains additional
information not relevant to parallelism detection. Therefore, it
is convenient to use a suitable program model. Bernstein developed
the sufficient condition for two program-elements in a sequential

program to be parallel processable [ber 66]. A simpler and machine-

independent condition is used as the basis for techniques developed in this

section. The condition is stated in terms of variable-sets used
by each program-element. Thus the first essential information
which should be contained in the model is the information on
variables used by each program-element.

There are situations where the exact determination of every
variable used is infeasible but the approximation is possible,
i.e. a set of variables containing the variables actually used as
é subset can be obtained. 1In the rest of this chapter, the
variable-set is not distinguished whether it isAan exact set or an
approximate superset. In short, the first essential informafion
is the input-variable-set (or operand-variable-set) of each program-
element €[i] denoted by AI(e[i]) and its output-variable-set

(oxr result-variable-set) denoted by Ao(e[i]).
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The second piece of essential information is obvioﬁsly the
program structure. Since each block is independently analyzed of
others, the model used for parallelism detection at each step
consists of the structure of a block and variable-sets associated
with each program-element in the block. The exact model of a
block B for parallelism detection denoted by ;le(B) varies
depending upon the type of B.

As mentioned before, a block B nested in its scope B is
treated as a single functional program-element during the analysis
of B. An input- or output-variable-set associated with the
program-element representing ﬁ is the union of input- or
output-variable-sets associated with all proggam-elements in g.

The overall process of parallelism detectioﬁ generally
proceeds in a bottom-up direction. That is, it starts with
restructuring blocks at the lowest level in HB and then proceeds
gradually through blocks at the higher level up to the block
located at the root in HB' An exception is made in a few cases
and eaéh of those cases is discussed later in this section as it
becomes relevant.

For the sake of completeness in modelling, two special cases .
are taken into account. The first case is described by the example
in Figure 2-7. That is, program elements 2 and 3 outside the
PAR-block B can be moved inside B to indicate more parallelism,
if conditions are met among program-elements 2,3,4, and 5. 1In
order to accomodate this situation, the convention of taking B

out of its environment for analysis needs to be adjusted as follows.
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Fig. 2-7. Parallelism between program-elements outside
and ones inside a PAR-block.
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1f the block-head of a PAR-block B is preceded by a chain of
functionél program-elements in the scope of B, the ‘}tD(B)
contains the chain in addition to B itself. Similarly, if the
block-tail of a PAR-block B is followed by a chain of functional
program-elements in the scope of B, ‘/(D(B) contains the chain,
too. |

The second case concerns the analysis of a program-block. If
all blocks nested in a program-block B are treated as single
functional program-elements, B is in effect ;reated as a chain
of functional program-elements. Detecting parallelism hidden in.
a chain of functional program-elements is a part of detecting
parallelism in a general PAR-block. Thus a program-block B is
regarded as a variatiqn of a PAR-block rather than an independent
type of block, in regard to parallelism detectionm.

In subsequent subsections, parallelism dgtection in each type

of block is discussed.

2.3.1 Parallelism Detection in a PAR-block
Let QU= {v} denote a set of all variables used in a PAR-
block B. Then g}(D(B) can be represented by a qdadruple
(6, <2v , )\I, }\O) where
(1) G = (N,A) is a directed graph,
(2) g\} is the power set of C\A and
3) Al and AO are functions A: N > g‘&

Each node n[i] € N represents a program-element which may in

turn represent a block nested in B. The program-element represen-



ted by n[i] is denoted by €(n[i]). But, the block—head and
the block-tgil, i.e., the PARBEGIN and the PAREND in B are
not represented by any node in G. An arc (n[i], n[j]) exists,
i.e., (n[i]{‘n[j]) € A iff e(n[i]) and €(n[j]) are in imme-
diate predecessor-successor relationship in B. '}‘I (n[i]) C ),

where n[i] € N, represents the operand-variable-set (or input-

variable-set) of €(n[i]). Similarly, )\o(n[i]) Sq} represents

the result-variable-set (or output-variable-set) of e(n[i]).

Definition 2-1.

Assume ;}QD(B) is given where B is a PAR-block.

(1) e(n[j]) is said to be immediate operand-independent of

e(n[i]) 1iff either n[j] E'jQ(n[i]) or A (n[iD) N A ([i]) = ¢.
(2) efjil) is said to be immediate result-independent of e€(n[i])
1£f either n[3]¥R([i]) or A @[] N A @Ii]) VA (aliD) = .

(3) €(n[j]) is said to be immediate data-independent of e(n[i])

iff €(n[j]) is both immediate operand- and result-independent

of e(n[i]). Otherwise, €(n[j]) is said to be immediate data-

dependent on e(n[i]).

(4) €(n[jl) 4is said to be independent of €(nf[i]) and denoted
by e(n[i]) ¥ e(n[j]) iff ? a sequence of program-elements

in B, (e(n[kO]), e(n[kl]), cees e(n[km_ll), e(n[kzl)) such that
kO =i, kz = j and each e(n[km]), 1<m< %, is immediate data-
dependent on e(n[km_l]).

1ff 3 such a sequence, €(n[j]) is said to be dependent on
€(n[i]) and denoted by e€(n[i]) < e(n[j])

(5) €(m[i]) and e(n[j]) are said to be parallel processable and
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denoted by e(n[i]) || e(nl[i]) iff e(n[i]) § e(nl(j]) and

e(l[iD) ¢ e@lil).

Lemma 2-1. Given _AD(B) of a PAR-block B,

elil) || e@[3]) if n[il ¥ RaliD) and nli] k& RlD.

Proof. (1) n[i] ¥ R@[i) = e@l[3]) § e@lil)
2 nli] ¥ R@Iil) = e@[iD) ¢ e@liD)
e@[i]) I e[3iD) Q.E.D.

After detection of parallélism hidden in a PAR-block B, its
explicit indication is achieved by setting a new immediate
predecessor-successor relationship among program-élements in B.
Thus, if B represents the restructured version of a PAR-block
B, i.e., if B 1is a result of detecting parallelism hidden in B
and changing the immediate predecessor-successor relationship in

B, the only difference between u‘lD(B) and .AD(E) exists in



their sets of arcs A and A.

Definition 2-2. Given a PAR-block B and its restructered

version §, B is said to indicate more parallelism than B, if

vn[i] € N Vn[j] € N, n[j] € R(nl[i]) in L}QD(E) ‘implies that
n[jl € R[i]) in u‘lD(B). That is, B 1is said to indicate
more parallelism than B, if R C R, where R and R represent
reachability relations of LJ4D(§) andLJ4D(B), respectively.

On the basis of these properties, an algorithm for obtaining
a restructured version of a PAR-block B, B which indicates at
least as much parallelism as B indicates, is synthesized as

follows.

Algorithm 2-1.

1. Obtain the reachability relation R from A in L}QD(B).

2. Initialize A'<« ¢.

3. For every pair of nodes (n[i], n[j]) € R, do the following.
3.1 Check 1f A (@[3]) NA @[] # ¢ or Aj(ali]) N QD
3.2 If so, A'<« A'U{(n[il, n[3jD}. v Ao(“[im 7 ¢.
Otherwise, do nothing.

4. TFrom A',obtain the transitive reduction A <+ ?J;(AD by the

algorithm in [aho 72]. G = (N,A) represents the new structure of

B.

The correctness of this algorithm can be stated by the

following lemma.

Lemma 2-2. Given B resulted from the application of

Algorithm 2-1 to a PAR-block B, B indicates at least as much
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parallelism as B does. That is, R CR.

Proof. V(n{i], n[j]1) € A, (n[il, n[j]) € R since A' is

increased only through step 3.2 in the algorithm. = A' CR =

(‘\-J;(A') C g;(R) = R C R because R = %(A') and R = CJ":(R). Q.E.D.

Steps 1, 2 and 3 can be performed with computational complexity
bounded by a polynomial of #(N). Since G is an acyclic graph,
step 4 can be again performed with computational complexity

bounded by a polynomial of #(N).

Here a trade-off between storage and paralleliém is noteworthy.

Definition 2-3. Given a set of nodes N' CN in ;ka(B),

9.(N') is defined as: Ean = {e) | neN'}

Lemma 2-3. If n[j] e “Rnli]), A ali]) N2 (a[j]) = ¢ and
v alkl e (Realil) NR™ @3, 2y@lkD N A GID = ¢ in
- A (B) of a PAR-block B, either
(1)  e@[i]) I e@[j]), or
(2) B can be transformed into an equivalent B in which
e(n{i]) ! e(n[j]), by the following procedure.
(2-1) Set Z<+« (U (A

I
neN’!
{al11} U (Rl AR is1).

(n) Uko(n))) N J\O(n[j]), where N' =

+ (2-2) Obtain a new set of variables Z' satisfying that

z' N7\ = ¢ and there exists a matching 0: Z -+ 2Z'.

a®

(2-3) Do the following for each e(n[k]) where n[k] € ({n[j]} VU
Cp(n[j])): replace every variable v € Z used in €(n[k]) with

0(v) e 2'.
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Proof. Since n[j] € R(nlil]), e@li]) t enlil).
Case 1: Z = ¢
Apparently, e(u[il) ¥ e@li]) = e@li]) | eli]).
Case 2: Z X ¢

From the.correctness of the program, it is apparent that for
each variable v € Z, CONT(v) after the initiation of €(n[j])
is never used in execution of program-elements g!(Ig-l(n[j])).
Similarly, CONT(v) before the initiation of E(n[j]) is never
used in execution of program-elements é;@izhdj])) and e(n[j]).
= Replacement of v € Z appeared in E}Giz(n[j])) and e(nfjl)

with 6(v) € Z' does not change the correctness. And in

- BYRSEA - -
(JAC(B) = (G, z(fU Z ), AI, XO), YoneN, (A Ur(n) n
To@lED) = (R VX @)\ 2) Uz) N (Ryelih \ 2) Vzh) =
zNz' =¢=en[i]) § e(n[j]). In a transformed B, e(n[i]) |

e(nfjl) Q.E.D.

Therefore, by using a limited amount of additional storage
(variables), much more parallelism can be exploited. In ‘the ideal
case where additipnal’storage for this purpose can be freely
employed, the following algorithm can' be used for obtaining B

from B through restructuring and replacement of variables.

Algorithm 2-1(a).

1. Obtain the reachability relation R = QJE(A) from A in

A ®).

2. Obtain a sequence of all nodes in N, S(N) = (n[kll, n[kZ],...,

n[k#(N)]), satisfying that if (an[i], n[j]) € R, 1 =k, and =k,

then £ < m.,



o

3.
4.

5.

6.

Initialize A' « ¢
y n[ki] € N, do the following.
4.1 j+«1i -1 and Y *« ¢.
4.2 If § =0, go to 4.7.
4.3 If (n[kj], n[ki]) % R, go to 4.6.
4.4 X * )\O(n[kj]) N )\I(n[ki]) and if X C Y, go to 4.6.
4.5 A' <+ A"V {(n[kj], n[k, 1)} and Y« YUX.
4.6 j+ 3j-1 and if j ¥ 0, go to 4.3.
4,7 Continue.
obtain CJ.(a') from A' and set R' + T (a".
Set W« R\ R', and Z « ¢.
V (n[i], n[j]) e W, 2+ 2Z UV (Xo(n[j]) N (A (li]) L”\o(n[i])))
VveZ, do the following.
8.1 Obtain a graph G = (Nv’ Av) wﬁeré Nv = {n]v e Ao(n)}
and A = {(ali], n[3]) | nli] € N, A nl§] € N A (041, nl3D)
e R'}.

8.2 Obtain a minimal chain decomposition of Gv’

D?(Gv) = {c[1],..., c[2]}. (ref. Definition 3.5 in Section 3.3).

8.3 V¥ne¢e Nv’ replace v used as output variable in e(n)

with a new variable v[m] where n is covered by c[m] in
m

D,c (GV) . .

8.4 Obtain the sequence of all nodes in Nv’ S(Nv) =
(n[kll,..., n[k#(Nv)]), satisfying that V¥ (n[ki], n[kj]) € R,
i<j.

1f #(Nv) =1, go to 8.8.

8.5 i+« 1
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8.6 Replace all appearances of v in program-elements
Q') with v[m], where N' = CQ(n[ki]) \ (CQ(n[ki+1]) v

{n[ki+1]}) and n[ki] is covered by c¢[m] in DE(GV).

In addition, replace appearances of v as input variables

in e(n[ki+l]) with v[m].

8.7 1+ i+ 1.

If i< #(Nv)’ go to 8.6.

8.8 Replace all appearances of v in 23(12(n[k#(N )])) with
v[m], where n[k#(Nv)] is covered by c[m]. Y

8.9 Continue.

9. Obtain gj;(A') and set A < Q}L(A'). G = (N,A) represents

the new structure of E.

It is apparent from the definitiqn of dependency that S(Nv)'
obtained after step 8.4 is unique. It is also apparent that after
replacement of variables through step 8, e€(n[i]) [l e(n[j]) if
(n[i],‘n[j]) ¥ R' and (n[jl, n[iD) % R', The applicability of
algorithm 2—1(;) depends upon the amount of adﬁitional storage
which can be employed.

Even after obtaining B by AlgorithmVZ-l or 2-1(a), there
still exists a possibility thag a further analysis of. § may
detect additional parallelism. Such a situation is exemplified by
Figure 2-8. There B is a restruc'tured version of B. In B,
e(n[1]) which is a PAR-block B[1] and €(n[3]) which is
another PAR-block Bf3] can be combined into.a singlg large PAR-
block which ﬁay in turn be restructured into anothér block indicating

more parallelism. This is in fact a digression from the bottom-up proceeding.

-~



57

N
| : ° PAR=block Bl1]
X : | [ ¥ 7]
o SEQ-hlock B[2] > I |
A | |
° PAR-block B3] L_ ]
B B
Fig. 2-8. Combining blocks nested in B
Before the general condition which should be satisfied
among PAR-blocks nested in B to be combined is given, some
terminologies are introduced.
.. Definition 2-4. Assume an acyclic directed graph G = (N,A)
is given.
1 (1) A pair of nodes n[i] e N and n[j] € N are said to be

coupled to each other, if n[j] e’FXn[i]) and every path from the
entry to the exit in G covering n[i], covers n[j] and vice versa.

(2) Given a pair of nodes n[i] and n[j] € ‘Ekn[i]) coupled
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to each other, a set of nodes N, = R[il) ﬂflé_l(n[j]) U
{n[il,n[j]} together with a set of arcs A; = {([k], n[2]) |
oA n{l] € N, A (n[k], n[]) € A} is cailed a 'closed

subgragh. belonging to its entry n[i] and its exit n[jl. It is

nf[k] € N

denoted by gc(n[i], n[j]) = (NC,AC).

Lemma 2-4. Given.leD(ﬁ) where B is the réstructured
PAR-block, if 3J a closed subgraph g = (NC,AC) contained in
G satisfying that Vn ¢ NC, €(n) is a PAR-block nested in B,

E;(NC) can be combined into a single PAR-block.

Proof. From the definition of a closed subgraph, it is

apparent that for every node n € N except the entry- and the

c
exit-node of 8e> all immediate predecessors and successors of n
represent PAR-blocks nested in B. So, each e(n) can be combined

with immediate predecessors and successors. Q.E.D.

The procedure for detecting a closed subgraph is now considered.

Definition 2-5. Assume an acyclic directed graph G = (N,A)

is given.

(1) The arc-connectivity relation AA is defined as:

Apii= (@lil, aliD) | ali] = (al4,], nliy)) € A

A aljl = (n[J’l], n[j,]) e An i, = jl} CAx A.

(2) The reachable-arc-set and reaching-arc-set of an arc af[i] € A,
denoted by CI%A(a[i]) and c]?;;(a[i]), respectively, are defined

as:

CDA(a[i]) ::= {a[j] | B(a[kol, alk;1, ..., a[k_I)

“n
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‘ l[ko=i/\km=j/\V159._<_m,
| (alk, ;1, alk,D) € a1}
R 1MaliD) ::= {als] | al1] R, 1IN}

(3) The arc-reachability relation RA is defined as:

R, ::= {(ali], a[3]) | ali] € A Aalj] e R,(aliD)}

(4) Tbe reachable-arc-set and reaching-arc-setAof a node

n[i] € N, denoted by cI%A(n[i]) and Cizzl(n[il), respectively,
are defined as:
R, @l1]) ::=R, (ali]) for any alj] € Ay (alil).

CIz;l(n[i]) ::=<Z?;1(a[j]) for any alj] € AOUT(n[i])’

Theorem 2-1. Given an acyclic graph G = (N,A), the necessary

and sufficient condition for a pair of nodes n[i] and n[j] €
cT‘?(n[i]), to be coupled to each other is:

R, @tiD) VR @iiD) = R, @i VR @iiD.
In addition, a set of arcs in gc(n[i]), n[j]) are obtained by

R, al1D) MR (al3D)-

Proof. Since G is an acyclic graph and n[j] ezczz(n[i]),

R @i NRaiD = ¢ and R @lid NRGlD = o.

(1) n[i] and n[j] are coupled.
o R,GUD\R Gl = RaUDER, @l
o (R, GUD\R, @[31) VR, (3D VR @It
=R, @l3D U R DR @) v R @liD)
o R aish VR @liD =R, (i) VR, @l
@ since ‘R, @l MR @I = ¢

A set of arcs in 'gc(n[i], n(il), Ag =CJQA(n[i])
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\R, @) =R aiDVR @l

R, U\ R (ali1) N (Rl R il
[(R,wliDVR, (al31)) VR, (al3D]

A LR LR (ri) VR mliD]

=R, @tid R @i Q.E.D.

Based on this condition, an algorithm fof detecting every
closed subgraph in ‘jQD(E) can be easily developed. However, some
closed subgraphs are nested (contained) in others. 1In such a case,
it is desirable to check first the closed subgraph in .;4D(§)
which does not contain others, if it satisfies the condition stated
in Lemma 2-4. The nesting relationship betweeq closed subgraphs

is discussed below.

Lemma 2-5. If there are two closed subgraphs in an acyclic
G having the same entry-node n[il, g;(n[i], n[j]) and
go(nlil, nlkl), either |
(1 nlk] € R@liD) and gy(nlil, al3]) € gy(alil, nlkl), or
@ nli] e Realk]) and gy(alil, alkl) C gy(ali], nlil),

= Cc = - CaA,.
where Gl (Nl’Al) G2 (N2,A2) means that N1 N2 and A1 A2

Proof. Apparently a[jl € “R(a[i]) and n[k] e SR(n[i]).
W If okl YR@ED and nli] & Raid), ¥ a closed sub-
graph g.(n[i], n[j]) and ¥ a closed subgraph kg.c(n[i], n[k]).
(2 1f nlk] € Renal3]) and gy(nlil, nli]) € g(nlil, nlkD),
go(nlil, n[k]) is not a closed subgraph. | |
(3) If n[j] € ‘RAnlk]) and gy(nlil, n[k]) € g (nlil, nl3D),

gc(n[i], n[j]) is not a closed subgraph. Q.E.D.
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Lemma 2-6. 1If there are two closed subgraphs having the
same exit-node n[i] in an acyclic G, gc(n[j], n[i]) and
go(nlkl, nf1]), either |

(1) alkl € Reals)) and g lkl, nli]) C g @lil, alil), or
@ nlil ¢ RaalkD) and gyall, alil) € goalkl, alid.

Proof. By the similar reason applied to Lemma 2-5. Q.E.D.

Theorem 2-2. If there are two closed subgraphs in an acyclic
G having the same entry-node nfi], gc(n[i],in[j]) and

gc(n[i], n[k]), there exists a closed subgraph gC(n[j], n[k])
or g (nlkl, nlj]).

Proof. From Theorem 2-1,

@ R @) VR aliD = R, @isd YR iz,

@ Rl YR @D = R @ik VR alkD).

W) and @ = R,alD YR @D = R, @ik U R @lkD
= 3@, alkD or g (a[k], n[j]). Q.E.D.

Theorem 2-3. For any two closed subgraphs in an acyclic
¢, go(alil, nii]) = (M ,A) and go(alkl, nlkD) = (N.4,),
exactly one of the following conditions is satisfied.
(1) gy(n[i], nl3]) € g (nlk], n[L]).
(2) gy(nlk], n[2]) C g,(uli], n[j]). ,
(3) g(nli], n[§]) Ng,(nfk], n[2]) = (¥, NN,, A, NA)

= (4,9) = ¢ '

Proof. From Lemma 2-5, 2-6 and Theorem 2-2. Q;E.D.



Definition 2-6. A closed subgraph gc(n[i], n[jl]) in G is

called a basic closed subgraph and denoted by gB(n[i], n[ji]), if

there exist neither a gc(n[i], n[k]) such that n[j] e 1Q(n[k])
nor a gC(n[k], n{jil) such that n[k] e'TQ(n[i]). If there is a

gB(n[i], n[j]l) in G, n[i] and n[j] are said to be in partner-

ship.

Definition 2-7. Given an acyclic G = (N,A), the coupledness

relation RC and the partnership relation RP are defined as

follows.
Ry ::= {([il, n[iD| 3 gc(n[i], n[j])}
R, ::= {(n[i], n[iD)| Jgz(nlil, nliD}

Theorem 2-4. Given an acyclic G = (N,A), the partnership
relation RP is the transitive reduction of the coupleness
relation RC. I.e., RP = Z}%(RC). In addition{ RP can be
partitioned into a family of independent total orderings,

TR, = {rplll, rpl2], ..., rplml}

Proof. |
(1) Suppose there exist (n[i], n[j]) € R, and (n[i], n[Kk]) € Ry
satisfying that n[k] € I?(n[j]) in a graph G' = (N’RP)' Then
(n[i], n{iD) € R.» (n[i], n[kDe R, and (n[jl, nl[k]) € R, from
Theorem 2-2., = EgB(n[i], n[k]) = (a[il, n[k]) ¥ R,, contra-
diction. = RP is the transitive reduction.
(2) From Définition 2-7, RP contains no more than one couple, for
each n[i] € N, in which n[i] is the first element. = RP can

be partitioned into a family of independent total orderings. Q.E.D.
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Definition 2-8. Assume an acyclic G = (N,A) is given.
(1) A ﬁlbsed subgréph gc(n[i], n[j]) in G 1is said to be
properly nested in another closed subgraph gc(n[k], n[]) if
ali] ¢ Re@Ik)) and al3] e R~ @l2D).
(2) A closed subgraph gc(n[i], n[j]) in G which does not

contain any other subgraph as its subset is called a minimal closed

subgraph belonging to its entry n[i] and its exit n[j], and
denoted by gM(n[i]? n[jl}). If there is a gM(n[i], n{j]) in G,
n[i] and n[j] are said to be in minimal partnership.

(3) The minimal partnership relation RM is defined as:

Ry ::= {(n[i], n[j]) | Igy(nli], n{iD}.

Theorem 2-5.
(1) Each minimal closed subgraph gy (n[il, n[j]) is a basic
closed subgraph. In addition,
(2) RM can be partitioned into a family of independent total
orderings, W(R,) = {rM[I], r l2l, ..., rM[SL]}.
(3) Then the following property holds between 1T(RM) and
T(Ry) = {ry[1], rpl2], ..., r[ml}:
(.1 ¥ rli]l € TR, Ir,lil € TRy [ryl1] € rp[510.
(3.2) 3 (x,[1], £,[3) e(@®) x TR [xr,[1] = £, [51].

Proof.

(1) From definition 2-6 and 2-8, a minimal closed subgraph is
apparently a basic closed subgraph.

(2) From (1) and Theorem 2-4, RM can be partitioned into ﬁ(RM).

(3) From (1) and (2), (3-1) is apparent.
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(3-2) is proved as follows. A member of W(RP),‘rP[i] is
said to be properly nested in rP[j] € W(RP), if V
I ((li;1, ali,D, (@l3;], al3,1)) e(,lil x r,[3])
[nfi,] € Reali,D A ali,] € R als,DI.
Apparently, this relationship among members of ﬂ(RP) is
transitive. So, there exists a member rP[k] in which no other

member is properly nested.

= ¥ (1], 3] € rplkl, 3g,@alil, nl3]) = rylk] € T®Y. Q.E.D.

On the basis of these properties, an efficient algorithm for
combining several PAR-~blocks nested in B 1is synthesized as

follows.

Algorithm 2-2.

1. Obtain R, A,, RA from G = (N,A) and initialize .RC < 9.
2. V (nf[i], n[j]) € R, do the following.
2.1 Check if R, (n[1]) YR (al1])
-1
=. . U o .
R, @l VR, 3D
2.2 1If so, R, RC U{(n[i], n[j])}. Otherwise, do nothing.

3. 1If RC = ¢, terminate.

Otherwise, RP + QJL(RC)'

4, Partition RP into a family of independent total orderings
ﬂ(RP) = {rP[ll, rP[Z], cees rP[Q]}, and initialize :w < ¢ and
X+ n(RP).

5. Find a member of X, rP[k] in which no other membef is
pfopérly neéted.

5.1 Initialize y « n[kll where n[kll is the first node in

64

-1,



bes ol

65

the order represented by rP[k].

5.2 . Starting with the second node nlk,] 'in the order
represented by rP[k],.do the following for every node n[ki]
contained in rP[k] in the order represented by rP[k].
5.2.1 Obtain gc(n[ki_l], n[ki]), and check if it meets the
condition stated in Lemma 2-4.

5.2.2 1f so, z <« n[ki]. Otherwise, do the following.
5.2.2.1 If y = z, do nothing. Otherwise, remove every
member in W, (n[i], n[j]) such that n[i] e'TQ(Y) and
ali] e R7(2). Then W« W UL(y,2)} and y «nlk,].
5.2.2.2 Find rP[2] € ﬂ(RP) in which rP[k] is properly
nested. If it does not exist, do nothing; If rP[Q] is

found, find a member (n[lj], n[£j+1

iz(nllj]) and n[km] 2(12"1(n[2j+1]), Then split rP[Q]
into two parts by removing (nlﬁj], n[2j+l]).
6. X « X\{rP[k]}.If X = ¢, go to 7. Otherwise, go to 5.

]) such that n[k1] €

7. ¥ (n[i], n[j]) € W, obtain gc(n[i], nlj]) = (NC, AC) and

combine 230%9 into a single PAR-block.

Although the algorithm consists of a number of steps, it is
efficient in that each step can be performed with computational

complexity bounded by a polynomial of #(N) and #(A).

2.3.2 Parallelism Detection in a SEQ-Block

Two possible sources of hidden parallelism in a SEQ-block B
are considered. Unlike in a PAR-block, _AD(B) of a SEQ-block B

contains two types of nodes, one representing a control program-



element called a c-node and the other representing a functional
program-element called a f-node. Regarding the block-head
SEQBEGIN and the block-tail SEQEND as special kinds of A-BRANCH
and XOR, each c-node is either a A-BRANCH-~ or XOR-riode. Unlike in
a PAR-block, the block-head and the block-tail are included in
A, ®.

Thus _j{D(B) is now a quintuple )A(B) = (G, ;U, AI, XO,B)
where

(1) G = (N,A), é\L A, and AO have same meanings as in L)lD(B')

I
of a PAR-block B', and

(2) B called a node-type~-function is a function

B: N -~ {A-BRANCH, XOR, f- node}.

First, between two neighbor c-nodes, there is a chain of
f-nodes. Parallelism hidden in every chain can be detected by
Algorithm 2-1. After this,LJQ(B) = (G, ;U, AI’ XO,B) is
modified into _A’(B) = (G', ;U, Ai, 16, B') by replacing every"
chain with a single f-node. Then A'(B) 1is used for the next
step of parallelism detection in a SEQ-block B.

The second source considered in this section is illustrated
by Figure 2-9. That is, a set of nodes completely enqlosed by one
A-BRANCH-node and one XOR-node can be coalesced into a single
f-node, and if this results in a chain of f-nodes, Algorithm 2-1
can be applied for parallelism detection.

A sufficient condition for é set pf nodes N' in _jQD(B)
of a SEQ-block B to be combined, is.that thgre exists a closed

subgraph g.(n[il, n[jl) = (NC,AC) such that N_ = N', B(n[i]) =
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Fig. 2-9. Parallelism in a SEQ-block.
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A-BRANCH and g(n[j]) = XOR. Therefore, an algorithm for
detecting such a subgraph can be easily derived from Algorithm 2-2
through a simple modification.

However, such a condition is too restrictive in the sense that
there may be a large number of subgraphs in 14D(B) which are
not closed subgraphs but which can be coalesced into single f-nodes.
This is illustrated in Figure 2-10. There Gi contains only one
closed subgraph‘ gc(l,lo), while G, contains three closed sub-
graphs gC(1,12$, gc(4,10) and gC(S,ll). That’is; the amount
of parallelism detectable by Algorithm 2-2 is sensiﬁive to how
XOR-nodes are used. This restriction is easily removed by the

simple generalization of the notion of a closed subgraph.

Definition 2-9. An open-end closed subgraph denoted by

gz(nlil, nljD) = (N3, Az) 1is a subgraph in G satisfying
(1) n[i] is an A-BRANCH-node and n[j] is a XOR-node such that
nfj] € “R(nl1l), and
(2) v n[k].e (Na\ﬁntjﬂ),every path from the entry to the exit in
G covering n[k], also covers n[i] and n[j].
n[i] and n[j] are said to be loosely coupled to each other.
The open-end closed subgraph has the same properties as the
one of the closed subgraph stated by Lemma 2-5 and Theorem 2-2, 2-3.
The necessary and sufficient condition for n[i] and n[j]
to be loosely coupled to each other is obtained by modifying the

condition for coupledness given in Theorem 2-1.



?%/‘

Fig. 2-10.

An open-end c¢losed subgraph.
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Lemma 2-7. The necessary and sufficient condition for an
A-BRANCH-n[i] and a XOR-n[j] satisfying n[j] e“qg(n[i]) to be ’
loosely coupled to each other is:

R, @) VR @iy = ¢ u R

et VR, i3] U w
afk]ew

A

where W =R, (m[iD) N Ay (al3])

In addition, a set of arcs in ga(n[i], n[j]) where n[i] and

n[j] are loosely coupled, are obtained by
R aridn (¢ Y R @ik vw.
alklew
Proof. From the proof of Theorem 2-1 and the definition

of loosely coupledness. Q.E.D.

The algorithm for detecting each open-end closed subgraph in
L)QD(B), coalescing it into a single f-node and then detecting
parallelism in the resulting chain of f-node#, canvbe easily
synthesized on the basis of Lemma 2-7 and Algorithm 2-2. Such

an algorithm is not elaborated in this section.

2.3.3 Parallelism Detection in A SEQDO-Block

There are largely two types of possible sources of parallelism P
hidden in a SEQDO-block. One is intra-iteration parallelism which

is one existent within every iteration, and the other is inter- RN
e -

iteratién parallelism which exists between iterations.



2.3.3.1 Detection of Intra-Iteration Parallelism

3J4D(B) of a SEQDO-block B contains either a single f-node
or a chain of f-nodes, except the entry-node representing the
block-head éEQDO primitive and the exit-node representing the
block-tail SEQDOEND primitive. In the former case, there is no
additional intra-iteration parallelism. In the latter case,
Algorithm 2-1 can be applied for detecting parallelism hidden in

a chain of f-nodes.

2.3.3.2 Detection of Inter-Iteration Parallelism

In general, the inter-iteration parallelism in a SEQDO-block
does not lend itself to efficient detection and utilization.‘
However, it may become necessary to check if the SEQDO-block can
be transformed into an equivalent PARDO-block.

In order to derive a sufficient condition for a SEQDO-block

to lend itself to such a transformation, the following notions are

introduced. Let § denote a set of all possible CONT(DOVAR) for B,

and § represent CONT(DOVAR) at one time. A variable is classified

into one of two types, a vector-variable and. a scalar-variable.

Definition 2-10. A vector-variable v or shortly V - v is

a variable which is assigned to a different location during the

execution of a SEQDO-block depending upon §.

(1) A V-v is represented by V-v = (hv,xv), where hV represents

the address of the head, i.e., the location matched with v when

6 =0 and X, is an index function

X,  + {index} = {location-address - hv}L
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(2) During the execution of B, the address of the location matched
with a V-v at a certain time, denoted by r(v,8) 1is determined
by (hv + xv(G)).

(3) One additional rule is that, given two V-variables v([i] and
V[j]) {r(v[i] ,k) l k € Q} n {I'(V[j],k) | k e 9} = ¢9 if -

hv[i] # hv[j]' That is, if their heads are different, there is

no address which is assigned to both variables.

Definition 2-11.

(1) Two V-variables with‘different heads, v[i] and v[j] are

said to be heterogeneous, and denoted by v[i] <HET> v[jl. Two
sets of V-variables, V1 and V2 are said to be heterogenous iff
vV v[jl € Vys v[i] <HET> vl[jl.

vV v[i] € Vl

(2) Two V-variables with the same head, but different index

functions v[i] = (hv, xv[i]) and v[jl = (hV’ xv[j]) are said

to be non-overlapping iff {r(v[il, k) | k € Q} 0O {r(v[jl, k)|
k € Q} = ¢. It is denoted by v[i] <NOOV> v[jl.

Two sets of V-variables, V., and V2, are said to be non—pverlagging

1

iff vv[il e Vv, Vv[j]l e V2 v[i] <NoOV> v[j] or

1

v[i] <HET> v[j]. It is denoted by vy <NOOV> V. Otherwise

V1 and V2 are said to be overlapping and denoted by Vl <ovV> V2.

(3) A V-v[i] 1is said to be non-repeating if - V'kl e ¥V k2 e Q

r(viil, kl) ¥ r(v[il, kz) iff kl % k2. A set of V-variables,

V1 is said to be non-repeating if every vii] € Vl‘ is non-repeating.

Definition 2-12. An index function of a V-v[i], xv[i] is

said to be monotonic if V kl e Vv k2 € @ either
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(1) r(vl[il, kl) > r(v[i], k2) is implied by kl > ky, or

(2) r(v[il, kl) < r(v[i], k2) is implied by k1 > kz. .-

Lemma 2-8. A V-v[i] is non-repeating if Xoli] is

monotonic.
Proof. From the definition of a monotonic function. Q.E.D.

Definition 2-13. A scalar-variable v or shortly S-v is

a variable which is always assigned to a fixed location. Thus a
S-v can be considered as a special case of a V-v whose index
function is 0. One restriction is that an address of the location
matched with a S-v, denoted by r(v) cannot be equal to an address
matched with any V-v. That is, for any S-v[i] and v-v(jl,
v[i] <HET> v[j].

Al(n[i]) can be partitioned into two variable-sets, AIS(n[i])

called the input- (or operand-) S-variable-set of n[i] and

XIV(n[j])‘ called the input- (or operand-) V-variable-set of n[i].
i.e., XI(n[i]) = AIS(n[i]) v AIV(n[i])

and Ag@I1]) N Ay (ald]) = ¢

Similarly, Ao(n[i]) can be partitioned into two variable-sets,

Aos(n[i]) called the output- (or result-) S-variable-set of nl[i]

and on(n[i]) called the output- (or result-) V-variable-set of
nfi].
i.e., .ko(n[i]) = Aos(n[i]) L’Rov(ﬁ[i])

and  Agg@[i]) N A (ali)) = 9.
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Definition 2-14. Assume ‘}{D(B) of a SEQDO-block B 1is

given.
(1) AI(N) is defined as:

A-(N) ::= U X_(n) Gt
I neN :

(2) Similarly, XO(N), AIS(N), AOS(N), AIV(N) and AOV(N) are
defined.

Definition 2-15. Given a set of variables V wused in a
SEQDO-block, r(V,8) where 6 € Q , is defined as:

r(v,8) ::=_{r(v,5) | v e v}

Definition 2-16. A SEQDO-block B 1is said to be essentially

parallel if every pair of iterations are parallel processable.

Lemma 2-9. A SEQDO-block B is essentially ﬁarallel, if
XO(N) = AOV(N)’_AIV(N) <NOQV> XOV(N), and XOV(N) is non-

repeating, where N is a set of nodes in 'jQD(B).

Proof. TFrom the given condition, the following is satisfied.
VieQ VjeQ such that i # j, r(lI(N), i) r\1:()\0(N), D =¢

A r()\o(N), i) N r()\O(N), j) = ¢.= Every pair of iterations are

parallel processable. Q.E.D.
Corollary 1. A SEQDO-block B is essentially parallel if : »

AO(N) = AOV(N), XIV(N) <HET> XOV(N), and Vv eE XOV(N),

xv is monotonic.

In general, AOS(N) may be a non-null set. If it is, B is

not essentially parallel, i.e., a pair of iterations are not
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parallel processable, even if other conditions in Lemma 2-9 are met.
In fact, the main motivation for using S-variable in a SEQDO-loop
is an economic use of variables. This is another typical example
of a trade-off between economy of storage and abundance of paral-
lelism.

Under the assumption that additional storage can be freely
employed, a significant amount of parallelism hidden in a SEQDO-B
which is not essentially parallel can be detected by the following
technique. A simple case where XO(N) = AOS(N) is disscussed

first;

Lemma 2-10. If AO(N) = AOS(N) and AO(N) n AIS(N) =¢ in
JAD(B) of a SEQDO-block B, B can be transformed into a PARDO-
block B' followed by a SEQDO-block B" by employing a new

~v'[i] = -v|i
V-v'[i] (hv'[i]’ SV'[i]) for each S-v{[i] € AOS(N), where

X,1p4] = CONT(DOVAR).

Proof. The transformation is depicted in Figure 2-11. It
is apparent that V v € AOS(N), CONT(v) after execution of B

is equivalent to CONT(v) after execution of B' and B". Q.E.D.

In such a case, B is said to be decomposable into B' and

B" and B' is called a processing PARDO-block and B" is called

a result-selection SEQDO-block. In general, B" involves a

small portion of computation performed by both B' and B". Thus
by decomposing B into B' and B", a major part of computation

can be performed with high parallelism utilization.



76

“ o

-

B B'

. ITERNO

Ao (N®) = A (N)
IS 1S
Mg Ay

Mg Mg =

Ay @) = Ay (M)

=D
s = (v11]) fo D = T = g X))
where xV'lil = CONT (DOVAR)

C

B'.
OVAR, ITERN

¥ v(i] € AOS(N)

IF CONT(r(v'([1i), CONT(DOVAR))) # ¢
THEN v[1i] « CONT(r(v'{i), CONT(DOVAR)))

(F

Fig. 2-11. Transformation of a SEQDO-block B into a
PARDO-block B' and a SEQDO-block B".
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Now the condition for a B to be decomposable into B' and

B" is somewhat loosened.

Lemma 2-11. A SEQDO-block B is decomposable into B' and
(LI N =
B' if A (N) AOS(N) b, AIV(N) <NOOV> AOV(N), and

XOV(N) is non-repeating.

Proof. From Lemma 2-9 and 2-10. Q.E.D.

Corollary 1. A SEQDO-block B is decomposable into B' and
LU N =
B" if AIS(N) AOS(N) o, AIV(N) <HET> loV(N) and

VvV v[k] € XOV(N), xv[k] is monotonic.

In general, the procedure for detecting an essentially
parallel B as well as a decomposable B based on Lemma 2-9 and
2-11 does not easily lend itself to automation. On the other hand
the procedure based on their corollaries becomes much easier to

implement, although some generality is lost.

2.3.3.3 Decomposition of a SEQDO-Block

The concept of decomposing a B into B' and B" in the
preceding section can be further generalized. So far a SEQDO-
block has been treated as a unity represented by AI(N) and
AO(N). In this section, the internal structure of B is examined
to reveal more parallelism by employing more general decomposition.
Figure 2-12 shows an example.

1f ;JQD(B) of a SEQBO-block B contains a chain of f-nodes

between the SEQDO-node and the SEQDOEND-node, the block-body of



D = DOVAR
I = ITERNO

Fig. 2-12. Parallelism detection in
a SEQDO-block through
decomposition.
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B, i.e., the portion of B excluding its block-head SEQDO

primitivé and its block-tail SEQDOEND primitive, is treated as a
PAR-block.

If an Qj%;B) of a SEQDO-block B contains only one f-node,
then ﬁhe f-node represents either a basic program-element or a

block B nested in B. Herea basic program-element refers to -

one which does not contain any initiation control primitive in
its inside except a FUNCTION-CONTROL primitive. In the former
case, no additional detection is necessary. In the latter case,
if B is a block other than a PAR- and a SEQ-block, then there
is again nothing to be dome. This is because of the nature of the
bottom-up detection strategy. More specifically, if B is a
PARDO-block, then it must have been already analyzed and fully
decomposed by the procedure to be discussed in Section 2.3.4.
Similarly, if ﬁ is a SEQDO-block or a WHILE-REPEAT-block, it
must'have been already analyzed and fully decomposed.

Therefore, it is sufficient to consider two cases for this
discussion. One is where the body of B, ﬁ is a PAR-block and
the other is where the body of B, B is a SEQ-block. In any

case, the model used for this analysis is “)QD(ﬁ)'

2.3.3.3.1 Decomposition of a SEQDO-Block Whose Body is a

PAR-Block
With each n[i] € N 1in (AD(ﬁ), A ([1]) = O g(aliD),

AIv(n[i]) and Ao(n[i]) = (Aos(n[i]),kov(n[i])) are associated.
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Definition 2-17. Assume ‘]4D(ﬁ) of a PAR-block ﬁ, which

is the body of a SEQDO-block B, is given.

(1) e(n[j]) in Ljan(ﬁ) is said to be iteratively immediate

operand-independent of e(n[i]) iff AIS(n[j]) r\AOS(n[i]) = ¢
and  A(n[j]) <voov> on(n[i]).

(2) e(n[j]) 1is said to be iteratively immediate result-
independent of e(n[i]) iff Aos(n[j]) F\AOS(n[i]) = ¢ and
on(n[j]) <NOOV> . (n[il).

(3) e(n[j]) is said to be iteratively immediate data-
independent of e(n[i]) iff e(n[j]) is both iteratively

immediate operand- and result-independent of e(n[i]). Otherwise,
e(n[j]) is said to be iteratively immediate data-dependent on e£(mn[i]).

(4) e(n[j]) is said to be iteratively independent of e(n[i])

and denoted by e(n[i]) * e(n[j]) iff there does not exist a
1
sequence of program—elements

(e(nlkyD), el D), ...,y e(nlk, 1), e(nlk 1)),
such that ko =1i, kL = j, and each e(n[km]), l<m<?Q,
is iteratively immediate data-dependent on e(n[km_ll). If 3

such a sequence, €(n[j]) 1is said to be iteratively dependent

on £(n[i]) and denoted by e(n[i]) < e([j]).
I
(5) e@[i]) and e(n[j]l) are said to be iteratively parallel

processable and denoted by e(n[il) || e(n[j]) iff e(n[iD) ¢ (3D
I I
and e(n[jl]) § e([iD).
I
Lemma 2-12. Given L}(D(ﬁ) of a PAR-block B which is the
body of a SEQDO-block B,

(1) e(lil) < e(li]) , if e(@l[i]) < e@[iD)
I

.“‘ (_.
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) e@liD t e@liD), if e@lil § e@i3D)
' I

(3) e@liD || e@liD, if eGlil) || e@liD
I

Proof. From definitions of <, §, <, §, || and ||. Q.E.D.
I I I

Definition 2-18. Given G = (N,A) of Lj%D(ﬁ) where B is

the PAR-block body of a SEQDO-block B, RI called the iteratively

dependency relation is defined as:

Ry ::= {(a[i], n[iD | n[i] € N A n[j] € N A e(n[i]) < e(n[iD}.
' I

A directed graph G. = (N,RI) is called the iteratively dependency

I
graph.

An example of GI can be seen in Figure 2-13. Note that GI

may contain cycles.

Lemma 2-13. In G, of Q}KD(E) of a PAR-block B, which is

the body of a SEQDO-block B, every maximal strongly connected

(MSC-) subgraph denoted by g?sc is a maximal clique.

Proof. From transitivity of iteratively dependency. Q.E.D.

Lemma 2-14. Given L;4D(§) of a PAR-block B which is the

body, of a SEQDO-block B, R C RI’ where R is the node-reachability

relation.

Proof. From Lemma 2-12, Q.E.D.

An algorithm for finding RI in g}(D(B) can benefit from this

property.
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Algorithm 2-3.

1. Obtain R and initialize R' <« R.
2. V (n[i], n[j]) ¥ R, do the following

2.1 Check if €(n[j]) is iteratively immediate data-dependent
2.2 If so, R' « R' U {([4], n[3D}. on enlil).

3. R+ ":j;'(R').

Definition 2-19. Assume (A (B) of a PAR-block B, which

is the body of a SEQDO-block B, is given.

(1) €(n[i]) and €(n[j]) are said to be non-separable and

denoted by e€(n[i]) <NOSEP> e(n[j]) if (n[i], n[j]) € RI and
(n[jl, nl[i]) € R;. Otherwise, e€(n[i]) and e€(n[j]) are said
to be separable and denoted by e(n[i]) <SEP> e(n[jl).

(2) A set of program-elements S(N'), where N' C N, 1is called

a non-decomposable set iff V e(n[i]) € &@®') ¥ e[i]) € Ean,

e(n[i]) <NOSEP> e(n[jil).

(3) A maximal non-decomposable set of program-elements in B is

denoted by EBMNS is a non-decomposable set which is not a

proper subset of any other non-decomposable set.

Lemma 2-15. Assume L}kD(ﬁ) is given. For every MSC-set

MSC . _ MSC .
of nodes n in GI = (N, RI), ég(n ) is a ézMNS’
Proof. From the definition of SBMNS. Q.E.D.

Definition 2-20. Given two sets of nodes N[i] and N[j]

in a directed graph G = (N,A), an arc-cut-set from N[i] to N[j]
denoted by CA(N[i], N{j]) is defined as:

C,(N[1],N[3]) ::= {(n[kl,n[eD] nlk] € N[i] A n[2] € N[i]
' A (a[k], n[2]) € A}.
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Definition 2-21. Assume J’(.D(ﬁ) of a PAR-block ﬁ, which is
the body of a SEQDO-block B, is given.
(1) Two sets of program-elements 8(1\1[1]) and S(N[j]), where
N[i] e N and N[j] € N, are said to be separable, if at least one

of two conditions, (1) C

(8[i], N[3]) = ¢ and (2 Cp (NI],
R - 1

N[i]) = ¢, is satisfied. It is denoted by ~ S(N[1]) <sEP> SW[iD.

(2) 9,(N[i]) and 9,(N[j]) are said to be separable in parallel

if C_, (N[i], N[j]) = ¢ and C
R Ry
by £w[il) <p-sep> LWI[i).

(3)' S(N[i]) and S(N[j]) are said to be separable in series

(N[§], N[1]) = ¢. It is denoted

if either Cp (N[i], N[j]) =¢ or C
I Ry

both. It is demoted by SC(N[j]) <S-SEP> &.(N[i]) in the

(N[j], N[i]) = ¢ but not

first case and Q.(N[i]) <S-SEP> S(N[j]) in the latter case.

Lemma 2-16.. Assume LAD(ﬁ) of a PAR-block ﬁ, which is
the body of a SEQDO-block B, is given. If N can be partitioned
into two sets of nodes, w(N) = {N[1], N[2]} such that Q(N[I])
<P-SEP> e-(N[Z]), the SEQDO-block B can be restructured into two
parallel processable smaller SEQDO-blocks, B[1l] containing e(N[l])
as its body and B[2] containing 8(N[2]) as. its body, without

destroying the correctness of the program.

Proof. C'(N[1]) <P-SEP> 8(N[2])
= AOV'(N[l]) <NOOV>  A; (N[2]) A A (N[1]) N AI«S(N[Z]) = ¢
A Ay (N[1])  <NOOV> Aoy (N[2D) A AN N Aog(NI2D) = ¢
A dgy(N[1])  <NOOV> A L (N[2]) A g (N[1D) N A (N[2]) = ¢

Q.E.D.
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S(Nl) <p-sep> g(nz)

Fig. 2-13. Parallel decomposition of a SEQ-block B.
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Figure 2-13 illustrates this parallel decomposition.

Lemma 2-17. Assume (A (B) of a PAR-block B, which is the
body of a SEQDO-block B, is given. If N can be partitioned into
T(N) = {N[1], N[2]} such that (1) S(N[1]) <s-SEP> S(N[2]),
(2) XO(N[I]) - AOV(N[l]), and (3) Z_ ={v|v E.XOV(N[1]) A
Jv' ¢ A2 Hrv, ) | ke @} N {r(v',k) | k € Q} # ¢} is
non-repeating, B can be restructured into a sequence of two smaller
SEQDO-blocks, B[1l] containing 8(N[1]) as its body and B[2] containing

Q(N[Z]) as its body without destroying the correctness of the program.

Proof.
@ Lwii)) <s-sep> SM[2]) = A, (N[1]) <NOOV> Ay (N[21) A
Aoy ([11) <NOOV> A (N[2]). =VieQ Vieg,
r(A;(N[1]), 1) N r(Ag(N[2]), j) = ¢.
(2) Z, is non-repeating. = all operands of B[2] produced by

B{1l] are not changed. Q.E.D.

Figure 2-14 illustrates this serial decomposition. Lemma 2-17
requires the condition AOS(N[l]) = ¢. Even if this does not hold,
B can still be restructured into a sequence of SEQDO-blocks by

using techniques discussed in Lemma 2-10.

Lemma 2-18. If all the conditions stated in Lemma 2-17
except AOS(N[I]) = ¢, are satisfied, then B can be restructured
into a sequence of three smaller SEQDO-blocks B[1]', B[1]" and
B[2]' as follows. B[1]' and B[1l]" are results of transfor-

mations of B[l] in Lemma 2-17 by employing a new set of V-variables






b

corresponding to Z = AOS(N[l]) N AIS(N[Z]) using techniques
discussed in Lemma 2-10. B[2]' is obtained from B[2] in
Lemma 2-17 by replacing every operand variable v € Z with a

newly employed V—variable.
Proof. From Lemma 2-10 and 2-17. Q.E.D.

This restructuring can be justified only when B[1l]' is
much larger than B[1]" in terms of both textual size and

execution-time.

Lemma 2-19. Assume L)QD(B) is given. If there are two
MSC-set of nodes in GI N (N’RI)’ nMSC[i] and nMSC[j],

S}(n“sciil) and é;&ﬂnsclj]), are separable.
Proof. From Lemma 2-15 and definition 2-21 (1). Q.E.D.

Theorem 2-6. Assume 114D(§) and the cyclic reduction of

G, I)(GI) = (ﬁN(GI) ’»CI)(RI)) is given. For each

ne€ ’ITN(GI) » let e€e(n) repres'ent Q(Ni) where n = NiSN of G .

Then the following relationship holds:
V nf[i] € WN(GI) vV n[j] € WN(GI),

e(n[i]) <SEP> e(n[jl).
Proof. From definition 2-21 and Lemma 2-19.

Lemma 2-20. If V.n[i] € WN(GI) . Xov(n[i]) is non-
repeating in Theorem 2-6, B can be restructured into a set of
smaller SEQDO-blocks {B[i]} structured according to CI)(RI),

where each B[i] contains €(n[i]) or a modified version of
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e(n[i]) as its body.

Proof. From Lemma 2-18 and Theorem 2-16. Q.E.D.

R Ted

This is illustrated in Figure 2-15. If some 2 E;on(n[i])
for n[i] € “ﬁ(GI) is repeating, the following additional
step becomes necessary. First, a set of all nodes in CEXGI)
which are not separable from n[i] because of Z, is identified.
That is, N' = {n|n ¢ (6 AZ <OV A @ A (alil,n) €
éI)(RI)} is identified. Then a new set of ares A' = {(n, n[i])|
n € N'} is added to CT)(RI). Repeating this procedure for every
node n[i] € ﬂN(GI) such that AOV(N[i]) is repeating, a new
graph G, = (“N(GI)’RO) is obtained.

0

Then the cyclic reduction of Gy > T)(Go) = (m (Gy) ,

CD(RO)) is obtained.

Lemma 2-21. Given ‘[XGO) obtained by the above procedure,
V(n[il, n[ji]) eCD(RO), either (1) A ,(n[il]) <NOOV> Ay(nlil) or
(2) z={vlve on(n[i])A.B\ﬂ € Apy(aliD) [{r(v,k)|k e Q} N

{r(v',k) |k € Q} # ¢]} is non-repeating.

"Proof. From the property of the cyclic reduction. Q.E.D.

Lemma 2-22. Assume ;}QD(Q) and I)(Go) are given. B
can be restructured into a set of smaller SEQDO-blocks {B[i]} ',
structured according to C1)(Ro), each B[i] containing e(n[i]).
or a modified@ version of e(n[i]) as its body, where n[i] €

ﬂN(GO).

Proof. From Lemma 2-20 and 2-21. Q.E.D.
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Decomposition of a SEQDO-block.

Fig . 2-15 0
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The whole procedure for decomposing a SEQDO-block B is

now summarized into Algorithm 2-4.

Algorithm 2-4.
1. Obtain R in L}QD(ﬁ).

2. Obtain Gy by Algorithm 2-3.

3. obtain D(ep)-

4., Obtain GO by the procedure stated in Lemma 2-21.

5. Obtain CD(c;o).

6. Restructure (decompose) B into {B[i]} as stated in

Lemma 2-22.

After decomposing B into {B[i]} , it is necessary to check

if some B[i] is essentially parallel. For this, the technique

discussed in section 2.3.3.2 can be applied.

2.3.3.3.2 Decomposition of a SEQDO-Block Whose Body is a
SEQ-Block B |

It is possible to generalize techniques discussed ih the
prece&ing section to be applicable to this case. However, the
overhead involved in the decomposition in terms of additional
variables including ones used to hold decision results, dominates
over the small amount of parallelism which may be detected.

Therefore, such an attempt is not made in this report.

2.3.4 Parallelism Detection in a PARDO-Block

L}lD(B) of a PARDO-block B contains either a single f-node
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or a chain of f-nodes between the PARDO-node and the PARDOEND-node.
Therefore; detection of intra-iteration parallelism can be easily
performed by techniques discussed in earlier sectioms.

On unique and useful property of a PARDO-block B is its

inherent decomposability.

Lemma 2-23. If L)lD(B) of a PARDO-block B contains a
chain of f-nodes between the PARDO-node and the PARDOEND-node,
B can be restructured into a chain of smaller PARDO-blocks {B[il}
guch ﬁhat each B[i] contains €(n[i]), where n[i] 1is a

f-node in LAD(B).
Proof. From Lemma 2-9 and 2-22. Q.E.D.

Figure 2-16 illustrates this.

This kind of decomposition is useful in that the same type of
parallel tasks are clustered so that it leads to efficient
execution especially by the basic machine designed with a substan-
tial degree of processing unit replication. In addition, once
B[1] is initiafed, the number of iterations for the successor
PARDO-blocks B[i]'s becomes known so that the dynamic lookahead

scheme can benefit as will be seen in Chapter 4.

2.3.5 Parallelism Detection in a WHILE-REPEAT-Block

A WHILE-REPEAT-block is essentially designed to contain non-
parallel portion of a program. Although it is unlikely that any
sizable amount of parallelism is hidden in a WHILE-REPEAT-block,

techniques required for detecting parallelism in it are essentially
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2-16.

Decomposition of a PARDO-block B.
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the saﬁé ones discussed in previous sections or their variations.
There also exists the possibility that a WHILE-REPEAT-block
contains a set of program-elements which can be separated out as
an independent PARDO-block or SEQDO-block. Figure 2-17.shows an
example. Note the introduction of program-elements 9 and 10 in the
new restructured program used to count the number of iterations
executed. Techniques for detecting such situations are essentially
the same ones used for decomposing a SEQDO-block. The model used
for decomposition analysis is briefly sketched below.
Without loss of generality it is assumed that LjQD(B)
contains a cycle of one c-node (WHILE-REPEAT-node) and one f-node
representing a nested block B which may be a PAR-block or
SEQ-block. So, the block-tail WHILEEND is not included. u4D(B)
is shown in TFigure 2-18 (a). It is assugxed that ﬁ is a PAR-
block.
| The abstraction used for decomposition analysis,thg(B) is
pbtained as follows. QJ4D(£) is substituted for the single f-node

1 ) .1

in A (B) to obtain - ;(B) = ct, 2V, a Aé) vhere G- = (N,A1).

I’
n{1] repfesents the block-head of B, the WHILE-REPEAT-primitive.
Then all incoming arcs of n[l] in Gl, A%N(n[ll) are removed

from Al. Next, n[l] is compared with every nf[i] € N, i %1,

to see if AI(n[I]) n Ao(n[i]) % ¢, If the condition is met,

an arc (n[i], n{l]) is added to Al. This results in the

A). G= (N,A) in ‘Jl]z)(n) is

abétraction L/QE(B) = (G, EU. AI’ 0

illustrated in Figure 2-18.

On the basis of(jig(B), decomposition of a WHILE-REPEAT-block
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Fig. 2-17. Decomposition of a WHILE-REPEAT-block.
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"G in, A (B) of a WIIILE-REPEAT-B

block B 2 ‘
G in_A[(B) of a WHILE-REPEAT-

block B

Fig. 2-18. . A(B) and-_;lg(n) of a WHILE-REPEAf-block B.
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B can be performed by the same procedures developed for decom-
position of a SEQDO-block, with appropriate adjustments of notions
such as <NOOV>, 2, etc. Such adjustments are not elaborated in
this report. As indicated before, DO-loops are much more amenable
to efficient parallelism utilization than WHILE-REPEAT-loops are.
This will be more evident in later chapters. Thus, even if no
new PARDO-blocks are produced, the decomposition of a WHILE-REPEAT-
block is still subject to the high pay-off.

This completes the establishment of technical foundation for
restructuring a user-produced structured parallel program into
the'one exhibiting more parallelism or lending itself to efficient

execution.
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2.4 GOTO -Less Structured Parallel Program

In the preceding section, it was demonstrated how the
structured parallel program in Section 2.2 eases the analysis for
parallelism detection. vIts merits are not restricted to only
parallelism detection but also include the increased reliability
of the progrém as well as the efficient operational management
of the system.

It has been known that use of the so-called GOTO primitive can
be harmful to the reliability of a program [dij 68]. In this
regard, removal of GOTO primitive has been advocated. In fact, this
consideration has been reflected to a great extent in the design
of the structured set of primitives in section 2.2. Scope-rules

associated with various primitives as well as prohibition of the

use of an A-BRANCH primitive from forming a loop are such evidences.
The only primitives capable of the limited power of GOTO are the
A-BRANCH and XOR primitives. Therefore, complete removal of GOTO
is equivalent to removal of these two primitives.

It is felt that essentially no additional power for parallelism
indication is provided by the A-BRANCH and XOR beyond that
provided by the SEQBEGIN and SEQEND. In fact, a structured
parallel program in which A-BRANCH and XOR primitives are wildly
used, is often not amenable to efficient analysis, and thus its
optimization with respect to execution-efficiency as well as re-
liability becomes difficult.

The structured set of primitives minus the A-BRANCH and XOR

primitives is called the GOTO-less structured set of initiation
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control primitives, and the program structured using them is called

the GOTO-lesé structured parallel program.

Such structured parallel programs possess further increased
readability and further ease various analyses. Abstraction of
every SEQ-block, contains only two control program~e1emeﬁts, i.e.,
one (SEQBEGIN) as its block-head and the other (SEQEND) as its
block-tail.

Its block-body consists of a set of independent chains of
f-nodes, and thus each chain can be independently analyzed by
using techniques developed for a PAR-block. Therefore, the total
analysis consists of repeated application of a uniform procedure
devéloped for a PAR-block.

Although the impact of the GOTO-less structured parallel
program may be somewhat significant in regard to program reliability,
such a program may require more storage for its code than the
general structured parallel program. In the rest of this report,
a program means a structured parallel program, not GOTO-less one,

unless specified differently,

v
.



CHAPTER 3

STATIC OPTIMIZATIONS IN PARALLEL PROCESSING

This chapter investigates various static optimiéation tech-
niques, i.e. ones which can be employed at the design phase,
aiming at the efficient and reliable solving of problems requiring
high computing powef. Static optimizations in both areas, basic
machine design and prégram design, are.equally influential in
determining the success of parallel processing system design. Two
important objects of optimization in basic machine design are the
determination of a suitable set of processing units and the design
of an efficient task-initiation control mechanism. In section 3.1,
optimization techniques relevant to these design processes are
discussed, and a protocol machine whose architecture is sufficiently
modular and'general to be implemented in a particular configuration
pbssessing any computing power, is described. It employs an effi-
cient task-initiation control mechanism capable of efficient inter-
pretation of indications in a basic parallel program defined in
section 2.1.

Iﬁportant objects of optimization in program design are
largely two types, efficiency-oriented optimization and reliability-
oriented optimization. Typical of the first type are scheduling,
sequencing; program restructuring, and storage allocation. Program
valida;ion belongs to the second type. Section 3.2 deals with
sequencing and in section 3.3, static storage allocation
is discussed. Finally_reliability aspects of parallel programs,
mainly‘optimization in program validation, is discussed in section

3.4.

99



100

3.1 Basic Machine Design

The basic machine can be viewed as a composite of three :
major parts: the arithmetic and logic processing subsystem (ALPS),
the instruction processing subsystem (IPS) and the memory subsystem
(MS). Fig. 3-1 dépicts this view. As indicated in that diagram,
the IPS plays the role of controlling the overall machine. Pro-
gram text resides in the local memory of the IPS, while data is *
contained in the primary memory of MS. Optimization aspects in

designing subsystems are discussed in the sequel.

3.1.1 Arithmetic and Logic Processing Subsystem (ALPS)

The ALPS consists of a set of processing units. The number
of processing units, as well as the type of each processing unif,
is one of the primary parameters determining the parallel process-
ing power of the ALPS. This in turn heavily influences the power
of the total basic machine. As mentioned in section 1.2, an optimal
ALPS will most likely be designed with a suitable combination of
processing unit replication and pipelining. If a processing unit
which is not decomposed into subunits is regardéd as a trivial
pipeline, such an ALPS can be viewed as a set of pipelines.
Characteristics of PRC jobs are such that a few types of
functions are heavily used while others are rarely used. Thus it
becomes highly desirable to equip the ALPS with a pipeline for each .
heavily used function and with a limited number of multifunctional ‘
processing units for rarely used functions. This will result in a
powerful and cost-effective ALPS whose major components are non-

trivial pipelines.



My T e ————— ALPS

— === control trianster

——————data transioer

.

Fip. 3=1. Three subsvstems. of the basic machine.
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Therefore, major concern in this section is in optimal confi-

gurations of pipelines.

3.1.1.1 Practice of Pipelining

Pipelining can be defined as a technique of implementing a
processing unit in a linear configuration of autonomoué subunits
each dedicated to perform a specific subfunction in overlap with
others. Principles of pipelining can be employed effectively at
various levels in the computer str;cture. In spite of this poten-
tial, the current practice shows that it ﬁas not been extensively
employed yet. With respect to increasing demand for parallel pro-
cessing systems of high computing power, it is beligved that this
situation will be substantially changed in the near future. 1In
conventional systems oriented for general purpose computing, the
application of pipelining is typically found in arithmetic units.
Pipelined ADD, MULTIPLY, DIV and SQUARE-RCOT units have been in
existence in a number of contemporary machines [and 67,
ram 72, wat 72, hin 72]. Fig.3-2 shows the pipelined ADD in the
TIASC machine. .It takes one minor cycle t for a task to pass
through each p-segment. Each of six p-segments in that pipeline
operates in overlap with others. Thus a stream of tasks enters
this pipeline at the interval of t, and the pipeline outputs one
task per minor cycle t, instead of the execution-time of each
task T = 6t. That is, the maximum throughput, i.e. the maximum
number of task-completions per unit-time, of this piﬁelined ADD is
six times as great as the maximum throughput of the non-decomposed

ADD unit.

‘pe
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Fig. 3-2. Fixed ADD in TIASC machine.



Depending‘upon the level of a processing unit, problems
involved in pipelining vary. In subsequent sections, a suffi-
ciently modular and general pipelining architecture is described
on the basis of which a particular configuration with any objective

computihg power can be implemented in a systematic way.

3.1.1.2 A Pipeline and an ALPS

A pipeline i can be abstracted into a six-tuple
U= (AI,AO,AT,AC,F,U)

where (1) AI represents a set of cells containing operands,
(2) AO represents a set of cells containing results, (3) AT
represents a set of cells containing temporary results, ' (4) AC

represents a set of cells containing a vector of function-codes

called the function-code-vector, (5) F represents a set of func-

tions called state-functions {4}, and (6) o represents an onto

mapping o: {CONT(XC)} -~ F. § is a function:

§: {com(')\I)}x{com(AT)} -+ {com:(Ao)}x {com:(AT)} .

If the function-code-vector, i.e. CONT(A;) 1is always a

binary vector, u 1is said to be unifunctional and otherwise

multifunctional. In addition, the current CONT(A;) can be changed
into the next -CONT(AC) only in such a way that the current
CONT(Ap) 1is shifted to the front by one position with the front-
most digit lost and the new digit is inserted into the last cell.

A pipeline u 1is composed of a set of p-segments

s(u) = {us[i]} and all p-segments are operated in the fixed order
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in executing any task-function £ € F(u), where F(u) represents
a set of capabilities or task-functions, not state-functions,
executable by the pipeline .

The fixed ordering has been already implied by the above rule
on changing CONT(AC). Thus 'a pipeline p 1is a special case of a
processing unit in overlapped processing in which not all subunits
need to be operated in executing any one task-function and subunits
need not be operated in the fixed order. Fig. 3-3 depicts the above
representation of a pipeline .

As indicated in the diagram, a pipeline-segment M, can be
abstracted in a similar way. That is, My = (Ai,k:,k;,xz,Fs,US).
)\i C }\I where )\I represents a set of operand-cells of U of
which Mg is a component. Similarly, )\3 C )\0,
is a cell contained in AC. CONT(AE) in a us[i] € S(u) 1is

SC S
AT —-AT and AC

called a function-code.

Therefore, XC in p4 is a Qector of (Az[l],AZ[Z],...,AZ[m])
where Az[i] represents Az in us[i] and for all 1 <i<m,
 [il € S(u). For all u_[i]l e S, CONT(AZ[i]) at any time is
a member of N = {0,1,2,...,#(F)} where #(F) denotes the number
of task-functions (not state-functions) executable by u.

F® in u, is a set of subfunctions {§%} where each §°
is a function §°: {CONT(A])}x {coNT(Ap)} + {CONT()\Z)} x {CONT(AD) }.
In addition, #(F°) < #(F) +1=#(N) for all F° in u_[i] € S(W).

Note that #(FS) need not be uniform in every L o in My is

S

an onto mapping O : {CONT(AE?} >~ F%, i.e. 0°: N~ F®. For all

M e S(u), OS(CONT(Ai?==0) = § representing a null-function.

¢

A state-function { in U can be represented by a vector of
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6S's, (6Sfl],6s[2],...,6s[m]) where 6S[i] represents §  in
u il € S(W). Thus F in w is: F = {§} = FI[1]xF°[2] x -+ x F°[n]

where Fs[i] denotes F° in us[i]. And O can be represented

by
o: {CONT(AZ[ll)}><{CONT(A2[2])]~x cee X {CONT(Az[m])}
+ F[11x F8[2] x +-- x F[m] = F
or o: N* > F.

Therefore, a capability or a task-function executable by a

pipeline U can be represented by a vector
2 .
£ = (0°[11(1),0°[21(1),...,0° [m] (1))

for a certain i € N.
Then, F(u), a set of capabilities or task-functions execut-

able by a pipeline u can be represented by

{£}

{(c®1111) ,0°(21(1),...,0%[m](1))]| 1#0 rie N}

F(u)

)]

{ddfﬂ)lieNAi#O}

m
e e,

where Iiml denotes a vector of m i's (i,i,...,i). Apparently,
in a unifunctioqal pipeline 1y, CONT(AE) € N= (0,1) as well as
#(F%) = 2 for all M € S(¥). In a multifunctional pipeline y,
#(N) > 2 and there»exist us[i] e sQE#F[i]) > 2] .

In order tovallow simultaneous operation of p-segments
{us} = 8(4) in a pipeline 'y, arrival of operands of each M
must be independent of arrival of operands of other us's. Similar-

ly, departure of results of each Mg must be independent of



departure of results of other us's. Therefore, the buffer-storage
where at least #(S(u)) number of task-packets can be resident
must be equipped to support U. Here a task-packet means a set of
all operands, results and a function-code associated with a func-
tion executed by u.

The buffer storage associated with each pipeline p is

called the pipeline-buffer and denoted by B(u). A portion of

B(u) which can hold one task-packet is called a block and denoted
by b. Thus B(u) = {b} where each b is a set of cells., A
portion of a block b wused to contain operands is called an
operand-block and denoted by bI' Similarly, a portion of a block

b used to contain results is called a result-block and denoted by

by. And a cell in b used to contain function-code is called a

function-code-block and denoted by bC. Thus b = (bI,bO,bC).

A set of all bI's in B(uy) 1is called the pipeline-operand-

buffer and denoted by BI(u), -1
B () = (b [1]]3blLl= (b [4],bo[il,b 1D €BGD}  .

Similarly, a set of all b_'s in B(y) 1is called the pipeline-

0
result-buffer and denoted by Bo(u). Again, a set of all bc's

in B(u) idis called the pipeline-function-code-buffer and denoted

by BC(U). Thus
B(u) = (BI(U),BO(H),BC(U)) .

Fig. 3-4 depicts a B(u) associated with a pipeline u. Fig.3-5

shows the bus connection between |1 and B(u) in more detail.

There are three types of buses: a single bus from Bc(u) to Ac(u),
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Fig. 3-5. Multiple buses from Bl(u) to AI(u).
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multiple buses from BI(u) to AI(u), and multiple buses from
lo(u) to Bo(u). Each member of multiple buses from BI(u) to
AI(u) runs asynchronously with others. Similarly each member of
multiple buses from Ao(u) to Bo(u) runs asynchronously with
others.

As mentioned above, the number of b's in B(u) must be at
least as large as the number of us's in Y. With respect to the
possibility of uneven arrival rate of operands, equipment with a
larger number of b's in B(u) than #(S(i)) is generally
favorable. 1In such a case, the pipeline-buffer B(u) can be
used as a cyclic §uffer. A block b[i] becomes available only
when all results completed by u and stored in bo[i] have been
moved out. Fig.3-6 depicts this concept.

On the other hand, further asynchronisms can be obtained by
another implementation using shift-registers. Fig.3-7 shows the
example ofvshift—register implementation of BI(u). Now multiple
buses appeared in Fig.3-5 are not used. In addition, the éoncept

of a block b or b, is no longer meaningful. If a set of all

I
cells in BI(u) used to hold operands for a us in y dis called

a p-segment-operand-buffer and denoted by BI(uS), each p-segment-

operand-buffer BI(uS[i]) is implemented by a shift-register-chain.,

Similarly, a p-segment-result-buffer denoted by Bo(us) is de-

fined as a set of all cells in Bo(u) used to hold results for a
My in u, and it can be implemented by a shift-register-chain.
In this scheme, operands used by us[i] may arrive at

BI(uS[i]) and then they may be fetched into A;[i] before operands

of the same task used by us[j], j > 1i, arrive at BI(uS[j]).
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A cyclic B(u).

Fig. 3-6.
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Similarly, results produced by us[i] need not wait for the com-
pletion of results to be produced by us[j], j > i, before they
are moved out. That is, shift-register implementation provides
more asynchronism than bus-éased implementation does.- In addi-
tion, the length of each shift-register-chain may be smaller than
the number ofy p-segments unlike in bus-based implementation.

Obviously Bc(u) can be implemented by a shift-register-
chain, too. Therefore, B(u) consists of a set of shift-register-
chains which run asynchronously with each other. Fig.3-8 shows
a schematic representation of a pipeline u and its B(u) con-
sisting of a set of asynchronous shift-register-chains,

Fig.3-9 shows a schematic representation of an ALPS typical
in a powerful parallel processing system, which consists of a set
of pipelines among which a limited number of members afe trivial
pipelines. Such an ALPS can easily grow to possess any amount of
computing power desired. Based on this general and modular
architecture, types and numbers of the pipelines to be incorporated
into the ALPS is an object qf optimization and discussed in the

next section.

3.1.1.3 Optimal Decomposition and Replication of a
Processing Unit

As mentioned in section 1.2, the function-usage, i.e. propor-
tional frequency of using each type of task-function in represen-
tative jobs should be fully reflected in the decision on types and
numbers of processing units. Since the majority of processing

units composing the ALPS are pipelines, the importance of an
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Fig. 3~8. A pipeline u and its B(u) consisting of
a set of asynchronous shift-register-chains.
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optimal decision on types and numbers of pipelines dominate over
the decision on a limited number of non-decomposed multifunctional
processing units (i.e. trivial pipelines).

There may be some overlap between task-functions executable
by pipelines and ones executable by trivial pipelines. In fact,
this can lead to advantages in that when the program contains an
essentialiy sequential loop requiring a large number of different
pipelines without intensively utilizing each pipeline, the loop
can be served by a multifunctional trivial pipeline so that expen-
sive pipelines can be used for more productive computation.

Each p-segment in a pipeline can be in general constructed

by using a set of basic logic elements. Each basic logic element

may be a gate, register, multiplixer, decoder, adder, micro-
processor, i.e. processor-on-a-chip, or even a microprogrammable
mini-processor.

Given a set of basic elements, their capability-set called

the primitive operation-set together with a set of initiation

control primitives, can be used to describe each function to be

implemented into a pipeline. Such a description is called a

specification program.

A set of specification programs representing a set of func-
tions to be implemented into the ALPS, together with the function-
usage, are the primary basis from which the decision on the opti-
mal configuration of the ALPS is derived. In addition, given a
set of basic logic elements, their computing powers in terms of

speed become known.
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Typically the objective computing power of the ALPS is given

LY

in terms of maximum throughput, i.e. the maximum number of task-

completions per unit time. Given the objective (maximum) through- .

&y

put of the ALPS denoted by wmax(ALPS), the required computing
power of each processing unit can be derived by a simple distri-
bution on the basis of function-usage. That is, denoting the

function-usage of a task-function f by q(f), then the objec-
tive maximum throughput of the processing unit to be implemented

for executing £, denoted by (f) is determined to be -

lpmax

wmax(ALPS)'q(f). This is illustrated in Fig. 3-10.

Denoting by F a set of all task-functions to be implemented,

apparently z q(f) = 1 and Z /] (£) = ¢ (ALPS), ‘provided
£EF feF "X max

that each f will be implemented into an independent unifunctional

pipeline.

Given a pipeline L in which every p-segment takes the fixed
amount of time .T(u) for computing one subfunction, its maximum
throughput denoted by wmax(u) is ;%;T. Such a pipeline is
called a synchronous pipeline.

To be more precise, the time required by a p-segment us[i]

in an implemented pipeline u from the initiation of computing

one subfunction ﬁs[j] € Fs[i] to the next initiation of 6S[j],

is called the segment-length of ua[i] for function k and #
denoted by T(u_[i],k) where o4l (k) = §°[3]. If TQu [i],k)
again varies depending on operands, it is taken as an‘aQerage
value over all different operands. If for all ke N, k # O,
T(uS[i],k) = T(us[i],l), then T(us[i]) = T(us[i],l) is called

the fixed segment—length of u [i]. us[i] is called the fixed-
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length p-segment. A pipeline u in which every M, E W has a

w

fixed segment-length is called a synchronous pipeline. 1In a syn- : .

chronous pipeline, for all us[i] € S(4) and for all us[j] e S(y),

-

T [1]) = T [5D).

This is because even if a certain p-segment us[i] completes
the execution of a subfunction earlier than others, it must always
wait for the completion of all other p-segments before it initiates
the next execution. In a synchronous pipeline u, the uniform
fixed segment-length is called the cycle of u and denoted by
T(W.

On the other hand, if there exists j € N, satisfying that

340 and TGN ATOGLD

then us[i] is called the variable-length p-segment. A pipeline
U in which some or all p-segments are variable-length p-segments

is called an asynchronous pipeline. The average segment-length of

a variable-length p-segment denoted by ?(us[i]) is an average
of T(ps[i],k) over all ke N, k+#0, i.e.

I ot [1],K)

Tl = e k;%N)-l '

The variance of average ségment-length of a certain p-segment ’f

us[i] denoted by VAR(%(uS[i])) is defined as

I (4,0 - T, [11))°
keN, k#0

#f(N) -1
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The average of ?(us[i]) over all uS[i] € S(4) in an asyn-

s chronous pipeline u is called the average cycle of u and

denoted by T(4). Then the variance of T(M) denoted by VAR(T (1))

is defined as

I Ga b -Ttan’
Hglile st

#(s(u)) )

In order to achieve a high cost-performance ratio, an asyn-
chronous pipeline should be designed in such a way that VAR(T (1))
is minimized. If VAR(T(u)) is sufficiently small, u is said

to be well balanced.

As the level of a pipeline goes higher, the strict implemen-
tation of a synchronous pipeline becomes harder because the
variance éf each average segment-length VAR(?(uS[i])) increases
and thus the inflexible synchronous pipeline must have its cycle
equal to the maximum of the segment-length over different p-seg-
ments, subfunctions and operand data.

If for some reason, it is not feasible to decompose such a
p-segment us[i] that ?(hs[i]) is much larger than other average
segment-lengths, %(“s[j])? j # i, the principle of replication

- can be utilized.

Forbinstance, consider an unbalanced pipeline in which all

Lo p-segments except us[i] ﬁave the same average segment-length T
and us[i]‘ has its average segment-length of 2T. Then, uS[i]

can be duplicated as shown in Fig.3-11 so that its effective

average segment length denoted by ?e(us[i]) becomes T. Thus
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the resulting pipeline becomes in effect a well-balanced pipeline.

Analogous to the case of a synchronous pipeline, the maximum
throughput of an asynchronous pipeline u with its average cycle
T(y) can be defined as .?%%T'

Therefore, the smaller the cycle or average cycle is, the
higher the. throughput is. It is apparent that as a processing
unit is decomposed into a‘larger number of smaller subunits, the
average cycle of the resulting pipeline gets shorter and thus its
maximum throughput is increased.

However, decomposition of a processing unit accompanies a
certain amount of overhead in terms of not only cost-increase but
also execution-time increase. That is, if a processing unit
requires the amount of time T for executing a certain task-
function £, the pipeline obtained through the decomposition may
take execution time T' > T for executing f.

This is mainly due to two reasons. One is the enforcement
of synchronization between primitive operations which can proceed
asynchronously inside the original processing unit. The other is

the time required for communicating between p-segments, Thus the

turnaround time of a task through a pipeline gets longer. Further-
more, the increase of equipment cost due to the iﬁcreased amount
of buffer and the increasgd temporary storage inside a pipeline
becomes a significant problem.

Therefore, each pipeline u should be designed in such a way
that thé number of p-segments is minimized while possessing the

objective computing power, i.e. wmax(f).
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3.1.1.3.1 Decomposition Model

.ty

With these considerations a systematic procedure for optimal
decomposition is now given. The procedure is based on the above

information structured in a convenient form called the decomposition

model.
The decomposition model of a function f denoted Lj(E(f) is
a triple (G,T,a). G is a graph G = (N,A) representing the

structure of LJ4E(f) and «o called the execution-time function

is a function o: N+ T where T is a finite set of execution-
times,

LjQE(f) is obtained through two phases. The first one is as
follows: A specification program of a function f is in general
a parallel proéram. Therefore, all parallelism in a specification
program is indicated by a suitable set of initiation control primi-
tives. With respect to the sufficient generaiity of the basic set
of initiation control primitives defined in section 2.1, the speci-
fication program is here assumed to be the basic parallel program,
" Thus, it is possible to derive the structure of the specification
program Gs = (NS,AS) as well as the execution-time of each primi-
tive operation €(n) represented by each node ﬁ € Ns’ as(n).

In addition, it can be assumed that the average execution-

o

frequency of each primitive operation denoted by ws(n) where
n € Ng, becomes known in the course of obtaining function-usage. 2
Therefore, the preliminary version of the decomposition model

denoted by ¥143(f) is obtained as (GS,T,aS,ws) at the first

phase. Fig.3-12 illustrates a GS.
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Based on jSs(f), the secona phase is to transform it into
LJQE(f)' The first step in transférmation is concerned with the
sequential loop in Gs' It is appérently essential to allocate the
loop to the same p-segment. Thefefore, every MSC-subgraph in Gs
is coalesced into a single node in G of Q}QE(f). Coélescing a
loop includes the calculation of the total execution-time of the
loop using execution-times and execution-frequencies of nodes in
the loop. Let NQ.E NS denote the set of nodes in the loop, then

the total execution-time of the loop denoted by aS(N is

Q)
‘ ) (as(n)-ws(n)). as(Nz) is the value to be used as a(n[i])
QENQG where n[i] € N is a coalescence of Nz.

The ne#t step in transformation is concerned with PARDO-blocks.
Each PARDO-block may be assumed tb have been maximally decomposed
by the procedure'presented in section 2.3.4. Due to the same rea-
son applied to the sequential loop, it is desirable to allocate a
PARDO-loop in one p-segment. Thus, every PARDO-block in G, is
coalesced into a single node in G. As before, NQ denotes a set
of nodes in a PARDO-block and n[i] is its coalescence in G.
Here, decision of a(n[i]) is fiexible. If the PARDO-loop will
be executed sequentially in an implemented p-segment, then oa(n[i])
is calculated by the same procedure used for a sequential loop.
On the other haﬁd, if basic logic elements required by the PARDO-
block will bg replicated inside the p-segment so that several
iterations can be executed in parallel, o(n[i]) should be equal
to the above oa(n[i]) divided by the degree of replication.

That is, let k denote the degree of replication, then



L @ (n)-w_(n)

neNz

a(n[i]) = m .

Thué G becomes acyclic. In addition, every XOR-node is
removed because its execution time as well as overhead associated
with it is negligible and the structure is clear without its pre-
sence now. This completes the second phase. Fig. 3-13 (a)

illustrates an 1)4E(f).

3.1.1.3.2 Pipeline Balancing

Having obtained LJ4E(f), the remaining procedure is to find
an optimal decomposition of G, w(G) = {g[l];gl[2];...;g[m]} such
that (1) each subgraph g[i] corresponds to a p-segment us[i]
to be implemented, (2) wmax(u), where | 1s the pipeline to be
implemented for executing. f, 1is not less than the given objective
wmax(f), and (3) the number of p-segments, i.e. #(m(G)) = m is
minimized.

Given wmax(f), the average cycle of u, T(u), must satisfy
T(M) < @:i(f—)—- h = 7, where h represents thg overhegd time
incurred to each p-segment due to decomposition. That is, the
average segment-length of each us[i] e S(y), ?(us[i]) should

not exceed T = ir—lzgjw-h. It is assumed in this section that h

max
is negligible in comparison to o(n) for all n € N,

This problem here called the pipeline balancing problem is a
slight variation of the so-called assembly-line balancing problem
in which each work station corresponding to a p-segment is a se-

quential processor. [hel 63]
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However, the solution to this problem is much simpler and
more efficient than the solution to the assembly-line balancing
problem. Algorithms in two cases are described in this sectiom,
The first algorithm assumes that there is no node n[i] € N such
that o(n[i]) > 1. The secoﬁd algorithm is a slight generaliza-
tion of the first algorithm in which thé above assumption is not

made.

3.1.1.3.2.1 Decomposition Without Replication

In this section, it is assumed that there is no n[i] € N

such that a(n[i]) > T.

Definition3-1. Assume an acyclic G = (N,A) is given.

(1) A node-subset N' = {n[i,1],n[i,2],...,n[i,#(N")1},
where N EEN, is said to be feasible if n[k] € N' and
(n[jl,n[k]) € A 1imply that n{j] € N'., Thus a feasible node-sub-
set is one that may be executed in some order without the prior
execution of any other node.

(2) ‘When a feasible node-subset N' can be changed to ano-
ther feasible node-subset N" DO N' by adding a node n[k] to N°',

n[k] 1is called a ready successor of N'. A sét of all ready

successors of N' is called the ready successor-set of N' and

denoted by CIzy(N').

(3) The set of all nodes in N' each having at least one

immediate successor in CI?y(N') is called the frontier-subset

of N' and denoted by Z(N'), i.e.

Z(N') = {n[k]| n[k]leN' A -Q(n[knnfl?ym')w} .
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A member of Z(N') is called a frontier-node of N'.

In a subgraph g[k] = (N[k],A[k]), the earliest relative

completion time of n[j] € N[k] denoted by tr(n[j]) is obtained

by:
tr(n[j]) = 0(n[j]), if there does not exist n € N[k]
' [(n,n[j]) € A[k]]
t_(nl31) =[ max t, (n) ] + a(alj]) , otherwise.
(n,n[j]) € A[k]

Obviously, for all n[j] € N[k], tr(n[j]) < T.
Assume that a feasible node-subset N' was partitioned into
m subgraphs, each frontier-node n[j] € Z(N') is contained in

Y(n[j])-th subgraph. The earliest completion time of n[j]

denoted by te(n[j]) is given by:
y@liD-1} - v + ¢t @liD
With these nbtations, the algorithm can be described as follows.

Algorithm 3-1.

1. Obtain <IQy(¢), i.e. a set of nodes which do not have any

predecessor. Do the following for each n ecizy(¢).

te(n) < a(n)

I(n) « 1

Here I(n) represents the label of the subgraph to which n has
been assigned.
2. Set N' +<12y(¢).

3. Obtain CQy(N‘).

-
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4, Pick any node n[k] €CIQY(N')~ Compute te(n[k]) as follows.
4.1 Find n[&] such that n[l] € ggfl(n[k]) and

te(n[ll) = max [te(n)].
ne 97 k)

4.2 Compute o <« te(nlll)—-(l(n[zl)-l)-T .
4.3 If t-a < a(n[k]), Go To 4.4. Otherwise do the follow-
ing:
t (afk]) <t (a[2]) + a(nlk])

I(nfk]) « I(m[2D)

Go To 4.5.
4.4 te(n[k]) < I(n[])T + a(n[k])
I(n[k]) « I(n[2]) +1
4.5 N' « N' U {n[k]}.

5. If N' =N, then terminate. Otherwise, go back to 3.

Since this algorithm processes each node only once and pro-
cessing one node involves at most #(N) comparisons, the complexity
of the algorithm is bounded by a quadratic function of #(N).

Fig.3-13 illustrates a decomposition obtained by this algorithm.

3.1.1.3.2.2 Decomposition With Replication

The previous assumption that there is no node n[k] € N such
that o(n) > T can be easily removed, provided that the replica-
tion of resources can be afforded. Obviously, the simplest way is
to replicate the basic logic element required for each primitive
operation whose execution-time is greater than T. Then replicated

basic logic elements can accept incoming streams of tasks by turns.



The minimum degree of replicatipn required for every node n € N
such that o(n) > T is given by lgﬁflq, where [i] represents
the smallest integer not less than x.

Since switching between replicated resources is generally
difficult within the p-segment due to the management overhead
involved, it is allowed only between p-segments in this section.
Fig. 3-14 illustrates a pipeline decomposed with minimum repli-
cation within the above constraints. |

Then the problem is to find a decomposition of G,

w(G) = {g[1];g[2];...;g[m]} such that

(1) if g[i]l contains a node n[j] € N associated with
a(n[i]) > 1, g[i] consists of only one node n[jl,

(2) each subgraph g[i] corresponds to a p-segment us[i]
or a set of identical (replicated) us[i]‘s to be implemented,

3) wmax(u) where U is the pipeline to be implemented
for executing f is not less than the given objective wmax(f),

(4) the degree of replication for each p-segment is mini-
mized and

(5) the turnaround time of a task through the pipeline to
be implemented is minimized.

This problem is a slight generalization of the previous pro-
blem solved by Algorithm 3-1 and thus Algorithm 3-2 for this pro-
blem is a slight generalization of Algorithm 3-1. The minimum
degree of replication is determined as above. Then every node
n[k] € N is associated with the degree of replication required,
§(n[k]) = [gggékl)q_ It is again assumed that the overhead due to
decomposition and switching is negligible in comparison to a(n)

for all n € N.
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Algorithm 3-2

1. Obtain (12Y(¢), i.e. a set of nodes which do not have any
predecessor. Set D + ¢. Do the following for each n e‘qu(¢).

1.2 If 8(n) > 1, te(n) < 8§(n)*t and D <« D UV {n}. Otherwise
te(n) < oa(n) and I(n) « 1.

Here D contains a set of subgraphs (actually single nodes)
corresponding to p-segments to be replicated, and I(n) repre-
sents the label of the subgraph g[I(n)] to which n has been
assigned.

2. Set N' <—_CQy(¢).
3. Obtain CQy(N').
4., Pick any node n[k] e‘ﬂQy(N'). If &8(n[k]) > 1, Go To 4.2.

4.1 Compute te(n[k]) as follows.

4,1.1 Find n[f] such that n[%] € é)_l(n[k]) and

t (n[L]) = max t (n).
e 1 e
ne 97 (alk)
4.1.2 If &8(n[f]) > 1, go to 4.1.3. Otherwise, compute

o+ £ _(a[2]) - (T@[LD)-1)+T. If T-a < a(alk]), then
t (alk]) « I(a[LD)*T + a(a[k]) and I(a[k]) « I(a[2]) + 1.
Otherwise, t_(n[k]) « t_(a[2]) + a(n[k]) and I(a[k]) « I(a[2D).
Go To 4.3.
4.1.3 I(n[k]) « I'Eéz[—l]ﬁ +1 and
te(n[k]) + te(n[R]) + a(n[k]). Go To 4.3.
4.2 Compute t_(n[k]) as follows.

4.2.1 Find n[f] such that n[%] € Lgfl(n[k]) and

te(n[Q]) = max te(n).
ne Itk
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4.2.2 If &(n[l]) > 1, go to 4.2.3. Otherwise,

£ (alk]) < I([21)*T + §@lkD)*T and D < D U {afk]}. Go to 4.3.

4.2.3 te(n[k]) « te(n[ll) + 6(n[k])*Tt and D +« D U n[k].

4.3 N' < N' U {n[k]}.

5. If N' = N, then terminate. Otherwise, go back to 3.

After the completion of this algorithm, each g[i], if it

exists, represents a p-segment not to be replicated and each node
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n € D represents a p-segment to be replicated. Like Algorithm 3-1,

the complexity of this algorithm is bounded by a quadratic func-
tion of #(N).

The éxample in Fig. 3-14 1is the result of this algorithm,

3.1.1.4 Multi-level Nested Pipeline

In obtaining ;jQE(f) in section 3.1.1.3.1, it was mentioned
that a PARDO-block in GS can be implemented in various ways.
Even though its average number of iterations as well as maximum
number of iterations become known, the exact number is dynamically
changing between tasks. In one extreme, it can be implemented as
if it were a sequential loop. In the other extreme, the set of
basic logic elements implementing one iteration can be replicated
to the degree equal to the maximum number of iterationms.

Apﬁarently, the optimal configuration would employ a suitable

combination of replication and decomposition. That is, parallel

iterations can be executed by a set of identical pipelined subunits.

Such a pipeline is called a 2-level nested pipeline. This

concept can be easily generalized to a multilevel nested pipeline.
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As the level of the basic machine goes higher, the employment of

multilevel nested pipelines will be more frequent.

3.1.1.5 Reconfigurable Pipeline

In section 1.2.2.1, it was mentioned that to a multifunctional
processing unit in overlapped processing there corresponds a set
of pipelines in general. That is, it was implied that pipelining
required more cost in terms of amount of resources used.

The pipeline which has been discussed so far is a non-recon-

figurable pipeline in that its internal interconnection is fixed

once and for all. Between these two extremes, a multi-functional
processing unit in overlapped processing and a pipeline, there

is a reconfigurable pipeline in which its internal interconnection

can be changed but not too frequently. That is, a reconfigurable
pipeline is capable of a set of non-reconfigurable pipelines. A

particular configuration of a reconfigurable pipeline at a certain

moment is called a virtual pipeline. Thus a,reconfigurable pipe-
line can structure itself into one of virtual pipelines at one
time.

In fact, the pipelined ADD of TIASC machine introduced as an
example in section 3.1.1.1 (Fig. 3-2 ) is a virtual pipeline. The
physical structure of an arithmetic unit of the machine is shown
in Fig. 3-15 [wat 72]. The basic requirement is that each pipe-
line configured at run-time must be sufficiently utilized in
serving the job before it is reconfigﬁred. This is because of the
overhead involved in reconfiguration. During the reconfiguration,

all relevant subunits cannot accept new subtasks.

s/
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Where most representative joﬁs meet the above basic require-
ment, the reconfigurable pipeline can be highly cost-effective in
that it can provide high computing power with small émount of
resources. Most reconfigurable pipelines in existing machines are
reconfigurable only in one dimension. In principle, the recon-
figuration can be done in two-dimensions or even higher dimen-
sions [ram 74]. 1In section 3.2, the problem of reducing reconfi-

guration overhead will be discussed.

3.1.2 Instruction Processing Subsystem (IPS)

In the preceding section, a highly modular and general ALPS
architecture was discussed. In this section, the design of a
modular and general IPS is considered. Since the main function of
the IPS is thelinterpretation of the machine language program,
i.e. task-initiation, the main concern is in the design of the
IPS capable of efficient interpretation of the basic parallel
program.

The basic set of primitives described in section 2.1 are
actually symbolic primitives. In section 3.1.2.1, the format of

machine code equivaleﬁt of those symbolic primitives is described,

The configuration of the modular IPS is described in section 3.1.2.2

and then the opgrational details'of the IPS are described as well.

3.1.2.1 Instruction Format of the Basic Machine

The functional description of the basic set of initiation
control primitives was given in section 2.1. In this sectionm,

the format of the code implementation of these symbolic primitives
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is described.

First, the machine language program consists of two parts,
control part and functional bart. These two parts are logically
interrelated but physically apart from each other. As shown in
Fig.3-16 , the IPS contains the program memory (PM) consisting of

two parts. One part called the control program memory contains

only the control part of the machine language program, while the

other called the functional program memory contains only the
functional part.
The functional part of a program is composed of instructions

called functional instructions. The format of a functional

instruction is depicted in Fig.3-17.

A functional instruction consists of three fields: operation-
code field, operand field, and result field. The operation-code
field can be further divided into two subfields: pipeline~code
subfield and function-code subfield. The pipeline-code indicates
the kind of pipeline required for executing the instruction and
the function-code specifies the exact Function to be performed by
the pipeline which is multifunctional.

The operand field contains addresses of all operands to be
read from the data memory in the memory subsystem (MS) or imme-
diate operands. The number of operands is dependent upon the
operation-code.

The result field contains addresses of all results tp be
stored. These addresses may be ones of data memory, omes of index
registers in the IPS or ones of branch-index (BRIX) registers.

Index registers and BRIX registers will be described in the next
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Program memory (PM) Associative
Control program }——————~m Congrol =l
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memory (FPM) >
————
Fig. 3-16. Program memory in the IPS.
::l
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section. One thing noteworthy is that each result may be stored

hJ

in several locations as indicated in Fig. 3-17. That is,
{anl’anZ"°"ank} represents k addresses of locations where
the n-th result will be stored. This replicated storing of a
result is uséful in reducing the number of memory conflicts
between parallel tasks at run-time so that the overall execution-
time can be further improved. This will be discussed again in
section 3.3.

The functional part of a program does not contain any infor-
mation on its own initiations. That is, there is no indication
in the functional part as to what order instructions should be
initiated in.

Next, the control part of a program is composed of instruc-

tions called control instructions. The symbolic primitives

described in section 2.1 are translated into these machine codes.
Formats of these are described in Fig.3-18. Optimization men-
tioned at the end of section 2.1 was incorporated in this imple-
mentation. ihat is, the predecessor-list in each primitive was
replaced by the ihitiation—threshold in the corresponding control
instruction. Thus every instruction commonly has the initiation-

threshold field.

L
e

In addition, provision was made for removing non-essential
uses of the XOR primitive in the control part of a program. That
is, when any of three control instructions, the BRANCH, PARDO and
FUNCTION-CONTROL, has only one immediate predecessor which is a

XOR instruction, such a XOR can be removed by changing the successor-

lists of the immediate predecessors of the XOR.
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Fig. 3-18. Control instructions.
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Every instruction has a type-code field. The type-code
indicates the type of the control instruction, and the control

instruction 1ntefpretation unit (CIIU) in the IPS interprets each

field in the control instruction in reference to the type—code.

Therefore, every control instruction has three common fields:
type-code, initiation~-threshold and successor-list. Additional
fields in each control instruction are described in the following.

The FORK, JOIN and XOR instructions contain no adidtional
fields.

The ﬁRANCH instruction contains one additional field, the
BRIX field. The BRIX field contains the address of the BRIX
register whose content is to be used for branching decision.

The FUNCTION-CONTROL instruction contains one additional field,
the functionél instruction address field. The functional instruc-
tion address field contains the address of the functional instruc-
tion to be initiated. This is the only field in the control
program memory in which the address of the functional program
memory is contained. That is, this is the onlyvcontrol instruc-
tion which directly initiates a functional instruction,

The PARDO instruction contains four additional fields:
partner address, iteration index register, index register require-
ment and BRIX register requirement fields. The partner address
field contains the address of the partner PARDOEND instruction
in the control program memory. The iteration-index fegister field
contains the address of the index register in which the number of
iterations to be executed is stored. The index register requirement

field contains the number of index registers required for executing

LY

"
v «
e
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one iteration. This informaﬁion is used for index register allo-
cation. This number multiplied by the number of iterations repre-
sents the amount of index registers required to support parallel
execution of all the iterationms. |

If the amount of currently available index registers is not
sufficient to support parallel execution of all the iteratioms,
then the iterations are divided into a number of groups each con-
taining several iterations. Iterations in a group are executed in
parallel but groups are serialized in execution one after another,

The BRIX register field contains the number of BRIX registers
required for executing one iteration. Again this information is
used for BRIX register allocétion in a way similar to index
register allocation,

The PARDOEND instruction contains two additional fields:
partner address and iteration index register fields. The partner
address field contains the address of the partner PARDO instruction
in the control program memory. The iteration index register field
contains the address of the index register in which the number of
iterations to be executed is stored. Thus both PARDO and PARDOEND
instructions contain the address of the same index registers con-
taining the number of iterations.

The interpretation procedure of these control instructions
are discussed after the configuration of the modular IPS is

described in the next section.
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3.1.2.2 Configuration of the IPS and Instruction-initiation

>

The configuration of the IPS includes seven major parts:
program memory (PM), associative control memory (ACM), instruc-
tion initiation unit (1I1U), indei register file (IRF), BRIX regis-
ter file (BRIXRF), dispatching unit (DU) and dispatching unit
buffer (DU-buffer). The IIU again consists of two pérts, the con-
trol instruction interpretation unit (CIIU) and the functional
instruction iﬁitiation unit (FIIU). The configuration is depicted
in Fig. 3-19.

The program memory (PM) consists of two parts, control pro-
gram memory (CPM) and functional program memory (FPM), as intro-
duced before. |

The associative control memdry (ACM) between the control pro-
gram memory and the control instruction interpretation unit (CIIU)
is provided for efficient interpretation of control instructions.
That is, it eases the search of control instructions ready for
interpretation. The internal structure of the ACM is shown in
Fig. 3-20. It consists of one main ACM module and several PARDO-ACM
modules. Each PARDO-ACM module is used for control instructions
belonging to a PARDO-block and the main ACM module is used for
other instrﬁ;tions.

As indicated in the diagram, the only physical difference K
between the main ACM module and a PARDO-ACM module is that a
PARDO-ACM module contains n > 1 number of initiation-threshold
fields which can be used to support parallel execution of up to
n iterations, while the main ACM module contains only one initia-

tion-threshold field.
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The availability field in an ACM module is used to indicate
if the word in the module is empty or not. The instruction address
field in an ACM module contains the PM addresses of ﬁhe control
instructions contained in it.

The operation of the ACM is as follows. First, an initial
set of control instructions in the PM are registered into the main
ACM module. When they are registered, availability and instruc-
tion address fields are recorded by the CIIU. Then, there are non-
empty words in the main ACM module whose initiation-threshold
fields confain 0's. Instructions contained in them are ones ready
for interpretation. The CIIU searches for these ready instruc-
tions.

The content of the initiation-threshold field in the ACM of

a control instruction is called its dynamic initiation-threshold

while the content of the one in the PM is called its static initia-

tion threshold. Therefore, the static initiation-threshold of a

control instruction is never changed, while the dynamic initia-
tion-threshold is decreased each time its predecessors are inter-
preted.

As soon as ready instructions are found;'ﬁhe CIIU interprets
them. The common step in éach interpretation of a control
instruction is to decrease the dynamic initiation-thresholds of
the successor instructions. If a successor is not yet registered
in the ACM when its dynamic initiation-threshold has to be decre-
mented by the CIIU, it is registered into the ACM. During the

registration, its dynamic initiation-threshold is set equal to its

- static initiation-threshold. Then its dynamic initiation-threshold
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is decremented; After interpretation of each control instruction,
the word in the ACM which has been occupied by the interpreted
instruction becomes available for a new instruction. That is,

its availability field is changed.

The interpretation of a FORK instruction consists of merely
decrementing initiation thresholds of successor instructions
recorded in its'successor-list.

The interpretation of a BRANCH instruction involves examining
the content of the BRIX register whose address in the BRIX regis-
ter file (BRIXRF) is specified iq the BRIX register field of the
instruction. Then the CIIU determines which one of successor
instructions is selected according to the content of the BRIX
register, and subsequently the dynamic initiation-threshold of
the selected successor is decreménted.

The interpretation of the FUNCTION-CONTROL instruction involves
the following stéps. First, the CIIU moves the address stored in
the functional instruction address field into the buffer attached
to the FIIU. Then the CIIU decrements the initiation-thresholds
of successor instructions, while the FIIU initiates the functional
instruction whose address has been sent from the CIIU. Therefore,
both the CIIU and the FIIU run asynchronous of each other.

The operation of the FIIU is as follows. First, it fetches
the functional instruction from the FPM using the address sent

from the CIIU. Second, the FIIU prepares an instruction-packet

which is obtained by replacing each indexed or relative address
in the functional instruction with the direct address, Thirxd,

the FIIU stores the prepared instruction-packet into the DU-buffer

re



L]

so that the DU can dispatch it to the ALPS and the MS. Then the
FIIU examines its buffer to find a new address sent from the CIIU.
The PARDO instruction registered in the main ACM module is
interpreted as follows. Firét, the index register whose address
is stored in the iteration index register field of the instruction
is examined to find out the number of iterations to be executed.
Then the CIIU stores the number into the iteration index register
field of the PARDO instructi;n in an ACM module. The newly stored

number is called the dynamic iteration-counter.

Second, using the information storgd in the index register
requirement and the BRIX register requirement field of the instruc-
tion as well as the maximum number of initiation-threshold fields
available in a PARDO-ACM module, the CIIU determines the size of
a group, i.e. the number of iterations to be allowed for parallel
execution.

Third, the CIIU selects a PARDO-ACM module to be used for
interpretation of instructiops inside the loop. Then the CIIU
decrements the dynamic iteration-counter of a PARDO instruction
by the size of a group. Each PARDO-ACM module has one special cell.
The CIIU stores the label of the ACM-module, in which the current
PARDO-instruction is resident, into the special cell of the selected

PARDO-ACM module. The label stored is called thevreturn address.

Fourth, the CIIU registers the successor instruction of the
current PARDO instruction into the selected PARDO-ACM module.
Registration of a control instruction into the PARDO-ACM module
is the same as registration into the main ACM module except that

the static initiation-threshold of a control instruction registered
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into the PARDO-ACM module is copied into multiple dynamic initia-
tion-thresholds corresponding to multiple iterations of the in-
struction. That is, the dynamic initiation-threshold of an
instruction for each iteration is set equal to the static initia-
tion-threshold during registration. Obviously, the static initia-
tion-threshold of the immediate successor of the current PARDO
instruction is 1.

Therefore, as soon as it i§ registered into the selected
PARDO-ACM module, its dynamic initiation-thresholds are decreased
to 0's and its parallel iterations become ready for initiationm.
For instance, suppose the PARDO instruction has a successor
instruction‘ s and the size of the group of iterations to be
executed in parallel is m. Then, s 1is registered into the
PARDO-ACM module, and m dynamic initiation-thresholds of s
are decreased to O0's right awdy, since the static initiation-
threshold of s is 1. Thus m iterations of s become ready
for interpretation. As each iteration of s is interpreted, the
corresponding dynamic initiation-threshold is reset te an unusual
number, saj -1, so that the same iteration is not interpreted
more than once.

During registration into a PARDO-ACM module, the availability
field of each word being filled is set to m. As each iteration
of the instruction contained in it is interpreted, the availability
field is decremented. When it reaches 0, it means that the word
is empty, i.e. available. When the j-th iteration of s is
interpreted, only initiation-thresholds of s's successors for the

j-th iteration are decremented. The word in the ACM containing
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the PARDO,instruction does not become available for a new instruc-
tion until its dynamic iteration-counter is reduced to O.

Apparently, successors of an instruction in a PARDO-ACM module
are registered into the same PARDO-ACM module until either another
nested PARDO instruction is interpreted or the partner PARDOEND
instruction is interpreted. That is, successors of a FORK, JOIN,
BRANCH, XOR or FUNCTION-CONTROL instruction registered in a cer-
tain ACM module, whether it is the main ACM module or a PARDO-ACM
module, are registered into the same ACM module.

In case of multi-level nested PARDO-loops, a PARDO-block at
each lévél is registered into an independent PARDO-ACM module.
And a set of PARDO-ACM modules used for execution of multilevel
nested PARDO-loops are chained into a tree through their return

addresses. After the completion of the PARDOEND instruction, its

. successors are registered into the ACM module pointed by the return

address stored in the special cell of the PARDO-ACM module and

then the PARDO-ACM module becomes available for a new PARDO-loop.
To be more precise, the interpretation of the PARDOEND

instruction is as follows. When the PARDOEND instruction is regis-

tered into the PARDO-ACM module, the content of its iteration

index register field in the ACM is replaced with'the size of the

group being currently executed. Thereafter, ﬁhe content of this

field represents the number of unfinished iterations in the group

being executed. It is called the dynamic group-iteration-counter.

When the j-th iteration of the PARDOEND instruction is inter-
preted, the CIIU resets its predecessor-counter for that iteration

and decrements the dynamic group-iteration-counter. If the new
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dynamic group-iteration-counter is greater than 0, the interpre-
tation pf the j-th iteration of the PARDOEND instruction is com-
pleted. Otherwise, the CIIU tries to find its partner PARDO in-
struction in the ACM by using the return address as well as the
partner address. If it is found, the word containing the current
PARDOEND instruction is emptied and the CIIU interprets the partner
PARDO instfuction for the execution of the next group of itera-
tions. If the partner of the PARDOEND is not found, initiation-
thresholds of its successors, which have been registered or have
to be registered into the ACM module pointed by the return address
stored in the current PARDO-ACM module, are decremented, and the
current module becomes available for a new PARDO-loop.

Next, the DU decodes each instruction-packet and dispatches
commands to both the ALPS and the MS. First, it picks up the
first instfucﬁion—packet in the DU-buffer and then examines the
operation-code, especially the pipeline-code.

Then it initiates the setting-up of the task-packet corres-
ponding to the instruction-packet by reserving one block in the
pipeline-buffer of the pipeline pointed by the pipeline-code.

Here the pipeline-buffer is assumed to be the type shown in Fig.3-5
although the pipeline-buffer coﬁsisting of a set of shift-regis-
ter chains may be used. The task-packet consists of function-code
and operand-data. Thus the DU moves the function-code in the
instruction—packét into the block in the pipeline-buffer. It also
issues a set of READ commands to the MS READ control unit (RCU)

for moving operand data stored in the primary data memory (PDM)

into the block in the pipeline-buffer. If the instruction-packet

.9
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contains some immediate operands, these are directly moved into
the pipeline-buffer.

Thus each READ command issued by the DU consists of the
address of the location in the primary data memory containing one
operand and the address of the location in the pipeline-operand-
buffer.

In addition, the DU issues a set of STORE commands to the
MS STORE control unit (SCU) for taking results from the pipeline-
result-buffer after the completion and storing into the PDM.

(Figs. 3-21 and 22) Each result may be stored into several loca-
tions in the PDM. Or it may be stored into an index register or

a BRIX register. Thus each STORE command consists of the address
of the location in the pipeline-result-buffer and a set of addresses
which may point to locations in the PDM, an index registgr or a
BRIX register. An instruction-packet being dispatched is shown

in Fig. 3-21.

There is one difficult problem in synchronizing dependent
instructions. Suppose instruction-packet A is dispatched and while
it is executed, the successor instruction-packet B using the
result of A as one of its operands is dispatched. Then it is
possible that the READ operation for B is performed before the
result of A is stored. That is, undesirable data is fetched.

This problem can be resolved by using an associative memory in
the DU.

Each word in this memory contains an address of the location
into which a result of the previously dispatched task is to be

stored. Each time a result is stored into the location, the SCU

155



156

¥

-3aqoed-uor 1onalsur ue jo Furyodjedsiq

19} jng ucﬂamawa

pueiado ajerpaumr

ITUN [013U0D JYOLS

_
_ JTun Joajuod aviay

*1Z-¢ 314

13jjyng-aurtadid

}

apoo-

SK Sk oF 10un
» SN B
1ajjinq 1233Nnq
v:w.\ .:dx ~3[nsaa -puelado ﬁNEO _
-autjyadid _ ﬁ -auy1adid
: ] . A I _
.\\ : / \-\ /
N ™~ \ _
N - \
N ~ AN _
apod- | apoo-
3ayoed su JJL T tuw 1
] : _ N . 140 N ¥dq uor3 auIY
-UoT JoNI3ISUT ﬁ\ o dk -ouny | -adtd
- — g DR g >
jInsaa pueaado apod uo1lieaado



in the ﬁS notifies the DU and the address in the DU associative
memory is erased. Thus, each time an instruction-packet is dis-
patched, addresseé in its result field are registered into the
associative memory and addresses in its operand field are searched
in the associative memory. If they are found, previously issued
STORE commands are still waiting in the SCU. Thus one more
destination address pointing to the pipeline-operand-buffer assigned
to the current instruction-packet is added to the waiting commands.
In this case, READ commands for those operands are not issued.

For operand addresses not registered in the DU associative memory,
READ commands are issued.

Another similar problem of synchronization is as follows.
Suppose an instruction-packet A and its successor B satisfy the
relationship that one of A's operand-addresses in the primary data
memory, X, 1is the same as one of B's result-addresses but besides
this, they are independent. Then it is possible that the SCU in
the MS serves the STORE command of B before the RCU serves the READ
command of A. This can be also resolved by using another associé—
tive memory in the DU.

Each word in this memory contains an address of the location
from wbich the operand of the previously dispatched task is to be
fetched. Each time the operand is read out of the location, the

RCU in the MS notifies the DU and the address in the DU associative
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memory is erased. Thus each time an instruction-packet is dispatched,

addresses in its result field are searched for in the associative
memory. If they are found, previously issued READ commands are

still waiting in the RCU and thus, those waiting commands as well



as newly issued STORE commands with same addresses are tagged
with special symbols. Then the STORE command tagged with a spe-
cial symbol is not served by the SCU until the RCU notifies the
SCU of the completion of the corresponding READ operation.

In this way, correct synchronization of dependent instruc-
tions can be guaranteed. The DU-buffer again consists of a set of
modules rather than a single module. This is mainly for the
look-ahead of conditional branches. That is, it is possible that
the branch-index is not available when a BRANCH instruction is
interpreted. vThen, since it is not known which one of its suc-
cessors will be enabled, the IIﬁ may become idle, unless there is
another ready instruction. This can be much improved by using the
DU-buffer composed of a set of @odules so that all possible suc-
cessors of the BRANCH instruction may be interpreted and each
instruction-packet produced as a result may be stored into an
independent module. Thusvfinal decision of selecting correct
successor instruction-packet is left to the DU. By'the time the
DU encounteres several branches, BRIX will probably be available.
Otherwise, the DU has to wait, while the IIU keeps producing
instruction-packets for all possible branches.

This completes the description of the modular IPS. Obviously,
every component of the IPS can be easily replicated in a systematic
way, thereby reducing the possibility of the IPS being a bottleneck
in the baéicrmachine. Each component may be repliéated by itself
or a combination of different components may also be replicated.
There are various places inside the IPS where optimization can be

effectively employed. The CIIU may apply some priority rule in
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ordering the interpretations of several ready instructions. This
optimization aspect of the IPS is included in the discussion in

Chapter 4.

3.1.3 Memory Subsystem (MS)

The MS in the basic machine consists of five major parts:
primary data memory (PDM), READ control unit (RCU), READ control
unit buffer (RCU-buffer), STORE control unit (SCU), and STORE con-
trol unit buffer (SCU-buffer). The MS is depicted in Fig.3-22,

The primary data memory (PDM) consists of a number of modules.
Each PDM module can be accessed independent of others. Data of a
job occupies several PDM modules and each module is shared by
several jobs. That is, the data storage assigned to a job J[i],

denoted by S (J[i]) can be represented by a vector

PDM

yp17GED Sy GIAD ooy Sy GIADD)

where SM[k](J[i]) represents the data storage in the k-th
module M[k] assigned to the job J[i]. SM[k](J[i]) and
SM[Q](J[i]) need not be the same when k # %. This concept is
depicted in Fig. 3-23. fhe motivation is to distribute data of
parallel tasks in a job to several PDM modules so that they can
be acéessed in parallel.

The RCU executes READ commands issued by the DU in the IPS,.
Commands are queued in the RCU-buffer. The RCU can distribute the
content of the location in the PDM to any pipeline-operand buffer,

the index register file, the BRIX registers file or the I/0 pro-

cessor. The RCU-buffer consists of a number of modules each
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Figure 3-23 Allocation of Space in the PDM.
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corresponding to one of the above mentioned destination units.
That is, all READ commands with their destinations being the i-th
pipeline-operand buffer are queqed in the i-th module of the RCU-
buffer. Commands queued in each RCU-buffer module are served on
a first-come-first-served discipline. However, commands queued in
different RCU-buffer modules can be served in any arbitrary order
so that the RCU has a freedom in serving them according to the PDM
module availability.

Whenever the READ command tagged with a special symbol is
executed, the RCU notifies the SCU so that the SCU can execute
the STORE operation with the same address, which has been waiting
for completion of the READ comm;nd. On the other hand, the SCU
sometimes sends the RCU the data received from the pipeline-result-
buffer together with the destination address when the STORE command
served by the SCU has the address of a pipeline-operand-buffer as
one of its déstination addresses. Then this data transfer is
completed by the RCU.

The SCU executes STORE coﬁmands issued by the DU. Commands
are queued iﬁ the SCU-buffer. The SCU can distribute the result
contained in the pipeline-result-buffer to locations in the PDM,
the index register file, the BRIX register file or the RCU. It
also receives data from the I/0 processor and stores into the PDM.

Analogous to the RCU-buffer, the SCU-buffer consists of a
number of modules each corresponding to one of the above mentioned
data-source units. Commands queued in each SCU-buffer module are
served on a first-come-first-served discipline. Commands queued

in different SCU-buffer modules can be served in any order possibly
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reflecting the PDM module availability. As mentioned before, the
STORE command tagged with a special symbol is not served until the
RCU notifes the SCU of the completion of the corresponding READ
operation.’ This completes the description of the MS in the basic
machine.

The configuration of the basic machine comprising three modular

subsystems described so far is shown in Fig. 3-24.
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3.2 Static Sequencing

A set of tasks dispatched to the ALPS by the IPS during
execution of a job are partially ordered in execution due to two
factors. One is data-dependency among them,‘and the other is
conflict among several data-independent tasks in obtaining the
service of the same pipeline. The ordering due to the second
factor is here called the sequencing.

This sequencing is normally performed by the IPS and then
each pipeline in the ALPS serves tasks dispatched by the IPS on
a firsﬁ—come-first—served discipline.

Inside the IPS, the CIIU is the principal unit responsible
for this sequencing, although the DU may as well be responsible.
In the preceding section, no specific criteria used by the CIIU
for selecting one of the several ready instructions for the next
interpretation but a random sequencing was mentioned.

In fact, any sophisticated criteria cannot be used by the
CIIU because of the intolerable amount of overhead involved in
using it. Rather such a criteria may be used in the course of

producing the program to indicate the desirable sequence inside
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i

the program. Such an indication is typically a recommendation to

i

the IPS, because the BRANCH instruction as well as the PARDO in-

struction does not permit the perfect prediction of tasks to be

[

executed and the dependency reiationship between them. Then the
IPS can achieve a simple but effective sequencing by taking the
indicated sequence into account.

It can be shown that the effect of the sequencing on the
efficiency of carrying out a computing job can be significant. 1In
order to obtain a precise description of the problem involved in
the sequencing, a model used for sequencing is introduced in the
next section. In discussing the sequencing, all pipelines in the
ALPS are assumed to be synchronous pipelines or in the case of an
asynchronous pipeline, the variance of average segment-length for

every p-segment in it is ignored.

3.2.1 A Sequencing Model

Given a job J in execution by the ALPS, the sequencing model
denoted by leS(J) is obtained as follows. First, the parallel
task graph (PTG) of the job J denoted by GJ = (N,A) is obtained
in which each node n[i] € N represents a task Y(n[i]) executed
by a pipeline, and each arc (n[i],n[j]) represents the depen-
dency of Y(n[j]) on y(n[i]) for its activation by a pipeline. %
Apparently, GJ is an acyclic graph.
Second, each node n[i] is associated with the pipeline-code .
or the label of the pipeline required for the execution of y(n[i]).

It is denoted by u(n[i]). Here it is assumed that no pipeline

is replicated in the ALPS. For each pipeline u, its cycle T(W)
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as well as the number of segments in it #(S(yu)) is known. Natu-
rally, the time required by a task to pass through the pipeline u
is given by T(u)+#(S(p)) and denoted by t(u). Thus for each
task Y(n[i]), dits execution-time is given by t(u(n[i])). It is
also denoted by t(n[i]).

Third, each arc, i.e. dependency (n[i],n[j]) is associated
with the time delay denoted by t(n[il,n[j]). t(n[il,n[j]) repre-~
sents either the time interval from the activation of vy(m[i]) to
the production of results to be used as operands of Y(n[j]) or
the minimum amount of delay necessary between the activation of
Y(n[i]) and vy(n[j]). For instance, suppose <y(n[j]) has an
operand which is the result of the k-th subtask belonging to
Y(n[i]). Then t(n[il,n[j]) is given by keT(u(n[i]l)), i.e.

k multiples of the cycle of the pipeline used for the execution
of y(l[i]).

Fourth, if there are redundant dependencies in tjls(J), they
are removed. A redundant dependency is defined as follows.

Given a node n[j] dependent on n[i], let P(n[i],n[j])

denote a set of all directed paths from n[i] to n[j]. For

each p = (n[il,n[kll,n[kzl,---,n[j]) € P(n[i],n[j]), T(p) de-

notes the sum of delays associated with arcs on p, i.e.

T(p) = tnli]l,nlk, 1) + t@alk, I,nlk,1) + --- +'t(n[k2_1].n[j]) .

Given a node n[j] dependent on n[i], the minimum delay to the

activation of vy(n[j]) from the activation of Y(n[i]), denoted

by Td(n[i],n[j]) is given by:
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T,(alil,n[i]) = | max T .
peP(li],n[j])

Definition 3-2. A dependency (n[il,n[j]) is said to be
redundant if there is a node n[k] € N éatisfying that t(n{i], n[jl])

2 Tq(nli], nlk]) + T, (a[k], n[j]).

The procedure for removing r;dundant dependencies from the
given PTG is discussed in section 3.2.4.

Fifth, a dummy node n[f] is added to G and arcs are drawn
from nodes haﬁing no successors. For each arc (n[k],n[l]) €
AIN(n[R]), t(n[k],n[l]) is given by t(n[k]). p(n[2]) is null.

In addition, if there is more than one node having no pre-
decessors, a dummy node n[l] is added to G and arcs are drawn
from n[l] to each of them. u(n[l]) is null. For each arc
(n[l],n[kj) €A |

OoUT
t(n[l],n[k]) is O.

(n[1]), where n[l] is a dummy node,

Therefore, the sequencing moael of a job J, L}lS(J), is a.
PTG G = (N,A) in which each node n € N except the dummy nodes
is associated wiﬁh the pipeline-code u(n) and each arc (n[i]l,n[j])
is associated with the time-delay t(n[i],n[j]). In additiom,
there is no redundant dependency in G. Fig.3-25 illustrates a
sequencing model tj&s(J)o

On the basis of (JAS(J), the sequencing problem can be spe-
cified as follows. The delay forced betweén activations of two

parallel processable tasks, y(n[i]) and vyY(n[j]l), competing for

the same pipeline u, is appérently T(y). The sequencing problem
is to transform LjQS(J) into gj@ﬁ(J) by adding a set of arcs as

follows.

e
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(1) Arcs are added only between nodes associated with the

[ X

same pipeline-code. That is, dependencies are added only between
tasks requiring the same pipeline.

(2) Each added arc is associated with the forced delay as
mentioned above.

(3) gj4§(J) does not contain any cycle.

(4) No two nodes associated with the same pipeline-code are
independent in c)4§(J). That is, no two tasks requiriﬁg the same
pipeline are parallel processable after the transformation.

Such an 'JAg(J) is called a feasible transformation of J).

Given a feasible transformation ’J4:(J), the‘earliest activation

time of y(n[i]) or n[i] is defined as Td(n[ll,n[i]) in

.J4£(J). In'addition, N can be partitioned into an ordered class
of node-subsets (N[1],N[2],...,N[k]) such that (1) for all

n[i] € N and for all n[j] € N, n[i] and n[j] belong to the
same node-~subset N[k] if and only if Td(n[1],n[i]) = Td(n[ll,n[j])
and (2) v n[i] € N[kl] Vn[j] € N[k2], kl < k2 if and only if
Td(n[ll,n[i]) < Td(n[1],n[j]). Such an ordered class of node-

subsets in (J4£(J) is called a feasible execution-sequence and

£ £ f
J .
denoted by SQJAé(J)). (JAS(J) is said to indicate SQJAé( ))
f
Then Td(n[l],n[ll) in a feasible transformation (JAB(J),
where n[2] is the last dummy node, is the total execution-time .
of the job J according to the feasible execution-sequence
S(rjl:(J)) and denoted by  TLAS (D). .
s
Therefore, the optimal sequencing problem is to find a feasi-
ble transformation of LJQS(J), CJAZ(J) such that TQJAQ(J)) is

' o
the minimum among all feasible transformations of (JAS(J). ‘JAS(J)
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is called an optimal transformation of 1;48(J). SQJA;(J)) is

called an optimal execution-sequence. Fig. 3-26 shows le:(J)

corresponding to LjQS(J) in Fig. 3-25.

Unfortunately, no simple solution for the optimal sequencing
problem seems to exist. All the solutions currently available are
exhaustive in nature and the amount of computation involved in find-
ing an optimal sequence of any sizable job is intolerable. Possible
recourses are to aim at the nearly optimal sequencing by using
simple procedures and to divide the sizable job into a number of
job-segments so that each job-segment can be sequenced independently
of others.

In the next section, the difficulty of optimal sequencing is
demonstrated by considering the simplest case where the ALPS con-

sists of a single pipeline.

3.2.2 Optimal Sequencing for the ALPS of a Single Pipeline

In this case, every t(mn[i],n[j]) in ;JAS(J) is a multiple
of the cycle of the pipeline solely constituting the ALPS. Each
forced delay is again equal to the cycle.

However, even in this simple case, no simple solution seems
to exist, although a branch and bound strategy utilizing some

simple properties can be developed.

Lemma 3-1. Given a feasible transforma;ion Lj@:(J) in the
ALPS of a single pipeline, SQJ4§(J)) is an ordered set of nodes.

That is, no two nodes have the same earliest activation time.

Proof. Since no two nodes are independent in L}‘i(J). Q.E.D.
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Definition 3-3.

hy

(1) Given a feasible node-subset N' CN 1in (J4S(J) as

defined in section 3.1.1.3, a feasible partial transformation of N'

denoted by lei(N') is the portion of a feasible transformation

L14§(J) containing N'. A feasible partial execution-sequence
indicated by JLZ(N') is denoted by s(fjkﬁ(n')).' or, SQAZ(N'))

is called a feasible subsequence of SCJAi(J)).

(2) Given 'JAZ(N'), the frontier-subset of N' is defined

as in section 3.1.1.3 and denoted by Z(N'). The execution-time

of [J4£(N') is defined as Td(n[ll,n[k]) = max Td(n[ll,n)
neZ(N')
in 'JA:(N') and n[k] 1is called the terminal node of L}4§(N')

or SQJAi(N')).

(3) Given ()4§(N'), the score of each node n e<12y(u') in

:JAS(J) denoted by y(n) 1is defined as follows.

max [T (a(1],a(1]) o AL @) + t@lil,m] ,
alile 97 )

if the terminal node Of{J4§(N'), n[k] € kgfl(n)'
y(@) = { max{T,(@[1],n(k]) 10 AN + T(W);

max  [T(a[1],n[i]) in ALQ@) + t@lil,m]},
alile .07 (@)

otherwise.

. (4) The strongest successor of (J4§(N') or SQJAi(N')) is

defined as the node n e<ﬂQy(N') satisfying that

y(n) = min y(n[i]). With these notations, the following
al1] €R, ()

property can be described.
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Theorem 3-1. There always eiists an optimal execution-
sequence of J for the ALPS of a single pipeline, SQ,A@(J))
= (u[kl],n[kz],...,n[kll), satisfying the following property:
for any feasible subsequence of SQJAg(J)), SQJAZ(N')), where
the terminal nodé of S(vﬂg(N')) is n[ki], 1<ic< -1, n[ki+1]

is the strongeét successor of SQJAQ(N')).

Proof. Suppose nl[k is not the strongest successor of

7 i+l]
S(JAZ(N')) in a given optimal execution-sequence SQJ4:(J)).
Denote by n[kj] the strongest successor of SGJAg(N')). Then

k,,. <k,. n[kj] can be moved in between n[ki] and nl[k

itl 3 1411

in an execution-sequence without changing the total execution-time,

i+l]) from the defi-

since [t(n[ki],n[kj])'FT(H)] < t(n[ki],n[k
nition of the stronger sucessor. Thus the resultiﬁg execution-

sequence is still optimal. Q.E.D.

Based on these properties, the branch and bound procedure can
be formed as follows. Starting f;om n[i], order nodes into a
sequence of strongest successors untilmoré than one strongest
successors are encountered. Whenever more than one strongest suc-
cessors are met, branching is done with each of them. Then a
sequence of strongest successors are again found following each
branch until the next branch point, and so on. The bounding pro-
cedure can bebased on the following criteria. Given a feasible
node-subset N', a partial feasible execution-sequence S1 of
N' is said to dominate another partial feasible execution-sequence

S, of N' if for all n € Z(N') in (JAS(J), T,(n(1],n) in §;

2
is less than or equal to Td(n[ll,n) in SZ' Fig.3-27

1



— — ®: ‘added
" dependency

() =1

m(p) = &4

S(AOU))

= (n[1], nl2], n[3], al4],
n[7], n[5], n(6], nl8])

T (nl1l, al8]) = 14

Figure 3~27 An Optimal Transformation ~A‘;(J) of

: J(s(.r) for the ALPS of a Single Pipeline

175



illustrates an optimal transformation of ’JA%(J) for the ALPS of
a single pipeline. |

However, as the number of nodes increases, the amount of
computation required by the algorithm rapidly increases in

general.

3.2.3 Optimal Sequencing for the ALPS of Multiple Pipelines

As implied by the complexity involved in optimal sequencing
for the ALPS of a single pipeline, optimal sequencing in this
general and practical case becomes an immensely complex problem.
The property Theorem 3-1 or any similar property does not hold any
more. Exhaustive enumeration seems inevitable.

Therefore, optimal sequencing is infeasible even if it is
attempted in the course of producing programs. First of all, the
precise sequencing model is not available before run-time.
Second, the complexity of the optimal sequencing is intolerable
even with almoderate size of program as indicated above.

This leads to the desirability of suitable heuristic proce-
duresiof small complexity aiming at nearly optimal sequencing for

both static sequencing, i.e. the sequencing performed before run-

time and dynamic sequencing, i.e. the sequencing performed by the

IPS at run-time. The heuristic procedures for static sequencing

are used to find and indicate a good (not necessarily optimal)
sequence in the program, while the procedures for dynamic sequenc-
ing are used to order tasks with a little amount of computation,
using more precise sequencing models and the recommendation provided

from static sequencing. In Chapter 4, the scheme of performing
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dynamic sequencing with the reduced cost of overhead will be

discussed.

3.2.4 Sequence Indication and Removal of Redundant Dependencies

As mentioned before, the product of static sequencing is
typically a recommendation to the IPS. 1In such a case, the
simplest way to indicate the recommended sequence in the program
is to attach priority numbers to control instructions. The reso-
lution in the case of more than one ready instruction having the
same priority is a part of dynamic sequencing.

On the other hand, the nearly precise sequencing model of a
job-segment is often available before run-time. If such a job-
segment takes a significant portion of execution-time of the job,
then it is worth attempting the high degree of optimization through
sophisticated static sequencing.

In addition, such a job-segment will be associated with
higher priority than other parts of a job and the execution-
sequence of tasks in the job-segment derived by static sequencing
may be indicatéd more firmly inside the program than by priority-
assignment.

The simple and firm indication of the derived execution-
sequence in the program is to add dependencies by changing ini-
tiation-thresholds and successor-lists of control instructions.

One thing noteworthy is that such addition of dependencies
may lead to the program containing redundant dependencies defined
in section 3.2.1. Arcs (n[l],n[3]) and (n[2],n[4]) in Fig.3-27

"are examples of redundant dependencies. A general problem of



removing redundant dependencies from the given PTG, G = (N,A),
in which each arc is associated with the time-delay, can be solved
by the following procedure. This:procedure makes use of the

algorithm for finding a transitive reduction [aho 72].

Algorithm 3-3.

1. Obtain the transitive reduction of A, g]%(A), and set
A+ T,
2. M+ A\’:TR(A).
3. For all (n[il,n[j]l) € M, do the following.
3.1 obtain N' « Rli]) "R Liil).
3.2 T(n[il,n[i]) « 0, N" < {n[i]]}.
3.3 Obtain (qu(N") A N' and pick any number n[k] in it.

3.4 T(ml[i]l,n[k]) < max [T(n[i],n) + t(n,n[k])]
ned @ik NN
3.5 N" « N" U{n[k]}

3.6 If N" # N', go back to 3.3. If N" =N', continue
to 3.7.
. ‘951 '
3.7 See if for all n[k] € ¢¥ " (n[j]) NN,
t(n[il,n{3]) > T(u[i],n[k]) + t(n[k],n[j]). If it is,
A « A Y{(n[i],n[j])}. Otherwise, do nothing.
4. Terminate. G = (N,A) represents the new PTG containing no

redundant dependencies.

The correctness of this algorithm is evident from two facts.
One is that (n[i],n[j]) € M if and only (n[i],n[j]) € A and
there is a directed path from n[i] to n[j] not containing the
arc (n[i),n[j]). The other is the definition of rédundant depen-

dency itself.
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3.2.5 Minimization of Reconfigurations

There is another parameter involved in sequencing for the ALPS
consisting of reconfigurable pipelines. As mentioned before, the
overhead involved in reconfiguration is not negligible.

In fact, the delay forced between two independent tasks'being
served continuously by the common pipeline when reconfiguration is
required, is much greater than the cycle of the pipeline. The
tasks in the middle of the previously configured virtual pipeline
must pass through it before the new virtual pipeline is configured.
The reconfiguration overhead varies depending upon the type of
transition between virtual pipelines.

Therefore, the variable amount of the forced delay must be
introduced in obtaining optimal or neerly‘optimal transformation
of ’J4S(J) discussed in sectioms 3.2 and 3.3. 1In addition, |
t(n(il,n[j]) in IJAS(J) must be obtained by taking the reconfi-
guration overhead into account. This further increases complexity
of sequencing.

In the simplest case considered in the following, all tasks
in (JAS(J) are mutually independent. Then the only possible delay
between activations of tasks is the forced delay between those
competing for the same pipeline.

Independent tasks competing for a non-feconfigurable pipeline
can be sequenced in any arbitrary order since the enly possible
delay, i.e. the forced delay is uniform. Sequencing of independent
tasks competing for a reconfigurable pipeline becomes the following

problem.
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Lemma 3-2. Given a reconfigurable pipeline capable of con-
figuring m virtual pipelines, the problem of finding an optimal
execution-sequence of n independent tasks requiring'one of those
m virtual pipelines becomes the traveling salesman problem with

m+l cities.

Proof. This sequencing problem can be transformed into the
following traveling salesman problem. First, n independent
tasks are partitioned into a class of m task-sets {s[11,s[2],...,S[m]}
such that all tasks belonging to S[i], 1 < i < m, require the
i-th virtual pipéline. To each S[i], 1< i<m, acity yl[i]
corresponds. There is a road between every pair of cities and
each road from y[i] to y[j] is assigned the traveling cost
equal to the reconfiguration overhead required for transition from
the i-th virtual pipeline to the j-th virtual pipeline. An
additional city y[0] is added to a set of m cities. The tra-
veling cost associated with a road from y[0] to each y[i],
1<i<m is the overhead required for configuring the i-th
virtual pipeline, and the traveling cost from yli], 1 <i<m
to y[0] is O.

Then it becomes apparent that the optimal sequencing problem
is equivalent to finding a minimal-cost-tour starting from y[0]
visiting every y[il, 1 < i < m, exactly once and then returning

to y[O0]. Q.E.D.

This is illustrated in Fig. 3-28.
Various solutions are available for the traveling salesman

problem with a limited number of cities [bel 70]. Therefore,
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provided that the number of virtual pipelines configurable in
each reconfigprable pipeline is sﬁall, optimal sequencing of inde-
pendent tasks becomes feasible. Once an optimal tour is obtained,
it may be incorporated as a fixed component into the IPS.
PARDO-loops are major sources of such independent tasks and
the effectiveness in sequencing them can effect the performance
of the system to a significant extent.
So far, the problem of optimal sequencing has been discussed.
Although a more practical and feasible optimization is found to
be the nearly optimal sequencing using simple heuristic procedures,
the efficiency of a heuristic procedure is generally dependent
upon the characteristics of a job. The performance evaluation of
a heuristic sequencing procedure is beyond the scope of this

investigation.
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3.3 Static Storage Allocation

The problem of memory-conflict is the one having a signifi-
cant effect on the performance of any system exploiting parallel-
ism. This problem generally occurs when more than one task
being executed concurrently needs to access the same memory-
module.,

Even in a conventional system with its CPU possessing little
parallel processing capability, this has been a problem. In such
a system, memory-conflicts occur typically between the tasks served
by the CPU and the tasks served by the I/0O processors. These
are here called the CPU-I/0 memory-conflicts.

On the other hand, in the system possessing high parallel
processing capability such as the basic machine described in
section 2.1, additional and more severe memory-conflicts occur
among tasks concurrently served by several processing units in the

ALPS and the IPS. These are here called the intra-CPU memory-

conflicts.

" Solutions to this problem must be approached in two directions:
organization and management.

In designing the basic machine in section 3.1, the reduction
of memory-conflicts was an important motivation behind the separa-
tion of the program memory (PM) from the primary data memory (PDM).
Parameters characterizing a particular configuration of each memory
generally include.the number of memory-modules, the access time of
a module and the size of each module. With respect to the current

state of the art, the speed of memory cannot be much faster than
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the speed of each processing unit. Typically the former is slower

e

than the latter.

In order to achieve the bandwidth required to support the
powerful ALPS or IPS with the slow memory, the number of memory-
modules must be sufficiently large and/or the data-transfer-path
must be sufficiently wide. Even if a high speed memory is avail-
able, the probability of memory-conflict is still sensitive to
the number of modules in the memory. In this section, memory-
conflict is treated as a technology-independent problem whose
existence is independent of the memory speed. The term memory-
module is used in the rest of this section to refer to a unit
" whose bandwidth is sufficiently high to support any processing
unit.

Given the configuration of each memory, its management, i.e.,
allocation becomes the major factor influencing the number of
memory-conflicts. Memory allocation is performed through two
phases: static storage allocation and dynamic storage allocation.

In this report, static storage allocation refers to mapping by

the compiler from symbolic addresses used in the symbolic program
to (possibly relocatable) numeric addresses used in the machine
program. The set of all numeric addresses used in a machine pro- «

gram is called a logical-address space while the physical-address

space consists of the set of actual memory locations directly re

addressable. [wat 70] Then dynamic storage allocation is a

process of run-time binding between a logical-address space of a

program and the physical-address space.
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To be more precise, a logical-address a is a pair
(mL, rL), where m represents the logical-module number and
r represents the relative address within the module addressed
by m - A set of all aL's in a program J containing the same

m is called a logical-module address space of J and denoted by

AmL. The logical-address space of J denoted by AL(J) is
then the family of all AmL's. Similarly, a physical-address

ap is a pair (mP, rP) where my, represents the assigned physical-

module number and Ip represents the relative address within the

module addressed by my,. The physical-module-address space A

is the set containing every ap pointing to a cell

in the module addressed by mp. The physical-
address_space is then the family containing every A such that

there is a module addressed by m, in the memory.

The binding between m and mP, as well as the one between
T, and L is the main part of dynamic storage allocation.
THe binding between each variable or program—element in the
symbolic program and a = (mL, rL) is the main part of static

storage allocation. As far as memory-conflict is concerned,

binding involving rL and rp does not
have any effect. Thus the part of storage allocation relevant
to reduction of memory-conflict is the assignment of m to each

variable or program-element, called static storage partitioning,

followed by the binding between m and m,.
The degree of sophistication of dynamic storage allocation

varies depending upon the environment. In a system oriented for
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achieving high computing power, sophisticated dynamic allocation

is not acceptable due to the large overhead involved. Therefore,

static storage allocation becomes the main source of optimization.
The conventional approach to the resolution of‘the problem

of memory-conflict has been memory-interleaving [mea 70, bur 70].

In practice, memory-interleaving is a design technique. However,
it is_logically equivalent to the kind of static storage
partitioning in which adjacent instructions or symbolic variables
successively introduced in a symﬁolic program are aséigned
different mL's. That is, it is equivalent to the heuristic
partitioning procedure utilizing the high probability of consecu-
tive execution of adjacent program-elements in a sequential
program.

It is easy to envision the insufficiency of memory-interleaving
as a resolution of intra-CPU memory-conflicts occuring during the
execution of a parallel program. It is desirable to employ a
more effective and deterministic partitioning utilizing properties
inherent in a parallel program. A fundamental basis for the develop-
ment of such a partitioning technique is the dependency relation-
ship among tasks, since intra-CPU memory-conflicts exist only among
parallel processable tasks. In subsequent sections, such
approaches in static storage partitioning are examined. Static

program-storage partitioning, i.e., assignment of mL to each

program-element, is discussed first in section 3.3.1, and then

static data-storage partitioning, i.e., assignment of m to each

variable, is discussed in section 3.3.2. Throughout this section
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M denotes the set of modules {uf} in the PM and M® denotes
the set of mbdules {md} in the PDM. QP denotes the size of a
module in the PM and Qd‘ denofes the size of a module in the PDM.
Without loss of generality, a symbolic program is assumed to be a

structured parallel program.

3.3.1 Static Program-Storage Partitioning

The objective of static program-storage partitioning is to
allocaﬁe a program—text‘into a number of modules in the PM in such
a way thaf parallel initiétion of functional instructions by the
FIIU in the IPS may not be hampered by conflicts in accessing
the PM. It is implicit that the FIIU abstracted in Fig. 3-24
possesses high parallel processing power.

The model of a program J wused for static program-storage

partitioning, ;ij(J), is a triple (G w), where

PP’ Q’

(1) ¢ p = (N,A) is a directed graph called the parallel

P
processability graph representing the structure of LJQP(J),

(2) Q 1is a finite set of non-negative integers representing
numbers of memory-words, énd (3) w is a function w: N -+ Q.

GPP is obtained ghrough a series of steps proceeding in a tép-down
direction and starting with the outermost block in J. Each step
involves the restructuring of the block dealt with and the sub-
stitution of the restructured block for its abstraction, i.e., a
single program-element representing it in its scope. During each
step dealing with a certain block B, blocks nested in B are

treated as single functional program-elements.



As the first step, the structure of the outermost block B,
G, in which blocks nested in B are represented by single nodes,
is obtained, and G is restructured into G. This G is the

temporary model resulting after the first step, G1 At the

PP’
second step, one of the blocks nested in B, g, is taken and its
structure G is restructured into G. Then Ggp is obtained by
replacing the single node in G;P representing VB with G.

Then the third step, as well as all subsequent steps, repeats the
same procedure of the second step. Apparently, this iteration

terminates when all the blocks in J have been processed.

The restructuring and substitution procedures vary depending

"upon types of blocks.

Case 1: A PAR-block B.

G 1is obtained by removing the PARBEGIN- and PAREND-nodes from

- Case 2: A SEQ-block B.

All A-BRANCH~ and XOR-nodes, as well as the SEQBEGIN- and

SEQEND-nodes, in G are removed first. Then all remaining f-nodes

are restructured into an arbitrary chain of f-nodes in G without
‘'violating the precedence relationship. That is, if there is a
directed path from a f-node n[i] to another f-node n[j] in G,
then n[i] must be positioned earlier than n[j] in the chain in
G. The reason for this restructuring is that no two program-
elements represented by two nodes n[i] and n[j] in G, e(n[i])

and €(n[j]), are parallel processable.
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Case 3: A PARDO or SEQDO-block B.

The blockhead and the block-~tail in G are removed to obtain

(1]

Case 4: A WHILE-REPEAT-block B.
The WHILE-REPEAT- and WHILEEND-nodes, as well as the feedback

arc from the WHILEEND to the WHILE-REPEAT, are removed.

Replacement of the node n[i] in the temporary model G;P represen-
ting B with G is made in the following way. Arcs are drawn
in G;;l from the immediate predecessors of n[i] to the entry-

nodes in G, and from the exit-nodes in G to the immediate
successors of n[i].

The final model G P is the one containing only f-nodes

P
representing basic functional program-elements. GPP is apparently
an acyclic graph. A pair of independent nodes in GPP represent

parallel processable program-elements.

Then for each node n in GPP’ w(n), i.e., the number of
memory words required to store the program-element €(n) 1is
obtained. Fig. 3-29 illustrates LJQP(J) of J in Fig. 2-5.
In the rest of this section, w(N'), where N' C N, denotes

Y w(n).
neN

Definition 3-4. If no two parallel processable program-

elements are allocated in the same module in the PM, such a

static program-storage partitioning is said to be conflict-free.




Fig. 3-29. "AP(J) for Static Program-Storage Partitioning.
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Definition 3-5. Given an acyclic G = (N,A) and its reacha-

bility relation R, (1) a chain in G, denoted by c, is defined
as a sequence of nodes (n[il], n[12], coes n[ik]) such that
V1<j<k, n[ij] EN and V1< 2 <m<Kk, (n[ig‘], n[im])e R.

The chain-node-set of ¢ denoted by N(c) is defined as:

N(c) ::= {n[ij] | 1<3j<k}. (2) achain decomposition of G

denoted by DC(G) , is defined as a set of chains such that

{N(c) | ce Dc(G)} is a partition of N. (3) a chain decomposition

with the smallest number of chains is said to be minimal and
denoted by D?(G).

For each chain ¢ in {JAP(J), w(c) denotes z w(n) and
_ neN (c)

P(c) denotes [Eé%LI . For each Dc(G) in QJQP(J), p(Dc(G))
denotes X p(ec).
ceDc(G)

Theorem 3-2. Assume ZJ4P(J). is given.
(1) 1f #(D:(G)) > #(M?), there does not exist any conflict-free
static program-storage partitioning.
(2) 1If there is a Dc(G) satisfying that D(DC(G)) 5,#(M?),
there exists a conflict-free static program-storage partitioning

corresponding to Dc(G)'

Proof. (1) If #@N(E) > #0C), then there is a maximal
independent set of nodes in G whose cardinality 1s greater than
#(M?). So, there are more than #(M?) number of program-elements
which are parallel processable with each other.

(2) Allocation of p(¢) number of modules to é;KN(c)) for each
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c E QéG), apparently results in a conflict-free static program-

storage partitioning. Q.E.D. 3 :

The first condition in Theorem 3-2 can be easily detected
because there exists an efficient algorithm for finding D?(G).
[for 62] Depending on if this condition is met or not, static

program-storage partitioning varies.

Case 1: #(02(@) > #00).

Since there is no conflict;free partitioning in this case,
the problem becoﬁes the one of finding a partition leading to
the minimal number of memory-conflicts at run-time. Apparently,
the number of memory-conflicts can not be pre-determined. Thus
this optimization problem as it stands cannot be solved. However,
a number of practical solutions toward finding a good partition
can be conceived. The most typical among them is to derive for
every pair of functional program-elements the estimate of proba-
bility that théy will be in memory-conflict with each other at
run-time. Then the modified problem is to find a partition
satisfying that the sum of conflict-probabilities among all blocks
lin it is minimal with the constraints of QP and #(M?).

This optimization problem is apparently the well-known
clustering pfoblem. [sal 68] The effectiveness Qf this approach
would be more dependent upon the methodology of estimating
conflict-probabilities than on the clustering algorithm.

1f #(D:(G)) is much greater than #(M?), there is little

chance that any sophisticated partitioning will be superior to a
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simple heuristic or random partitioning.

Case 2: #(D(6)) < #0T).

Determining the existence of Dc(G) satisfying that the
constraint p(Dc(G))_g #(MP) is a complicate& process.
As the difference [#(MP) - #(D:(G))] is larger, it is more likely
that aﬁy D?(G) will satisfy the constraint. However, when the
difference is small, the problem becomes very difficult.

A more feasible approach is to appropriately adjust a minimal
chain decomposition into a partition 7 satisfying the condition
p () 5,#(M?). Such a heuristic procedure is no£ elaborated in
this report.

Therefore, the pay-off of any static program-storage parti-

tioning is highly sensitive to #(M?).

3.3.2 Static Data-Storage Partitioning

Static data-storage partitioning is much more complex in nature
than static program-storage partitioning. The model used for this
purpose, anP(J), is obtained as follows.

First, the parallel processability graph, GPP is obtained
as described in the preceding section. Let C\) denote the set of
all variables used in J. Then for each node n € N in GPP’ its
variable-set A(n) is obtained. Next, Clj is partitioned into a
set of variable-sets wC]J) such that for each member variable-
set Ve m(l)) there corresponds a unique node-set N' in GPP
such that (1) ¥neN', VCA(), (2) Vn e (N\N"), VNA() = ¢
and (3) .there does not exist any other variable-set V' 2 V satisfying

(1) and (2).
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N' is called an user-node-set of V and denoted by Nu(V).
Then an qndirected graph Gv = (ﬂ(]j), Av) is constructed

in which v v[i] € (V) ¥ v[j] € (1), (V[il, V[i]) € A, iff

Valk]l e N (V[i]) Val2] e NI in 6, alk] e Reale)

PP
or n[f] eciz(n[k]).

Figure 3-30 illusfrates a Gv' AV is called the composability
relation. Then it is apparent that each maximal clique in Gv
represents a family of variable-sets of which no two members,
if exist, are accessed in parallel during the execution of J.
Therefore, a partition of Gv consisting of a minimal number of
maxima; cliques (including single nodes), denoted by . D?(Gv), plays
a role similar to the one of Dﬁ(G) in static program-storage
partitioning. A variant of Theorem 3-2 can be formulated using # (Dl:(Gv)) .
However, the computational complexity involved in finding

maximal cliques is intolerable. It is also true that

#(Dz(Gv)) will be mostly larger than #(Mq). Therefore,
the use of a good heuristic procedure is more inevitable
in static data-storage partitioning. Development of such pro-
cedures as well as their evaluation is another impbrtént subject

of future research.



. R
-~
cp‘p G, S : Nu(V[i])
Fig. 3-30. 'Jtp(J) for Static Data-Storage Partitioning.
»
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3.4 Program Validation

With increasing sizes of large PRC systems the reliability
of their programs has become a very frequent and serious problem.
Programs with bugs can be very disastrous in most PRC systems.
Even with sequential programs, tﬁe current state of art cannot
always guarantee the acceptable reliability of a large program.

With parallel programs, this problem becomes more serious
and difficult to solve. It becomes very difficuit to envision
the dynamic processes which will'occur under their controls.

This difficulty is much reduced when the parallel program has
a certain desirable structure. The definition of both the basic
parallel pfogram and the structured parallel program made in
chapter 2 was substantially influenced by this consideratién.

A program can be said to be correct only wheﬁ it produces the
desired responses to every 1nput:and also satisfies the performance
requirements such as response time limit, storage space limit, etc.
That is, a correct program should possess the exact behavioral

characteristics specified by the designer. Each time a new program

is produced, it should go through the process of software validationm,
which guarantees its correctness.

It is épparent that program validation becomes much easier
in high level l;nguage programs ﬁhan machine language programs.
Therefore, - the discussion in thié section is confined to the
validation of a structured parallel program.

The complete validation is a process of assuring the absolute

correctness of a program through the verification of its complete
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behavioral characteristics. In spite of various serious efforts
made so far to achieve this ideal goal, currently available
techniques seem to be infeasible to solve the ﬁroblem of reliability
in large programs. Therefore, this section is concerned with more
cost-effective and feasible approaches which establish an accep-
table degree of confidence in the correctness of a program without
requiring an exhaustive verification of its absolute correctness.

It is aimed at the partial validation of a program, using techniques

that are subject to a high degree of automation. The common
principle in these techniques is to verify the correctness of a
program under some representativecircumstances [ram 74a].

In other words, the underlying basic strategy is to decompose
the complete behavioral characteristics of the program into a
certain number of classes and then to validate each class of

characteristics to a limited extent. Software testing is the

usual approach. Software testing serves to detect and locate errors
in a program. In this discussion we shall define software testing
as the act of determining the presence of errors and debugging as
the process of error location and correction [elm 71]. Software
testing consists of exercising the program yith selective test-
inputs and evaluating outputs to determine the correctness.

Two fundamental problems are encountered in the development
of an automated software testing system: (1) generation of represen-
tative test-cases, and (2) generation of test-inputs. A suitable
set of test-cases must be determined and then each of them must be

tested with the appropriate test inputs.
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These two.processes are again objects of optimization.
Therefore, the principle of level-by-level optimization prevailing
discussions throughout this report is applied once more. That is,
the strategy of level-by-level validation is adopted.

There are basically two aspects in level-by-level validation:

component validation and composiﬁion (interface) validation. That

is, one is to validate each component in isolation from others,

and the other is to validate a composite system consisting of a
number of components without concerning the internal behavior of
each component module. In comparison to the case where the
validation of a composite system always involves the examination
of the combinatibn of both interpal behaviors of its cdmponents
and ones of their intérfaces, level-by-level validation can be
superior in terms of cost-effectiveness andlpractical feasibility.

The structured parallel program is highly amenable to this
level-by-level validation. Each block can be validated independent
of others and its internal behavior is not closely observed when
its scope is validated.

The validation or testing techniques of a block vary depen-
ding on the type of the block. Among five types of blqcks in the
structured parallel program, the SEQ-block and the PAR-block are

the main objects required to be thoroughly tested.

3.4.1 Testing of a SEQ-Block B

3.4.1.1 Test-Case Generation

As indicated before, the process of generating test cases can



be regarded as the decomposition of the complete behavioral
characteristics. The program structure serves as a useful basis
for this test-case generation. More specifically, each control
flow path is a suitable candidate to be a test-case. A control
flow path denoted by P. is roughly defined as a syntactically
legitimate execution-sequence of program-elements, where each
program-element is either a basic program-element or a block
nested in the SEQ-block B. Advantages of using pc's as test-
cases are two-fold. One is the high coverage of testing achieved
by using such test-cases and the other is the convenience in
generating test-inputs as well as evaluating test-outputs.

Test-inputs are always driven in front of the block-head
SEQBEGIN primitive, and test-outputs are always taken after the
block-tail, SEQEND primitive.
It is apparent that this is more advantageous in comparison
to the case where test-inputs are driven inside B and test-
outputs are taken inside B.

Therefore, the model of B used for this testing,(J4T(B) is

a triple (G, V VO) where

I’
(1) G = (N,A) Trepresents the structure of B,

(2) VI represents the set of all variables which are used as

operands in B but have been assigned values before entering
into B, and
(3) V0 represents the set of all variables which are used as

result variables in B.

For tést-case generation, only G is used. VI and VO are used
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for test-input generation and test-output evaluation. Apparently
G 1is an acyclic graph and each node incident to more than one
outgoing arcs represents an A~-BRANCH or SEQBEGIN primitive. Each
P, corresponds to a connected sequence of nodes from n[l] to the
last node n[f] representing the block-tail, SEQEND primitive.

Thus, enumeration of every P. becomes a simple process.
Let Pc denote the set of all pc's in B. If the number of
pc's, #(Pc) is small, every p_, can be used as one of test-cases.
That is, each P, becomes a test-path.

However, if #(Pc) is too large, a suitable subset of Pc
can be selected.

Among a number of schemes of selecting a subset of Pc, a
simple but suitable one is to take the minimum number of pc's

covering all arcs 1nL){ (B). Such a set of p 's 1is called a
T c

minimal arc-covering set of pc's. There are normally a number
of minimal arc-covering sets and one of them can be obtained by

the following simple procedure.

Algorithm 3-4

1. Set G' = (N',A') «G = (N,A), P« ¢ and P' « ¢.
2. Find a directed path from any entry node to any exit-node in
G', p.
Then P <« P Lﬁp}
3. Remove all arcs (not including nodes) on p from G'.
4, 1If exist, remove from G' all nodes having no incoming arcs

and no outgoing arcs.

"
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5. If G' % ¢, go back to 2.
If G'=¢, VpeP do the following
5.1. If the starting node of p is n[l] and the terminal node
of p is n[&], then go to 5.4.
5.2. If the starting node of p, n[i] is not n[l], find any
arbitraryvpath from n[l] to n[i], p(n[l], n[i]) and set
p <« p(n{l], n[i]) o p , where o denotes concatenation.
5.3. 1f the terminal node of p, n[j] is not n[f], find any
arbitrary path from n[j] to n[4], p(n[j], n[R]) and set
p < p e p(ljl, n[2D).
5.4, P' « P' U{p}

6. Terminate. P' represents a minimal arc-covering set.

Figure 3-31 illustrates this algorithm.
Another simple one is to take the minimum number of pc's
covering all nodes inr (B). Such a set of pc's is called a

minimal node-covering set of pc's. Again there are normally a

number of minimal node-covering sets. The problem of finding one
of them is a slight variation of the problem of finding g -
minimal chain decomposition of G in L}lT(B), which was
introduced in section 3.3.

The consequence of using one of these subsets of Pc is that
the testing becomes less expensive although the assurance obtainable
is also reduced. When the program is supposed to have few bugs if
it does at all, these strategies become more cost-effective.

There is one intrinsic problem in prograﬁ testing. A control

flow path P, reflects only syntactic aspects of the SEQ-block.
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1 ¢3+4+6+7
P=13%
—_— ([
13467, 1+3c4+6-7,
RO = 1°3-6°1,
3*257, Pt = ¢ 136257, ¢
I-2-4+5 12457

Figure 3-31 A Minimal Arc-Covering Set of pc's
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However, it is possible that some pc's could become invalid
when the semantic aspect of the program is taken into account.

A P, is said to be unexecutable if no inputs to the

program can lead to the execution of the P.- Although some
unexecutable paths are sometimes detected by the brief examination
of the program text, this detection in general requires an exhaus-
tive process of logical inferences. Analogous to the complete
validation, the complete detection of unexecutable paths seems
infeasible at present. At any rate, this is a factor contributing

to some efficiency degradation in any validation process.

3.4.1.2 Test-Input Generation and Program Instrumentation

After generating a suitable set of test-cases (paths), the
next problem is how to generate inputs which lead to the execu-
tion of these test-cases. The difficulty in test-input generation
has been well understood so far. Problems encountered in the
complete validation approach reappear in the automated synthesis
of test inputs. Human judgement is inevitable in general.

However, useful information obtained from program specifica-
tion and construction phases can greatly reduce the difficulties

in test-input generation.

3.4.1.2.1 Test-Input Generation Schemes

Depending upon the extent of information available, the
following three schemes can be conceived.

First, when the information is sufficient to deterministically
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generate test-inputs for the givén test-path, the generation

scheme becomes the direct automated synthesis. Otherwise, either

the iterative synthesis or the manual synthesis has to be employed.

The iterative synthesis is to repeatedly generate test-inputs using

the information insufficient for direct synthesis until the inten-
ded test-path is.exercised. The iterative synthesis can be incor-

porated into two classes of testing strategies: sequential testing

and stochastic testing. In the former, all test-paths are ordered

linearly and tested one by one according to the order. Thus testing
each path may réquire a number of iterations before the relevant
test-inputs are generated.

On the other hand, in the case of stochastic testing, a program
is continuously tested with a certain number of randomly generated
inputs. That is, generation of fandom input and the exercise of
the program with it is iterated a certain number of times. Test-
outputs are evaluated collectively at the end of a series of test-
runs. During a series of test-runs, the number of traversals

through each test-path, called path-traversal-frequency, is

measured. Then test-paths with high frequencies may be regarded

as sufficiently tested, while the remaining ones may be taken for
the next step. The next step may be either the complete repetition
of the above process with a new reduced set of objective test-paths
or the sequential testing when the number of test-paths remaining ;‘
unexercised becomes sufficiently small. This continues until

all test-paths are validated.

Test-output evaluation is closely related to the input
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generation. When the test-input is generated, it should be
accompanied with the appropriate information to be used for the
evaluation of test-output. The information will vary from the
exact output values expected to some simple properties such as
checksum, functional relationships between output values, etc.,
which should hold for reasonable output. That is, the output
evaluation scheme again depends on the amount of information
available from program specification and construction phases. In
general, the exact output valﬁes seem more likely to be available
where the test-input can be generated through the direct automated
synthesis. Sometimes incorrect output can be caught watching if
the unexpected flow-path is exercised. On the other hand, in the
case of iterative synthesis, the information provided may be
mostly simple properties which can be used to check the reason-
ableness of test-output.

In all of these cases, there arises an essential need to
closely observe the behavior of a program during the test-rum.
First, the path exercised during the test-run must be identified
in both direct synthesis and iterative synthesis. This is
essential for systematic performance of testing process as well as
for ascertaining the correct synthesis in the case of iterative
synthesis. Second, it is desirable to stop exercising the program
as soon as possible, once the flow gets out 6f the objective test-
path. In the case of direct synthesis, this may occur due to
the incorrect synthesis of test-inputs or the errors in a program.

In the case of iterative synthesis, the earlier stop directly leads
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to the improved testing efficienqy. Third, it is desirable to
detect the erroneous condition aé soon as possible after it occurs,
or detect in the place as close to the source of the error as
possible.

The mos; effective way of satisfying these needs seems to be

the use of software monitors. A software monitor is a code-

segment which is installed insidé the target program and operated
for the purpose of observing the-dynamic behavior of the program.
Two problems get involved in this approach: instrumentation
and operation. The more monitors are employed, the more infor-
mation can be obtained. However; each monitor accompanies
operation overhead in terms of tﬁe extra amount of execution time
and storage. Therefore, it becomes desirable to install a
minimum number of monitors at the suitable locations inside a
program while providing all necessary capabilities. In sections
3.4.1.2.3 and 3.4.1.2.4, algorithms are developed for the instrumen-
tation with a minimum number of monitors and their efficiencies
are analyzed. Next, there is a problem of how to operate the
installed monitors. With respecf to instrumentation‘overhead
involved, it is desirable to install general purpose monitors,
while the role (function) of each monitor should dynamically
change as the testing proceeds. This is discussed in sections

3.4.1.2.2 and 3.4.1.2.5.

3.4.1.2.2 Types of Monitors

The fundamental and useful monitors are (1) the ones used for



test-path sensitizing, called flow-controlling monitors m_'s,

£

(2) the ones measuring pc-traversal-frequencies f(pc), called

f(pc)—counters mp's, and (3) the ones detecting erroneous con-

ditions, called error detectors md's, such as variable-out-of-

range, excessive delay, etc.

The decision about the number of m.,'s and their locations

d

can be made more flexibly than the one about other kinds of
monitors. In general, the minimum number of md's required is
rather hard to be rigorously defined.

On the other hand, the minimum number of mf's capable of
sensitizing every p. can be precisely obtained. A pc[j] in
B is said to be sensitized when it is the only executable P,
In order to sensitize a pc[j], all other pc's must be set to
be unexecutable by mf's installed on them and controlled by the

test supervisor. The test supervisor here refers to a composite

system consisting of the components performing the selection of

the next test-path, test-input generation, monitor control and

output eﬁaluation. A flow-controlling monitor me is a code-
segment installéd on an arc, i.e., between two program—elements.
Its function is to transfer the control eithervmerely to the next
program-element on the test-path or to the test supervisor,
depending on the status dynamically assigned by the test super-
visor. (e.g. Figure 3-32)

A me is said to be closed when it is set to transfer the

control to the test supervisor, and open otherwise.

Similarly, the minimum number of mp's required for counting
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f(pc) pf every p_ in B can be obtained. It is shown later in
tﬁis sectioﬁ that mp's installed on same locations as the

minimum number of mf's are sufficient to measure f(pc) of every
P.- This useful property leads us to the strategy that once we
find the minimum number of mf's and their suitable locationmns,

we can install that number of general purpose monitors capable

of the functiéns of all three m, mp and my at those locations.
Therefore, this section concentrates on the inétrumentation with
mf's.

A set of mf's in B is said to be complete if it is
sufficient to sensitize every P, in B. By this definition,
there may be a number of complete sets. A complete set is said
to be redundant when its proper subset is also another complete
set, and irredundant otherwise. Among all irredundant sets, the

smallest one, i.e., the one consisting of the smallest number of

m |}

£ S is obviously the minimal set.

In the next section, an algorithm is described which generates
a minimal set in the case of a GOTO-less structured parallel
program, but nearly-minimal set in the ease of a generél structured
parallel program. Another algorithm generating a minimal set for a
general structured parallel program is provided in section 3.4.1.2.4,
p = p{1]lep[2] denotes that path p is the concatenation of paths

pl[1] and p[2]. P[1l] =« p denotes that p[l] is a subpath of p.
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3.4.1.2.3 A Minimal Algorithm for a GOTO-less Structured % -

Parallel Program

Let SI (MI) denote a set.of all nodes incident to single
(multiple) incoming-arcs, and éo (MO) denote a set éf all nodes
incident to single (multiple) outgoing-arcs. That is,
SI = {n[#(Ay@) =1AneN pfullT(B)}. And SISO = SI N SO.
Similarly, SiMO, MISO, MIMO are defined. |

The algorithm 3-5 is représented by the flowchart in
Figure 3-33. It proceeds in such an order that each node can be
precessed (i.e., becomes ready) only after all its predecessors
have been processed. F contains a set of arcs which have been
chosen as locaﬁions for mf's as the algorithm proceeds. In
Figure 3-34 , this algorithm generates a redundant set of 9 mf's
while the minimal set consists 6f 8 mf's. The assertion that
this algorithm produces a complete set F 1is proved in the
following.

For the sake of simplicity, the following terminologies are

adopted.

Definition 3-6. - A detour subgraph in G ofngT(B),'represented

by gy = (N[i], n[j], d[m], d[n]), is a subgraph in which (1) there
are exactly two paths, d[m] and d[n], from its sole entry-node
n[i] to sole exit-node n[j], and (2) d[m] and d[n] are dis-~

joint except in their starting and terminal nodes n[i] and n[j].

(e.g. gy = (n[ll, n[3], I.2:3, 1-3) in Figure 3- 34)

d[m] and d[n] are called detours. is said to belong to

gp
its exit node n[j]. Similarly, detours d[m] and d[n] are said



N « {all nodes in
G} :

Select a
ready node n.

F contains a
(nearly-minimal)
complete set.

\ . set subtraction

Fig. 3-33 Algorithm 3-5

" .
B B A F+«F\V A (n)
YA ) FY My

ouT I
9)
F<«F AOUT(n)
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Dy (nl11)=1 A : a nearly-minimal set
generated by algorithm 3-5
X : 0 minimal set generated

by algorithm 3-6

N
)Q[Z])-l 2

o

De(n[4l)={1-2-4,1-4}

D, (nl41)= {2-4}
Nginlal) = {1}

~D¢ (nl61) ={2-6,2:4-6}
x D, (nf61) ={4-6}
@0, (nt72)={4-67,67} | Na(nl6D) = {1,2}

/eju, (n(8)) ={2-4-e.4-a}

.*_

De(n[3])
={1-3,1-2- 3}

Ds(n[31)={2-3}
Ng(n[31)={1}

D, (n[51)={2:3-5}

©@71:{2359,4-6:79,6:7:9,4-6:9,6°9,
2:4-8-9,4-8-9}
D,(n[91) = {2:3-5-9,6-7:9,69,4-8-9}

Fig. 3-34 mf's generated by Algorithm 3-S5 and 3-6 R



to belong to n[j]. A complete set of detours in G, denoted by

D(G), are meant all distinct detours found in all gD's in G.

Lemﬁa 3-3 . A set of mf's installed in B is a complete
set if and only if it contains at least one member installed on

every d[m] € D(G).

Proof. (1) Assume there is a detour d[m] with no m. on

_ it. Then there exists gy = (n[i], n[j], d[m], d[n]). Let plyl
denote any path from the entry of G to n[i]l and p[z] denote
any path from n[j] to the exit of G. Whenever the path

p[1] = ply) o din] o p[z] is executable, p[2] = ply]l ¢ d[m] ¢ p[z]
is also executable. So, neither p[l] nor p[2] can be sensi-
tized. (2) Assume every detour has a m. on it and there is

p[1] which cannot be sensitized. Then there exists pl[2] which
is exedutable whenever p[l] is executable. So, there exists

gy = (nlyl, nlx], d[n], d[n]) such that d[m] « p[1], d[n] = p[2]
and either of d[m] and d[n] has no m_ on it. Contradiction.

f
Q.E.D.

Lemma 3-4.. The algorithm 3-5 generétes a complete set with
2 - #(A) arc-references where #(A) represents the number of

arcs in G.

Proof. For every detour d[m], its starting node n[i] € MO
and its terminal node n[j] € MI. At the end of algorithm 3-5 ,
F contains at least one arc on every path between any pair of

nodes, n[i] € MO and n[j] € MI. So, from Lemma 3-3 , it
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generates a complete set. Since the algorithm processes each
node once and each process consists of examining its incoming-

and outgoing-arcs, 2 o #(A) arc-references are involved. Q.E.D. o

If d[j] =« d[i], d[i] 1is said to be redundant. If there is
no d[j] satisfying d[j] « d[i], d[1i] 4is called an essential

detour de[i]. De(G) represents a complete set of de's in G.

Theorem 3-3 . A set of mf's in B 1is a complete set 1f

and only if it contains at least one member installed on every

de € De(G).
Proof. From Lemma 3-3 and the definition of de' Q.E.D.

Algorithm A is particularly suitable for instrumentation of

GOTO-less structured parallel programs.

Lemma 3-5. For a SEQ-block B 1in a GOTO-less structured

parallel program, algorithm 3-5 generates a minimal set.

Proof. To each arc contained in F, (n[i], n[j]), resulting
from the application of algorithm 3-5, there corresponds a unique
pair of nodes (n[k], n[R]) satisfying the following:
(1) nof[k] € MO, n[f] € MI, and (2) there is only one path from -
n[k] to n[f] passing through the arc (n[i], n[j]) and
satisfying that every node on the path except n[k] and n[R] '»0
is a member of SISO. The path is apparently a de. That is,
there corresponds a de to each arc in F. Moreovér, from the

semantics of SEQBEGIN and SEQEND primitives, the set of arcs
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on each de is disjoint from the one on any other de' So,

algorithm 3-5 produces a minimal set. Q.E.D.

3.4.1.2.4 A Minimal Algorithm for a Structured Parallel

Program

Algorithm 3-6 generating a minimal set for a SEQ-block in a
structured parallel program consists of two parts. The first part
is to obtain the necessary and sufficient conditién which a set
of mf's' must satisfy to be a complete set. The second part is

to select a minimal set among all complete sets, i.e., ones

satisfying the condition.

3.4.1.2.4.1. Requirements for a Complete Set

Theorem 3-3 states the necessary and sufficient condition
for a set of mf's to be a complete set. Thus the first part of

algorithm 3-6 comprises identifying the complete set of de's

Lemma 3-6 . Let De(n) denote a set of all de's belonging

to the node n. {De(n[j])ln[j] € MI} is a partition of De(G)’

Proof. (1) The terminal node of any de’ n[j] € MI.
(2) Each de belongs to only one n[j] € MI. From these, Lemma 3-6

is evident. Q.E.D.

Therefore, the first part of algorithm 3-6 aims at obtaining
every De(n) where n € MI. Similar to algorithm 3-5 , algorithm

3-6 processes each node only after all its éredecessors have been
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processed. It is described by the flowchart in Figure 3-35.

D_(n) = {ds(n)}_ denotes a set of detour-segments of the node n,
where each ds(n) represents a path from any node m e M0 to n
but not as yet recognized as detours. Nd(n) denotes a set of
nodes which have been identified as entry-nodes of gd's belonging
to any node m eCIE*Rn). T and Td are temporary variables. Figure

3-34 illustrates the first part of algorithm 3-35.

3.4.1.2.4.2 Selectipn of a'Minimal Set

The second partvof algorithm 3-6 is to select a minimal set
among all complete sets satisfying the condition. The conditi&ﬁ
obtained in the preceding sectioﬁ can be represented by the
de - table denofed by E 1in which Eij is 1 if the arc
corresponding to row i is a segment (subpath) of the de
corresponding to column j, and 0, otherwise.

Using E, the second part of algorithm 3-6 becomes a well-
known set-covering problem [koh 70]. Therefore, various available
techniques can be directly applied to E 1in order to find a

minimal set. This completes algorithm 3-6 . Figure 3-34 shows

a minimal set generated by this algorithm.

3.4.1.2.5 Path-Sensitizing and pc-Traversal-Frequency

(f(pc))-Counting

In a program instrumented with a minimal set of mf's, the
simplest way of sensitizing each P, would be to close all mf's

except the ones on the P.- Again, a procedure can be developed
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for finding a minimum set of mé's which need to be closed to
sensitize the P.- However, the overhead in using such a complex
procedure will usually more thaﬁ nullify the gain due to the
reduction in the overhead for ciosing a mf.‘
The relationship between me and mp is described by the

following lemma.

Lemma 3-7 . Given a complete set of mf's, a subset of those

that are on each P. is unique.

Proof. If there are two pc's with the same set of mf's,
none of them can be sensitized. That is, the given set of mf's

cannot be the complete set. Q.E.D.

This lemma implies that a set of mp's installed on arcs
selected by algorithm 3-5 or 3§6 is capable of measuring f(pc)
for every P.: That is, when a%l mp's ona p,  are consecutively
traversed, f(pé) is incremented. This is illustrated by Figure
3-36.

However, if a program is to be instrumented with only mp's,

a minimal set can be obtained by the following simpler procedure.

Lemma 3-8 . Denoting a set of arcs not in a spanning tree
t of G by Kt’ a set of mpfs installed on Kt is a minimal
set capable of'measuring' f(pc) for every P. € Pc. Moreover,
for the set of arcs A' generated by algorithm 3-6 , there exists

at least one Kt CA'.
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Proof. (1) Each P, covers a unique subset of Kt'
(2) No set of arcs A1 such that #(Al) < #(Kt), satisfies (1).
(3) Removal of A' from G yill result in a set of trees. They
can be connected into a spanniﬁg tree t by connecting a subset

of A', A" CA'. So, A'\ A" = Kt CA'. Q.E.D.

3.4.1.2.6 Evaluation of Algorithms 3-5 and 3-6

Each algorithm has its pros and cons. Algorithm 3-5 has an
apparent merit in its computational simplicity but it does not
guarantee the minimality of the set of monitors generated by it
for a general SEQ-block. Algorithm 3-6 has a merit in that it
always generates a minimal set for any SEQ-block but it has a
serious drawback in its large computational complexity. In othe;

words, the former leads to smaller instrumentation overhead but

larger operation overhead than the latter.

3.4.2 Testing of a PAR-Block B

In the case of a PAR-block B, the notion of a control flow
path P, becomes insignificant because there is only one P.:
That is, once the block-head PARBEGIN is executed,.all the program-
elements in the PAR-block will be executed. Therefore, the cover-
age of testing in terms of the number of times each program-element
is executed during the testing, which has been an important para-
meter in determining a suitable testing strategy for a SEQ-block,
is no longer a factor of any'significance here.

On the other hand, a PAR-block possesses a unique
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characteristic, i.e., simultaneous execution of parallel proces-
sable program-elements. Furthermore, it is highly probable that
the parallel program produced by a human user contains an incorrect
indication of parallelism. For example, successor program-elements
of a JOIN primitive may use same variables as.their result
variables. Naturally, the verificiation of parallel processability
indicated in the program becomes the main part of testing a PAR-
block.

Of course, parallel processability can be validated to a
certain extent by using techniques of detecting useful parallelism
discussed in section 2-3 or their variations. However, detection
of useful parallelism is an optimization process and thus it has
a fundamental difference from the validation process considered
here.

More specifically, if the exact variable-set used by each
program-element is not known, the use of an approximate super-set
was tolerable in detecting useful parallelism. It is no longer
acceptable in validation because of insufficient assurance obtained.

In addition, verification of parallelism indication is a part
of the total validation.

The model of a PAR-block B wused for its testinggj4T(B) is
the same (G, VI’ Vo) as in the case of a SEQ-block B.

Testing of parallel processability can be effectively
performed in two steps. First, the commutativity of program-
elements is tested and then followed by the testing of data-

independency.
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Definition 3-7 . Two program-elements e(n[i]) and

€(n[j]) indicated to be parallel processable in B, are said
to be commutative if any execution of B in which e(n[j]) is
initiated only after the completion of e(n[i]), produces the
same result as any execution of B in which e(n[i]) is initiated
only after completion of e(n[j]), does. It is denoted by
e(n[i]) ~ e(n[jl]).

Apparently, parallel processable program-elements in a correct B,
are always commutative. The second step is amore time~consuming part

than the first step.

3.4.2.1 Commutativity Testing

For any pair of progfam—elements e(nf[i]) and €(n[j])
indicated to be parallel processable in B, commutativity testing
necessitates two test-~cases, one corresponding to the execution
in which €(n[i]) is initiated after the completion of e(n[j])
and the other corresponding to the execution in which e€(n[j]) is
initiated after the completion of e(n[i]).

Preparation of a test-case corresponds to transformation of
B into B' by adding a set of dependencies such that €(n[i])
becomes dependent on €(n[j]) or vice versa. Such a B' is

called a test-transformation of B. Similarly, anngT(B') is -

called a test-transformation of;)4TKB). One useful property in

reducing the number of test-cases required is that test-cases
for two pairs of program-elements can be overlapped. Suppose
there are three program-elements €(n[1]), €(n[2]) and €(n[3])

which are indicated to be parallel processable in B.



Then the following two test-transformations are sufficient.
One is B'[1l] in which e(n[2]) is dependent on e(n[1l]) and
e(n[3]) is dependent on e(n[2]) and the other is B'[2] in
which €(n[2]) is dependent on ¢€(n[3]) and e(n[l]) is
dependent on €(n[2]). Apparently, each pair of program-elements
becomes dependent at least once in two opposite orders. Thus the
number of test-transformations required for testing commutativity
between every pair of program-elements indicated to be parallel
processable in the given program is another object of optimization.

However, parallel processability is not a transitive relation
since the dependency represented by G 1is a partial ordering.

Nor is commutativity here. That is, €(n[i]) v €(n[j]) A
€(n[j]) v €(n[k]) does not necessarily imply that
e(m[i]) v e(n[k]).

This leads to the immense complexity in finding the minimum
number of test-transformations sufficient for commutativity
testing. In the following, a simple procedure for obtaining a
nearly minimal number of test-sequences is developed. The number
of test-sequences generated by the procedure is mostly bounded
by a small number and thus the procedure is subject to high

cost—-effectiveness.

Definition 3-8. Given G Of’JAT(B), the independent node-set
of a node denoted by Cy(n[i]) is defined as a set of nodes N' CN
such that Vn e N', n ¥ n[i] A n ankn[i]),ﬁ n E1?_1(n[i]). i.e.,
J@liD = {afn e Nan Yol A0 ¥RaliD A n YR 1liD].
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and 2 Ji1D) = {elk]) | nfk] e J@[i])} is called the

parallel processable program-element-set of g(n[i]) in B.

o\

Lemma 3;2 . A set of test-transformations a = §4T(B')}
are sufficient for commutativity testing of B, if- o satisfies
the following: for each n[i] € N, there exist two members of «,
one(A_(B') in which Ka[il) in A (B) 1sa subset of
“Ral1]) 1n A (B') and the other A (B') inwhich Jmlil)
in J4T(B) 'is a subset of {p-l(n[i]) in u‘lT(B').

Proof. Since every n[i] becomes dependent on every

n{j] € C9(n[i]) at least once and vice versa. Q.E.D.

Apparently, the condition given in this lemma is a sufficient
~condition. There may exist a minimal set of test-transformations
not satisfying the condition. On the other hand,lit is possible
that there does not exist‘any minimal set satisfying the condition.

However, on the basis of this condition, a simple and prac-
tically feasible proce&ure‘can be developed by which a nearly
minimal set containing a practically manageable number of test-
transformations can be obtained.

Among a number of sets satisfying the condition, one of the

smallest sets is said to be minimal with respect to the condition.

Theorem 3-4. Given a set of test-transformations, o, which :

is minimal with respect to the condition in Lemma 3-9 ,

#FX) < #(o) <2 - #X) ,



where X represents a minimal node-covering set of directed paths

from n[l] to n[f] in G.

Proof.

(1) Pick any path p € X. Then G ofg)&T(B) can be
transformed into G' of(j4T(B') satisfying that for every n[i]
on p, J(n[i]) in Gg,p(n[i]) in G'.

This is because for any pair of nodes n[i] and n[j] on p
such that n[j] e RXnli]) in 6, %} @ILl, nlkD e (J@[i]) x
J@iin) [n02] € RalkD].

Similarly, G OfLJQT(B) can be transformed into another G'
ofg/@T(B') satisfying that for every n[i] on p, C}(n[i]) in
¢ SR @i in @'

Since X covers all nodes in G, #(a) < 2 - #(X).
(2) #(X) 1is equal to thé maximal number of nodes which are

independent of each other.

Denote such a set of nodes by N,. Then for each member n[i] € N,

M M
there must exist one G' offflT(B') in which (NM \ p[i]).g

Rli]). Therefore, #(a) 2 #(N) = #(X). Q.E.D.

This theorem shows that the number of test-transformations
in a minimal sét with resﬁect to the condition in Lemma 3-9 is
mostly small in practice. Furthermore, it provides the basis for
the development of a procedure by which a set, o, containing
2 - #(X) number of test-transformations can be generated.

Such a procedure would comnsist of two steps, one for

obtaining a minimal node-covering set of paths and the other for
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o

obtaining two test-transformations for each path.
Since the procedure for finding a minimal node-covering
set of paths was already introduced in sections 3.3 and 3.4.1,
a procedure for obtaining two test-transformations is discussed
in the following. Given a paﬁh p in G, Algorithm 3-7 produces

G' of;]*T(B') satisfying that for every node n on p,

J@ in 6C Rn) in 6.

Algorithm 3-7 .

1. Set A' + ¢ where G' = (N,A').
N, «{n[11} np < n[l], n, * the immediate successor of
n[l] on p.
2. ObtainCDy(Nt) in G.
3. Check if n_ € (Nt)'
If so, go to 4.
Otherwise, go to 5.
] Ty .
4., A' + A AIN‘ns)
U
N, <N, Ungd
n “n._.
S
GO TO 6.
-1
5. Find a set of nodes Nr =112 (ns) rf:%(Nt).
Do the following for each n € Nr
* ) U X
5.1 Av < A AIN(n) {(np,nﬂ
U
5.2 N_+ N {nl
6. If Nt = N, terminate.
Otherwise, ns + the immediate successor of n on p,

and go back to 2.
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Figure 3-37 illustrates'this algorithm.
A similar algorithm can be developed for'productiﬁg G' of
L)4T(B') satisfying that for every node n on p,
J@ in ¢cR'@ in @'

It is not elaborated here.

3.4.2.2 Data-Independency Testing

Parallel processable prbgram—elements must be not only com-
mutative but also data-independent of each other. As mentioned
before, a verification of daﬁa—independency between program-
elements indicated to be parallel processable in the program is
a difficult problem.

The main difficulty lies in obtaining the exact vector-
variable-set used by each program-element. No currently available
techniques are guaranteed for completeness in this recognition.

One possible but brute force recourse is to aim at partial
validation of data-independency through simulétion. That is, each
time a V-variable is read or assigned during a test-run, infor-
mation including the identification of the program-element
associated with it, its current index and its role is stored into
the table. Then the table is used for post-mortem analysis to
ascertain data-independency between program-elements indigated to
be parallel processable in the program.

One drawback of this approach is that it requires a large
number of test-runs to obtain any reasonable degree of confidence

in data-independency. Moreover, the size of the table used to



Fig. 3-37

A Tesl-TrunsFormation Obtained

by Algorithm 3-7

228



229

record -all V-variable-accesses can be very large so that the
practicality of the approach is further reduced.

More cost—effective techniques are desired for data-
independency validation and this is an important topic for future

research.

3.4.3 Testing of Other Blocks

Testing of a PARDO-block B requires the same techniques
used for testing a PAR-block. The number of iterations to be
executed can be taken as a certain number, k , and then each of
the iterations can be treated as a single program-element so that
the problem is reduced to the testing of a PAR-block.

Similarly, the number of iterations to be executed can be
taken as a certain number k for testing a SEQDO-block B. If
its block-body is a PAR-block ﬁ s g is treated as a single
program—element, and then the testing of B becomes thé one of a
chain of k program-elements. If its block-body is a SEQ-block
g, the model for testing B,ngT(B) is taken as a concatenation
of k:;4r(§)'s. Then the wholeL}lT(B) can be treated as the model
of a large SEQ-block and techniques discussed in section 3.4.1
can be readily applied.

In the case of WHILE-REPEAT-block B, the number of iterationms
to be executed cannot be easily taken as a certain number k.
Both test-case generation and test—input generation become more

difficult in this case. A simple and typical approach in test-

case generation is to use a concatenation of two iterations as the
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model and to select a set of pc's in the model using techniques
discussed in section 3.4.1 . Then a test-path corresponding
to each selected P, is flexibly defined as any execution-sequence
'covering the P, as at least one of its subpaths. Thus the
strategy of stochastic testing becomes more appropriate in testing
a WHILE-REPEAT-block B.

This completes the discussion of practical approaches to the

partial validation of structured parallel programs.



CHAPTER 4

DYNAMIC OPTIMIZATION

In the preceding chapter, various optimization techniques
which can be advantageously employed at the design phase were
examined. Optimization at run-time i.e. dynamic optimization is
considered in this chapter.

As -mentioned before, the highest reward from optimization

can be achieved by a harmonious combination of static and dynamic
optimization. Whereas dynamic optimization can benefit from precise
information about the dynamic behavior of the job which becomes
available during its execution, it is substantially hampered by the
computational overhead involved in it.

This overhead is typical in task-initiation which is one of
the majof objects of dynamic optimization. In section 4.1, a scheme
for perforﬁing dynamic optimization with the minimized effect of

overhead (called the dynamic look-ahead model (DLM)) is discussed.

The implementation aspect, as well as the performance evaluation
through simulation, is dealt with in that section. Subsequently,
the statistical analysis of the DLM from the macroscopic viewpoint
is discussed in section 4.2. Section 4.3 is concerned with the

problem of look-ahead of conditional branches during job-execution.
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4.1 Dynamic lookahead model (DLM)

The necessity of dynamic optimization has been repeatedly
emphasized. The conditional branch, the task execution-time, and
the job-mix in the multiprogramming environment are major factors
degrading the effectiveness of static optimization. Much free
from these difficulties, dynamic dptimization can be advantageously
employed, proVided that the overhead involved is insignificant.

The amount of overhead involved varies depending upon the
type of dynamic optimization. One of the major objécts of dynamic
optimization is task-initiation. Sequencing of independent tasks
competing for the common resource at run-time, called dynamic
sequencing is an important dynamic optimization. Although various
types of overhead can be considered together, thg overhead involved
in dynamic sequencing is considered typical and is examined in this
section.

The principal unit in the basic machine responsible for dynamic
sequencing is the CIIU. In essence, the function of the CIIU is of
an administrative nature. Therefore, any computation required by
the CIIU is administration overhead. However, unless this
administrative computation by the CIIU contributes to increased job-

execution-time, it is not a critical overhead. On the other hand,

if the FIIU or the ALPS happens to be idle while waiting for the
output from the CIIU, the idle time becomes a critical‘part of the
overhead.

Thus it is an important problem in operating a powerful parallel

processing system to conceal this administrative computation behind
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the execution of functional tasks so that the administrative

. computation does not become the critical overhead factor.

Thé basic machine described in section 3.1 provides little
opportunity for the CIIU to contribute to the critical overhead. It
runs ahead of the FIIU most of the time interpreting control
instructions related to the initiation of successor tasks, while
current tasks are initiated by the FIIU or executed by the ALPS.

On the other hand, the CIIU, employing only a trivial random
sequencing strategy, may often run too far ahead of the rest in the
basic machine so that it may have to be idle periodically. Then,
the question arises as to whether it is possible to better utilize
the CIIU, which is frequently becoming idle, so that the overall
efficiency of job-execution may be improved. This is the area inwhich
dynamic'sequencing plays a host. By employing a more effective
sequencing procedure in the CIIU, the capability of the ALPS can
be better utilized and thus the turnaround time of jobs can be further
improved. Here is an obvious trade-off between the sophistication
of the sequencing procedure employed and the freedom from the critical
overhead. That is, a sophisticated sequencing procedure accompanies
a large amount of computation so that the probability of contributing
to the critical overhead is increased.

In order to be free from both the hazard of critical overhead
and the frequent idle state, the CIIU must be adaptive to the dynamically
varying situations while the job is executed. It should be able to
dynamically regulate the extent of dynamic sequencing depending upon

the situation. The primary parameter determining the extent of



234

dynamic sequencing is the type of sequencing procedure employed by the
CITU. However, it is rather a design parameter than a parameter
which can flexibly vary during job-execution.

Once the type of sequencing procedure employed by the CIIU is
fixed, the next major parameter determining the extent of dynamic
sequencing is the size of a job-segment or the size of the control
part of a program taken at a time for sequencing. In a trivial
random sequencing, the sequencing model can be regarded as consisting
of a single task because the CIIU does not examine more than one
task in order td determine the execution sequence.

In contrast, any non—-trivial sequencing procedure requires the
examination of several tasks before the execution sequence is
determined.

The control part of a program taken at a time ﬁy the CIIU is
here called the t-segment. Its size in terms of the number of
tasks (FUNCTION-CONTROL instructions) contained is called the

t-segment-size. This t-segment-size can conveniently vary within

the range determined by the size 6f the ACM. Therefore, the remaining
problem is how to achieve the maximal effectiveness of dynamic
sequencing without involving any critical overhead through the adaptive
selection of the t-segment of a suitable size at ruﬁ-time.

In order to provide a convenient basis for the analysis of the
problem, the basic machine (Fig. 3-24) employing effective dynamic
sequencing can be modelled as shown in Fig. 4-1. The model is called

the dynamic look-ahead model (DLM). In this model, the basic machine

is viewed as a system composed of two major units and the buffer
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storage between them. One unit is called the look-ahead unit (LAU)

and it represents a combination of the CIIU and the ACM in the basic
machine. The other unit is called the executer (EXEC) and it represents
the rest of components in the basic machine except the CPM and the
buffer of the FIIU. The buffer of the FIIU is represented by the
buffer between the LAU and the EXEC in the DLM. Thus the LAU picks

a t-segment from the control program residing in the CPM, and deter-
mines the execution sequence of tasks in the t-segment. Then it sends
the sequenced t-segment i.e. the determined execution-sequence, as

well as the addresses of functiénal instructions, into the buffer.

Then the EXEC executes functional instructions (tasks) according

to the execution sequencé stored in the buffer. Both units run
asynchronous of each other unless the buffer becomes saturated or

the LAU has gone ahead of too many undetermined decision-elements

i.e. BRANCH instructions.

4.1.1 Dynamic Segmentation

The most harmful state of the DLM to be avoided is the omne
where the EXEC is idle and waiting for the arrival of a sequenced
t-sement while the LAU is busy. On the other hand, the optimal
state of the DLM is the one where the execution-time of tasks
corresponding to each t-segment spent by the EXEC is equal to the
time spent by the LAU for analyzing the successor t-segment. From
now. on, the execution-time of tasks corresponding to a t—segment
is simply called the execution-time of a t-segment. Using the

example shown in Fig. 4-2, the optimal state is where the execution-

-5
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time of ghsegmetn A 1is equal to the sequencing-time of t-segment

B so that the sequencing overhead of t-segment B is completely
hidden behind the execution-time of t-segment A. 1In fact, the

DLM in this optimal state can be viewed as a high-level pipeline.

Or optiﬁal operation of the DLM ﬁay be viewed as dynamic balancing
of the DLM into a pipeline. Appérently balancing is achieved by
controlling the size of the t—seément. The process of picking a
t-segment of the size determined to balance the DLM is called dynamic

segmentation. In order to develop a criteria for determining a

suitable t~segment-size each time, it is desirable to know the
relationship between the t-segment-size and the sequencing-time
of a t-segment of the size. The relationship is called the overhead

characteristic function (OCF).

Due to the statistical nature of the OCF, a simple but reasonable
way of obtaining the OCF is by experiments. Figure 4-3 shows the
graphical representation of an example OCF. It was obtained by
experiments with a number of randomly generated sequencing models
and a simple heuristic sequencing procedure described in [red 72,
ram 74]. The random generation procedure is described in section 4.1.3.
This heuristic procedure assumes the following simple environment.

It is assumed that once a task enters into a pipeline, its results
become available only when it has passed through the pipeline. Thus
the minimum deiay between a task and any of its dependent successors
becomes equal to the turnaround time of the task and there is no
need to associate the delay-time with éach dependency in this case.

But the heuristic considers the case where the turnaround time of

v
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a task through a multi-functional pipeline varies depending upon
the type of the function, i.e. the function-code. The heuristic is
based on a priority function, fpri’ by which the priority for each

ready node n[i] representing the i-th task is determined.

£ (I = SIGN(E(IL]) - £ (al1]))

MIN(t(n[i]), ts(n[i])),

turnaround time of the i-th task and

where t(n[i]):

£, (alil) = t(n)

- MAX
€. Q(nlil)
Then the task of the higﬁest priority is added to the partial
execution-sequence obtained up to the present, the set of ready
tasks is updated and the above priority calculation is repeated.
Apparently, the applicability of this heuristic is limited.
However, the development of various heuristic sequencing procedures
as well as their ‘comparative evaluation is not of major concern
in this discussion.
More meaningful in Fig, 4-3 is the shape of the curve rather
than the numerical significance or the applicability of the heuristic
procedure, since the latter depends upon the method of implementation
or the typé of ;he ALPS.
The smooth curve in Fig. 4-3 is an approximation of the data
represented by the discontinuous line shown on it. The curve
approximate a polynomial. From now on, the OCF refers to a continuous

function f(x) where x represents the t-segment-size and f(x) is

.
-~
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sufficiently close to the average sequencing-time of a t-segment of
size x in the given system. In fact, the OCF in a system employing
any non-trivial sequencing procedure would be a polynomial function
of one kind or anmother, it not an exponential function.

Given the OCF in Fig. 4-3, if the LAU estimates the execution-
time of the just sequenced t-sement as 75 time-units, the suitable
size of the next t-segment will be chosen to be 21 tasks by consulting
the curve.

To be more precise, the LAU uses the estimate of the execution-
time of all t-segments queued in the buffer. Thus if the queue of
t-segments in the buffer becomes long, the LAU will select a larger
t-segment whose sequencing-time is expected to be equal to the
execution-time of all t-segments queued up so that the LAU may
complete the analysis of the next t-segment about the time when
the EXEC completes execution of the t-segments queued. This
safeguards the DLM from being too much out of baiance in its
workload distribution.

Next, a t-segment of the determined size must be taken from
the cqntrol program without violating precedence relations between
tasks. In theory, this selection can be regarded as the part of
dynamic sequencing and its optimization may be attempted. However,
since the effect of the selection method on the overall system
performance is not easily visible, a sophisticated method requiring
a large overhead would not be favorable unless it makes the
significant increase in the system performance.‘ Experiments have

confirmed the unfavorableness of the sophisticated procedure [ram 74].
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4.1.2 The aﬁalysis of the OCF

From the polynomial OCF, two properties of the DLM under the
steady-state become immediately apparent. First, the average t-
segment-size under the steady-state can be estimated. This size is

called the stabilized t-segment-size. The estimation is performed

as follows.

The straight lines 1,2,3 of Fig. 4-4 called the normal execution-

time function (NEF) curves represent the expected execution-time of

a t-segment depending upon its size, when T  is 1.5, 2.5 and 4.0

respectively. Here Te denotes the average effective execution-time

per task for the given job and it is obtained as follows:

where Ta denotes the average execution-time per task i.e. the

average turnaround time of a task through the EXEC, and ADPP

denotes the average degree of parallel processing which is in turn
defined as the average number of tasks being executed concurrently
during the execution of the job. Provided that the EXEC is always
busy, llTe is the average number of tasks which the DLM executes

in one time-unit. Ta is mostly dependent upon the characteristics

of pipelines composing the ALPS and thus it is reasonably static
between jobs oi t-segments. The ADPP is dependent upon both the
degree of parallelism in a job and the one in the EXEC. If the job
possesses abundant parallelism, the degree of parallelism in the EXEC

will be a dominant parameter in determining the ADPP. If the ADPP

-Q'
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can be assumed to be reasonally static between t-segments, Te also
becomes reasonalby static between t-segments, and the size of a
t-segment multiplied by Te can be taken as a reasonable estimation
of the execution-time of the t-segment in a steady-state.

The crosspoint of the NEF curve with the OCF curve (excluding

the origin) is called the stabilized;point. Since the OCF is
generally a polynomial curve, there will exist a unique stabilized
point. The stabilized point represents the stabilized t-segment-

size and the sequencing-time of a t-segment of the sizé. For instance,
the stabilized t-segment-size is 36 when T, = 4.0 in Fig. 4~4. The
reason is as follows. Let z[i]:denote the i-th t-segment-size
selected by the LAU, OCF(x) denote the sequencing-time of a t-segment
of the size x, and NEF(x) denote the normal execution-time of a t-

segment of the size x. Suppose z[l] is 30 which is smaller than the

X

stabilized size 36. Then NEF(z[1]) = 36 Te = 120. Now z[2] is

1

NEF(z[1]) = 120. So, z[2] = 32 from

obtained such that OCF(z[2])

the OCF curve, and NEF(z[2]) 32 x Te = 128. Similarly, (z[3] = 33,

NEF(z[3]) = 132) = (z[4] = 34, NEF(z[4]) = 136) = (z[5] = 35,
NEF(z([5]) = 140) = (z[6] = 36, ﬁEF(z[6]) = 144) = (z[7] = 36, NEF(z[7])
= 144) = (iiiiinn.. By the same reasoning, it can be intuitively

seen that z[i] iteratively converges to the stabilized size 36 in the
case where z[1] is greater than 36.

The second apparent properfy is the feaéibility of estimating
the lower bound of Ta in the DLM below which the hazard of critical
overhead increases abruptly. Line 1 in Fig. 4-4 is the derivative‘

of the OCF curve which passes through the origin. It corresponds

‘o



to Te = 1.5. This Te multiplied by the ADPP is the lower bound of
Ta' Below this bound, the LAU becomes the constant bottleneck
disabling the dynamic balancing of the DLM and thus the idle time
of the EXEC, i.e. the critical overhead increases rapidly from zero.
If this happens to be the case, it becomes inevitable to replace

the current sequencing procedure with another one requiring less
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overhead. On the other hand, given Te’ the suitability of a sequencing

procedure can be judged on the basis of these properties.

4.1.3 Simulation of the DLM

As an attempt to validate the feasibility of the DLM, some
simple simulations were carried out. A sequencing model of a job
instead of its control program was used as the main input to the
simulated DLM. The sequencing procedure used, as well as the
environment assumed, is the same as described in section 4.1.1. 1In
order to test a wide range of inputs, the random PTG generator
(RPTGG) has been developed. The RPTGG is parameterized such that
a user can control the arc density and the pattern of the graph
G = (N,A) being generated to tune it up to the desirable pattern
based on intuition or experience. It is a useful tool for various
studies in parallel processing. Input parameters to this RPTGG are
#(N), S and P, where S and P are ones influencing the pattern of

G = (N,A). The basic algorithm is as follows.

Algorithm 4-1

1. Generate of a class of node-subsets
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{N[1], N[2] ......,N[k]} as follows.
1l.1. set i+« 1, SUM+« 0
1.2. Generate the size of N[i], #(N[i]), randomly.
1.3. SUM « SUM + #(N[i])
1.4. Check if SUM > #(N).
If so, go to 2.
otherwise, set i « i+l and go back to 1.2.
2. Se; k « i, apd
#(N[k]) « #(N[k]) - (SUM - #(N))
3. Starting from N[1], do the following for each N[i], i < i < k.
3.1. do the following for each node n € N[i].

3.1.1. Pick randomly S nodes belonging to any of node-
subsets generated later than N[i]. Draw an arc
from n to each of S nodes.

(If i = k, this step is omitted).

3.1.2. Pick randomly P nodes belonging to N[i - 1].

Draw an arc from each of P nodes to n.

(If 1 = 1, this step is omitted.)

4, Terminate

After each G was generated, a pipeline-code to be associated
with each task (node) was randomly generated. The OCF shown in
Fig. 4-3 was generated and incorporated into the simulated LAU.
The execution-time of each task was also randomly generated using
the average value Ta. Simulations were performed for several
values of Ta (1,2,5 and 10 time-~units). One time-unit represents

1 millisecond taken by the simulated LAU. The whole simulator was

‘g



prepared in FORTRAN and run on the CDC 6400 computer. As a measure
of performance, the following quantity was used:
T

Gain (%) = (1 -T—") x 100
s

where Tc = turnaround time of a job in the DLM énd Ts = sum of
execution-times of all tasks in a job.

The diagrams in Fig. 4-5 shows the typical results obtained.
Curves 1 and 2 represent the extreme case used to compare the
performance of the DLM represented by curves 3 and 4 with. They
represent the case where dynamic segmentation is not performed, i.e.
the whole job is regarded as one t-segment and analyzed at a time
by the LAU and then sent to the EXEC. Curve 1 is the case where the

overhead is completely ignored. That is, it can be interpreted as
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the upper bound of the gain obtainable by the DLM, given the sequencing

procedure. Curve 2 is the case where the full sequencing overhead
contributes to the critical overhead.

Curves 3 and 4 represent the case of the DLM. Curve 3 is the
case where the sequencing-time of the first t-segment is completely
ignored, while curve 4 is the case where it fully contributes to the

critical overhead.

Curves 1 and 3 can be regarded as those situations in which jobs
are continuously entering the system and the séquencing of the new
job is fully overlapped with the execution of its preceding jobs.
On the other hand, curves 2 and 4 can be regarded as those in which
jobs are entering at discrete intervals and the sequencing of the
new job is not at all overlapped with the execution of preceding

jobs. Therefore, the gain under the continuous operation will range
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between those of curves 1 and 2 for the systeﬁ employing dynamic
sequencing without dynamic segmentation and between those of curves
3 and 4 for the DLM.

The first thing apparent in Fig. 4-5 is that the performance
of the DLM was drastically degraded when.Ta was less than the lower
bound (when Ta = 1 in Fig. 4~5 (b)). Second, it is noteworthy that
the DLM maintains a Qigh gain close to the maximum upperbound of
performance (curve 1). This implies that it is highly adaptive to
a dynamically varying situation. More specifically, it steadily
maintains over 857 of the ma#imum gain obtainable, when Ta is larger
than 2 time-units.

This simulation did not compare the performance of the DLM
with the one of the system in which no dynamic sequencing but trivial
random one was employed. Although it could have provided additional
results 6n the amount of possible performance improvement of the DLM
over the system not employing dynamic sequencing, such results would
be highly dependent on the sequencing procedure as well as Job-

characteristics.
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4.2 Statistical analysis of the DLM

The state of the DLM during the operation is reflected by

the number of tasks queued in the buffer storage. Thus by analyzing
the dynamic behavior of the queue of tasks in the buffer, a
macroscopic measure of the steady-state performance of the DLM can
be analytically derived. Such a measure together with the stabilized
t-segment-size can be a basis for the optimal design of the buffer.

When all the capacitonf the buffer is filled with the queue
of sequenced tasks, the LAU will spend idle time holding the sequenced
t-segment. On the other hand, if the buffer is mostly empty, it is
highly probable that the EXEC will spend much of idle time waiting
for the arrival of a new sequenced t-segment. In general, the
amount of the buffer filled will dynamically vary depending upon
parameters sucb as variance of execution time of a t-segment from
the normal execution time, variance of sequencing time of a t-segment
and the capacity of the buffer; That is, it is subject to statistical
behavior and thus its statistical analysis can be applied to obtain
a macroscopic measure of the system performance. In other words, from
the macroscopic viewpoint the DLM can be viewed as a queueing model
consisting of a single source, a single server and a queue [cof 73].

For the sake of simplicity in analysis, the EXEC can be modelled
by the server taking one task at a time and completes its execution
in average of Te time-units. That is, tasks queued are served one
by one at the average interval of Te time-units. Similarly, the LAU
is modelled by the source producing one task at a time at an average

A A

sequencing-time of a t-segment by its size. Thus sequencing of a

interval of-l time-units, where-l is obtained by dividing the



certain t-segment in the DLM is modelled by sequencing of tasks in

1 .
the t-segment one-by-one at an average interval of i-tlme-units.

The completion of the execution of a task is called a departure
and the completion of the sequencing of a task is called an arrival.

H = i%- is called the departure rate and A is called the arrival
e

rate. Whereas p is static, A varies as the t-segment-size varies.

Therefore A is a function of time t, A(t).

The maximum length of the queue of sequenced tasks denoted by
L is defined as the capacity of the buffer plus one, corresponding
to the capacity of the EXEC holding the task being executed. That
is, the task being executed is treated as the first-element of the
queue. The number of tasks in the queue at time t is called the
Q-length at‘that time and denoted by x(t).

Let t[i] denote the time when the LAU completed the sequencing
of the i-th t-segment. Then the expected execution-time of tasks

in the queue at time t[i] except the one being executed is obtained

by T, - {x(t[i]) - 1}. The next t-segment-size k[i+l] must be chosen

such that OCF(k[i+1]) = Te {x(t[i]) - 1}. i.e. k[i+l]
= OCF-]'(Te «{x(t[i]) - 1}) Thus A(t) during the interval (t[i],
t[i+l]) is:

~1 .
©fie1]  OCF (T bx(t[iD-11)
OCF(k[it+1]) ~ Te-{x(t[i])-l} s

A(t) =

provided that x(t) < L-1 during the period. Therefore, A(t) is
constant within each interval between two consecutive sequencing-
completions of t-segments, whereas it may change between different
intervals. This greatly complicates the analysis of the model.

Thus a simpler model is adopted at the sacrifice of some accuracy,
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in which A(t) is solely dependent upon the current Q-length x(t)
rather than x(t[i]). That is, the difference between x(t) and 22

x(t[i]) is ignored in order to enable the approximate analysis of

the steady-state behavior. Now, 2’
1 s
= , if x(t) = 0, 1
e
-1
OCF (T - {x(£)-1})
At) = T (x(6)-1] s if 1 < x(t) <L (4-2)
0 , if x(t) =L

The departure process here is assumed to conform to a Poisson
process with the departure rate u. That is, denoting by At and
0(At) any small element of time and any quantity having an order
of magnitude smaller than At, the probability of no departures in
the interval (t,t+At) is 1 - u-At + 0(At) and the probability of
one departure is u-At + 0(At). Departures in (t,t+At) are
statistically independent of t and of departures in any other non-
overlapping interval.

On the other hand, it is assumed that the probability of no
arrivals in the interval (t,t+At) is 1 - A(t)-At + 0(At) and the
probability of ome arrival is A(t)-At + 0(At).

Let pn(t) denote the probability that x(t) is equal to n where
n=0,1,2,...,L i.e. pn(t) = pr[x(t)=n], t>0, n=0,1,2,...,L. _

Let also ln denote A(t) where x(t) = n. Then

pn(t+ t) = pn(t)-{1-(An+u)-At+0(At)}
+ Pn+1(t)-{u-At+0(At)}

+ Pn_l(t)°{kn_l'At+0(At)} for 0 <n < L.



PL(t+At) = pL(t)°{l-u-At+0(At)}

+pp_,(6)- (A -At+0(AE)}
P (t+at) = py(t)-{1-2

(4-3)

O-At+0(At)}
+ pl(t)-{u'At+O(At)}
And
p_(t+At)-p_(t)
pl(t) = lim L it 1
At~>0
= u-Pn+1(t) - (Xn+u)'Pn(t) + An_l'pn_l(t)
‘for 0 <n <L
\J = . - .
pL(t) A1 pL_l(t) M pL(t)
' = 4. - . -
po(t) u pl(t) Ao po(t) (4-4)
Since 1lim p'(t) = 0, 0 < n <L in the steady-staté;
tio D _ :
WPt ~ (An+U).pn + An—l'pn—l =0
A-1"Pp-1 T ¥P, =0
WPy = Ag'Pp =0 (4-5)
So,
An—l n n
Po " Po1 " Tw T ParTehan TR 1A (4-6)
s 1 <m<L
Since
3
p, =1
n=0 n
L n -1
n (4-7)
pu— + .
Py = (1 EEA (T, igl A}
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Here Py is the equilibrium probability that the server is idle,
and the equilibrium probability that the server is busy is given
b ~ Pn-

y1l-mp,

The mean Q-length at the steady-state is:

L
x= 2, p n (4-8)
n=0 :

With these general formulas, let us now examine a simple
example case of the DLM. In this example system, OCF(y) = yz.

Then the stabilized t-segment-size denoted by @ is obtained:

OCF(Q) = Q" = Te- Q
= Q=T
e
From (4-2), 1
An = {Te-(n-l)} 2 for 1 <n <L
-y = L
and AO = Al =7
e
From (4-6), Py =P =Py
Py T pn—l'TeO}‘n-—l
=py T {(n-2)!} » 3<n<L

Py
Figure 4-6 shows Py and x for various cases.
The result in Fig. 4-6(a) indicates that the probability that

the EXEC is idle, , sharply decreases as L increases from L = Te

Po
to L= 3-Te, and thereafter Py becomes static. Since the stabilized
t-segment-size is equal to Te in this case, it can be concluded

that the optimal buffer-capacity with respect to Py is three times

‘g
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the stabilized t-segment-size. This conclusion is further supported
by the result in Fig..4-6(b). The mean queue-length becomes static
as L increases beyond the size equal to 3-Te.

In addition, the sensitivity of Py to the change in Te shown
in Fig. 4-6(a) can be used to judge the suitability of the
sequencing procedure for the given Te. For instance, if Te = 2
and the objective Py is required to be less than 0.1, the sequencing
procedure with its OCF(y) = y2, is found to be unsuitable.

In summary, from statistical analysis of the macroscopic
queuing model, -some insight can be obtained on the suitability of

the buffer-capacity as well as the one of the sequencing procedure.



258

4.3 Priorities of tasks related to BRANCH's

In any non-trivial sequencing procedure, there is one
important aspect which should be reflected in assigning priorities
to tasks.

As mentioned before, if the branch-index of a BRANCH
instruction being interpreted by the CIUU is not available, all
instructions in its successor-list are interpreted. As a result,
tasks belonging to different branches are initiated and the
selection of the real successor is deferred to the DU. Apparently,
a cluster of BRANCH instructions will hamper the look-ahead by the
CIIU, thereby increasing the critical overhead.

It is desirable to execute éhe task producing a result to be
used as the branch-index as soon as possible. That is, such a task
should be assigned a high priority. When there are several ready
tasks each producing a result to be used as the branch-index of
a successor BRANCH instruction, relative priorities between them
should be determined on the basis of dependency relation between
them. With respect to the complexity involved, such a priority
assignment would be more appropriate, if it is performed as part
of static optimization. |

Decomposition of a SEQDO or PARDO block by using techniques
discussed in secion 2.3 reduces the frequency of occurrences of
undetermined iteration-number at the time of interpretationm.
However, similar techniques for reducing the occurrence of

undetermined branch-index remain to be developed in the future.
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CHAPTER 5

CONCLUSION AND EXTENSION

This investigation has been an attempt ﬁo establish some
foundation for solving application problems requiring the com-
putingvpower beyond that achievable with conventional computer
architecture. The adopted approach was to achieve the super
computing power through optimal utilization of computational
parallelism. Following the principle that successful parallelism
utilization can be realized only with all of its constituent
phases suitably optimized, various optimization techniques
relevant to each phase have been developed. Three
major phases in paraliél processing have been coﬂéidered:
representation and detection of computational parallelism, design
of a powerful parallel processing system, and operational manage-
ment of the system.

As tools for parallelism representation, two sets of initiation
control primitives were synthesized. The first one called the
basic set of initiation control primitives was intended to be the
control part of the parallel programming language at the machine
level. It was an outcome of an effort to provide sufficient
generality in representing parallelism while keeping the tool
amenablevto efficient interpretation by the basic machine. The
gsocond one was called Lthe structured set of Inlélatlon control
primitives and intended to be the control part of the parallel

programming language at the source level. One of the basic
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considerations which influencéd its synthesis was that the
parallel program at the source level must possess the desirable
structure enabling the efficient analysis. As a result, the
strict enforcement of scope-rules was incorporated into the
synthesis. The program structured by this set of imitiation
control primitives was called the structured parallel program.
In regard to the highly probable incompleteness of manual
detection of parallelism, foupdation for detecting useful paral-
lelism remaining hidden in the structured parallel program was
established. Developed techniques included not only ones fbr
detecting hidden parallelism but also ones for decomposing a
block into smaller blocks which in turn lead to the detection
of additional parallelism as well as to the easier analysis and
operational management. A variation of the structured parallel
program was conceived along phe line of GOTO-less programming.
Studies on the design of a powerful parallel processing
system included both basic ﬁachine design and program design.
Viewing the basic machine as a composite of three subsystems, the
ALPS, the IPS and the MS, a general and modular architecture of
each subsystem was developed. The optimal ALPS was conceived of
as consisting of a set of pipelines. A general model of a pipeline
was formulated for the optimal design of a pipeline, and the
development of buffer implementation schemes as well as optimal
pipeline balancing techniques was based on it. The machine code
implementation of the basic set of initiation control primitives

was developed and termed control instruction. The separation of



the control part of a program from its funétional part was the
basic philosophy behind the modular IPS that was developed. The
main goal in its design was to provide the capability of efficient
interpretation of control instructions. A solution to the problem
of synchronizing dependent tasks was also provided by using associ-
ative memories in the DU. The complete resolution is in fact
achieved by the cooperation of both the DU and MS.

The emphasis in designing the modular MS was laid on providing
the high bandwidth through maximally asynchronous operation of PDM
modules in couple with the RCU and SCU buffers harmoniously coopera-
ting with each other.

On the basis of this basic machine, optimization techniques
applicable in the course of designing parallel programs were sub-
sequently studied. Techniques studied ranged over two categories,
namely ones oriented toward the improvement of job-execution
efficiency and ones for the improvement of program reliability.
Static sequencing and static storage allocation techniques were
studied under the first category.

A model for sequehcing a partially ordered set of tasks was
formulated and some useful properties for optimal sequencing in a
simple environment were revealed. Techniques for compact indication
of the derived sequence in the program were discussed. However,
the infeasibility of optimal sequencing in most environments
became apparent as a result. The sequencing model established
should serve as a solid basis for developing more practical

heuristic sequencing procedures producing nearly optimal sequences
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with small overhead. The.development of such heuristic procedures,
as well asvtheir evaluation, was left as the subject of future
research.

In addition, sequencing aspect in the more complicated situation
where the ALPS consists of reconfigurable pipelines was examined.
Optimal sequencing in the simple case of sequencing independent

tasks was studied.

In an effort to minimize the probability of memory conflicts
at run-time, techniques for optimal allocation of static storage
were studied. Models for both program storage allocation and data
storage allocation were formulated. The infeasibility of optimal
allocation was again demonstrated, although sufficient foundation was
established for the future development of effective heuristic
proéedures.

Under the second category, techniques for program validation
were studied. Realizing -the difficulty involved in complete
validation, cost-effective techniques aiming at the practically
acceptable degree of confidence in prbgram correctness, were
developed. Major efforts were directed into the development of
techniques for automated testing of both sequential and parallel
blocks in a structured parallel program. Various test-case
generation schemes were developed for sequentiallblocks. In order
to get around fhe difficulty in automated test-input‘generation

for sequential blocks, various practical recourses incorporating
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program instrumentation were conceived, and automated instrumen-
tation techniques were developed.

Automated testing of a parallel block was conceived as a
composite of two processes, commutativity testing and data-
independency testing. Cost-effective techniques for commutativity
testing were developed but no efficient techniqees but a brute
force recourse using simulation have been found for data-
independency testing.

Studies on efficient operational management of a powerful
parallel processing system were concentrated on the aspect of run-
time overhead.

Envisioning that various dynamic optimizations can be advan-
tageously employed without incurring critical overhead through
the dynamic regulation of the extent of optimization, the goal
of this study was to develop techniques for concealing the over-
head behind the execution of functional tasks so that the over-
head does not become the critical overhead. In order to support
an efficient analysis required for the development of an optimal
regulation strategy, a model of the system cailed the dynamic
look-ahead mode} (DLM), was formulated. Based on it, an effective
dynamic segmentation strategy was established to achieve the
above objective of concealing overhead, and some properties on
dynamic behaviors of the system which canvbe utilized in selecting
suitable optimization procedures and the related processing
elements, were easily discovered. A simple macro-level simulation

demonstrated the effectiveness of dynamic segmentation strategy.
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As an attempt to obtain an analytic performance méasure of the
system employing dynamic segmentation, the statisfical analysis
with the macroscopic queueiﬂg model was performed. As a result,
the sensitivity 6f the perférmance to the buffer-capacity as well
as to the average task-execution-time was observed, and some
insight was gained in deterpining a suitable buffer-capacity.

Apparently all these outcomes are more of foundations in
nature and by no means complete. Naturally, numerous problems are
remaining to be solved by the future research. Among them, a few
ones deserving immediate attention can be listed as follows.

First, the development;of various heuristic procedures for
each optimization aspect stﬁdied in this report as well as their
comparative evaluation is believed to be of great significance.

Second, with respect to the increasing importance of program
reliability, the development of an efficient technique for data-
independency testing is urgent. Any success in such an attempt
will as well provide the sound basis for efficient implementation
of techniques for detecting useful parallelism.

Third, there may arise a need for replicating some or all
components composing the IPS in order to support the ALPS of a
high computing power. Although the modular architecture of
the IPS in Section 3.1 is amenable to variable degrée of replication,
cooperation bétween processes occuring under the control of
replicated components requires an efficient solution.

Last and most important of all, there will be no substitutes

for experimental design of a powerful parallel processing system

' L
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solving a particular problem or its micro-level simulator in

achie#ing'significant progress in this direction.
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