
 

 

 

 

 

 

 

 

 

Copyright © 1974, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



•i&. OPTIMIZING ARCHITECTURE IN PARALLEL PROCESSING

by

Kwang Hae Kim

Memorandum No. ERL-M482

November 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



r

DISSERTATION \

Submitted in partial satisfaction of the requirements for the degree
of Doctor of Philosophy in Engineering in the Graduate Division of the
University of California, Berkeley.



\r

OPTIMIZING ARCHITECTURES IN PARALLEL PROCESSING

Doctor of Philosophy Kwang Hae Kim Electrical Engineering
and Computer Sciences

1UaanA(
Chairman of Committee '

ABSTRACT

Optimization aspects in designing and operating a parallel

processing system of super computing power are investigated.

Specific subjects studied or results obtained include: practical

tools for parallelism indication, technical foundation for detect

ing useful parallelism hidden in parallel programs, a modular

architecture for effective parallelism utilization, optimization

techniques relevant to machine design, static sequencing and

static storage allocation, cost-effective validation of parallel

programs, a scheme for concealing run-time overhead incurred in

dynamic optimization.

Control parts of parallel programming languages, one at the

machine level and the other at the source level, are defined.

Technical foundation is established for detecting useful parallel

ism hidden in a source parallel program as well as for restructur

ing a program into the one lending itself to easier analysis and

more effective execution.

A modular architecture of a machine which is capable of effi

cient execution of parallel programs and also amenable to easy

expansion is described. Optimization aspects in designing such a

machine are investigated. Concerned with the design of efficient

parallel programs, aspects of static sequencing and static storage

allocation are investigated. Techniques are developed for partial
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but practical validation of source parallel programs.

A scheme for concealing run-time overhead incurred in dynamic 'A

optimization behind the execution of functional tasks is described. - ,
.>sr'.

The scheme is analyzed to derive a suitable implementation* A *

simple macro-level simulation demonstrates the effectiveness of

the scheme.

t

i

-111-



ACKNOWLEDGEMENTS

* This author has been greatly helped by a number of individuals
"Si

throughout the course of this investigation. Prominent among

v these are Professors L.A. Zadeh and M.D. Cooper. Professor Zadeh1s

constant encouragement and Professor Cooper's valuable guidance

are deeply appreciated. Professors D. Ferrari and I. Lee are also

acknowledged for their kind advice.

A note of special thanks is due to his supervising professor

and dissertation committee chairman, Professor C.V. Ramamoorthy,

who has been much more than a friend and a teacher to him through

out his graduate study. Without his help none of this would have

been possible.

He wishes to express his gratitude to both the National

Science Foundation and the U.S. Army Research Office at Durham

for their support through grants NSF GJ-35839 and DA-AROD-31-

124-73-G157.

Thanks are also due to four women, Ms. Ruth Suzuki, Evelyn

Roberts, Doris Simpson and Barbara Kerekes, for their excellent

typing and drafting.

Finally, and most importantly, the author acknowledges his

family in Korea for their financial and spiritual support during

. the period. His wife, Innsook, is the most appreciated for her

* many sleeps lost for typing drafts and her successes in having his

and her year-old son, Ernest, convinced of happier days to come.

-iv-



TABLE OF CONTENTS

1. INTRODUCTION 1 £

1.1 Parallel Processing and Problem-Oriented

Real-Time Computing 2

1.2 Phases of Parallel Processing 5

1.2.1 Problem-Characteristics to be Exploited 5

1.2.2 Design of a Parallel Processing System 6

1.2.3 Operational Management of Parallel

Processing Systems 17

1.3 Scope of Investigation 20

1.4 Notation 22

2. INDICATION AND DETECTION OF COMPUTATIONAL PARALLELISM 26

2.1 The Basic Set of Initiation Control Primitives

and the Basic Parallel Program 28

2.2 The Structured Set of Initiation Control

Primitives and the Structured Parallel Program 36

2.3 Detection of Useful Parallelism *6

2.3.1 Parallelism Detection in a PAR-block 51

2.3.2 Parallelism Detection in a SEQ-block 65

2.3.3 Parallelism Detection in a SEQDO-block 70

2.3.4 Parallelism Detection in a PARDO-block -90

2.3.5 Parallelism Detection in a WHILE-REPEAT-block-91

2.4 GOTO-Less Structured Parallel Program •97

-v-

f



1

So

:|

3. STATIC OPTIMIZATION IN PARALLEL PROCESSING 99

3.1 Basic Machine Design 100

3.1.1 Arithmetic and Logic Processing

Subsystem (ALPS) 100

3.1.2 Instruction Processing Subsystem (IPS) 138

3.1.3 Memory Subsystem (MS) 159

3.2 Static Sequencing 165

3.2.1 A Sequencing Model :....166

3.2.2 Optimal Sequencing for the ALPS of

a Single Pipeline 171

3.2.3 Optimal Sequencing for the ALPS of

Multiple Pipelines 176

3.2.4 Sequence Indication and Removal of

Redundant Dependencies 177

3.2.5 Minimization of Reconfigurations 179

3.3 Static Storage Allocation i83

3.3.1 Static Programs-Storage Partitioning I87

3.3.2 Static Data-Storage Partitioning I93

3.4 Program Validation 196

3.4.1 Testing of a SEQ-Block B i98

3.4.2 Testing of a PAR-Block B 220

3.4.3 Testing of Other Blocks 229

4. DYNAMIC OPTIMIZATION IN PARALLEL PROCESSING 23i

232

4.1.1 Dynamic Segmentation

4.1 Dynamic Lookahead Model (DLM)

236

-vi-



4.1.2 The Analysis of the OCF 242

4.1.3 Simulation of the DLM 245

4.2 Statistical Analysis of the DLM 250

4.3 Priorities of Tasks Related to BRANCH'S 258

5. CONCLUSION AND EXTENSION 259

REFERENCES 266

-vii-



Figures

1.1 8 2.16 92 3.15 137 3.32 208
l'.2 13 2.17 94 3.16 140 3.33 211
2.1 33 2.18 95 3.17....141 3.34....212
2.2 35 3.1 ....101 3.18....143 3.35....217
2.3 37 3.2 ....103 3.19....147 3.36....219
2.4 43 3.3 ....106 3.20....148 3.37....228
2.5 44 3.4 109 3.21 156 4.1 235
2.6 48 3.5 110 3.22 160 4.2 237
2.7 50 3.6 112 3.23 161 4.3 239
2.8 57 3.7 113 3.24 164 4.4 243
2.9 67 3.8 115 3.25 169 4.5 248
2.10 69 3.9 116 3.26 172 4.6a 255
2.11 76 3.10 119 3.27 175 4.6b 256
2.12 78 3.11 122 3.28 181
2.13 84 3.12 125 3.29 190
2.14 86 3.13 128 3.30 195
2.15 89 3.14 133 3.31 202

Theorems

2.1 59 2.4 62 3.1 174 3.4 224
2.2 61 2.5 63 3.2 ....191

2.3 61 2.6 87 3.3 214

Lemmas

2.1 53 2.9 74 2.17 85 3.2 180
2.2 54 2.10 75 2.18 85 3.3 213
2.3 55 2.11 77 2.19 87 3.4 213
2.4 58 2.12 80 2.20 87 3.5 214
2.5 60 2.13 81 2.21 88 3.6 215
2.6 .61 2.14 81 2.22 88 3.7 218
2.7 70 2.15 82 2.23 91 3.8 218
2.8 73 2.16 83 3.1 171 3.9 224

Corollaries

2.9 74 2.11 77

Algorithms

2.1 54 2.4 90 3.3 178 3.6 215
2.1a 55a 3.1 ....130 3.4 200 3.7 226
2.2 64 3.2 134 3.5 210 4.1 245
2.3 82

-viii-



%

CHAPTER 1

INTRODUCTION

The main objective of this investigation is to establish some

foundation on the basis of which parallel processing can be suc

cessfully accomplished to solve important application problems

requiring computing power beyond that achievable without thorough

ly utilizing computational parallelism. Based on the principle

that successful parallel processing can be realized only with all

of its constituent phases suitably optimized, various optimiza

tion techniques relevant to both design and operation of a parallel

processing system are discussed.

In this chapter, current background for parallel processing

as well as current demands for super computing power are briefly

reviewed. Subsequently,.phases of parallel processing are iden

tified in section 1.2 and background is established for the main

discussion of this investigation. The scope of this investigation

is defined in section 1.3 and notations of frequent usage are

introduced in section 1.4.



1.1 Parallel Processing and Problem-oriented Real-time Computing

With no exception contemporary computing systems utilize

computational parallelism in one way or another. Any computing

system in which more than one logical operation is simultaneously

carried out in executing one computing job is a parallel process

ing system by definition.

The conventional distinction between the parallel processing

system and the serial processing system comes into being only in a

relative sense. That is, it can be made when the level of primi

tive operations is accepted and any parallelism between operations

below the level is ignored. If primitive operations are taken as

an operation performed continuously by a CPU and an operation per

formed continuously by an I/O processor, any multiprogrammed sys

tem or any system using more than one CPU's simultaneously in

executing one computing job belongs to the category of a parallel

processing system, and any system in which more than one of those

primitive operations cannot be performed simultaneously belongs

to the category of a serial processing system.

It was not long after the imminence of a modern electronic

computer that the concept of parallel processing began

to attract the attention of architects who envisioned the barrier

of computing power achievable under the ultimate component tech

nology but without utilizing parallelism. Since then numerous

computers have been built with the variable, but progressively

increasing degree of parallelism utilization. However, a brief

examination of contemporary systems reveals that there is more
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parallelism to be advantageously utilized in future systems than

one already utilized in those existing systems.

Despite the important potential of parallel processing in

^» amplifying computing power, parallelism utilization has been ham

pered by several factors. The most fundamental and influential

one has been the complexity involved in identification and manipu

lation of computational parallelism, which has been often beyond

tolerance in most computing environments. In the past, the cost

required for parallel processing has also been playing a major

role in neutralizing the enthusiasm about it. However, there are

problems of extreme importance requiring computing power not

achievable without thorough parallelism exploitation for their

solutions. Those problems are typically found in problem-oriented

real-time computing (PRC) systems. The term PRC system here is

adopted without its rigorous definition but it is used to refer to

a system with requirements for response time within a critical

limit, a large amount of computations for problem-solving and

continuous system availability during the critical period [adr 67],

Typical examples are systems dedicated to weather prediction, air

traffic control, military weapon control, manufacturing control,

information analysis, etc.

The situation has developed so far such that one can now more

easily foresee proliferation of PRC systems with further parallel

ism utilization in the near future. Besides that importance of

problems in those environments dominates the cost consideration, the

continuous decrease of hardware cost, the conspicuous progress of



LSI technology and the innovation of micro-processor (processsor-

on-a-chip) technology have further degraded the impedance of the

design cost during recent years [lee 74], Processors, or even

primary memories, no longer play a dominant role in contributing ~i

to the cost of the system. This substantially reduced the neces

sity of sharing those resources as well as the management overhead

involved in sharing them. In addition, recent active research in

fields such as theory of computation, programming languages, oper

ating systems and computer architecture, have produced solutions

to many problems concerning parallel processing. Thus a signifi

cant amount of complexity involved in parallelism utilization has

been removed [bae 73].

The amount and type of computational parallelism is problem-

dependent. That is, any parallel processing system should be

adaptive to the characteristics of problems to successfully

achieve its goal, parallelism utilization. Naturally there are

more chances for successful parallel processing where job-charac

teristics are relatively static between jobs or the number of jobs

is limited. PRC environments typically meet this desirable condi

tion. In such environments, a few types of jobs are repeatedly

executed taking the most part of system-running time, algorithms

employed in each job are well defined and often their execution

times are precisely known.

Successful parallel processing is a composite process which

can be realized only with all of its constituent phases suitably

optimized. Efficient optimization at each phase of parallel pro

cessing is the main subject of this investigation.

>.
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1.2 Phases of Parallel Processing

In principle, achievement of high computing power through

utilization of problem-characteristics can be realized through

the following three phases. First, useful problem-characteristics

need to be thoroughly identified. Second, a suitable set of

resources (both hardware and software) must be provided and con

figured into a powerful processing system by utilizing the iden

tified characteristics. Third, the configured system must be

efficiently managed to carry out the computing jobs.

1.2.1 Problem-characteristics to be Exploited

Among a number of characteristics, the most important ones in

a PRC environment seem to be computational parallelism and function-

usage, that is, proportional usage of each type of function. A (task-)

function here is a generic term referring to any type of computa

tion which can be performed by a single instruction of the machine

to be implemented. Information on function-usage can serve as a

basis for selecting a cost-effective implementation of each

(function) processing unit capable of computing the function.

This optimization is discussed in section 3.1.

Computational parallelism plays a role of utmost importance

when super computing power is required, which is a typical situa

tion in PRC environments. Thus useful parallelism inherent in

application problems or algorithms must be fully recognized. Then

recognized parallelism must be reflected in designing the process

ing system. This aspect is discussed in chapter 2 and section 3.1.



1.2.2 Design of a Parallel Processing System

The next phase in parallel processing is concerned with the

design of a powerful parallel processing system capable of fully

utilizing the recognized parallelism. A PRC system is essentially -*•

a basic machine coupled with programs composed of instructions of

the basic machine. The basic machine is characterized by its

rigid internal organization. That is, its inside is not amenable

to modification.

In one extreme, the basic machine can be a primitive machine

capable of executing only simple operations such as SHIFT, STORE,

INCREMENT, etc. In such a case, an extremely large space is avail

able to the designer for exercising optimizations in the course of

designing programs. In other words, programs will be the major

portion of the system in terms of both size and functional com

plexity. The optimal design of such a large and complex system

in a global sense is practically an infeasible task due to the

unmanageable number of parameters affecting the optimality. Conse

quently, a feasible alternative aiming at the nearly-optimal design

should be searched for.

The most useful principle in dealing with complexity in dis

crete systems is to control complexity by hierarchical ordering of

function and variability [dij 69]. Application of this principle

to the design of a PRC system results in an iterative process of

building up a hierarchy of virtual machines. Each iteration struc

tures a new virtual machine at the higher level in the hierarchy,

using available machines located at the lower level. Here a

*



virtual machine means a machine represented only by its capabili

ties excluding internal organizations. That is, each machine is

characterized by its instruction-set, or capability-set.

Once a new high-level machine is built, it is not expected to

go through a non-trivial modification of its internal organization.

It becomes a new basic machine in effect. Then programs making up

the PRC system in conjunction with the new basic machine can be

constructed using high-level instructions of the new basic machine.

Optimization in the course of designing programs becomes less

complex than the case of using a low-level basic machine, since it

does not concern the internal behavior of each high-level instruc

tion. Of course, optimization must have been applied to the design

of a new basic machine, i.e., each new instruction must have been

implemented with the incorporation of optimization techniques.

In short, what is essentially achieved is level-by-level

optimization. Thus structuring a high-level machine is a process

of designing a control system configuring low-level machines,

i.e. current basic machines into a new machine possessing high-

level instructions. Fig. 1-1 depicts this process. Initially

low-level (level-1) machines capable of executing simple opera

tions such as SHIFT, STORE, INCREMENT, AND, etc. are structured

with a set of logic gates. Then a level-2 machine capable of

executing typical machine language instructions such as ADD A,

MULT B, etc. is structured with a set of level-1 machines. Simi

larly a level-3 machine can be structured by configuring a set of

level-2 machines with a new control system.
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As mentioned above, the design of programs uses only instruc

tions of the current basic machine. As the level of a basic

machine is higher, more static characteristics of application-

^ problems are embedded into its interior, i.e. hierarchy of virtual

machines, and essentially dynamic characteristics are left to be

embedded in programs.

The successful design of a powerful parallel processing sys

tem requires the efficient implantation of parallel processing

power inside the basic machine. It also requires the design of

programs exhibiting useful job-characteristics including

parallelism in a form amenable to efficient utilization. The

recent technological advances have standardized a significant

number of low-level machines. On the basis of these, the design

of the basic machine can be achieved by the selection of (stan

dardized or special purpose) components and the design of the

internal control unit configuring those into the basic machine.

1.2.2.1 Parallelism Implantation in the Basic Machine

The basic machine contains a finite set of function

processing units, each capable of carrying out one or a set of

computing functions. A job can be viewed as a combination of pro

gram and data to be executed by the basic machine. A task is a

generic term referring to the portion of a job requiring one of

those capabilities. That is, a task is a combination ofan instruction,

i.e., description of a task-function to be executed, and operand-data.

In principle, power of utilizing computational parallelism



can be embedded in the basic machine in two ways: (1) by replicat

ing the processing unit required by several parallel processable

tasks, and (2) by decomposing the processing unit into a number of

component subunits and embedding an autonomy inside each subunit

so that autonomous subunits can operate in an overlap mode with

each other.

That is, the first method called processing unit replication

is intended for parallel processing of multiple tasks through

multiple processing units. It is more easily justified in two

kinds of situations. One is where the processing unit is a

unifunctional unit capable of executing only one specific type of

function and the representative job contains large sets of

parallel processable tasks, each requiring the capability.

The other is where the processing unit is a multifunctional

unit capable of executing various types of functions and the repre

sentative job contains large sets of parallel processable tasks,

each requiring one of those capabilities. Replication of a pro

cessing unit must be economically feasible especially in the case

of a multi-functional unit. In addition,replication of a multi

functional unit would inevitably accompany the low utilization

of its components.

On the other hand, the second method called processing unit

decomposition is intended for processing multiple tasks with a

set of autonomous subunits constituting one processing unit.

A portion of a task executable by each subunit is called a

subtask. Similarly, a portion of a function performed by each

10



subunit is called a subfunction. If the processing unit is the

unifunctional unit, then every task executed by this processing

unit requires the same set of subunits in the same order, and

multiple tasks can be processed through a line of subunits in

the same order but two adjacent tasks must be separated from each

other by at least one subunit. This case has been called pipe

lining, [cot 65, che 71]

If the processing unit is the multifunctional unit, then dif

ferent types of tasks can be executed in overlap with each other

when they require different subsets of subunits belonging to the

same processing unit.

Therefore, processing unit decomposition is an approach to

economic realization of parallel processing. But provision of

autonomy into each subunit in it is subject to cost-increases in

terms of management overhead.

In principle, unlimited computing power for parallelism utili

zation can be obtained by incorporating replication to any extent

required, while the maximum degree of decomposition is limited up

to the level of logic gates, which in turn limits the amount of

computing power achieved.

Obviously, the above two approaches, replication and decom

position, are not mutually exclusive. Somesubunits of a processing

unit after decomposition may be replicated, while each replicated

processing unit may in turn be decomposed into a set of autonomous

subunits. In fact, it is believed that optimal parallelism exploi

tation can be achieved by a suitable combination of both process

ing unit replication and decomposition.

11



Management overhead in parallel processing typically includes

administrative computation involved in the assignment of resources

to tasks. As mentioned above, this is more severe in parallel

processing with processing unit decomposition called overlapped

processing. On the other hand, it is not always feasible to

replicate processing units to the same degree as the maximum

degree of computational parallelism inherent in application jobs

which varies often drastically between jobs. Here the maximum

degree of computational parallelism means the maximum number of

tasks which are parallel processable at one time.

Pipelining is the specialized form of overlapped processing

'intended for the compromise adaptive to the trade-off between

the management overhead and the amount of replication. It

aims at the reduction of management overhead by restricting

the composite structure of autonomous subunits such that

the order of subunits a task passes through is fixed

and linear. Such a processing unit is called a

pipeline. Thus in general, a multifunctional processing unit in

overlapped processing is functionally equivalent to a set of pipe

lines each of which corresponds to a certain subset of subunits in

the multifunctional unit. That is, it can be transformed into a

set of pipelines through replication of its subunits shared for

executing different tasks (Fig. 1-2).

Each subunit in a pipeline is called a pipeline-segment or

p-segment. The management overhead is much reduced due to

the simple restricted communication between p-segments in contrast

to the case of managing a set of autonomous subunits configured

12
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in a complicated structure.

Primarily, pipelining is oriented for increasing throughput

with high resource utilization, which in turn becomes synonymous

with the overall improvement of computing speed. In order to

achieve both high throughput and resource utilization, it is

required that p-segments take an equal amount of execution time.

Although this requirement cannot be strictly imposed on the imple

mentation of a pipeline in general, it is one of the most critical

parameters affecting the success of pipelining.

As implied by the general nature of processing unit function

and task, principles of replication, decomposition and pipelining

can be effectively employed at various levels in the computer

structure. Examples of pipelining at different levels can be

found in section 3.1. Current technological background as well as

the advantages of pipelining enable us to foresee that pipelining

should be extensively incorporated in future parallel processing

systems aimed at the amplification cf computing power. At the same

time, processing unit replication can be simultaneously employed

to the extent satisfying cost-constraints. Then the major por

tion of such a system is essentially composed of a set of pipe

lines, some of which may or may not be of the same type.

1.2.2.2 Design of Parallel Programs

Programs should be designed such that all useful parallelism

inherent in application problems or algorithms is clearly exhibited

in a form amenable to efficient utilization by the basic machine.

14
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A program in which computational parallelism is explicitly

indicated is called a parallel program. A programming language

containing tools for explicit indication of parallelism is called

a parallel programming language.

Thus, what mainly distinguishes a parallel programming lan

guage from a non-parallel one is the repertoire of initiation

control primitives, i.e. ones describing rules for initiating

functional tasks. In other words, a parallel programming language

contains additional initiation control primitives which can be

used to simultaneously initiate more than one task.

There are numerous sets of initiation control primitives

which can be incorporated into a non-parallel programming language

to make it a parallel programming language. Thus selection of a

suitable set of primitives is an optimization process.

In general, two parallel programming languages will be used

in the course of designing programs. One is a machine language

and the other is a source language. Due to the difference in their

purposes, the set of initiation control primitives in one language

may be different from the other. In chapter 2, a set of primi

tives to be incorporated into each language is presented.

Next, parallelism remaining hidden in a program must be tho

roughly detected out. Techniques for this should be amenable to

automation. In regard to the practice that a source program is

manually prepared whereas a machine language program is mostly

obtained from the automated translation of a source program, the

main task becomes to detect parallelism hidden in a source program.

Techniques for this are discussed in section 2.3.

15



In addition, it is desirable to embed some information in a

program which can be used to improve the execution efficiency.

The detail is as follows.

There are normally a large number of sets of parallel pro

cessable tasks in a PRC job. Capabilities (processing units) of

the basic machine are finite and possibly less than the cardinality

of some set of parallel processable tasks in a job, due to the

economic factor. Thus it is often necessary that parallel pro

cessable tasks must be serialized in execution by the basic ma

chine because of this limitedness of capabilities. This seriali

zation process is called sequencing. It has been well known that

the performance of a parallel processing system is highly sensi

tive to the way sequencing is performed.

The performance may be sensitive not only to sequencing but

also to mapping between processing units and tasks. The latter

situation arises typically where several processing units in the

basic machine are functionally equivalent but are different in

efficiencies. This optimization of mapping and sequencing belongs

to the broad category of optimization, generally called resource

(or capability) allocation. Resource allocation is achieved through

two steps. The first one is to make a priori decisions about the

efficient allocation strategy and the second one is to perform

actual allocation with final decision at run-time.

In this report, any optimization performed at the design phase

is called static optimization, while any optimization performed at

the job-execution phase is called dynamic optimization. Basically,

16
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dynamic optimization should be minimized since the run-time over

head involved in it is subject to high cost. -

Thus the design of an efficient program should incorporate an

efficient procedure for static (a priori) resource allocation.

The sequence or mapping derived from static optimization must be

efficiently represented with respect to the interpretation by the

basic machine. In chapter 3, techniques related to these optimi

zations are discussed under the subjects of sequencing, storage

allocation and program restructuring.

There is another important aspect in designing programs.

Almost without exception, the malfunction of a PRC system is very

disastrous. Furthermore, the size of a program in a PRC system

becomes very large. Although reliability of the system is appar

ently a combination of reliabilities of both the basic machine and

programs, the latter is becoming an increasingly critical problem

nowadays due to the immense complexity involved in validating such

a large program. Since the program considered here is a parallel

program, severity of the problem gets worse. In section 3.4, this

problem is discussed in detail and practical approaches to the

solution are presented. Realizing the infeasibility of complete

validation of absolute correctness, significances of those tech

niques cannot be overlooked.

1.2.3 Operational Management of Parallel Processing Systems

As indicated before, the major activity in the operational

management of a parallel processing system is the allocation of

17



basic machine capabilities to tasks. It is preceded by the inter

pretation of a program, i.e. representation of capability-require

ments of tasks and inter-task dependencies. Since capability

allocation is an object of optimization, various types of dynamic

optimization at the job-execution or operational phase can be

performed. Although it was mentioned that this dynamic optimiza

tion should be minimized, there is one fundamental factor which

makes a certain amount of dynamic optimization essential. It is

the data-dependent characteristics of computing jobs. Thus capa

bility-requirements and task-execution times become data-dependent

to a certain extent, if not too much.

Static optimization is generally based on the use of reason

able prediction about those dynamic characteristics. But, dynamic

optimization can better benefit from more precise information

about dynamic behavior of the job as it becomes available at the

operational phase. The need for dynamic optimization becomes

further essential in the multiprogrammed system because the input

to such a system (i.e. a set of jobs called job-mix instead of a

single job) is a dynamically varying object and further complicates

the prediction of its dynamic behavior.

Therefore, it becomes highly desirable to develop a mechanism

by which dynamic optimization can be advantageously incorporated

without accompanying the effect of its overhead. Chapter 4 is

concerned with such an attempt. It is conceivable that the maximum

gain can be obtained by a suitable combination of both static and

18
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dynamic optimization. The harmonious cooperation of both activi

ties is an important subject of decision-making at the design

phase.
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1.3 Scope of Investigation

With the objective stated in the beginning of this chapter,

optimization aspects in designing and operating a parallel pro

cessing system are investigated.

In chapter 2, two sets of initiation control primitives are

synthesized. One is intended to be the control part of a parallel

programming language at the machine level, while the other is

intended to be the control part of a parallel programming lan

guage at the source level. Then technical foundation for detect

ing parallelism remaining hidden in a parallel program at the

source level is established. In addition, developed techniques

include ones for restructuring the program into the one possess

ing additional parallelism as well as lending itself to easier

analysis and operational management.

In chapter 3, optimization aspects in basic machine design

are studied. Viewing the basic machine as a composite of three

subsystems, a general and modular architecture of each subsystem

is presented. Subsequently, optimization techniques relevant to

design of parallel programs are studied in addition to the ones

developed in chapter 2. Techniques studied range over two cate

gories, namely ones oriented toward the improvement of job-

execution efficiency and ones toward the improvement of program

reliability. Static sequencing and static storage allocation

techniques are studied under the first category, and cost-effective

techniques for program validation are studied under the second

category.
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Studies in chapter 4 are concentrated on the aspect of run

time overhead incurred in dynamic optimization. A scheme is

developed for effectively concealing the overhead behind the exe

cution of functional tasks so that the overhead does not serve as

critical overhead. A simple macro-level simulation demonstrates

the effectiveness of the scheme. The statistical analysis with

the macroscopic queueing model provides some insight in select

ing a suitable implementation of the scheme.

Finally, results of this investigation are summarized in

chapter 5 and several future research problems in connection with

this investigation are stated.
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1.4 Notation

Notations and terminologies frequently used throughout this r

report are introduced in this section.

The following symbols from elementary set theory and logic f

will be used: { | } (set brackets), e (membership), = (equality),

C (inclusion), C (proper inclusion), <J> (empty set), U (union),

H (intersection), \ (set difference or relative complement),

x (cartesian product), "iff" (if and only if), 3(there exists),

V (for every), and for any finite set A, //(A) denotes the number

of elements in A. Given a set A = {a}, a[i] is the i-th element

in A, where 1 <_ i _< //(A). 2 denotes the power-set of A, i.e.,

the set of all subsets of A.

If A and B are sets, a relation p between A and B

is a subset of A x B. If A and B are sets, a function (res

pectively partial function) from A to B is a relation

f C a x B such that for each a e A there exists exactly (res

pectively at most) one b e B such that (a,b) £ f. The

notation f: A -»- B may be used to mean either that f is a

function or a partial function from A to B, the particular case

being stated explicitly.

Definition 1.1.

(1) A directed graph G is a pair (N,A) where N is a set of

elements called nodes and A is a relation on N called the set »

of arcs.

(2) Given a relation A, the set of elements N = {n|(n, n[k]) e A

V(n[k], n) e A}, is called the node-set of A and denoted by N(A).
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(3) Given a relation A, the directed graph G = (N(A), A) is

called the graph of A and denoted by G(A).

Definition 1.2. Given G = (N,A),

^ (1) Vn[i] eN, Q(n[i]) and Q"1(n[i]) are defined as:

q5(n[i]) ::= {n[j]| 3(n[kQ], n^], ..., n[kj)

Ikn = i a k - j a
U m

V 1< I < m, (n[k^_ ], n[k^]) eA]}

Q^CnLi]) ::= {n[j] |n[i] E^(n[j])}

C^(n[i]) is called the reachable-node-set of n[i] and

^~ (n[i]) is called the reaching-node-set of n[i].

(2) The (node-) reachability relation denoted by R is defined as:

R ::= {(n[i], n[j]) | n[j] e'1?(n[i])}

R is also called the transitive closure of A, and denoted by R =/J (A).

(3) G is said to be strongly connected, if A V (j> and R = NxN.

Definition 1.3. Given G = (N,A),

(1) A subgraph g is a pair (N(A*), A1) such that A1 C A.

(2) A strongly connected subgraph g = (N(Af), A1) is called

a maximal strongly connected (MSC) subgraph if 5 A" IA' c A" ^

(N(A"), A") is strongly connected!. N(Af) is called a MSC node-

subset.

*"*

£ Definition 1.4. Given G = (N,A),

(1) V (n[i], n[j]) c A, n[i] is called an immediate predecessor
\

of n[j] and n[j] is called an immediate successor of n[i].

(2) V n[i] e N, the immediate successor-set of n[i] denoted by

.y(n[i]) and the immediate predecessor-set of n[i] denoted by
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0 (n[i]) are defined as:

$(n[i]) ::= {n[j] |(n[i], n[j]) £A}
^(nti]) ::= {n[j] |(n[j], n[i]) £A} r

(3) V n[i] £N, AIN(n[i]) called the incoming-arc-set of n[i]

is defined as: ^

AIN(n[i]) ::= {(n[j], n[i]) | (n[j], n[i]) £A}

Similarly, A (n[i]) called the outgoing-arc-set of n[i]

is defined as:

AQUT(n[i]) ::= {(n[i], n[j]) | (n[i], n[j]) eA}

Definition 1.5. Given a partial ordering A C N x N, where

N is a set of nodes, the transitive reduction of A denoted by

rj (A) is defined as:
R

rJR(A) ::= {(n[i], n[j]) |(n[i], n[j]) £Aa

^(n[kQ], nt^], ..., n[k ]) IkQ =i A
k=j Am>^2AVl<£<m, (n[k£_1], n[k£]) £ A]j}.

Definition 1.6. Given G = (N, A),

(1) n represents a MSC node-subset, and N (G) denotes

the family of all MSC node-subsets in G.

(2) n represents a set containing one weakly connected node,

i.e., a node n satisfying that ^ n £N (G) In £ n E.

NWC(G) denotes the family of all nWC|s in G.

(3) The cyclic reduction of A denoted by ^I)(A) is defined as:

<T)(A) ::= {(N[i], N[j]) |N[i] £(N^G) UNWC(G))
1

AN[j] £ (NMSC(G) UNWC(G)) A

(N[i] x N[j]) H A i <J>} .

(4) The cyclic reduction of G denoted by ^f)(G) is defined as:



-4.

TKG) ::= (TTN(G),q)(A)), where ^(G) =NMSC(G) UNWC(G).

Efficient techniques for deriving the reachability relation,

the transitive reduction and the cyclic reduction are available

from literature, [war 62, aho 72, ram 66, ram 66a 5tar 72]

In addition, the following notations are used.

Given a variable x, CONT(x) denotes the content of x at

one time, and SIGN(x) is equal to 1, if x >_ 0 and -1,

otherwise. Given a function f and a set A, MAX f(a) denotes
a£A

the maximum among f(a), V a £ A. Similarly MIN f(a) denotes
a£A

the minimum among f(a), V a £ A.
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CHAPTER 2

INDICATION AND DETECTION OF COMPUTATIONAL PARALLELISM

This chapter is concerned with synthesis of tools for parallel

ism indication as well as establishment of technical foundation

for detection of useful parallelism.

Two sets of initiation control primitives are synthesized.

The first one called the basic set is synthesized in section 2.1

and it is intended to be incorporated into a machine language.

The basic set possesses sufficient generality in indicating

various parallelism, while it is subject to efficient interpre

tation by the basic machine. A program written in a machine

(assembly) language incorporating the basic set of primitives is

called a basic parallel program.

The second one called the structured set is synthesized in

section 2.2 and it is intended to be incorporated into a source

language. The principle underlying this synthesis is that source

programs should be structured such that the relationship between

their components spread out in their structures and the dynamic

processes taking place under their controls becomes as visible as

possible, [dij 68 ] Such programs are amenable to efficient analysis for

various optimization. That is, the structured set of primitives

are associated with various rules forcing source programs to have

desirable structures. A program written in a source language

incorporating the structured set of primitives is called a struc

tured parallel program.

In section 2.3, techniques for detecting parallelism in a
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structured parallel program are discussed. A decisive policy is

adopted by viewing useful parallelism as one which can be indi

cated in a structured parallel program.

The following terminologies are frequently used throughout

this chapter. A program-element is a generic term referring to a

set of instructions with a single entry point and single exit

point. If a program-element contains nothing but an initiation

control primitive, it is termed a control program-element and

otherwise, it is termed a functional program-element. Thus initia

tion control primitives, i.e. control program-elements are used to

explicitly indicate rules on initiations of functional program-

elements. If a program-element does not contain any initiation

control primitive in it, it is termed a basic functional program-

element. When it is possible to execute two program-elements

£[i] and £[j] in a parallel program consecutively in the order

of (£[i],£[jD but when it is never possible to execute them in the

reverse order (£[j],£[i])» £[i] is called an immediate prede

cessor of £[j], and £[j] is called an immediate successor of

£[i].
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2.1 The Basic Set of Initiation Control Primitives and the Basic

Parallel Program

The basic set synthesized in this section is an outcome of a

compromise between generality in parallelism indication and effi

ciency in interpretation by the basic machine. It has been synthe

sized from previous works by a number of other authors [con 63,

gos 66]. It contains seven initiation control primitives: FORK,

JOIN, BRANCH, XOR, PARDO, PARDOEND and FUNCTION-CONTROL. Formats

and semantics of these are described in the following. Throughout

this section, P[i] represents the i-th one of immediate prede

cessors and S[i] represents the i-th one of immediate successors.

First, the FORK primitive has the following format.

FORK P, S[l],S[2],...,S[k] , where k>l

The semantics of this primitive is such that either when its imme

diate predecessor P is completed or when P has enabled this

FORK primitive for initiation(where P is a control program-ele

ment)^ it is initiated. Then its function is to enable all of its

immediate successors S[l],S[2],...,S[k] for their initiations.

Upon enabling all of them, its execution is completed. Therefore,

program-elements S[l],S[2],...,S[k] are parallel processable,

once the FORK is executed.

The JOIN primitive has the following format.

JOIN P[l],P[2],...,P[k], S , where k _> 1

The semantics of this primitive is such that either when all imme

diate predecessors P[l],P[2],...,P[k] are completed or when all
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of them have enabled the JOIN primitive, it is initiated. Then

its function is to enable the immediate successor S for initia

tion.

The BRANCH primitive has the following format.

BRANCH BRIX, P[l], P[2], ..., P[k], S[l], S[2],..., S[£],

where k > 1, I > 2

and BRIX represents the integer variable called the branch-index.

The semantics of this primitive is such that it is initiated in

the same way the JOIN primitive is initiated. Then its function

is to enable exactly one S[i] such that 1 < i < A and

i = CONT(BRIX) where CONT(x) denotes the content of the variable

x. Upon enabling S[i], its execution is completed.

The XOR primitive has the following format.

X0RP[1], P[2], ..., P[k], S[l], S[2], ..., S[A],

where k >. 2 and I _> 1.

The semantics of this primitive is such that either when any one

of its immediate predecessors, P[i], is completed or when P[i]

has enabled this XOR primitive, it is initiated. Then its func

tion is to enable all immediate successors S[l],S[2],...,S[£].

The PARDO primitive is used in conjunction with the PARDOEND

primitive to represent a parallel DO-loop in which all iterations

&> are parallel processable. A DO-loop in this report means a loop

(1) whose number of iterations is variable but determined and

t fixed upon entry to the loop, and (2) which contains a single

entry-point and a single exit-point. Formats of PARDO and PARDOEND

primitives are:
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PARDO SCOPENAME, P[l], P[2], ..., P[k], S, DOVAR,ITERNO,

PARDOEND SCOPENAME, P, S[l], S[2], ..., S[£]

where (1) k > 1, I > 1, (2) SCOPENAME represents the label called the

scope-name common to both PARDO and PARDOEND primitives, (3) DOVAR

represents an integer variable called a loop-variable, (4) ITERNO

represents either an integer constant or an integer variable.

CONT(ITERNO) is not changed between initiation of the PARDO

primitive and completion of the PARDOEND primitive. The

PARDO AND PARDOEND primitives having the same scope-name

are said to be in partnership with each other.

The semantics of these two primitives are as follows. The

PARDO primitive is initiated in the same way the JOIN primitive

is initiated. Then its function is to enable all iterations so

that they can be executed in parallel. Here an iteration means

execution of program-elements from one initiation of S to

completion of P during which DOVAR is not changed. Thus each

iteration is associated with an unique CONT(DOVAR) which is equal

to an integer k, l<k< CONT(ITERNO).

The partner PARDOEND primitive plays a similar role to the

one of the JOIN primitive but its immediate predecessors are all

iterations of P - That is, when all iterations of P are

completed, the PARDOEND primitive is initiated. Then its function is

to enable all immediate successors S[l], S[2],..., S[Z] for

initiation.

The last member in the basic set is the FUNCTION-CONTROL

primitive which is equivalent to a combination of FORK and JOIN
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primitives. It has the following format.

FUNCTION CONTROL F, P[l],P[2],...,P[k], S[l],S[2],...,S[£]

* where F represents the functional program-element under the con

trol of the FUNCTION-CONTROL primitive. Execution of this primi

tive is equivalent to consecutive execution of the following two

primitives.

FORK P[l],P[2],...,P[k], F

JOIN F, S[1],S[2],...,S[£]

Therefore, it is a functionally redundant member in the basic set.

However, it is very useful in that without using it, the basic

parallel program containing abundant parallelism becomes intolera

bly voluminous due to the excessive number of FORK's and JOIN's

used.

Connectivity among FUNCTION-CONTROL primitives can be recog

nized in a straightforward manner. On the other hand, connecti

vity between FORK and JOIN primitives substituting for FUNCTION-

CONTROL primitives can be traced only through labels (or addresses)

of functional program-elements appearing in FORK and JOIN primi

tives. Then incorporation of the FUNCTION-CONTROL primitive into

f, the basic set leads to efficient interpretation of the basic

parallel program by the basic machine. This becomes clearer in

section 3.1.

Thus it is desirable to restrict use of FORK and JOIN primi

tives to inevitable cases. The inevitable FORK primitive is the

10
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one whose immediate predecessor is either a BRANCH or a PARDO pri

mitive. The inevitable JOIN primitive is the one whose immediate

successor is either a XOR or a PARDOEND primitive. Then every

functional program-element can be viewed as nested inside a *

FUNCTION-CONTROL primitive. In addition, immediate predecessors

or successors of each initiation control primitive are always ini

tiation control primitives. That is, the complete structure of

a program can be represented by connectivity among control program-

elements. Fig. 2-1 introduces graphical representations of seven

initiation control primitives in the basic set. The basic set of

primitives is sufficiently general in that every possible

parallelism can be indicated in a basic parallel program. On the

other hand, the basic set contains a minimal number of primitives

in that no member except the FUNCTION-CONTROL primitive is redun

dant.

The basic set of primitives has been described with their

generic forms in this section. Some optimization can be incor

porated into a particular implementation of the basic set of pri

mitives. More specifically, control program-elements in immediate

predecessor-successor relationship are doubly linked with each

other through both predecessor-lists and successor-lists. A pre

decessor-list (successor-list) means a list of labels of immediate '

predecessors (successors) in each primitive. Therefore, a prede- -^

cessor-list in each primitive £[i] can be replaced by an integer

equal to the number of immediate predecessors required to be com

pleted before e[i] is initiated. The integer is called an

r
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S[l] S[2] S[k] S

FORK P, S[l],S(2],....,S[k] JOIN P[l] ,P[2],... ,P[k], S

•P[l] P(2] P[k] P[l] P[2] P[k]

P[l] P[3] P[k]
w

S[l] S[2] S[k] S[l] S[2] S[i]

BRANCH BRIX, P[l],P[2],..., XOR P[l],P[2],...,P[k],
P(k],S[l],...,SU] S[1],...,S[£]

P[l] P[2] P[k] ?

jj SN A ^ SN // SN: scope-name

S S[l] S[2] S[£]

PARDO SCOPENAME, P[1],P[2], PARDOEND SCOPENAME,
...,P[k], S, DOVAR, ITERNO p> S[l],S[2],...,S[*]

pti]v?L?J pM

S[l] S[2] S[£]

FUNCTIONAL-CONTROL F,P[1],P[2],...,P[k]
S[1],S[2],...,SH]

Fig. 2-1. Graphical representations of initiation

control primitives in the basic set.
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initiation-threshold.

Apparently, in the case of a FORK, a XOR or a PARDOEND primi

tive, its initiation-threshold is always 1. Modified formats of

primitives in the basic set become as follows.

FORK 1, S[l],S[2],...,S[k]

JOIN k, S

BRANCH BRIX, k, S[l] ,S[2],...,S[k]

XOR 1, S[1],S[2],...,S[£]

PARDO SCOPENAME, k, S, DOVAR, ITERNO

PARDOEND SCOPENAME, 1, S[l],S[2],...,S[&]

FUNCTION-CONTROL F, k, S[l],S[2],...,S[£]

The graphical representation of the structure of a basic

parallel program composed of representations introduced in Fig.2-1

is called the basic parallel program graph (BPPG). Fig. 2-2

illustrates a BPPG.
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START

2 X BRANCH LI,3,4

BRANCH L2,ll,12 X 9

^ PARDO L3,15,U,L5

\^ A /] PARDOEND L3,16

STOP

Fig. 2-2. A BPPG



2.2 The Structured Set of Initiation Control Primitives
and the Structured Parallel Program

The structured set synthesized in this section is an outcome

of an effort to impose some rules on the structure of a source

program such that the structured parallel program lends itself to

efficient analyses for various kinds of optimizations. Thus, the

most fundamental requirement of a structured parallel program is

that it should clearly exhibit parallelism in a form subject to

efficient analysis.

Certain rules must be observed in any program whether it is a

basic parallel program or a structured parallel program. Fig.2-3

illustrates them. First, the program-element 18 can never be

completed because it will never happen that both 16 and 17 are

executed. Secondly, if 8 and subsequently 10 is initiated as a

result of the execution of 5, then the ambiguity arises as to how

many iterations should be followed from that point. These ambi

guous, or non-terminating, programs should be treated as incorrect

programs resulting from the incorrect use of the basic set of pri

mitives. Rules on the correct use of them are rather obvious but

the validation that the given machine-language program does not

violate rules becomes an exhaustive process. These rules are

enforced by the structured set of initiation control primitives to

be described below.

The structured set contains the following initiation control

primitives:
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STOP

Fig. 2-3. Erroneous BPPG



FUNCTION-CONTROL

PARBEGIN and PAREND

A-BRANCH and XOR

SEQBEGIN and SEQEND

PARDO and PARDOEND

SEQDO and SEQDOEND

WHILE-REPEAT and WHILEEND

SUBROUTINE and RETURN

Formats and semantics of these are described in the following.

First, the FUNCTION-CONTROL primitive is the same as the one

contained in the basic set.

Next, the PARBEGIN and PAREND primitives are variants of FORK

and JOIN primitives in the basic set. Their formats are:

PARBEGIN SCOPENAME, P, S[l],S[2],...,S[k]

PAREND SCOPENAME, P[l],P[2],...,P[£], S

where k _> 2 and I >_ 2. A PARBEGIN and a PAREND having the same

scope-name are said to be in partnership. Each PARBEGIN is asso

ciated with an unique scope-name and with an unique PAREND.

Semantics of PARBEGIN and PAREND are the same as ones of FORK

and JOIN except that the following additional rule is associated

with PARBEGIN and PAREND: (1) once PARBEGIN is initiated, suc

cession of program-element initiations must always reach to the

point of initiating the partner PAREND, and (2) every succession
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of initiations reaching to the initiation of PAREND must include

the initiation of the partner PARBEGIN in the earlier position in

it. This rule is called the scope-rule in this report. A set of

all program-elements which can be executed during the period

between initiation of PARBEGIN and completion of its partner PAREND

is called the PAR-block belonging to PARBEGIN and addressed by its

scope-name. PARBEGIN is called the block-head and PAREND is

called the block-tail of the PAR-block.

In the sequel, other blocks are introduced. Blocks may be

nested in general. Within a block, there may be pairs of PARBEGIN's

and PAREND*s. The smallest block to which a program-element be

longs is called the scope of the program-element. The scope-

rule applied to a PAR-block is applied to other blocks to be intro

duced in the rest of this section. The scope-rule is the most

fundamental one in the structured parallel program.

A rule associated with the FUNCTION-CONTROL primitive in the

structured set is that every FUNCTION-CONTROL primitive whose

successor-list or predecessor-list contains more than one program-

element must have a PAR-block as its scope.

The A-BRANCH and XOR primitives in the structured set are the

same as BRANCH and XOR primitives in the basic set, except that

(1) the A-BRANCH cannot be used to form a loop, (2) the A-BRANCH

has only one immediate predecessor, and (3) the XOR has only one

immediate successor.

The SEQBEGIN and SEQEND primitives are similar to BRANCH and

XOR primitives but they are associated with the scope-rule. Their

formats are:
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SEGBEGIN SCOPENAME, BRIX, P[l],P[2],...,P[k], S[l],...,S[£]

SEQEND SCOPENAME, Q[l],Q[2],...,Q[m], T[l],...,T[n]

where k _> 1, £>_2, m •> 2 and n >_ 1. Semantics of these primi

tives are the same as ones of BRANCH and XOR primitives. In

addition, SEQBEGIN cannot be used to form a loop. The scope-rule

is applied to a pair of SEQBEGIN and SEQEND in partnership. Simi

lar to a PAR-block, a SEQ-block is defined as a set of all program-

elements which can be executed during the period between initia

tion of SEQBEGIN and completion of SEQEND.

A rule associated with A-BRANCH and XOR primitives in the

structured set is that every A-BRANCH and every XOR must have a

SEQ-block as the scope.

The PARDO and PARDOEND primitives are the same as ones in

the basic set. As defined in the preceding section, these primi

tives are clearly associated with the scope-rule. Thus, a PARDO-

block is defined similar to a PAR-block.

Since the A-BRANCH primitive in the structured set cannot be

used to form a loop, additional primitives are included in the

structured set to form sequential loops.

Two kinds of sequential loops are allowed in the structured

parallel program. One is the sequential DO-loop structured by

using the SEQDO and SEQDOEND primitives. Their formats are:

SEQDO SCOPENAME, P[l],...,P[k], S, DOVAR, ITERNO

SEQDOEND SCOPENAME, P, S[l],S[2],,..,S[&]

where k > 1 and £, > 1. These primitives are sequential analogs
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of the PARDO and PARDOEND primitives. That is, all iterations must

be executed sequentially such that an iteration associated with

the smaller CONT(DOVAR) is executed before the iteration associated

with the larger CONT(DOVAR). Clearly this sequential DO-loop is

subject to the scope-rule and thus a SEQDO-block is defined in the

same way as other blocks are defined.

The second type of sequential loop is called the WHILE-REPEAT-

loop.. Its number of iterations cannot be determined prior to

entry into it. It is constructed in the structured parallel program

by the WHILE-REPEAT and WHILEEND primitives. Their formats are:

WHILE-REPEAT SCOPENAME, BOOLVAR, P[l],...,P[k] ,

S, S[l],S[2],...,sm

WHILEEND SCOPENAME, P

where (l).k >_ 1, I _> 1, (2) BOOLVAR represents a boolean variable,

(3) S[i] represents the i-th immediate successor outside the

WHILE-REPEAT-loop.

The semantics of these primitives are as follows. The WHILE-

REPEAT primitive is initiated either when all of its immediate pre

decessors P[l],P[2],...,P[k] have enabled it for initiation, or

when its partner, the WHILEEND primitive has enabled it. Then its

function is to check if CONT(BOOLVAR) is 0 or 1. If CONT(BOOLVAR)

=0, it enables S, the immediate successor inside the WHILE-REPEAT-

loop. If CONT(BOOLVAR) = 1, it enables all of its successors out

side the loop, S[l],S[2],...,S[Jl].

The WHILEEND primitive is initiated when P has enabled it and

then its function is to enable its partner, the WHILE-REPEAT
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primitive. The scope-rule is again associated with a pair of

WHILE-REPEAT and WHILEEND primitives in partnership and the block \r

belonging to the WHILE-REPEAT primitive is called the WHILE-REPEAT-

block. **

Lastly, the structured set includes the SUBROUTINE primitive

and the RETURN primitive. These two primitives are included in

the structured set for the sake of completeness, but without a

specific definition. Although several definitions can be borrowed

from various algorithmic languages, these two generic primitives

may be regarded as equivalent to the ones in FORTRAN except

prohibition of using COMMON variables. For various analyses dis

cussed in this report, each subprogram structured by these primi

tives may be treated as either an independent program or a single

functional program-element. Thus a subprogram is not explicitly

dealt with in this report.

Fig. 2-4 shows graphical representations of initiation con

trol primitives in the structured set, except the SUBROUTINE and

the RETURN. The graphical representation of the structure of a

structured parallel program,composed of representations introduced

in Fig. 2-4, is called the structured parallel program graph (SPPG).

Fig. 2-5 illustrates a SPPG.

The structured parallel program eases its analysis to a great

extent by allowing the analysis of each block in isolation from

others. That is, the structured parallel program lends itself to

the level-by-level optimization. Parallelism exhibited in it can

be efficiently utilized. Reliability of the produced program is

much' enhanced by suppressing a lot of sources of ambiguity and
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non-termination. Merits of the structured parallel program will

become increasingly evident as discussion of various analyses pro

ceeds.
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2.3 Detection of Useful Parallelism

Manual detection of parallelism made in the course of design

ing a structured parallel program is highly likely to be insuffi

cient in that a great deal of useful parallelism may be hidden in

the user-produced structured parallel program. In this section,

techniques for detecting useful parallelism that remains hidden

in the structured parallel program are considered. In the discus

sion that follows, it is assumed that the initial program is

correct in that its execution always produces correct results.

Detection of hidden parallelism and its indication in the

program leads to the new structure of the program. Thus it is

essentially a process of restructuring the initial program into

the one in which more parallelism is explicitly exhibited. In

order to enable efficient utilization of parallelism indicated in

it, the restructured program must possess the desirable structure,

i.e. it must still be a structured parallel program. With this

motivation, techniques for parallelism detection developed in this

section incorporate the level-by-level optimization strategy.

More specifically, each block is analyzed independently of its

environment and all nested blocks in it are treated as single

program-elements during its analysis. If a total program is not a

single block, it is regarded as a block called a program-block.

The nesting relationship between blocks can be represented by a

tree called the hierarchy of block-heads and denoted by H . In H ,each

block is represented by the primitive itbelongs to, i.e., the block-head.
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The root in H^ corresponds to the outermost block and leaves in

H_ are innermost blocks in the structured parallel program. To

each block an arc is drawn from its scope. Each block is said to

be at the lower level than its scope in H^. Fig. 2-6 shows the

H^ of the program in Fig. 2-5 . L is a compact representation

of nesting relationship.

For parallelism detection, the direct analysis of the program

text becomes quite cumbersome because the text contains additional

information not relevant to parallelism detection. Therefore, it

is convenient to use a suitable program model. Bernstein developed

the sufficient condition for two program-elements in a sequential

program to be parallel processable [ber 66]. A simpler and machine-

independent condition is usedas thebasis for techniques developed in this

section. The condition is stated in terms of variable-sets used

by each program-element. Thus the first essential information

which should be contained in the model is the information on

variables used by each program-element.

There are situations where the exact determination of every

variable used is infeasible but the approximation is possible,

i.e. a set of variables containing the variables actually used as

a subset can be obtained. In the rest of this chapter, the

variable-set is not distinguished whether it is an exact set or an

approximate superset. In short, the first essential information

is the input-variable-set (or operand-variable-set) of each program-

element e[i] denoted by X_(e[i]) and its output-variable-set

(or result-variable-set) denoted by A (e[i]).
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Fig. 2-6. II of the program in Fig. 2-5
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The second piece of essential information is obviously the

program structure. Since each block is independently analyzed of

others, the model used for parallelism detection at each step

consists of the structure of a block and variable-sets associated

with each program-element in the block. The exact model of a

block B for parallelism detection denoted by Jr^W varies

depending upon the type of B.

As mentioned before, a block B nested in its scope B is

treated as a single functional program-element during the analysis

of B. An input- or output-variable-set associated with the

program-element representing B is the union of input- or

output-variable-sets associated with all program-elements in B.

The overall process of parallelism detection generally

proceeds in a bottom-up direction. That is, it starts with

restructuring blocks at the lowest level in 1L_ and then proceeds

gradually through blocks at the higher level up to the block

located at the root in L. An exception is made in a few cases

and each of those cases is discussed later in this section as it

becomes relevant.

For the sake of completeness in modelling, two special cases .

are taken into account. The first case is described by the example

in Figure 2-7. That is, program elements 2 and 3 outside the

PAR-block B can be moved inside B to indicate more parallelism,

if conditions are met among program-elements 2,3,4, and 5. In

order to accomodate this situation, the convention of taking B

out of its environment for analysis needs to be adjusted as follows.
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Fig. 2-7. Parallelism between prop.ram-elements outside

and ones inside a PAR-block.
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If the block-head of a PAR-block B is preceded by a chain of

"° functional program-elements in the scope of B, the ^AD(B)

contains the chain in addition to B itself. Similarly, if the

**• block-tail of a PAR-block B is followed by a chain of functional

program-elements in the scope of B, v^AD(B) contains the chain,

too.

The second case concerns the analysis of a program-block. If

all blocks nested in a program-block B are treated as single

functional program-elements, B is in effect treated as a chain

of functional program-elements. Detecting parallelism hidden in.

a chain of functional prpgram-elements is a part of detecting

parallelism in a general PAR-block. Thus a program-block B is

regarded as a variation of a PAR-block rather than an independent

type of block, in regard to parallelism detection.

In subsequent subsections, parallelism detection in each type

of block is discussed.

2.3.1 Parallelism Detection in a PAR-block

Let ^\/= {v} denote a set of all variables used in a PAR-

block B. Then wAn(B) can be represented by a quadruple

(G, 2^ ,A,AQ) where
* (1) G = (N,A) is a directed graph,

(2) 2^ is the power set of M/, and
o

(3) A and A are functions A: N •> 2.

Each node n[i] e N represents a program-element which may in

turn represent a block nested in B. The program-element represen-
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ted by n[i] is denoted by e(n[i]). But, the block-head and

the block-tail, i.e., the PARBEGIN and the PAREND in B are

not represented by any node in G. An arc (n[i], n[j]) exists,

i.e., (n[i], n[j]) e A iff e(n[i]) and e(n[j]) are in imme

diate predecessor-successor relationship in B. A (n[i]) cQj,

where n[i] e N, represents the operand-variable-set (or input-

variable-set) of e(n[i]). Similarly, A (n[i]) C^V represents

the result-variable-set (or output-variable-set) of e(n[i]).

Definition 2-1.

Assume '_A (B) is given where B is a PAR-block.

(1) e(n[j]) is said to be immediate operand-independent of

e(n[i]) iff either n[j] V: 12(n[i]) or A^ntj]) OAQ(n[i]) =<J>.
(2) e(n[j]) is said to be immediate result-independent of e(n[i])

iff either n[j]k^(n[i]) or AQ(n[j]) H(A^nti]) UAQ(n[i])) =(j>.

(3) e(n[j]) is said to be immediate data-independent of e(n[i])

iff e(n[j]) is both immediate operand- and result-independent

of e(n[i]). Otherwise, e(n[j]) is said to be immediate data-

dependent on e(n[i]).

(4) e(n[j]) is said to be independent of e(n[i]) and denoted

by e(n[i]) { e(n[j]) iff ^ a sequence of program-elements

in B, (e(n[kQ]), eGifkjD, ..., eCntk^]), e(n[k£])) such that

k = i, k- = j and each e(n[k ]), 1 < m < £, is immediate data-

dependent on e(n[k -]).
m—±

Iff 3 such a sequence, e(n[j]) is said to be dependent on

e(n[i]) and denoted by e(n[i]) < e(n[j])

(5) e(n[i]) and e(n[j]) are said to be parallel processable and
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denoted by e(n[i]) || e(n[j]) iff e(n[i]) { e(n[j]) and

e(n[j]) { e(n[i]).

Lemma 2-1. Given -/L(B) °f a PAR-block B,

e(n[i]) || e(n[j]) if *n[i] V: ^(n[j]) and n[j] k1J(n[i]).

Proof. (1) n[i] )c15(n[j]) => e(n[j]) { e(n[i])

(2) n[j] )c15(n[i]) =• e(n[i]) { e(n[j])

e(n[i]) 0 e(n[j]) Q.E.D.

After detection of parallelism hidden in a PAR-block B, its

explicit indication is achieved by setting a new Immediate

predecessor-successor relationship among program-elements in B.

Thus, if B represents the restructured version of a PAR-block

B, i.e., if B is a result of detecting parallelism hidden in B

and changing the immediate predecessor-successor relationship in

B, the only difference between \jx (B) and ^A (B) exists in
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their sets of arcs A and A.

Definition 2-2. Given a PAR-block B and its restructered

version B, B is said to indicate more parallelism than B, if

Vn[i] eN Vn[j] eN, n[j] e^nfi]) in ^D(B) implies that
n[j] e^tnti]) in lAD(B). That is, B is said to indicate
more parallelism than B, if R C R, where R and R represent

reachability relations of t_An(B) and '^A (B), respectively.

On the basis of these properties, an algorithm for obtaining

a restructured version of a PAR-block B, B which indicates at

least as much parallelism as B indicates, is synthesized as

follows.

Algorithm 2-1.

1. Obtain the reachability relation R from A in cAD0B).

2. Initialize A1*- (J).

3. For every pair of nodes (n[i], n[j]) e R, do the following.

3.1 Check if AjCnCj]) nAQ(n[i3) * <f> or AQ(n[j]) n (A].(n[i])

3.2 If so, A^A'U{(n[i].«m])}. UV»W» ^♦•

Otherwise, do nothing.

4. From A1, obtain the transitive reduction A«- U^CaO by the

algorithm in [aho 72]. G = (N,A) represents the new structure of

B.

The correctness of this algorithm can be stated by the

following lemma.

Lemma 2-2. Given B resulted from the application of

Algorithm 2-1 to a PAR-block B, B indicates at least as much
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parallelism as B does. That is, R C R.

Proof. V(n[i], n[j]) e A1, (n[i], n[j]) eR since Af is

increased only through step 3.2 in the algorithm. => A* Cr=*

o^CA1) £ QqW =" R£Rbecause R=S^CA') and R=^(R). Q.E.D.

Steps 1, 2 and 3 can be performed with computational complexity

bounded by a polynomial of #(N). Since G is an acyclic graph,

step 4 can be again performed with computational complexity

bounded by a polynomial of #(N).

Here a trade-off between storage and parallelism is noteworthy.

Definition 2-3. Given a set of nodes N1 C N in c_AD(B),

p.(Nf) is defined as: £(N') = {e(n) |neN'}

Lemma 2-3. If n[j] e'i&nU]), AQ(n[i]) OAjditj]) = <j> and

Vn[k] e£p(n[i]) O^^ditj])), AQ(n[k]) OXI(n[j]) =4> in
J[DW of aPAR-block B, either

(1) e<n[i]> 0 e(n[j]), or

(2) B can be transformed into an equivalent B in which

e(n[i]) B e(n[j]), by the following procedure.

(2-1) Set Z + ( U (AT(n) U An(n))) n An(n[j]), where N' =
neN* °

{n[i]> U (15(n[i]) nP^CnU])).

(2-2) Obtain a new set of variables Z' satisfying that

Z' n'-V = 4> and there exists a matching 0: Z •*• Z*.

(2-3) Do the following for each e(n[k]) where n[k] e ({n[j]} U

^(n[j])): replace every variable v e Z used in e(n[k]) with

0(v) e Z\
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Proof. Since n[j] eQ(n[i]), e(n[j]) { e(n[i]).

Case 1: Z = <J)

Apparently, e(n[ij) { e(n[j']) =* e(n[i]) II e(n[j]).

Case 2: Z H <J>

From the correctness of the program, it is apparent that for

each variable v e Z, CONT(v) after the initiation of e(n[j])

is never used in execution of program-elements o( fc (n[j])).

Similarly, CONT(v) before the initiation of e(n[j]) is never

used in execution of program-elements £,C-J2(n[j])) and e(n[j]).

=* Replacement of v e Z appeared in P,£J3(n[j])) and e(n[j])

with 6(v) e Z1 does not change the correctness. And in

J^(B) =(G, 2(^UZ,), Xr A0), Vn eN\ (A^n) UAQ(n)) n
yn[j]) =(((Xx(n) uyn)) \Z) Uz) n((AQ(n[j]) \Z) Uz») =
Z Oz' =(j)=> e(n[i]) { e(n[j]). In a transformed B, e(n[i]) II

e(n[j]) Q.E.D.

Therefore, by using a limited amount of additional storage

(variables), much more parallelism can be exploited. In the ideal

case where additional storage for this purpose can be freely

employed, the following algorithm can be used for obtaining B

from B through restructuring and replacement of variables.

Algorithm 2-1(a).

1. Obtain the reachability relation R= 9^.(A) from A in

A(B)-
2. Obtain a sequence of all nodes in N, S(N) = (ntk^, n[k2],...,

n[k#(N)]), satisfying that if (n[i], n[j]) eR, i=k^ and j-km,
then H < m.
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3. Initialize Af + <f>

4. V n[k ] e N, do the following.

4.1 j*i-l and ! + ♦•

4.2 If j = 0, go to 4.7.

4.3 If (n[k ], n[k±]) V: R, go to 4.6.

4.4 X«- AQ(n[k ]) nA^nfk^) and if XCY, go to 4.6.

4.5 A1 + A1 U {(n[k.], n[k±])> and Y <- YU x.

4.6 j «- j - 1 and if j V 0, go to 4.3.

4.7 Continue.

5. Obtain ^(A1) from Af and set R1 «- ^(A1).
6. Set W «• R \ R1, and Z «- <J>.

7. V (n[i], n[j]) eW, Z«- ZU (AQ(n[j]) O (A^nli]) U AQ(n[i])))

8. V v e Z, do the following.

8.1 Obtain a graph Gv - (Nv> Av) where Nv ={n|v e AQ(n)}
and Ay ={(n[i], n[j]) | n[i] e Ny A n[j] eNyA (n[i]f n[j])

e R'}.

8.2 Obtain a minimal chain decomposition of Gv»

Dm(G ) = {c[l],..., c[l]}. (ref. Definition 3.5 in Section 3.3).
c" v

8.3 V n e N , replace v used as output variable in e(n)
v

with a new variable v[m] where n is covered by c[m] in

D»(Gv).
8.4 Obtain the sequence of all nodes in N^, S(Ny) -

(ntk^,..., n[k#(N }]), satisfying that V(n[k±], n[k..]) eR,

i < j.

If #(N ) = 1, go to 8.8.

8.5 i «- 1
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8.6 Replace all appearances of v in program-elements

£(N') with v[m], where N' =^(nt^J) \(^(ntk^]) U

{n[k ]}) and n[k ] is covered by c[m] in D (G ).
i"r-L i 0 v

In addition, replace appearances of v as input variables j

in e(n[k ]) with v[m].

8.7 i «- i + 1.

If i < //(N ), go to 8.6.

8.8 Replace all appearances of v in QC^Cntk.,, x])) with
v

v[m], where n[k,,,N n] is covered by c[m].
v

8.9 Continue.

9. Obtain rJ^A1) and set A+fJ^A'). G=(N,A) represents
the new structure of B.

It is apparent from the definition of dependency that S(N ) '

obtained after step 8.4 is unique. It is also apparent that after

replacement of variables through step 8, e(n[i]) 0 e(n[j]) if

(n[i], n[j]) k R' and (n[j], n[i]) V R1. The applicability of

algorithm 2-1(a) depends upon the amount of additional storage

which can be employed.

Even after obtaining B by Algorithm 2-1 or 2-1(a), there

still exists a possibility that a further analysis of B may

detect additional parallelism. Such a situation is exemplified by

Figure 2-8. There B is a restructured version of B. In B,

e(n[l]) which is a PAR-block B[l] and e(n[3]) which is **

another PAR-block B[3] can be combined into a single large PAR-

block which may in turn be restructured into another block indicating

more parallelism. This is in fact a digression from the bottom-up proceeding.
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PAR-block B| 1 |

2 ) SEQ-block B|2| 0
3 ) PAR-block B( J|

!•' ij.',. 2-H. Combining blocks nested hi B.

Before the general condition which should be satisfied

among PAR-blocks nested in B to be combined is given, some

terminologies are introduced.

Definition 2-4. Assume an acyclic directed graph G - (N,A)

is given.

(1) A pair of nodes n[i] e N and n[j] e N are said to be

coupled to each other, if n[j] e^(n[i]) and every path from the

entry to the exit in G covering n[i], covers n[j] and vice versa.

(2) Given a pair of nodes n[i] and n[j] e ^(n[i]) coupled
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to each other, a set of nodes N =l?(n[i]) nrp"1(n[j]) U
u

{n[i],n[j]} together with a set of arcs A = {(n[k], n[£]) |

n[k] eNc a n[l] e NQ A (n[k], n[£]) £A} is called a closed

subgraph belonging to its entry n[i] and its exit n[j]. It is

denoted by gc(n[i], n[j]) = (NC>AC).

Lemma 2-4. Given (J\ (B) where B is the restructured

PAR-block, if 2 a closed subgraph gQ = (N ,A ) contained in

G satisfying that Vn eNc> e(n) is a PAR-block nested in B,

0(NC) can be combined into a single PAR-block.

Proof. From the definition of a closed subgraph, it is

apparent that for every node n e N except the entry- and the

exit-node of gc, all immediate predecessors and successors of n

represent PAR-blocks nested in B. So, each e(n) can be combined

with immediate predecessors and successors. Q.E.D.

The procedure for detecting a closed subgraph is now considered.

Definition 2-5. Assume an acyclic directed graph G = (N,A)

is given.

(D The arc-connectivity relation A is defined as:

AA::= ((a[i], a[j]) |a[i] =(nti^, n[i2].) eA
A a[j] = (n[J1], n[j2]) eAa ±2 =J1> Cax A.

(2) The reachable-arc-set and reaching-arc-set of an arc a[i] e A, ?*

denoted by ^A(a[i]) and Q^aEi]), respectively, are defined
as:

^Uti]) ::= {a[j] |3(a[k.], a[k.], ..., a[k ])

0
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ttkQ =ia km = jA VI < I < m,

(afk^], a[k^]) eAA1}

^^(afi]) ::= {a[j] |a[i] e^A(a[j])}
(3) The arc-reachability relation R. is defined as:

RA ::- «a[i], a[j]) |a[i] eA Aa[j] e^A(a[i])}

(4) The reachable-arc-set and reaching-arc-set of a node

n[i] e N, denoted by ^R.(n[i]) and ^R~ (n[i])» respectively,

are defined as:

<3^(n[i]) ::-QA(a[j]) for any a[j] eA^nfi]).
^^(nfi]) ::=cPA1(a[j]) for any a[j] eyn[i]).

Theorem 2-1. Given an acyclic graph G = (N,A), the necessary

and sufficient condition for a pair of nodes n[i] and n[j] e

H<(n[i]). to be coupled to each other is:

^(nti]) uqV^nti]) =rPA(n[j]) U^^tj]).
In addition, a set of arcs in gc(n[i]), n[j]) are obtained by

^A(n[i]) H^Cntj]).

Proof. Since G is an acyclic graph and n[j] e^R(n[i]),

^(nti]) n^(n[j]) - ♦ and ^(nti]) Citf) (n[j]) =<{>.

(1) n[i] and n[j] are coupled.

o QA(n[i])\^(n[j]) ^^(nljD^dili])
o (<^A(n[i])\QA(n[j])) uQA(n[j]) U^'1^!])
=1?A(n[j]) U^^ntj])^"1^!])) U^-^nli])

j) =vfcrAtnijj; u^k/"
ri
A

A set of arcs in gn(n[i], n[j]), A_ =^.^[1])

o "PA(n[i]) U^diti]) =CPA(n[j]) uCp^Cntj])
(2) Since ,-PA(n[i]) O^^nEi]) =*
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VRA(n[J]) ^^(nUl^-^nEi])
=(TJA(n[i])\1?A(n[j])) n('^(ntjDX^Ufi]))
= f(pA(n[i])\T?A(n[j])) uTJA(n[j])]
^[(P^Cntj])^1^!!])) uTJ-^nti])]

=T?A(n[i]) H^Cntj]) Q.E.D.

Based on this condition, an algorithm for detecting every

closed subgraph in J\ (b) can be easily developed. However, some

closed subgraphs are nested (contained) in others. In such a case,

it is desirable to check first the closed subgraph in ^A (B)

which does not contain others, if it satisfies the condition stated

in Lemma 2-4. The nesting relationship between closed subgraphs

is discussed below.

Lemma 2-5. If there are two closed subgraphs in an acyclic

G having the same entry-node n[i], gc(n[i], n[j]) and

gc(n[i], n[k]), either

(1) n[k] eT>(n[j]) and gc(n[i], n[j]) Cg(;(n[i], n[k]), or

(2) n[j] e1£(n[k)) and gc(n[i], n[k]) Cgc(n[i], n[j]),
where G = (N ,A ) C G = (N2,A2) means that N1 C N« and A. C A2,

Proof. Apparently n[j] e^R(n[i]) and n[k] £^P,(n[i]).

(1) If n[k] k'12(n[j]) and n[j] V 15(n[k]), 3J a closed sub

graph gc(n[i], n[j]) and ^ a cl°sed subgraph g (n[i], n[k]).

(2) If n[k] e12<n[j]) and gc(n[i], n[j]) t^i], n[k]),

g«(n[i], n[k]) is not a closed subgraph.

(3) If n[j] e^2(n[k]) and gc(n[i], n[k]) t g(,(n[i], n[j]),

g (n[i], n[j]) is not a closed subgraph. Q.E.D.
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Lemma 2-6. If there are two closed subgraphs having the

same exit-node n[i] in an acyclic G, gp(n[j], n[i]) and

gc(n[k], n[i]), either

(1) n[k] eT5(n[j]) and gc(n[k], n[i]) C gc(n[j], n[i]), or

(2) n[j] e15(n[k]) and gc(n[j], n[i]) Cgc(n[k], n[i]).

Proof. By the similar reason applied to Lemma 2-5. Q.E.D.

Theorem 2-2. If there are two closed subgraphs in an acyclic

G having the same entry-node n[i], g (n[i], n[j]) and

g_(n[i], n[k]), there exists a closed subgraph gp(n[j], n[k])

or gc(n[k], n[j]).
Proof. From Theorem 2-1,

(1) UA(n[i]) U-p^^fi]) =T2A(n[j]) U^Cntj]).
(2) T>A(n[i]) U^Cnfi]) ="PA(n[k]) U^Cntk]).
(1) and (2) => PA(n[j]) U^H-(n[j]) =T>A(n[k]) U^(nfk])

=* 3gc(n[j]), n[kj) or gc(n[k], n[j]). Q.E.D.

Theorem 2-3. For any two closed subgraphs in an acyclic

G, gc(n[i], n[j]) =(N^) and gc(n[k], n[l]) = (N2,A2),

exactly one of the following conditions is satisfied.

(1) gc(n[i], n[j]) C gc(n[k], n[l}).

(2) gc(n[k],nW)Cgc(n[i],n[j]),

(3) gc(n[i], n[j]) ngc(n[k], n[H]) = (^ n^, A^^ n^)

= <<M> = <t>

Proof. From Lemma 2-5, 2-6 and Theorem 2-2. Q.E.D.
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Definition 2-6. A closed subgraph g_(n[i], n[j]) in G is
\j

called a basic closed subgraph and denoted by g_(n[i], n[j]), if
B

there exist neither a g (n[i], n[k]) such that n[j] e 13(n[k])

nor a gc<n[k], n[j]) such that n[kj eT?(n[i]). If there is a

g (n[i], n[j]) in G, n[i] and n[j] are said to be in partner

ship.

Definition 2-7. Given an acyclic G = (N,A), the coupledness

relation R and the partnership relation R^ are defined as

follows.

Rc ::= {(n[i], n[j])| Hgc(n[i], n[j])}

Rp ::= {(n[i], n[j]) | 3gB(n[i], n[j])}

Theorem 2-4. Given an acyclic G = (N,A), the partnership

relation R^ is the transitive reduction of the coupleness

relation R. I.e., R_ = 31(Rr). In addition, Rp can be

partitioned into a family of independent total orderings,

TT(Rp) = {rp[l], rp[2], ..., rp[m]}.

Proof.

(1) Suppose there exist (n[i], n[j]) eRp and (n[i], n[k]) e Rp

satisfying that n[k] e P(n[j]) in a graph Gf = (N,Rp). Then

(n[i], n[j]) e Rc, (n[i], n[k])e RQ and (n[j], n[k]) eRc from

Theorem 2-2. => ^gfi(n[i], n[k]) => (n[i], n[k]) ^Rp, contra
diction. =*• Rp is the transitive reduction.

(2) From Definition 2-7, R^ contains no more than one couple, for

each n[i] e N, in which n[i] is the first element. => Rp can

be partitioned into a family of independent total orderings. Q.E.D.
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Definition 2-8. Assume an acyclic G - (N,A) is given.

(1) A closed subgraph g (n[i], n[j]) in G is said to be

properly nested in another closed subgraph g (n[k], n[i]) if

n[i]E'U(n[k]) and n[j] 6TJ"W]).

(2) A closed subgraph gr(n[i], n[j]) in G which does not

contain any other subgraph as its subset is called a minimal closed

subgraph belonging to its entry n[i] and its exit n[j], and

denoted by gM(n[i], n[j]). If there is a gM(n[i], n[j]) in G,

n[i] and n[j] are said to be in minimal partnership.

(3) The minimal partnership relation R^. is defined as:

1^ ::= {(n[i], n[j]) |3gM(n[i], n[j])}.

Theorem 2-5.

(1) Each minimal closed subgraph g^nti], n[j]) is a basic

closed subgraph. In addition,

(2) R.^ can be partitioned into a family of independent total

orderings, *nr(RM) = {rM[l], rM[2], ..., r^Z]}.

(3) Then the following property holds between ir(R ) and
M

TT(Rp) = {rp[l], rp[2], ..., rp[m]}:

(3.1) V rM[i] e TrCy, 3rp[j] e Tr(Rp) IrM[i] C rp[j]l.

(3.2) 3 (rM[i], rp[j]) efirO^) x Tr(Rp)) ttrM[i] =rp[j]l.

Proof.

(1) From definition 2-6 and 2-8, a minimal closed subgraph is

apparently a basic closed subgraph.

(2) From (1) and Theorem 2-4, R^ can be partitioned into irClO.

(3) From (1) and (2), (3-1) is apparent.
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(3-2) is proved as follows. A member of tt(R^), r [i] is

said to be properly nested in r [j] e ir(R^), if

3((n[i1], n[i2]), (ntj^, n[J2])) e(rp[i] x rp[j])

InEiJ eTJCntjJ) A n[i2] eIT^n^])J.
Apparently, this relationship among members of ir(R^) is

transitive. So, there exists a member r_[k] in which no other

member is properly nested.

=> V <n[i], n[j]) e rp[k], Sg^nti], n[j]) => rp[k] eirO^. Q.E.D.

On the basis of these properties, an efficient algorithm for

combining several PAR-blocks nested in B is synthesized as

follows.

Algorithm 2-2.

1. Obtain R, A ,R from G = (N,A) and initialize Rc «- (J).

2. V (n[i], n[j]) e R, do the following.

2.1 Check if T?A(n[i]) uTJ^diti])
=PA(n[j]) UTJ-Vfj]).

2.2 If so, Rc +• Rc U{(n[i], n[j])}. Otherwise, do nothing.

3. If Rr = <J>, terminate.

Otherwise, Rp «- ^r^c)*
4. Partition R^ into a family of independent total orderings

TT(Rp) ={rp[l], rp[2], ..., rpM>, and initialize _'w«- (J) and

X «• 7T(Rp) .

5. Find a member of X, r [k] in which no other member is

properly nested.

5.1 Initialize y «- n[k ] where ntk^ is the first node in
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the order represented by r [k].

5.2 Starting with the second node n[k2] in the order

represented by r [k], do the following for every node nfk^

contained in rp[k] in the order represented by rp[k].

5.2.1 Obtain g (n[k. .], n[k ]), and check if it meets the

condition stated in Lemma 2-4.

5.2.2 If so, z -t- n[k ]. Otherwise, do the following.

5.2.2.1 If y = z, do nothing. Otherwise, remove every

member in W, (n[i], n[j]) such that n[i] eT5(y) and

h[j] eTJ""1(z). Then W+W U{(y,z)} and y «- n[k ].

5.2.2.2 Find r [Z] e Tr(Rp) in which rp[k] is properly

nested. If it does not exist, do nothing. If r [&] is

found, find a member (n[&.]9 n['A..-]) such that n[k-] e

I>(nU ]) and n[kj e^'^nE* J). Then split rp[A]
into two parts by removing (n[&.]» n[£. .]).

6. X •*- X\{rp[k]}. If X= <(>, go to 7. Otherwise, go to 5.

7. V (n[ij, n[j]) eW, obtain gc(n[i], n[j]) = (Nc, Ac) and

combine Q$c) into asingle PAR-block.

Although the algorithm consists of a number of steps, it is

efficient in that each step can be performed with computational

complexity bounded by a polynomial of //.(N) and //(A).

A 2.3.2 Parallelism Detection in a SEQ-Block

Two possible sources of hidden parallelism in a SEQ-block B

are considered. Unlike in aPAR-block, _^D(B) of aSEQ-block B

contains two types of nodes, one representing a control program-
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element called a c-node and the other representing a functional

program-element called a f-node. Regarding the block-head

SEQBEGIN and the block-tail SEQEND as special kinds of A-BRANCH

and XOR, each c-node is either a A-BRANCH- or XOR-riode. Unlike in

a PAR-block, the block-head and the block-tail are included in

-/D(B).
Til.Thus _4D(B) is now aquintuple ^A(B) = (G, 2^, X,AQ,$)

where

(1) G= (N,A), 2y, X and Xfl have same meanings as in lA (B1)

of a PAR-block B1, and

(2) 3 called a node-type-function is a function

3: N •*• {A-BRANCH, XOR, f- node}.

First, between two neighbor c-nodes, there is a chain of

f-nodes. Parallelism hidden in every chain can be detected by

Algorithm 2-1. After this,^(B) =(G, 2V, Xj, XQ,3) is
modified into 4'(B) =(Gf, 2V, X^, X^, 3') by replacing every
chain with a single f-node. Then A' (B) is used for the next

step of parallelism detection in a SEQ-block B.

The second source considered in this section is illustrated

by Figure 2-9. That is, a set of nodes completely enclosed by one

A-BRANCH-node and one XOR-node can be coalesced into a single

f-node, and if this results in a chain of f-nodes, Algorithm 2-1

can be applied for parallelism detection.

A sufficient condition for a set of nodes N1 in _/tD(B)

of a SEQ-block B to be combined, is that there exists a closed

subgraph g„(n[i], n[j]) = (N_,A_) such that N = N', 3(n[i]) =
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A-BRANCH and 3(n[j]) = XOR. Therefore, an algorithm for

detecting such a subgraph can be easily derived from Algorithm 2-2

through a simple modification.

However, such a condition is too restrictive in the sense that

there may be a large number of subgraphs in J\ (B) which are

not closed subgraphs but which can be coalesced into single f-nodes.

This is illustrated in Figure 2-10. There G-^ contains only one

closed subgraph g (1,10), while G2 contains three closed sub

graphs gc(l,12), gc(4,10) and gc(5,ll). That is, the amount

of parallelism detectable by Algorithm 2-2 is sensitive to how

XOR-nodes are used. This restriction is easily removed by the

simple generalization of the notion of a closed subgraph.

Definition 2-9. An open-end closed subgraph denoted by

g-(n[i], n[j]) = (N-, A^) is a subgraph in G satisfying

(1) n[i] is an A-BRANCH-node and n[j] is a XOR-node such that

n[j] e'-£(n[i]), and

(2) V n[k] £ (N?\fe[j]», every path from the entry to the exit in

G covering n[k], also covers n[i] and n[j].

n[i] and n[j] are said to be loosely coupled to each other.

The open-end closed subgraph has the same properties as the

one of the closed subgraph stated by Lemma 2-5 and Theorem 2-2, 2-3.

The necessary and sufficient condition for n[i] and n[j]

to be loosely coupled to each other is obtained by modifying the

condition for coupledness given in Theorem 2-1.
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Lemma 2-7. The necessary and sufficient condition for an

A-BRANCH-n[i] and a X0R-n[j] satisfying n[j] ecP(n[i]) to be

loosely coupled to each other is:

<QA(n[i]) U^CnCi]) =( U ^(aW^U^MjDUw
A A a[k]eW A A

where W=^A(n[i]) nA^Wj])

In addition, a set of arcs in gg(n[i], n[j]) where n[i] and

n[j] are loosely coupled, are obtained by

CRA(n[i])n (( U ^(afk])) UW) .
A a[k]£W A

Proof. From the proof of Theorem 2-1 and the definition

of loosely coupledness. Q.E.D.

The algorithm for detecting each open-end closed subgraph in

cA (B), coalescing it into a single f-node and then detecting

parallelism in the resulting chain of f-nodes, can be easily

synthesized on the basis of Lemma 2-7 and Algorithm 2-2. Such

an algorithm is not elaborated in this section.

2.3.3 Parallelism Detection in A SEQDO-Block

There are largely two types of possible sources of parallelism

hidden in a SEQDO-block. One is intra-iteration parallelism which

is one existent within every iteration, and the other is inter-

iteration parallelism which exists between iterations.

70



2.3.3.1 Detection of Intra-Iteration Parallelism

* ^L(B) of a SEQDO-block B contains either a single f-node

or a chain of f-nodes, except the entry-node representing the

-* block-head SEQDO primitive and the exit-node representing the

block-tail SEQDOEND primitive. In the former case, there is no

additional intra-iteration parallelism. In the latter case,

Algorithm 2-1 can be applied for detecting parallelism hidden in

a chain of f-nodes.

2.3.3.2 Detection of Inter-Iteration Parallelism

In general, the inter-iteration parallelism in a SEQDO-block

does not lend itself to efficient detection and utilization.

However, it may become necessary to check if the SEQDO-block can

be transformed into an equivalent PARDO-block.

In order to derive a sufficient condition for a SEQDO-block

to lend itself to such a transformation, the following notions are

introduced. Let & denote a set of all possible CONT(DOVAR) for B,

and 6 represent CONT(DOVAR) at one time. A variable is classified

into one of two types, a vector-variable and a scalar-variable.

Definition 2-10. A vector-variable v or shortly V-v is

q. a variable which is assigned to a different location during the

execution of a SEQDO-block depending upon 6*.

% (1) A V-v is represented by V-v = (h ,x ), where h represents

the address of the head, i.e., the location matched with v when

6=0 and x is an index function
v

x : ft •*• {index} = {location-address - h }.
v v
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(2) During the execution of B, the address of the location matched

with a V-v at a certain time, denoted by r(v,6) is determined

by (hv+xv(5)).

(3) One additional rule is that, given two V-variables v[i] and

v[j], {r(v[i],k) | k e fi} n {r(v[j],k) |k e ft} = 4>, if

h r.,1 ^ h r.,. That is, if their heads are different, there is
v[i] v[j]

no address which is assigned to both variables.

Definition 2-11.

(1) Two V-variables with different heads, v[i] and v[j] are

said to be heterogeneous, and denoted by v[i] <HET> v[j]. Two

sets of V-variables, V1 and V„ are said to be heterogenous iff

V v[i] £Vx V v[j] eV2, v[i] <HET> v[j].

(2) Two V-variables with the same head, but different index

functions v[i] = (hy, \r±]) a»d vtJ] = (hv> xv[j]* are said
to be non-overlapping iff {r(v[i], k) |k e ft} H {r(v[j], k)|

k e ft} = <J>. It is denoted by v[i] <NOOV> v[j].

Two sets of V-variables, V. and V2> are said to be non-overlapping

iff V v[i] eV1 V v[j] eV2 v[i] <NOOV> v[j] or

v[i] <HET> v[j]. It is denoted by V± <NOOV> V2- Otherwise

V. and V„ are said to be overlapping and denoted by ^ <0V> V2»

(3) A V-v[i] is said to be non-repeating if •V -k e ft V k2 e ft

r(v[i], kx) V r(v[i], k£) iff ^ Vk2- Aset of V-variables,

V is said to be non-repeating if every v[i] e V^- is non-repeating

Definition 2-12. An index function of a V-v[i], \[±] is

said to be monotonic if V kx e ft V k2 e ft either
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(1) r(v[i], kx) > r(v[i], k2) is implied by ^ > k2, or

(2) r(v[i], k^ < r(v[i], k2) is implied by ^ >k£.

Lemma 2-8. A V-v[i] is non-repeating if x r., is

monotonic.

Proof. From the definition of a monotonic function. Q.E.D.

Definition 2-13. A scalar-variable v or shortly S-v is

a variable which is always assigned to a fixed location. Thus a

S-v can be considered as a special case of a V-v whose index

function is 0. One restriction is that an address of the location

matched with a S-v, denoted by r(v) cannot be equal to an address

matched with any V-v. That is, for any S-v[i] and V-v[j],

v[i] <HET> v[j].

Aj.(n[i]) can be partitioned into two variable-sets, A (n[i])
lb

called the input- (or operand-) S-variable-set of n[i] and

AIV(n[j]) called the input- (or operand-) V-variable-set of n[i].

i.e., AjCnU]) =AIg(n[i]) Uyn[i])

and AIS(n[i]) n AIV(n[i]) = (J)

Similarly, AQ(n[i]) can be partitioned into two variable-sets,

^OS^1-^ called the output- (or result-) S-variable-set of n[i]

and ^ov^1-^ caHed the output- (or result-) V-variable-set of

n[i].

i.e., AQ(n[i]) = AQS(n[i]) U AQV(n[i])

and AoS(n[il) nX0V(n[i]) = *'
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Definition 2-14. Assume ~AD(B) of aSEQDO-block B is
given,

(1) AX(N) is defined as:

A (N) ::= U A (n)
neN
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(2) Similarly, AQ(N), AIg(N), AQS(N), Aiy(N) and AQV(N) are

defined.

Definition 2-15. Given a set of variables V used in a

SEQDO-block, r(V,6) where <5 e ft , is defined as:

r(V,6) ::= {r(v,6) | v e V}.

Definition 2-16. A SEQDO-block B is said to be essentially

parallel if every pair of iterations are parallel processable.

Lemma 2-9. A SEQDO-block B is essentially parallel, if

XQ(N) =AQV(N), AIV(N) <N00V> AQV(N), and AQV(N) is non

repeating, where N is a set of nodes in J\^(B).

Proof. From the given condition, the following is satisfied.

Vieft Vjeft such that i* j, r(A;[(N), i) n r(AQ(N), j) = (J)

Ar(AQ(N), i) Hr(AQ(N), j) =<!>.=» Every pair of iterations are

parallel processable. Q.E.D.

Corollary 1. A SEQDO-block B is essentially parallel if '

XQ(N) =XQV(N), AIV(N) <HET> AQV(N), and We AQV(N), .>^
x is monotonic,
v

In general, A (N) may be a non-null set. If it is, B is

not essentially parallel, i.e., a pair of iterations are not



parallel processable, even if other conditions in Lemma 2-9 are met.

": " In fact, the main motivation for using S-variable in a SEQDO-loop

is an economic use of variables. This is another typical example

JL of a trade-off between economy of storage and abundance of paral

lelism.

Under the assumption that additional storage can be freely

employed, a significant amount of parallelism hidden in a SEQDO-B

which is not essentially parallel can be detected by the following

technique. A simple case where A (N) = Anc(N) is disscussed

first.

Lemma 2-10. If A (N) = A (N) and A (N) n A (N) = $ in

J( (B) of a SEQDO-block B, B can be transformed into a PARDO-

block B1 followed by a SEQDO-block B" by employing a new

V-vf[i] = OVm* sv'[i]^ for each S-vf1] £ ^QS^' where
x fr., = CONT(DOVAR).

Proof. The transformation is depicted in Figure 2-11. It

is apparent that V v £ A (N), CONT(v) after execution of B

is equivalent to CONT(v) after execution of B1 and B". Q.E.D.

In such a case, B is said to be decomposable into BT and

B" and B' is called a processing PARDO-block and B" is called

a result-selection SEQDO-block. In general, B" involves a

-J small portion of computation performed by both B' and B". Thus

by decomposing B into Bf and B", a major part of computation

can be performed with high parallelism utilization.
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B'

/)OVARtITERN\ II ITERNp' Vy

A1S(N), XIV(N)

XQS(N) - {v[i]}

Ais(N> n Aos(N) - ♦

WN,) " {v'I1]) " {(V[i]* Xv'UI)}

Ais(N,) " xis(N)
AIV(N') - XW(N)

where x ,,., - CONT(DOVAR)
v'[iJ

^7 \b
/>OVAR. I TERNA

vv(i)ex0S(N)f

IF CONT(r(v'[i], CONT(DOVAR))) t *

THEN v[i] - CONT(r(v'[i), CONT(DOVAR)))

V^7

Fig. 2-11. Transformation of a SEQDO-block B into a

PARDO-block B' and a SEQDO-block B".
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Now the condition for a B to be decomposable into B' and

B" is somewhat loosened.
»

» Lemma 2-11. A SEQDO-block B is decomposable into B1 and

B" if AIS(N) H AQS(N) = <f>, AIV(N) <NOOV> AQV(N), and

A (N) is non-repeating.

Proof. From Lemma 2-9 and 2-10. Q.E.D.

Corollary 1. A SEQDO-block B is decomposable into B1 and

B" if AIg(N) H AQS(N) = (j), AIV(N) <HET> AQy(N) and

V v[k] e A_„(N), x M , is monotonic.
OV v[k]

In general, the procedure for detecting an essentially

parallel B as well as a decomposable B based on Lemma 2-9 and

2-11 does not easily lend itself to automation. On the other hand

the procedure based on their corollaries becomes much easier to

implement, although some generality is lost.

2.3.3.3 Decomposition of a SEQDO-Block

The concept of decomposing a B into Bf and B" in the

preceding section can be further generalized. So far a SEQDO-

block has been treated as a unity represented by A (N) and

A-(N). In this section, the internal structure of B is examined

to reveal more parallelism by employing more general decomposition.

Figure 2-12 shows an example.

If J( (B) of a SEQDO-block B contains a chain of f-nodes

between the SEQDO-node and the SEQDOEND-node, the block-body of
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B, i.e., the portion of B excluding its block-head SEQDO

primitive and its block-tail SEQDOEND primitive, is treated as a

PAR-block.

If an cAj[B) of a SEQDO-block B contains only one f-node,

then the f-node represents either a basic program-element or a

block B nested in B. Here a basic program-element refers to

one which does not contain any initiation control primitive in

its inside except a FUNCTION-CONTROL primitive. In the former

case, no additional detection is necessary. In the latter case,

if B is a block other than a PAR- and a SEQ-block, then there

is again nothing to be done. This is because of the nature of the

bottom-up detection strategy. More specifically, if B is a

PARDO-block, then it must have been already analyzed and fully

decomposed by the procedure to be discussed in Section 2.3.4.

Similarly, if B is a SEQDO-block or a WHILE-REPEAT-block, it

must have been already analyzed and fully decomposed.

Therefore, it is sufficient to consider two cases for this

discussion. One is where the body of B, B is a PAR-block and

the other is where the body of B, B is a SEQ-block. In any

case, the model used for this analysis is u4D(B).

2.3.3.3.1 Decomposition of a SEQDO-Block Whose Body is a

PAR-Block

With each n[i] eN in e^D(B), A;[(n[i]) = (AIS(n[i]),

Aiy(n[i]) and A()(n[i]) = (AQS(n[i]), AQV(n[i])) are associated.
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Definition 2-17. Assume ^4D(B) of aPAR-block B, which

is the body of a SEQDO-block B, is given.

(1) e(n[j]) in 'J\_.(B) is said to be iteratively immediate

operand-independent of e(n[i]) iff AT„(n[j]) H AQS(n[i]) = (J>

and AIV(n[j]) <NOOV> AQV(n[i]).

(2) e(n[j]) is said to be iteratively immediate result-

independent of e(n[i]) iff Aog(n[j]) n ^s(n[i]) = <J> and

Xoy(n[j]) <NOOV> AQV(n[i]).

(3) e(n[j]) is said to be iteratively immediate data-

independent of e(n[i]) iff e(n[j]) is both iteratively

immediate operand- and result-independent of e(n[i]). Otherwise,

e(n[j]) is said to be iteratively immediate data-dependent on e(n[i]).

(A) e(n[j]) is said to be iteratively independent of e(n[i])

and denoted by e(n[i]) { e(n[j]) iff there does not exist a
I

sequence of program-elements

(e(n[kQ]), eCntkjD, ..., efrfk^D, e(n[k^])),

such that k = i, k = j, and each efrfkj), 1 <m < £,

is iteratively immediate data-dependent on £(n[km«iD• If ^

such a sequence, e(n[j]) is said to be iteratively dependent

on e(n[i]) and denoted by e(n[i]) < e(n[j]).
I

(5) e(n[i]) and e(n[j]) are said to be iteratively parallel

processable and denoted by e(n[i]) || e(n[j]) iff e(n[i]) { (n[j])
I I

and e(n[j]) { e(n[i]).
I

Lemma 2-12. Given (-A (B) of a PAR-block B which is the

body of a SEQDO-block B,

(1) e(n[i]) < e(n[j]) , if e(n[i]) < e(n[j])
I
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(2) e(n[i]) { e(n[j]), if e(n[i]) { e(n[j])
I

(3) e(n[i]) || e(n[j]), if e(n[i]) ||e(n[j])
I

Proof. From definitions of <, {, <, {, || and II* Q-E.D.
II I

Definition 2-18. Given G=(N,A) of lA^W where B is
the PAR-block body of a SEQDO-block B, R called the iteratively

dependency relation is defined as:

R ::= {(n[i], n[j])| n[i] e N A n[j] e N a e(n[i]) < e(n[j])}.
1 I

A directed graph G = (N,R_) is called the iteratively dependency

graph.

An example of GT can be seen in Figure 2-13. Note that G_

may contain cycles.

Lemma 2-13. In G of cAD(B) of aPAR-block B, which is

the body of a SEQDO-block B, every maximal strongly connected

(MSC-) subgraph denoted by g is a maximal clique.

Proof. From transitivity of iteratively dependency. Q.E.D.

Lemma 2-14. Given lAAB) of a PAR-block B which is the

body, of a SEQDO-block B, R C R where R is the node-reachability

relation.

Proof. From Lemma 2-12. Q.E.D.

An algorithm for finding R in cA (B) can benefit from this

property.
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Algorithm 2-3.

1. Obtain R and initialize R* <• R.

2. V (n[i], n[j]) fe R, do the following

2.1 Check if e(n[j]) is iteratively immediate data-dependent

2.2 If so, R' «- R1 U {(N[i], n[j])}. °n e(n[i])'

3. R3.^cTc(R').
Definition 2-19. Assume <^D(B) of a PAR-block B, which

is the body of a SEQDO-block B, is given.

(1) e(n[i]) and e(n[j]) are said to be non-separable and

denoted by e(n[i]) <NOSEP> e(n[j]) if (n[i], n[j]) E Rj and

(n[j], n[i]) e R~. Otherwise, e(n[i]) and e(n[j]) are said

to be separable and denoted by e(n[i]) <SEP> e(n[j]).

(2) A set of program-elements fi(N'), where N* £ N, is called

anon-decomposable set iff Ve(n[i]) e£(Nf) Ve(n[j]) e £(Nf),

e(n[i]) <NOSEP> e(n[j]).

(3) A maximal non-decomposable set of program-elements in B is

denoted by Swo is a non-decomposable set which is not a

proper subset of any other non-decomposable set.

Lemma 2-15. Assume cA (B) is given. For every MSC-set

of nodes n®0 in Gj =(N, Rj, Qin®0) is a G^^

Proof. From the definition of O^g- Q.E.D.

Definition 2-20. Given two sets of nodes N[i] and N[j]

in a directed graph G = (N,A), an arc-cut-set from N[i] to N[j]

denoted by C (N[i], N[j]) is defined as:

CA(N[i],N[j]) ::= {(n[k] ,n[it]) | n[k] £N[i] An[£] e N[j]
A (n[k], n[W e A}.
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Definition 2-21. Assume ^AD(B) of aPAR-block B, which is

the body of a SEQDO-block B, is given.

(1) Two sets of program-elements £.(N[i]) and £,(N[j]), where

N[i] £ N and N[j] £ N, are said to be separable, if at least one

of two conditions, (1) C_ (N[i], N[j]) = <f> and (2) C (N[j],
\ *I

N[i]) = (J>, is satisfied. It is denoted by £(N[i]) <SEP> g(N[j])

(2) p,(N[i]) and p,(N[j]) are said to be separable in parallel

if CB (N[i], N[j]) = <J> and C_ (N[j], N[i]) = (j). It is denoted

by £(N[i]) <P-SEP> £(N[j]).

(3) P(N[i]) and fi(N[j]) are said to be separable in series

if either CR (N[i], N[j]) = <f> or C (N[j], N[i]) = <J> but not
I *I n

both. It is denoted by £(N[j]) <S-SEP> b(N[i]) in the

first case and p(N[i]) <S-SEP> £(N[j]) in the latter case.

Lemma 2-16. Assume uAn(B) of aPAR-block B, which is

the body of a SEQDO-block B, is given. If N can be partitioned

into two sets of nodes, tt(N) = {N[l], N[2]} such that £(N[1])

<P-SEP> o(N[2]), the SEQDO-block B can be restructured into two

parallel processable smaller SEQDO-blocks, B[l] containing o^f1^

as its body and B[2] containing £(N[2]) as its body, without

destroying the correctness of the program.

Proof. P(N[1]) <P-SEP> £(N[2])

=> X0V(N[1]) <NOOV> AIV(N[2]) A A0S(N[1]) O AIS(N[2]) =$

A AIV(N[1]) <NOOV> XQV(N[2]) A AIS(N[1]) H AQS(N[2]) = (J)

A A0V(N[1]) <NOOV> XQV(N[2]) ^ AQS(N[1]) H AQS(N[2]) = <J)

Q.E.D.
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Figure 2-13 illustrates this parallel decomposition.

Lemma 2-17. Assume lAd(B) of aPAR-block B, which is the

body of a SEQDO-block B, is given. If N can be partitioned into

ir(N) = {N[l], N[2]} such that (1) £>(N[1]) <S-SEP> £>(N[2]),

(2) AQ(N[1]) -AQV(N[1]), and (3) Zy ={v |v£AQV(N[1]) /\
3vf £AIV(N[2]) tt{r(v,k) |k£Q) n{r(v',k) |k£Q} t <j>]} is

non-repeating, B can be restructured into a sequence of two smaller

SEQDO-blocks, B[l] containing £(N[1]) as its body and B[2] containing

£(N[2]) as its body without destroying the correctness of the program.

Proof.

(1) fi(N[l]) <S-SEP> fi(N[2]) =*AIV(N[1]) <NOOV> AQV(N[2]) A
AQV(N[1]) <NOOV> AQV(N[2]). => V i£ ft V j e fi,

r(AI(N[l]), i) H r(AQ(N[2]), j) = (J).

(2) Z is non-repeating. => all operands of B[2] produced by

B[l] are not changed. Q.E.D.

Figure 2-14 illustrates this serial decomposition. Lemma 2-17

requires the condition A g(N[l]) = (J). Even if this does not hold,

B can still be restructured into a sequence of SEQDO-blocks by

using techniques discussed in Lemma 2-10.

Lemma 2-18. If all the conditions stated in Lemma 2-17

except A (N[l]) = <J>, are satisfied, then B can be restructured
US)

into a sequence of three smaller SEQDO-blocks B[l]f, B[l]" and

B[2]f as follows. B[l]f and B[l]" are results of transfor

mations of B[l] in Lemma 2-17 by employing a new set of V-variables
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corresponding to Z = A (N[l]) H A (N[2]) using techniques

'• ' discussed in Lemma 2-10. B[2]f is obtained from B[2] in

Lemma 2-17 by replacing every operand variable v e Z with a

i

-k newly employed V-variable.

Proof. From Lemma 2-10 and 2-17. Q.E.D.

This restructuring can be justified only when B[l]' is

much larger than B[l]" in terms of both textual size and

execution-time.

Lemma 2-19. Assume lA (B) is given. If there are two

MSC-set of nodes in G]. =(N.Rj), nMSC[i] and nMSC[j],
o(n [i]) and £(n [j]), are separable.

Proof. From Lemma 2-15 and definition 2-21 (1). Q.E.D.

Theorem 2-6. Assume '^n(B) and the cyclic reduction of

GI ' ^V = (7FN(GI) '.^V* ±S given- For each
n£ ^(Gj) > let £(n) represent £(N ) where n= N. CNof G_.

Then the following relationship holds:

V n[i] £ lr^Gj.) V n[j] £ ir^),

£(n[i]) <SEP> £(n[j]).

-, Proof. From definition 2-21 and Lemma 2-19.

.J Lemma 2-20. If V n[i] £ \(G ) , A (n[i]) is non

repeating in Theorem 2-6, B can be restructured into a set of

smaller SEQDO-blocks (B[i]} structured according to ^D(R_) ,

where each B[i] contains £(n[i]) or a modified version of
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£(n[i]) as its body.

Proof. From Lemma 2-18 and Theorem 2-16. Q.E.D.

This is illustrated in Figure 2-15. If some Z C A (n[i])

for n[i] £ ^(Gj) is repeating, the following additional

step becomes necessary. First, a set of all nodes in MJ(G )

which are not separable from n[i] because of Z, is identified.

That is, N1 = {n|n £ \iG ) A Z<0V> XIV(n) A (n[i],n) £

^D(RI)} is identified. Then anew set of arcs A* = {(n, n[i])|

n £ N1} is added to ^[)(R_). Repeating this procedure for every

node n[i] £ 7r„(G.J such that A_„(N[i]) is repeating, a new
N I OV

graph G = ^(G-r) >rq) is obtained.

Then the cyclic reduction of GQ , T)(gq) = ^"w^n^ '
^D(R0)) is obtained.

Lemma 2-21. Given TXGQ) obtained by the above procedure,

V(n[i], n[jj) £<D(R0), either (1) AQV(n[i]) <NOOV> Aiy(n[j]) or

(2) Z={v|v £A0V(n[i])A 3vf £AIV(n[j]) I{r(v,k)|k £fi} n
{r(v* ,k)|k £ ti} f <J)]J} is non-repeating.

Proof. From the property of the cyclic reduction. Q.E.D.

Lemma 2-22. Assume ^D(B) and T)(*V are g*-ven- B
can be restructured into a set of smaller SEQDO-blocks {B[i]}

structured according to ^(Rq),each B[i] containing £(n[i])

or a modified version of £(n[i]) as its body, where n[i] £

VGo>-

Proof. From Lemma 2-20 and 2-21. Q.E.D.
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The whole procedure for decomposing a SEQDO-block B is

now summarized into Algorithm 2-4.

Algorithm 2-4.

1. Obtain R in cJlD(B).

2. Obtain G-. by Algorithm 2-3.

3. Obtain ^(Gj).

4. Obtain Gn by the procedure stated in Lemma 2-21.

5. Obtain ^(g ).

6. Restructure (decompose) B into {B[i]} as stated in

Lemma 2-22.

After decomposing B into {B[i]} , it is necessary to check

if some B[i] is essentially parallel. For this, the technique

discussed in section 2.3.3.2 can be applied.

2.3.3.3.2 Decomposition of a SEQDO-Block Whose Body is a

SEQ-Block B

It is possible to generalize techniques discussed in the

preceding section to be applicable to this case. However, the

overhead involved in the decomposition in terms of additional

variables including ones used to hold decision results, dominates

over the small amount of parallelism which may be detected.

Therefore, such an attempt is not made in this report.

2.3.4 Parallelism Detection in a PARDO-Block

>Jk (B) of a PARDO-block B contains either a single f-node
D
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J

or a chain of f-nodes between the PARDO-node and the PARDOEND-node.

Therefore, detection of intra-iteration parallelism can be easily

performed by techniques discussed in earlier sections.

On unique and useful property of a PARDO-block B is its

inherent decomposability.

Lemma 2-23. If uAn(B) of aPARDO-block B contains a

chain of f-nodes between the PARDO-node and the PARDOEND-node,

B can be restructured into a chain of smaller PARDO-blocks {B[i]}

such that each B[i] contains £(n[i]), where n[i] is a

f-node in ,^D(B).

Proof. From Lemma 2-9 and 2-22. Q.E.D.

Figure 2-16 illustrates this.

This kind of decomposition is useful in that the same type of

parallel tasks are clustered so that it leads to efficient

execution especially by the basic machine designed with a substan

tial degree of processing unit replication. In addition, once

B[l] is initiated, the number of iterations for the successor

PARDO-blocks B[i]'s becomes known so that the dynamic lookahead

scheme can benefit as will be seen in Chapter 4.

2.3.5 Parallelism Detection in a WHILE-REPEAT-Block

A WHILE-REPEAT-block is essentially designed to contain non-

parallel portion of a program. Although it is unlikely that any

sizable amount of parallelism is hidden in a WHILE-REPEAT-block,

techniques required for detecting parallelism in it are essentially
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1

the same ones discussed in previous sections or their variations.

There also exists the possibility that a WHILE-REPEAT-block

contains a set of program-elements which can be separated out as

an independent PARDO-block or SEQDO-block. Figure 2-17 shows an

example. Note the introduction of program-elements 9 and 10 in the

new restructured program used to count the number of iterations

executed. Techniques for detecting such situations are essentially

the same ones used for decomposing a SEQDO-block. The model used

for decomposition analysis is briefly sketched below.

Without loss of generality it is assumed that oA (B)

contains a cycle of one c-node (WHILE-REPEAT-node) and one f-node

representing a nested block B which may be a PAR-block or

SEQ-block. So, the block-tail WHILEEND is not included. ADW
is shown in Figure 2-18 (a). It is assumed that B is a PAR-

block.

The abstraction used for decomposition analysis, .^>1 (B) is

obtained as follows. u4n(B) is substituted for the single f-node

in JlD(B) to obtain 'A^W -(G1, 2^, A*, aJ) where G1 =(N.A1).
n[l] represents the block-head of B, the WHILE-REPEAT-primitive.

Then all incoming arcs of n[l] in G , AT (n[l]) are removed

from A . Next, n[l] is compared with every n[i] £ N, i V 1,

to see if A (n[l]) H A (n[i]) ^ <|>. If the condition is met,

an arc (ri[i], n[l]) is added to A . This results in the

abstraction <_/4p(B) »(G, 2^, Aj, AQ). G=(N,A) in A^W is
illustrated in Figure 2-18.

On the basis of lA (B) , decomposition of a WHILE-REPEAT-block
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Ginr^D(B) of aWHILE-REPEAT-B
block B

G ln.JktW of a WHILE-REPEAT
block B

Fig. 2-18. .jl(B) and^p(B) of aWHILE-REPEAT-block B.
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B can be performed by the same procedures developed for decom

position of a SEQDO-block, with appropriate adjustments of notions

such as <NOOV>, ft, etc. Such adjustments are not elaborated in

this report. As indicated before, DO-loops are much more amenable

to efficient parallelism utilization than WHILE-REPEAT-loops are.

This will be more evident in later chapters. Thus, even if no

new PARDO-blocks are produced, the decomposition of a WHILE-REPEAT-

block is still subject to the high pay-off.

This completes the establishment of technical foundation for

restructuring a user-produced structured parallel program into

the one exhibiting more parallelism or lending itself to efficient

execution.
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2.4 GOTO -Less Structured Parallel Program

In the preceding section, it was demonstrated how the

structured parallel program in Section 2.2 eases the analysis for

parallelism detection. Its merits are not restricted to only

parallelism detection but also include the increased reliability

of the program as well as the efficient operational management

of the system.

It has been known that use of the so-called GOTO primitive can

be harmful to the reliability of a program [dij 68], In this

regard, removal of GOTO primitive has been advocated. In fact, this

consideration has been reflected to a great extent in the design

of the structured set of primitives in section 2.2. Scope-rules

associated with various primitives as well as prohibition of the

use of an A-BRANCH primitive from forming a loop are such evidences.

The only primitives capable of the limited power of GOTO are the

A-BRANCH and XOR primitives. Therefore, complete removal of GOTO

is equivalent to removal of these two primitives.

It is felt that essentially no additional power for parallelism

indication is provided by the A-BRANCH and XOR beyond that

provided by the SEQBEGIN and SEQEND. In fact, a structured

parallel program in which A-BRANCH and XOR primitives are wildly

used, is often not amenable to efficient analysis, and thus its

optimization with respect to execution-efficiency as well as re

liability becomes difficult.

The structured set of primitives minus the A-BRANCH and XOR

primitives is called the GOTO-less structured set of initiation
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control primitives, and the program structured using them is called

the GOTO-less structured parallel program.

Such structured parallel programs possess further increased

readability and further ease various analyses. Abstraction of

every SEQ-block, contains only two control program-elements, i.e.,

one (SEQBEGIN) as its block-head and the other (SEQEND) as its

block-tail.

Its block-body consists of a set of independent chains of

f-nodes, and thus each chain can be independently analyzed by

using techniques developed for a PAR-block. Therefore, the total

analysis consists of repeated application of a uniform procedure

developed for a PAR-block.

Although the impact of the GOTO-less structured parallel

program may be somewhat significant in regard to program reliability,

such a program may require more storage for its code than the

general structured parallel program. In the rest of this report,

a program means a structured parallel program, not GOTO-less one,

unless specified differently.
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CHAPTER 3

STATIC OPTIMIZATIONS IN PARALLEL PROCESSING

This chapter investigates various static optimization tech

niques, i.e. ones which can be employed at the design phase,

aiming at the efficient and reliable solving of problems requiring

high computing power. Static optimizations in both areas, basic

machine design and program design, are equally influential in

determining the success of parallel processing system design. Two

important objects of optimization in basic machine design are the

determination of a suitable set of processing units and the design

of an efficient task-initiation control mechanism. In section 3.1,

optimization techniques relevant to these design processes are

discussed, and a protocol machine whose architecture is sufficiently

modular and general to be implemented in a particular configuration

possessing any computing power, is described. It employs an effi

cient task-initiation control mechanism capable of efficient inter

pretation of indications in a basic parallel program defined in

section 2.1.

Important objects of optimization in program design are

largely two types, efficiency-oriented optimization and reliability-

oriented optimization. Typical of the first type are scheduling,

sequencing, program restructuring, and storage allocation. Program

validation belongs to the second type. Section 3.2 deals with

sequencing and in section 3.3, static storage allocation

is discussed. Finally reliability aspects of parallel programs,

mainly optimization in program validation, is discussed in section

3.4.
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3.1 Basic Machine Design

The basic machine can be viewed as a composite of three

major parts: the arithmetic and logic processing subsystem (ALPS),

the instruction processing subsystem (IPS) and the memory subsystem

(MS). Fig. 3-1 depicts this view. As indicated in that diagram,

the IPS plays the role of controlling the overall machine. Pro

gram text resides in the local memory of the IPS, while data is

contained in the primary memory of MS, Optimization aspects in

designing subsystems are discussed in the sequel.

3.1.1 Arithmetic and Logic Processing Subsystem (ALPS)

The ALPS consists of a set of processing units. The number

of processing units, as well as the type of each processing unit,

is one of the primary parameters determining the parallel process

ing power of the ALPS. This in turn heavily influences the power

of the total basic machine. As mentioned in section 1.2, an optimal

ALPS will most likely be designed with a suitable combination of

processing unit replication and pipelining. If a processing unit

which is not decomposed into subunits is regarded as a trivial

pipeline, such an ALPS can be viewed as a set of pipelines.

Characteristics of PRC jobs are such that a few types of

functions are heavily used while others are rarely used. Thus it

becomes highly desirable to equip the ALPS with a pipeline for each

heavily used function and with a limited number of multifunctional

processing units for rarely used functions. This will result in a

powerful and cost-effective ALPS whose major components are non-

trivial pipelines.
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Therefore, major concern in this section is in optimal confi

gurations of pipelines.

3.1.1.1 Practice of Pipelining

Pipelining can be defined as a technique of implementing a

processing unit in a linear configuration of autonomous subunits

each dedicated to perform a specific subfunction in overlap with

others. Principles of pipelining can be employed effectively at

various levels in the computer structure. In spite of this poten

tial, the current practice shows that it has not been extensively

employed yet. With respect to increasing demand for parallel pro

cessing systems of high computing power, it is believed that this

situation will be substantially changed in the near future. In

conventional systems oriented for general purpose computing, the

application of pipelining is typically found in arithmetic units.

Pipelined ADD, MULTIPLY, DIV and SQUARE-ROOT units have been in

existence in a number of contemporary machines [and 67,

ram 72, wat 72, hin 72]. Fig. 3-2 shows the pipelined ADD in the

TIASC machine. It takes one minor cycle t for a task to pass

through each p-segment. Each of six p-segments in that pipeline

operates in overlap with others. Thus a stream of tasks enters

this pipeline at the interval of t, and the pipeline outputs one

task per minor cycle t, instead of the execution-time of each

task T = 6t. That is, the maximum throughput, i.e. the maximum

number of task-completions per unit-time, of this pipelined ADD is

six times as great as the maximum throughput of the non-decomposed

ADD unit.

102

v &



103

I

Task

\-iy,. i-:2. I'ixed ADD in TfASC machine.



Depending upon the level of a processing unit, problems

involved in pipelining vary. In subsequent sections, a suffi

ciently modular and general pipelining architecture is described

on the basis of which a particular configuration with any objective

computing power can be implemented in a systematic way.

3.1.1.2 A Pipeline and an ALPS

A pipeline u can be abstracted into a six-tuple

u = (XI,A(),XT,Xc,F,a)

where (1) X represents a set of cells containing operands,

(2) X represents a set of cells containing results, (3) X

represents a set of cells containing temporary results, (4) X
Li

represents a set of cells containing a vector of function-codes

called the function-code-vector, (5) F represents a set of func

tions called state-functions {jj}, and (6) a represents an onto

mapping a: {C0NT(X )} + F. i is a function:

&: {CONT(X].)}x{cONT(XT)} ->• {CONT(X0)}x{cONT(XT)}

If the function-code-vector, i.e. CONT(Xq) is always a

binary vector, \i is said to be unifunctional and otherwise

multifunctional. In addition, the current C0NT(Xc) can be changed

into the next C0NT(Xc) only in such a way that the current

C0NT(Xc) is shifted to the front by one position with the front-

most digit lost and the new digit is inserted into the last cell.

A pipeline u is composed of a set of p-segments

S(u) = {u [i]} and all p-segments are operated in the fixed order
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in executing any task-function f e F(y), where F(y) represents

a set of capabilities or task-functions, not state-functions,

executable by the pipeline y.

The fixed ordering has been already implied by the above rule

on changing C0NT(Xc). Thus a pipeline y is a special case of a

processing unit in overlapped processing in which not all subunits

need to be operated in executing any one task-function and subunits

need not be operated in the fixed order. Fig. 3-3 depicts the above

representation of a pipeline y.

As indicated in the diagram, a pipeline-segment y can be

j» e g e c G

abstracted in a similar way. That is, y = (XT,X -X_,X ,F ,a ).
s 1 0 1 C

Xj C X where X represents a set of operand-cells of y of

which y is a component. Similarly, X_ C X , X C X and X
s 0 — 01 i C

is a cell contained in X . CONT(X^) in a y [i] e S(y) is
C C s

called a function-code.

s s s
Therefore, X in y is a vector of (X [1],X [2],...,X [m])

where X [i] represents X in y [i] and for all 1 £ i £ m,
Li Vj S

y [i] e S(y). For all y [i] e S(y), C0NT(X^[i]) at any time is
S S L.

a member of N = {0,1,2,...,#(F)} where #(F) denotes the number

of task-functions (not state-functions) executable by y.

is a set of subfunctions {& .F in y is a set of subfunctions {j! } where each £

is afunction &S: {C0NT(Xp} x{C0NT(Xp} + {C0NT(Xp}x{C0NT(Xp}.

In addition, #(FS) <//(F) +1 =#(N) for all Fs in yg[i]eS(y).
s s

Note that #(F ) need not be uniform in every \i . O in y is
s s

an onto mapping aS: {C0NT(XS)} -*• FS, i.e. aS: N -»• FS. For all
L>

y e S(y), aS(C0NT(Xs)=0) = X. representing a null-function,
s C (J)

A state-function £ in y can be represented by a vector of
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li fs, (i [!],& [2],...,fJ [m]) where £ [i] represents £ in

yg[i] e S(y). Thus F in y is: F= {£} = Fs[l] xFs[2] x... xFs[m]
s s

where F [i] denotes F in y [i]. And a can be represented

by

a: {C0NT(X^[l])}x{C0NT(X^[2])}x ... x{C0NT(XS[m])}

+ Fs[l] xFs[2] x ... xFs[m] = F

or a: N™ •> F.

Therefore, a capability or a task-function executable by a

pipeline y can be represented by a vector

f= (as[l](i),a2[2](i),...,as[m](i))

for a certain i e N.

Then, F(y), a set of capabilities or task-functions execut

able by a pipeline y can be represented by

F(y) = {f}

= {(aS[l](i) ,aS[2](i),...,as[m](i))| i^OAieN}

={a(|im|)| ieNAi^o}
m

where |i | denotes a vector of m i's (i,i,...,i). Apparently,

in a unifunctional pipeline y, C0NT(X ) e N = (0,1) as well as
Li

e

#(F ) =2 for all y e S(y). In a multifunctional pipeline y,

#(N) > 2 and there exist y [i] e S(y)[f#(Fs[i]) >2J .

In order to allow simultaneous operation of p-segments

{y } = S(y) in a pipeline y, arrival of operands of each y
s s

must be independent of arrival of operands of other y fs. Similar

ly, departure of results of each y must be independent of
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departure of results of other y 's. Therefore, the buffer-storage

where at least #(S(y)) number of task-packets can be resident

must be equipped to support y. Here a task-packet means a set of

all operands, results and a function-code associated with a func

tion executed by y.

The buffer storage associated with each pipeline y is

called the pipeline-buffer and denoted by B(y). A portion of

B(y) which can hold one task-packet is called a block and denoted

by b. Thus B(y) = {b} where each b is a set of cells. A

portion of a block b used to contain operands is called an

operand-block and denoted by b . Similarly, a portion of a block

b used to contain results is called a result-block and denoted by

bg. And a cell in b used to contain function-code is called a

function-code-block and denoted by b-. Thus b = (b ,b_,b ).

A set of all b 's in B(y) is called the pipeline-operand-

buffer and denoted by B (y) , i.e.

BI(y) = {bI[i]|3b[i]=(bI[i],b()[i],bc[i])6:B(y)} .

Similarly, a set of all b 's in B(y) is called the pipeline-

result-buffer and denoted by B (y). Again, a set of all b *s

in B(y) is called the pipeline-function-code-buffer and denoted

by Bc(y). Thus

B(y) = (BI(y),B0(y),Bc(y))

Fig. 3-4 depicts a B(y) associated with a pipeline y. Fig.3-5

shows the bus connection between y and B(y) in more detail.

There are three types of buses: a single bus from B (y) to X (y),
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Xj(y)

x!ll] XjUl Aj[3] X°[m]

r
-ced EE n -CED ;nb,[l]

>-C -CEP | V2"

-EEEi l-EED -CEE bti3]

I BX(U>

Fig. 3-5. Multiple buses from Bjdi) to Aj(u)
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multiple buses from B].(y) to X (y), and multiple buses from

XQ(y) to Bg(y). Each member of multiple buses from B (y) to

X].(y) runs asynchronously with others. Similarly each member of

multiple buses from XQ(y) to BQ(y) runs asynchronously with

others.

As mentioned above, the number of b's in B(y) must be at

least as large as the number of y 's in y. With respect to the

possibility of uneven arrival rate of operands, equipment with a

larger number of b's in B(y) than #(S(y)) is generally

favorable. In such a case, the pipeline-buffer B(y) can be

used as a cyclic buffer. A block b[i] becomes available only

when all results completed by y and stored in bg[i] have been

moved out. Fig.3-6 depicts this concept.

On the other hand, further asynchronisms can be obtained by

another implementation using shift-registers. Fig.3-7 shows the

example of shift-register implementation of B (y). Now multiple

buses appeared in Fig.3-5 are not used. In addition, the concept

of a block b or b is no longer meaningful. If a set of all

cells in B (y) used to hold operands for ay in y is called

a p-segment-operand-buffer and denoted by B (y ), each p-segment-
x S

operand-buffer B (y [i]) is implemented by a shift-register-chain.

Similarly, a p-segment-result-buffer denoted by B (y ) is de-
u s

fined as a set of all cells in B (y) used to hold results for a

y in y, and it can be implemented by a shift-register-chain,
s

In this scheme, operands used by y [i] may arrive at
s

B_(y [i]) and then they may be fetched into X [i] before operands

of the same task used by y [j], j > i, arrive at B (y [j]).
S JL S
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Similarly, results produced by y [i] need not wait for the com-
s

pletion of results to be produced by y [j], j > i, before they

are moved out. That is, shift-register implementation provides

more asynchronism than bus-based implementation does. In addi

tion, the length of each shift-register-chain may be smaller than

the number of p-segments unlike in bus-based implementation.

Obviously Bp(y) can be implemented by a shift-register-

chain, too. Therefore, B(y) consists of a set of shift-register-

chains which run asynchronously with each other. Fig,3-8 shows

a schematic representation of a pipeline y and its B(y) con

sisting of a set of asynchronous shift-register-chains.

Fig.3-9 shows a schematic representation of an ALPS typical

in a powerful parallel processing system, which consists of a set

of pipelines among which a limited number of members are trivial

pipelines. Such an ALPS can easily grow to possess any amount of

computing power desired. Based on this general and modular

architecture, types and numbers of the pipelines to be incorporated

into the ALPS is an object of optimization and discussed in the

next section.

3.1.1.3 Optimal Decomposition and Replication of a
Processing Unit

As mentioned in section 1.2, the function-usage, i.e. propor

tional frequency of using each type of task-function in represen

tative jobs should be fully reflected in the decision on types and

numbers of processing units. Since the majority of processing

units composing the ALPS are pipelines, the importance of an
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Fig. 3-8. A pipeline u and its B(u) consisting of

a set of asynchronous shift-regiater-chalns.
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ALPS

Fig. 3-9. An ALPS consisting of a set of pipelines {y}



optimal decision on types and numbers of pipelines dominate over

the decision on a limited number of non-decomposed multifunctional

processing units (i.e. trivial pipelines).

There may be some overlap between task-functions executable

by pipelines and ones executable by trivial pipelines. In fact,

this can lead to advantages in that when the program contains an

essentially sequential loop requiring a large number of different

pipelines without intensively utilizing each pipeline, the loop

can be served by a multifunctional trivial pipeline so that expen

sive pipelines can be used for more productive computation.

Each p-segment in a pipeline can be in general constructed

by using a set of basic logic elements. Each basic logic element

may be a gate, register, multiplexer, decoder, adder, micro

processor, i.e. processor-on-a-chip, or even a microprogrammable

mini-processor.

Given a set of basic elements, their capability-set called

the primitive operation-set together with a set of initiation

control primitives, can be used to describe each function to be

implemented into a pipeline. Such a description is called a

specification program.

A set of specification programs representing a set of func

tions to be implemented into the ALPS, together with the function-

usage, are the primary basis from which the decision on the opti

mal configuration of the ALPS is derived. In addition, given a

set of basic logic elements, their computing powers in terms of

speed become known.
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Typically the objective computing power of the ALPS is given

in terms of maximum throughput, i.e. the maximum number of task-

completions per unit time. Given the objective (maximum) through

put of the ALPS denoted by i/j (ALPS), the required computing

power of each processing unit can be derived by a simple distri

bution on the basis of function-usage. That is, denoting the

function-usage of a task-function f by q(f), then the objec

tive maximum throughput of the processing unit to be implemented

for executing f, denoted by \b (f) is determined to be
max

ty (ALPS)-q(f). This is illustrated in Fig, 3-10.

Denoting by F a set of all task-functions to be implemented,

apparently £ q(f) = 1 and £ i|> (f) = t|> (ALPS), provided
feF feF ma m

that each f will be implemented into an independent unifunctional

pipeline.

Given a pipeline y in which every p-segment takes the fixed

amount of time x(y) for computing one subfunction, its maximum

throughput denoted by ip (y) is , ^. Such a pipeline is

called a synchronous pipeline.

To be more precise, the time required by a p-segment y [i]

in an implemented pipeline y from the initiation of computing

one subfunction jj [j] e F [i] to the next initiation of <j [j],

is called the segment-length of y [i] for function k and

denoted by T.(y[i],k) where aS[i] (k) = ijs[j]. If x(y[i],k)
s s

again varies depending on operands, it is taken as an average

value over all different operands. If for all k e N, k ^ 0,

T(yo[i],k) = x(y [i],l), then x(y [i]) = T(y[i],l) is called
So So

the fixed segment-length of y [i]. y [i] is called the fixed-
s s
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length p-segment. A pipeline y in which every y e y has a

fixed segment-length is called a synchronous pipeline. In a syn

chronous pipeline, for all y [i] e S(y) and for all y [j] e S(y),
s s

T(yji]) = T(y[j]).
o S

This is because even if a certain p-segment y [i] completes

the execution of a subfunction earlier than others, it must always

wait for the completion of all other p-segments before it initiates

the next execution. In a synchronous pipeline y, the uniform

fixed segment-length is called the cycle of y and denoted by

T(y).

On the other hand, if there exists j e N, satisfying that

j^O and T(y [i],j)^T(y [j],l)
s s

then y [i] is called the variable-length p-segment. A pipeline
s

y in which some or all p-segments are variable-length p-segments

is called an asynchronous pipeline. The average segment-length of

a variable-length p-segntent denoted by x(y [i]) is an average

of T(y [i],k) over all k e N, k $ 0, i.e.

I T(y [i],k)

T(ys[i]) = //(N)-l •

The variance of average segment-length of a certain p-segment

y [i] denoted by VAR(x(y [i])) is defined as
s s

I (T(yc[i],k)-t(y [i]))2
keN, MO

#00-1
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The average of x(y [i]) over all y [i] e S(y) in an asyn-
s s

chronous pipeline y is called the average cycle of y and

denoted by x(y). Then the variance of x(y) denoted by VAR(x(y))

is defined as.

I (x(y [i])-T(y))2
yg[i]£S(y) s

#(S(y)) "

In order to achieve a high cost-performance ratio, an asyn

chronous pipeline should be designed in such a way that VAR(x(y))

is minimized. If VAR(x(y)) is sufficiently small, y is said

to be well balanced.

As the level of a pipeline goes higher, the strict implemen

tation of a synchronous pipeline becomes harder because the

variance of each average segment-length VAR(x(y [i])) increases
s

and thus the inflexible synchronous pipeline must have its cycle

equal to the maximum of the segment-length over different p-seg

ments, subfunctions and operand data.

If for some reason, it is not feasible to decompose such a

p-segment y [i] that x(y [i]) is much larger than other average
o S

segment-lengths, x(y [j]), j f i, the principle of replication
s

can be utilized.

For instance, consider an unbalanced pipeline in which all

p-segments except y [i] have the same average segment-length T
s

and y [i] has its average segment-length of 2t. Then, y [i]
s s

can be duplicated as shown in Fig.3-11 so that its effective

average segment length denoted by x (y [i]) becomes x. Thus
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the resulting pipeline becomes in effect a well-balanced pipeline.

Analogous to the case of a synchronous pipeline, the maximum

throughput of an asynchronous pipeline y with its average cycle

x(y) can be defined as -, N.

Therefore, the smaller the cycle or average cycle is, the

higher the throughput is. It is apparent that as a processing

unit is decomposed into a larger number of smaller subunits, the

average cycle of the resulting pipeline gets shorter and thus its

maximum throughput is increased.

However, decomposition of a processing unit accompanies a

certain amount of overhead in terms of not only cost-increase but

also execution-time increase. That is, if a processing unit

requires the amount of time T for executing a certain task-

function f, the pipeline obtained through the decomposition may

take execution time T1 > T for executing f.

This is mainly due to two reasons. One is the enforcement

of synchronization between primitive operations which can proceed

asynchronously inside the original processing unit. The other is

the time required for communicating between p-segments. Thus the

turnaround time of a task through a pipeline gets longer. Further

more, the increase of equipment cost due to the increased amount

of buffer and the increased temporary storage inside a pipeline

becomes a significant problem.

Therefore, each pipeline y should be designed in such a way

that the number of p-segments is minimized while possessing the

objective computing power, i.e. ij; (f).
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3.1.1.3.1 Decomposition Model

With these considerations a systematic procedure for optimal

decomposition is now given. The procedure is based on the above

information structured in a convenient form called the decomposition

model.

The decomposition model of a function f denoted (^4_(f) is
E

a triple (G,T,a). G is a graph G = (N,A) representing the

structure of (J\„(f) and a called the execution-time function
ti —_—____________

is a function a: N -*• T where T is a finite set of execution-

times.

(j^p(f) is obtained through two phases. The first one is as
_«

follows: A specification program of a function f is in general

a parallel program. Therefore, all parallelism in a specification

program is indicated by a suitable set of initiation control primi

tives. With respect to the sufficient generality of the basic set

of initiation control primitives defined in section 2.1, the speci

fication program is here assumed to be the basic parallel program.

Thus, it is possible to derive the structure of the specification

program G = (N ,A ) as well as the execution-time of each primi-
s s s

tive operation e(n) represented by each node n e N , a (n).
s s

In addition, it can be assumed that the average execution-

frequency of each primitive operation denoted by u) (n) where

n e Ns, becomes known in the course of obtaining function-usage.

Therefore, the preliminary version of the decomposition model

denoted by J( (f) is obtained as (G ,T,a ,w ) at the first
s s s s

phase. Fig.3-12 illustrates a G .
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Based on cAs(f), the second phase is to transform it into

cAg(f). The first step in transformation is concerned with the

sequential loop in Gg. It is apparently essential to allocate the

loop to the same p-segment. Therefore, every MSC-subgraph in G

is coalesced into a single node in G of <Jk (f). Coalescing a

loop includes the calculation of the total execution-time of the

loop using execution-times and execution-frequencies* of nodes in

the loop. Let N^ C Ng denote the set of nodes in the loop, then

the total execution-time of the loop denoted by a (N„) is
s io

I (a (n)«ur(n)). a (N0) is the value to be used as a(n[il)
neN^ s s s *
in G where n[i] e N is a coalescence of N».

The next step in transformation is concerned with PARDO-blocks.

Each PARDO-block may be assumed to have been maximally decomposed

by the procedure presented in section 2.3.4. Due to the same rea

son applied to the sequential loop, it is desirable to allocate a

PARDO-loop in one p-segment. Thus, every PARDO-block in G is
s

coalesced into a single node in G. As before, N« denotes a set

of nodes in a PARDO-block and n[i] is its coalescence in G.

Here, decision of a(n[i]) is flexible. If the PARDO-loop will

be executed sequentially in an implemented p-segment, then a(n[i])

is calculated by the same procedure used for a sequential loop.

On the other hand, if basic logic elements required by the PARDO-

block will be replicated inside the p-segment so that several

iterations can be executed in parallel, a(n[i]) should be equal

to the above a(n[i]) divided by the degree of replication.

That is, let k denote the degree of replication, then

126



I a (n)«o) (n)
neN s

a(n[i]) = -—-

Thus G becomes acyclic. In addition, every XOR-node is

removed because its execution time as well as overhead associated

with it is negligible and the structure is clear without its pre

sence now. This completes the second phase. Fig. 3-13 (a)

illustrates an 'j/x(f).

3.1.1.3.2 Pipeline Balancing

Having obtained <Jx (f), the remaining procedure is to find

an optimal decomposition of G, ir(G) = {g[l];g[2];...;g[m]} such

that (1) each subgraph g[i] corresponds to a p-segment y [i]
s

to be implemented, (2) \\) (y), where y is the pipeline to be

implemented for executing f, is not less than the given objective

^moV(f)» and (3) tne number of p-segments, i.e. #(~(G)) = m is

minimized.

Given \\) (f), the average cycle of y, x(y), must satisfy

x(y) <_ -r -r—-n = x, where h represents the overhead time
max

incurred to each p-segment due to decomposition. That is, the

average segment-length of each y [i] e S(y), x(y [i]) should
s s

not exceed x = -_ -z--h. It is assumed in this section that h
max

is negligible in comparison to a(n) for all neN.

This problem here called the pipeline balancing problem is a

slight variation of the so-called assembly-line balancing problem

in which each work station corresponding to a p-segment is a se

quential processor. [hel 63]
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However, the solution to this problem is much simpler and

more efficient than the solution to the assembly-line balancing

problem. Algorithms in two cases are described in this section.

The first algorithm assumes that there is no node n[i] e N such

that a(n[i]) > x. The second algorithm is a slight generaliza

tion of the first algorithm in which the above assumption is not

made.

3.1.1.3.2.1 Decomposition Without Replication

In this section, it is assumed that there is no n[i] e N

such that a(n[i]) > x.

Definition 3-1 . Assume an acyclic G = (N,A) is given.

(1) Anode-subset N' = {n[i,l] ,n[i,2],... .nti^CN1) ]},

where N1 C n, is said to be feasible if n[k] e N1 and

(n[j],n[k]) e A imply that n[j] e Nf. Thus a feasible node-sub

set is one that may be executed in some order without the prior

execution of any other node.

(2) When a feasible node-subset N' can be changed to ano

ther feasible node-subset N" 3 N1 by adding a node n[k] to N',

n[k] is called a ready successor of Nf. A set of all ready

successors of N1 is called the ready successor-set of N' and

denoted by ^ (N').

(3) The set of all nodes in N* each having at least one

immediate successor in ^-Q (N') is called the frontier-subset

of N' and denoted by Z(N'), i.e.

Z(N')•- {n[k]| n[k]£N,A,()(n[k])n(:iJ(N,)^<()}
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A member of Z(N') is called a frontier-node of N'.

In a subgraph g[k] = (N[k],A[k]), the earliest relative

completion time of n[j] e N[k] denoted by t (n[j]) is obtained

by:

t (n[j]) = ot(n[j]), if there does not exist n e N[k]
r II(n,n[j]) e A[k]]]

t (n[j]) = max t (n)
r

Un,n[j]) e A[k]-

Obviously, for all n[j] e N[k], t (n[j]) < x.
r —

Assume that a feasible node-subset N' was partitioned into

m subgraphs, each frontier-node n[j] e Z(Nf) is contained in

Y(n[j])-th subgraph. The earliest completion time of n[j]

denoted by t (n[j]) is given by:
e

+ a(n[j]) , otherwise.

(Y(n[j])-1} •x + tr(n[j])

With these notations, the algorithm can be described as follows.

Algorithm 3-1.

1. Obtain ^ (<J>), i.e. a set of nodes which do not have any

predecessor. Do the following for each n eH2 (<J0.

t (n) «- a(n)
e

I(n) <- 1 .

Here I(n) represents the label of the subgraph to which n has

been assigned.

2. Set N' f^ (<J)).

3. Obtain ^ (N').
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4. Pick any node n[k] e^ (N1). Compute t (n[k]) as follows.
y e

4.1 Find n[£] such that n[£] e .^(ntk]) and

t_(n[&]) = max [t_(n)].

ne.d_1(n[k])"k-1
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4.2 Compute a +• t (n[£]) - (I(n[Jl])-l)«X .
e

4.3 If x-a < a(n[k]), Go To 4.4. Otherwise do the follow

ing:

t (n[k]) + t <n[A]) +a(n[k])
e e

I(n[k]) <- i(n[£])

Go To 4.5.

4.4 t (n[k]) «- I(n[Jl])*T + a(n[k])
e

I(n[k]) «- I(n[Jt]) + 1

4.5 N' «- N1 U (n[k]>.

5. If N1 = N, then terminate. Otherwise, go back to 3.

Since this algorithm processes each node only once and pro

cessing one node involves at most #(N) comparisons, the complexity

of the algorithm is bounded by a quadratic function of //(N).

Fig. 3-13 illustrates a decomposition obtained by this algorithm.

3.1.1.3.2.2 Decomposition With Replication

The previous assumption that there is no node n[k] e N such

that a(n) > x can be easily removed, provided that the replica

tion of resources can be afforded. Obviously, the simplest way is

to replicate the basic logic element required for each primitive

operation whose execution-time is greater than x. Then replicated

basic logic elements can accept incoming streams of tasks by turns.



The minimum degree of replication required for every node neN

such that a(n) > x is given by p*^-|, where |~x] represents

the smallest integer not less than x.

Since switching between replicated resources is generally

difficult within the p-segment due to the management overhead

involved, it is allowed only between p-segments in this section.

Fig. 3-14 illustrates a pipeline decomposed with minimum repli

cation within the above constraints.

Then the problem is to find a decomposition of G,

ir(G) = {g[l];g[2];...;g[m]} such that

(1) if g[i] contains a node n[j] e N associated with

a(n[i]) > x, g[i] consists of only one node n[j],

(2) each subgraph g[i] corresponds to a p-segment Ug[-]

or a set of identical (replicated) y [i]'s to be implemented,
s

(3) ii> (y) where y is the pipeline to be implemented
Tmax

for executing f is not less than the given objective *l>max(f)»

(4) the degree of replication for each p-segment is mini

mized and

(5) the turnaround time of a task through the pipeline to

be implemented is minimized.

This problem is a slight generalization of the previous pro

blem solved by Algorithm 3-1 and thus Algorithm 3-2 for this pro

blem is a slight generalization of Algorithm 3-1. The minimum

degree of replication is determined as above. Then every node

n[k] e N is associated with the degree of replication required,

6(n[k]) = [5_C_-_-l!"| . it is again assumed that the overhead due to

decomposition and switching is negligible in comparison to a(n)

for all neN.
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Algorithm 3-2

1. Obtain ^-Q, (({>), i.e. a set of nodes which do not have any

predecessor. Set D «- 0. Do the following for each n e^ ($).

1.1 If 6(n) > 1, t (n) «- 6(n)-X and D «- D U {n}. Otherwise

t (n) •*• a(n) and I(n) «- 1.
e

Here D contains a set of subgraphs (actually single nodes)

corresponding to p-segments to be replicated, and I(n) repre

sents the label of the subgraph g[I(n)] to which n has been

assigned.

2. Set N« «-<R (<fr).

3. Obtain ^ (N1).

4. Pick any node n[k] e^j2 (Nf). If 6(n[k]) > 1, Go To 4.2.

4.1 Compute t (n[k]) as follows.

4.1.1 Find n[Jt] such that n[£] e _)" (n[k]) and

t (n[£]) = max t (n).

ne <_)_1(n[k])
4.1.2 If 6(n[£]) > 1, go to 4.1.3. Otherwise, compute

a -*- t (n[£]) - (I(n[£])-l)-x. If x-a < a(n[k]), then
e

t (n[k]) «- I(n[£])-x + a(n[k]) and I(n[k]) «- I(n[£]) + 1.
e

Otherwise, t (n[k]) «- t (nM) + a(n[k]) and I(n[k]) *- I(n[Jl]).
e e

Go To 4.3.

te(n[£])
4.1.3 I(n[k]) •*• I -| + 1 and ^

t (n[k]) «• t (n[£]) + a(n[k]). Go To 4.3.
e e

4.2 Compute t (n[k]) as follows,
e

4.2.1 Find n[£] such that n[&] e _)' (n[k]) and

t (n[£]) = max t (n).

ne^Wk])

-»v
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4.2.2 If 6(n[Jt]) > 1, go to 4.2.3. Otherwise,

» t (n[k]) «- I(n[A])«x + 6(n[k])«x and D «• D U (n[k]>. Go to 4.3.
e

4.2.3 t (n[k]) +• t (n[A]) + 6(n[k])-T and D <- D U n[k],
e e

4.3 N» «- N! U {n[k]>.

5. If N' = N, then terminate. Otherwise, go back to 3.

After the completion of this algorithm, each g[i], if it

exists, represents a p-segment not to be replicated and each node

n e D represents a p-segment to be replicated. Like Algorithm 3-1,

the complexity of this algorithm is bounded by a quadratic func

tion of #(N).

The example in Fig, 3-14 is the result of this algorithm,

3.1.1.4 Multi-level Nested Pipeline

In obtaining ^„(f) in section 3.1.1.3.1, it was mentioned

that a PARDO-block in G can be implemented in various ways.

Even though its average number of iterations as well as maximum

number of iterations become known, the exact number is dynamically

changing between tasks. In one extreme, it can be implemented as

if it were a sequential loop. In the other extreme, the set of

basic logic elements implementing one iteration can be replicated

*« to the degree equal to the maximum number of iterations.

Apparently, the optimal configuration would employ a suitable

** combination of replication and decomposition. That is, parallel

iterations can be executed by a set of identical pipelined subunits.

Such a pipeline is called a 2-level nested pipeline. This

concept can be easily generalized to a multilevel nested pipeline.



As the level of the basic machine goes higher, the employment of

multilevel nested pipelines will be more frequent.

3.1.1.5 Reconfigurable Pipeline

In section 1.2.2.1, it was mentioned that to a multifunctional

processing unit in overlapped processing there corresponds a set

of pipelines in general. That is, it was implied that pipelining

required more cost in terms of amount of resources used.

The pipeline which has been discussed so far is a non-recon-

figurable pipeline in that its internal interconnection is fixed

once and for all. Between these two extremes, a multi-functional

processing unit in overlapped processing and a pipeline, there

is a reconfigurable pipeline in which its internal interconnection

can be changed but not too frequently. That is, a reconfigurable

pipeline is capable of a set of non-reconfigurable pipelines. A

particular configuration of a reconfigurable pipeline at a certain

moment is called a virtual pipeline. Thus a reconfigurable pipe

line can structure itself into one of virtual pipelines at one

time.

In fact, the pipelined ADD of TIASC machine introduced as an

example in section 3.1.1.1 (Fig. 3-2 ) is a virtual pipeline. The

physical structure of an arithmetic unit of the machine is shown

in Fig. 3-15 [wat 72]. The basic requirement is that each pipe

line configured at run-time must be sufficiently utilized in

serving the job before it is reconfigured. This is because of the

overhead involved in reconfiguration. During the reconfiguration,

all relevant subunits cannot accept new subtasks.
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Where most representative jobs meet the above basic require

ment, the reconfigurable pipeline can be highly cost-effective in

that it can provide high computing power with small amount of

resources. Most reconfigurable pipelines in existing machines are

reconfigurable only in one dimension. In principle, the recon

figuration can be done in two-dimensions or even higher dimen

sions [ram 74]. In section 3.2, the problem of reducing reconfi

guration overhead will be discussed.

3.1.2 Instruction Processing Subsystem (IPS)

In the preceding section, a highly modular and general ALPS

architecture was discussed. In this section, the design of a

modular and general IPS is considered. Since the main function of

the IPS is the interpretation of the machine language program,

i.e. task-initiation, the main concern is in the design of the

IPS capable of efficient interpretation of the basic parallel

program.

The basic set of primitives described in section 2.1 are

actually symbolic primitives. In section 3.1.2.1, the format of

machine code equivalent of those symbolic primitives is described.

The configuration of the modular IPS is described in section 3.1.2.2

and then the operational details of the IPS are described as well.

3.1.2.1 Instruction Format of the Basic Machine

The functional description of the basic set of initiation

control primitives was given in section 2.1. In this section,

the format of the code implementation of these symbolic primitives



is described.

First, the machine language program consists of two parts,

control part and functional part. These two parts are logically

interrelated but physically apart from each other. As shown in

Fig. 3-16 , the IPS contains the program memory (PM) consisting of

two parts. One part called the control program memory contains

only the control part of the machine language program, while the

other called the functional program memory contains only the

functional part.

The functional part of a program is composed of instructions

called functional instructions. The format of a functional

instruction is depicted in Fig.3-17.

A functional instruction consists of three fields: operation-

code field, operand field, and result field. The operation-code

field can be further divided into two subfields: pipeline-code

subfield and function-code subfield. The pipeline-code indicates

the kind of pipeline required for executing the instruction and

the function-code specifies the exact function to be performed by

the pipeline which is multifunctional.

The operand field contains addresses of all operands to be

read from the data memory in the memory subsystem (MS) or imme

diate operands. The number of operands is dependent upon the

operation-code.

The result field contains addresses of all results to be

stored. These addresses may be ones of data memory, ones of index

registers in the IPS or ones of branch-index (BRIX) registers.

Index registers and BRIX registers will be described in the next
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section. One thing noteworthy is that each result may be stored

in several locations as indicated in Fig. 3-17. That is,

{a -,a 2,...,a } represents k addresses of locations where

the n-th result will be stored. This replicated storing of a

result is useful in reducing the number of memory conflicts

between parallel tasks at run-time so that the overall execution-

time can be further improved. This will be discussed again in

section 3.3.

The functional part of a program does not contain any infor

mation on its own initiations. That is, there is no indication

in the functional part as to what order instructions should be

initiated in.

Next, the control part of a program is composed of instruc

tions called control instructions. The symbolic primitives

described in section 2.1 are translated into these machine codes.

Formats of these are described in Fig. 3-18. Optimization men

tioned at the end of section 2.1 was incorporated in this imple

mentation. That is, the predecessor-list in each primitive was

replaced by the initiation-threshold in the corresponding control

instruction. Thus every instruction commonly has the initiation-

threshold field.

In addition, provision was made for removing non-essential

uses of the XOR primitive in the control part of a program. That

is, when any of three control instructions, the BRANCH, PARDO and

FUNCTION-CONTROL, has only one immediate predecessor which is a

XOR instruction, such a XOR can be removed by changing the successor-

lists of the immediate predecessors of the XOR.



T.C. I.T. S.L

FORK

T.C. I.T. S.L.

JOIN

T.C. I.T. BRIX R. S.L.

BRANCH

T.C. I.T. S.L

XOR

T.C. I.T. F.I.A. S.L.

FUNCTION-CONTROL

T.C. : Type-code

I.T. : initiation-

threshold

S.L. : successor-list

BRIX R. : BRIX register

F.I.A. : Functional

Instruction

address

P.A. : partner addres

I.I.R. : Iteration

index

register

I.R.R. : Index

register

requirement

BRIX R.R. : BRIX register

requirement

T.C. I.T. P.A., I.I.R I.R.R. BRIXR.i:. S.l

PARDO

T.C. I.T. P.A. I.I.R. S.LD
PARDOEND

Fig. 3-18. Control instructions.
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Every instruction has a type-code field. The type-code

indicates the type of the control instruction, and the control

instruction interpretation unit (CIIU) in the IPS interprets each

field in the control instruction in reference to the type-code.

Therefore, every control instruction has three common fields:

type-code, initiation-threshold and successor-list. Additional

fields in each control instruction are described in the following.

The FORK, JOIN and XOR instructions contain no adidtional

fields.

The BRANCH instruction contains one additional field, the

BRIX field. The BRIX field contains the address of the BRIX

register whose content is to be used for branching decision.

The FUNCTION-CONTROL instruction contains one additional field,

the functional instruction address field. The functional instruc

tion address field contains the address of the functional instruc

tion to be initiated. This is the only field in the control

program memory in which the address of the functional program

memory is contained. That is, this is the only control instruc

tion which directly initiates a functional instruction.

The PARDO instruction contains four additional fields:

partner address, iteration index register, index register require

ment and BRIX register requirement fields. The partner address

field contains the address of the partner PARDOEND instruction

in the control program memory. The iteration-index register field

contains the address of the index register in which the number of

iterations to be executed is stored. The index register requirement

field contains the number of index registers required for executing



one iteration. This information is used for index register allo

cation. This number multiplied by the number of iterations repre

sents the amount of index registers required to support parallel

execution of all the iterations.

If the amount of currently available index registers is not

sufficient to support parallel execution of all the iterations,

then the iterations are divided into a number of groups each con

taining several iterations. Iterations in a group are executed in

parallel but groups are serialized in execution one after another.

The BRIX register field contains the number of BRIX registers

required for executing one iteration. Again this information is

used for BRIX register allocation in a way similar to index

register allocation.

The PARDOEND instruction contains two additional fields:

partner address and iteration index register fields. The partner

address field contains the address of the partner PARDO instruction

in the control program memory. The iteration index register field

contains the address of the index register in which the number of

iterations to be executed is stored. Thus both PARDO and PARDOEND

instructions contain the address of the same index registers con

taining the number of iterations.

The interpretation procedure of these control instructions

are discussed after the configuration of the modular IPS is

described in the next section.
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3.1.2.2 Configuration of the IPS and Instruction-initiation

The configuration of the IPS includes seven major parts:

program memory (PM), associative control memory (ACM), instruc

tion initiation unit (IIU), index register file (IRF), BRIX regis

ter file (BRIXRF), dispatching unit (DU) and dispatching unit

buffer (DU-buffer). The IIU again consists of two parts, the con

trol instruction interpretation unit (CIIU) and the functional

instruction initiation unit (FIIU). The configuration is depicted

in Fig. 3-19.

The program memory (PM) consists of two parts, control pro

gram memory (CPM) and functional program memory (FPM), as intro

duced before.

The associative control memory (ACM) between the control pro

gram memory and the control instruction interpretation unit (CIIU)

is provided for efficient interpretation of control instructions.

That is, it eases the search of control instructions ready for

interpretation. The internal structure of the ACM is shown in

Fig- 3-20 • !t consists of one main ACM module and several PARDO-ACM

modules. Each PARDO-ACM module is used for control instructions

belonging to a PARDO-block and the main ACM module is used for

other instructions.

As indicated in the diagram, the only physical difference

between the main ACM module and a PARDO-ACM module is that a

PARDO-ACM module contains n > 1 number of initiation-threshold

fields which can be used to support parallel execution of up to

n iterations, while the main ACM module contains only one initia

tion-threshold field.
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The availability field in an ACM module is used to indicate

if the word in the module is empty or not. The instruction address

field in an ACM module contains the PM addresses of the control

instructions contained in it.

The operation of the ACM is as follows. First, an initial

set of control instructions in the PM are registered into the main

ACM module. When they are registered, availability and instruc

tion address fields are recorded by the CIIU. Then, there are non

empty words in the main ACM module whose initiation-threshold

fields contain O's. Instructions contained in them are ones ready

for interpretation. The CIIU searches for these ready instruc

tions.

The content of the initiation-threshold field in the ACM of

a control instruction is called its dynamic initiation-threshold

while the content of the one in the PM is called its static initia

tion threshold. Therefore, the static initiation-threshold of a

control instruction is never changed, while the dynamic initia

tion-threshold is decreased each time its predecessors are inter

preted.

As soon as ready instructions are found, the CIIU interprets

them. The common step in each interpretation of a control

instruction is to decrease the dynamic initiation-thresholds of

the successor instructions. If a successor is not yet registered

in the ACM when its dynamic initiation-threshold has to be decre

mented by the CIIU, it is registered into the ACM. During the

registration, its dynamic initiation-threshold is set equal to its

static initiation-threshold. Then its dynamic initiation-threshold
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is decremented. After interpretation of each control instruction,

the word in the ACM which has been occupied by the interpreted

instruction becomes available for a new instruction. That is,

its availability field is changed.

The interpretation of a FORK instruction consists of merely

decrementing initiation thresholds of successor instructions

recorded in its successor-list.

The interpretation of a BRANCH instruction involves examining

the content of the BRIX register whose address in the BRIX regis

ter file (BRIXRF) is specified in the BRIX register field of the

instruction. Then the CIIU determines which one of successor

instructions is selected according to the content of the BRIX

register, and subsequently the dynamic initiation-threshold of

the selected successor is decremented.

The interpretation of the FUNCTION-CONTROL instruction involves

the following steps. First, the CIIU moves the address stored in

the functional instruction address field into the buffer attached

to the FIIU. Then the CIIU decrements the initiation-thresholds

of successor instructions, while the FIIU initiates the functional

instruction whose address has been sent from the CIIU. Therefore,

both the CIIU and the FIIU run asynchronous of each other.

The operation of the FIIU is as follows. First, it fetches

the functional instruction from the FPM using the address sent

from the CIIU. Second, the FIIU prepares an instruction-packet

which is obtained by replacing each indexed or relative address

in the functional instruction with the direct address. Third,

the FIIU stores the prepared instruction-packet into the DU-buffer
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so that the DU can dispatch it to the ALPS and the MS. Then the

FIIU examines its buffer to find a new address sent from the CIIU.

The PARDO instruction registered in the main ACM module is

interpreted as follows. First, the index register whose address

is stored in the iteration index register field of the instruction

is examined to find out the number of iterations to be executed.

Then the CIIU stores the number into the iteration index register

field of the PARDO instruction in an ACM module. The newly stored

number is called the dynamic iteration-counter.

Second, using the information stored in the index register

requirement and the BRIX register requirement field of the instruc

tion as well as the maximum number of initiation-threshold fields

available in a PARDO-ACM module, the CIIU determines the size of

a group, i.e. the number of iterations to be allowed for parallel

execution.

Third, the CIIU selects a PARDO-ACM module to be used for

interpretation of instructions inside the loop. Then the CIIU

decrements the dynamic iteration-counter of a PARDO instruction

by the size of a group. Each PARDO-ACM module has one special cell.

The CIIU stores the label of the ACM-module, in which the current

PARDO-instruction is resident, into the special cell of the selected

PARDO-ACM module. The label stored is called the return address.

Fourth, the CIIU registers the successor instruction of the

current PARDO instruction into the selected PARDO-ACM module.

Registration of a control instruction into the PARDO-ACM module

is the same as registration into the main ACM module except that

the static initiation-threshold of a control instruction registered



into the PARDO-ACM module is copied into multiple dynamic initia

tion-thresholds corresponding to multiple iterations of the in

struction. That is, the dynamic initiation-threshold of an

instruction for each iteration is set equal to the static initia

tion-threshold during registration. Obviously, the static initia

tion-threshold of the immediate successor of the current PARDO

instruction is 1.

Therefore, as soon as it is registered into the selected

PARDO-ACM module, its dynamic initiation-thresholds are decreased

to O's and its parallel iterations become ready for initiation.

For instance, suppose the PARDO instruction has a successor

instruction s and the size of the group of iterations to be

executed in parallel is m. Then, s is registered into the

PARDO-ACM module, and m dynamic initiation-thresholds of s

are decreased to O's right away, since the static initiation-

threshold of s is 1. Thus m iterations of s become ready

for interpretation. As each iteration of s is interpreted, the

corresponding dynamic initiation-threshold is reset to an unusual

number, say -1, so that the same iteration is not interpreted

more than once.

During registration into a PARDO-ACM module, the availability

field of each word being filled is set to m. As each iteration

of the instruction contained in it is interpreted, the availability

field is decremented. When it reaches 0, it means that the word

is empty, i.e. available. When the j-th iteration of s is

interpreted, only initiation-thresholds of s's successors for the

j-th iteration are decremented. The word in the ACM containing
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the PARDO instruction does not become available for a new instruc

tion until its dynamic iteration-counter is reduced to 0.

Apparently, successors of an instruction in a PARDO-ACM module

are registered into the same PARDO-ACM module until either another

nested PARDO instruction is interpreted or the partner PARDOEND

instruction is interpreted. That is, successors of a FORK, JOIN,

BRANCH, XOR or FUNCTION-CONTROL instruction registered in a cer

tain ACM module, whether it is the main ACM module or a PARDO-ACM

module, are registered into the same ACM module.

In case of multi-level nested PARDO-loops, a PARDO-block at

each level is registered into an independent PARDO-ACM module.

And a set of PARDO-ACM modules used for execution of multilevel

nested PARDO-loops are chained into a tree through their return

addresses. After the completion of the PARDOEND instruction, its

successors are registered into the ACM module pointed by the return

address stored in the special cell of the PARDO-ACM module and

then the PARDO-ACM module becomes available for a new PARDO-loop.

To be more precise, the interpretation of the PARDOEND

instruction is as follows. When the PARDOEND instruction is regis

tered into the PARDO-ACM module, the content of its iteration

index register field in the ACM is replaced with the size of the

group being currently executed. Thereafter, the content of this

field represents the number of unfinished iterations in the group

being executed. It is called the dynamic group-iteration-counter.

When the j-th iteration of the PARDOEND instruction is inter

preted, the CIIU resets its predecessor-counter for that iteration

and decrements the dynamic group-iteration-counter. If the new
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dynamic group-iteration-counter is greater than 0, the interpre

tation of the j-th iteration of the PARDOEND instruction is com

pleted. Otherwise, the CIIU tries to find its partner PARDO in

struction in the ACM by using the return address as well as the

partner address. If it is found, the word containing the current

PARDOEND instruction is emptied and the CIIU interprets the partner

PARDO instruction for the execution of the next group of itera

tions. If the partner of the PARDOEND is not found, initiation-

thresholds of its successors, which have been registered or have

to be registered into the ACM module pointed by the return address

stored in the current PARDO-ACM module, are decremented, and the

current module becomes available for a new PARDO-loop.

Next, the DU decodes each instruction-packet and dispatches

commands to both the ALPS and the MS. First, it picks up the

first instruction-packet in the DU-buffer and then examines the

operation-code, especially the pipeline-code.

Then it initiates the setting-up of the task-packet corres

ponding to the instruction-packet by reserving one block in the

pipeline-buffer of the pipeline pointed by the pipeline-code.

Here the pipeline-buffer is assumed to be the type shown in Fig.3-5

although the pipeline-buffer consisting of a set of shift-regis

ter chains may be used. The task-packet consists of function-code

and operand-data. Thus the DU moves the function-code in the

instruction-packet into the block in the pipeline-buffer. It also

issues a set of READ commands to the MS READ control unit (RCU)

for moving operand data stored in the primary data memory (PDM)

into the block in the pipeline-buffer. If the instruction-packet
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contains some immediate operands, these are directly moved into

the pipeline-buffer.

Thus each READ command issued by the DU consists of the

address of the location in the primary data memory containing one

operand and the address of the location in the pipeline-operand-

buffer.

In addition, the DU issues a set of STORE commands to the

MS STORE control unit (SCU) for taking results from the pipeline-

result-buffer after the completion and storing into the PDM.

(Figs. 3-21 and 22) Each result may be stored into several loca

tions in the PDM. Or it may be stored into an index register or

a BRIX register. Thus each STORE command consists of the address

of the location in the pipeline-result-buffer and a set of addresses

which may point to locations in the PDM, an index register or a

BRIX register. An instruction-packet being dispatched is shown

in Fig. 3-21.

There is one difficult problem in synchronizing dependent

instructions. Suppose instruction-packet A is dispatched and while

it is executed, the successor instruction-packet B using the

result of A as one of its operands is dispatched. Then it is

possible that the READ operation for B is performed before the

result of A is stored. That is, undesirable data is fetched.

This problem can be resolved by using an associative memory in

the DU.

Each word in this memory contains an address of the location

into which a result of the previously dispatched task is to be

stored. Each time a result is stored into the location, the SCU
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in the MS notifies the DU and the address in the DU associative

memory is erased. Thus, each time an instruction-packet is dis

patched, addresses in its result field are registered into the

associative memory and addresses in its operand field are searched

in the associative memory. If they are found, previously issued

STORE commands are still waiting in the SCU. Thus one more

destination address pointing to the pipeline-operand-buffer assigned

to the current instruction-packet is added to the waiting commands.

In this case, READ commands for those operands are not issued.

For operand addresses not registered in the DU associative memory,

READ commands are issued.

Another similar problem of synchronization is as follows.

Suppose an instruction-packet A and its successor B satisfy the

relationship that one of A's operand-addresses in the primary data

memory, X, is the same as one of B's result-addresses but besides

this, they are independent. Then it is possible that the SCU in

the MS serves the STORE command of B before the RCU serves the READ

command of A. This can be also resolved by using another associa

tive memory in the DU.

Each word in this memory contains an address of the location

from which the operand of the previously dispatched task is to be

fetched. Each time the operand is read out of the location, the

RCU in the MS notifies the DU and the address in the DU associative

memory is erased. Thus each time an instruction-packet is dispatched}

addresses in its result field are searched for in the associative

memory. If they are found, previously issued READ commands are

still waiting in the RCU and thus, those waiting commands as well



as newly issued STORE commands with same addresses are tagged

with special symbols. Then the STORE command tagged with a spe

cial symbol is not served by the SCU until the RCU notifies the

SCU of the completion of the corresponding READ operation.

In this way, correct synchronization of dependent instruc

tions can be guaranteed. The DU-buffer again consists of a set of

modules rather than a single module. This is mainly for the

look-ahead of conditional branches. That is, it is possible that

the branch-index is not available when a BRANCH instruction is

interpreted. Then, since it is not known which one of its suc

cessors will be enabled, the IIU may become idle, unless there is

another ready instruction. This can be much improved by using the

DU-buffer composed of a set of modules so that all possible suc

cessors of the BRANCH instruction may be interpreted and each

instruction-packet produced as a result may be stored into an

independent module. Thus final decision of selecting correct

successor instruction-packet is left to the DU. By the time the

DU encountered several branches, BRIX will probably be available.

Otherwise, the DU has to wait, while the IIU keeps producing

instruction-packets for all possible branches.

This completes the description of the modular IPS. Obviously,

every component of the IPS can be easily replicated in a systematic

way, thereby reducing the possibility of the IPS being a bottleneck

in the basic machine. Each component may be replicated by itself

or a combination of different components may also be replicated.

There are various places inside the IPS where optimization can be

effectively employed. The CIIU may apply some priority rule in
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ordering the interpretations of several ready instructions. This

optimization aspect of the IPS is included in the discussion in

Chapter 4.

3.1.3 Memory Subsystem (MS)

The MS in the basic machine consists of five major parts:

primary data memory (PDM), READ control unit (RCU), READ control

unit buffer (RCU-buffer), STORE control unit (SCU), and STORE con

trol unit buffer (SCU-buffer). The MS is depicted in Fig.3-22.

The primary data memory (PDM) consists of a number of modules,

Each PDM module can be accessed independent of others. Data of a

job occupies several PDM modules and each module is shared by

several jobs. That is, the data storage assigned to a job J[i],

denoted by S (J[i]) can be represented by a vector

(sM[1](J[i]),sM[2](j[i]),...,sM[n](j[i])) ,

where S r,,(J[i]) represents the data storage in the k-th

module M[k] assigned to the job J[i]. S r,, (J[i]) and

S |.«,(J[i]) need not be the same when k ^ %. This concept is

depicted in Fig. 3-23. The motivation is to distribute data of

parallel tasks in a job to several PDM modules so that they can

be accessed in parallel.

The RCU executes READ commands issued by the DU in the IPS.

Commands are queued in the RCU-buffer. The RCU can distribute the

content of the location in the PDM to any pipeline-operand buffer,

the index register file, the BRIX registers file or the I/O pro

cessor. The RCU-buffer consists of a number of modules each
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Figure 3-23 Allocation of Space in the PDM.
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corresponding to one of the above mentioned destination units.

That is, all READ commands with their destinations being the i-th

pipeline-operand buffer are queued in the i-th module of the RCU-

buffer. Commands queued in each RCU-buffer module are served on

a first-come-first-served discipline. However, commands queued in

different RCU-buffer modules can be served in any arbitrary order

so that the RCU has a freedom in serving them according to the PDM

module availability.

Whenever the READ command tagged with a special symbol is

executed, the RCU notifies the SCU so that the SCU can execute

the STORE operation with the same address, which has been waiting

for completion of the READ command. On the other hand, the SCU

sometimes sends the RCU the data received from the pipeline-result-

buffer together with the destination address when the STORE command

served by the SCU has the address of a pipeline-operand-buffer as

one of its destination addresses. Then this data transfer is

completed by the RCU.

The SCU executes STORE commands issued by the DU. Commands

are queued in the SCU-buffer. The SCU can distribute the result

contained in the pipeline-result-buffer to locations in the PDM,

the index register file, the BRIX register file or the RCU. It

also receives data from the I/O processor and stores into the PDM.

Analogous to the RCU-buffer, the SCU-buffer consists of a

number of modules each corresponding to one of the above mentioned

data-source units. Commands queued in each SCU-buffer module are

served on a first-come-first-served discipline. Commands queued

in different SCU-buffer modules can be served in any order possibly
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reflecting the PDM module availability. As mentioned before, the

STORE command tagged with a special symbol is not served until the

RCU notifes the SCU of the completion of the corresponding READ

operation. This completes the description of the MS in the basic

machine.

The configuration of the basic machine comprising three modular

subsystems described so far is shown in Fig. 3-24 .
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Figure 3-24 Configuration of the Basic Machine



3.2 Static Sequencing

A set of tasks dispatched to the ALPS by the IPS during

execution of a job are partially ordered in execution due to two

factors. One is data-dependency among them, and the other is

conflict among several data-independent tasks in obtaining the

service of the same pipeline. The ordering due to the second

factor is here called the sequencing.

This sequencing is normally performed by the IPS and then

each pipeline in the ALPS serves tasks dispatched by the IPS on

a first-come-first-served discipline.

Inside the IPS, the CIIU is the principal unit responsible

for this sequencing, although the DU may as well be responsible.

In the preceding section, no specific criteria used by the CIIU

for selecting one of the several ready instructions for the next

interpretation but a random sequencing was mentioned.

In fact, any sophisticated criteria cannot be used by the

CIIU because of the intolerable amount of overhead involved in

using it. Rather such a criteria may be used in the course of

producing the program to indicate the desirable sequence inside
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the program. Such an indication is typically a recommendation to

the IPS, because the BRANCH instruction as well as the PARDO in

struction does not permit the perfect prediction of tasks to be

executed and the dependency relationship between them. Then the

IPS can achieve a simple but effective sequencing by taking the

indicated sequence into account.

It can be shown that the effect of the sequencing on the

efficiency of carrying out a computing job can be significant. In

order to obtain a precise description of the problem involved in

the sequencing, a model used for sequencing is introduced in the

next section. In discussing the sequencing, all pipelines in the

ALPS are assumed to be synchronous pipelines or in the case of an

asynchronous pipeline, the variance of average segment-length for

every p-segment in it is ignored.

3.2.1 A Sequencing Model

Given a job J in execution by the ALPS, the sequencing model

denoted by <J{ (J) is obtained as follows. First, the parallel
s

task graph (PTG) of the job J denoted by Gj = (N,A) is obtained

in which each node n[i] e N represents a task y(n[i]) executed

by a pipeline, and each arc (n[i],n[j]) represents the depen

dency of Y(n[j]) on y(n[i]) for its activation by a pipeline.

Apparently, G is an acyclic graph.

Second, each node n[i] is associated with the pipeline-code

or the label of the pipeline required for the execution of y(n[i]),

It is denoted by y(n[i]). Here it is assumed that no pipeline

is replicated in the ALPS. For each pipeline y, its cycle t(u)
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as well as the number of segments in it #(S(y)) is known. Natu

rally, the time required by a task to pass through the pipeline y

is given by T(y)»#(S(y)) and denoted by t(y). Thus for each

task y(n[i]), its execution-time is given by t(y(n[i])). It is

also denoted by t(n[i]).

Third, each arc, i.e. dependency (n[i],n[j]) is associated

with the time delay denoted by t(n[i],n[j]). t(n[i],n[j]) repre

sents either the time interval from the activation of y(n[i]) to

the production of results to be used as operands of Y(ntj]) or

the minimum amount of delay necessary between the activation of

y(n[i]) and Y(n[j]). For instance, suppose Y(ntj]) has an

operand which is the result of the k-th subtask belonging to

Y(n[i]). Then t(n[i],n[j]) is given by k«x(y(n[i])), i.e.

k multiples of the cycle of the pipeline used for the execution

of Y(n[i]).

Fourth, if there are redundant dependencies in f_A (J)> they
s

are removed. A redundant dependency is defined as follows.

Given a node n[j] dependent on n[i], let P(n[i],n[j])

denote a set of all directed paths from n[i] to n[j]. For

each p = (n[i],n[k1],n[k2],...,n[j]) e P(n[i],n[j]), T(p) de

notes the sum of delays associated with arcs on p, i.e.

T(p) = .(nEil.nlk-D + tCnEk^.ntk-J) + ••• + tfrtk^] ,n[j]) .

Given a node n[j] dependent on n[i], the minimum delay to the

activation of Y(ntjD from the activation of Y0*[i]), denoted

by Td(n[i],n[j]) is given by:
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T (n[i],n[j]) = max T(p)
peP(n[i],n[j])

Definition 3-2. A dependency (n[i],n[j]) is said to be

redundant if there is a node n[k] e N satisfying that t(n[i], n[j])

<Td(n[i], n[k]) +Td(n[k], n[j]).

The procedure for removing redundant dependencies from the

given PTG is discussed in section 3.2.4.

Fifth, a dummy node n[£] is added to G and arcs are drawn

from nodes having no successors. For each arc (n[k],n[&]) e

A_N(n[£]), t(n[k],n[£]) is given by t(n[k]). y(n[&]) is null.

In addition, if there is more than one node having no pre

decessors, a dummy node n[l] is added to G and arcs are drawn

from n[l] to each of them. y(n[l]) is null. For each arc

(n[l],n[k]) e A (n[l]), where n[l] is a dummy node,

t(n[l],n[k]) is 0.

Therefore, the sequencing model of a job J, ^J\ (J), is a

PTG G = (N,A) in which each node neN except the dummy nodes

is associated with the pipeline-code y(n) and each arc (n[i],n[j])

is associated with the time-delay t(n[i],n[j]). In addition,

there is no redundant dependency in G. Fig. 3-25 illustrates a

sequencing model ij\ (J).

On the basis of (Jk (J), the sequencing problem can be spe-
s

cified as follows. The delay forced between activations of two

parallel processable tasks, Y(nti]) and Y0*[j]), competing for

the same pipeline y, is apparently x(y). The sequencing problem

is to transform tA (J) into Jk (J) by adding a set of arcs as
s s

follows.
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(1) Arcs are added only between nodes associated with the

same pipeline-code. That is, dependencies are added only between

tasks requiring the same pipeline.

(2) Each added arc is associated with the forced delay as

mentioned above.

(3) tj/x (J) does not contain any cycle.

(4) No two nodes associated with the same pipeline-code are

independent in _A (J). That is, no two tasks requiring the same

pipeline are parallel processable after the transformation.

Such an <J\ (J) is called a feasible transformation of _4 (J).
s ®

Given a feasible transformation <J\ (J), the earliest activation
s

time of Y(n[i]) or n[i] is defined as Td(n[l],n[i]) in

i A (J). In addition, N can be partitioned into an ordered class
s

of node-subsets (N[l],N[2],...,N[k]) such that (1) for all

n[i] e N and for all n[j] e N, n[i] and n[j] belong to the

same node-subset N[k] if and only if Tj(n[l],n[i]) « Td(n[l],n[j])

and (2) v n[i] e H[\] Vn[j] eN[k2], k± <k£ if and only if

^(ntU.nti]) < T,(n[l],n[j]). Such an ordered class of node-
d u

subsets in >Jk (J) is called a feasible execution-sequence and
s

denoted by S<b^f(J)). Jk*(J) is said to indicate S(lj4_(J)).
s s

Then T.(n[l] ,n[£]) in a feasible transformation _A (J),
d *

where n[Z] is the last dummy node, is the total execution-time

of the job J according to the feasible execution-sequence

SCJ^(J)) and denoted by T<LAg(J)).
Therefore, the optimal sequencing problem is to find a feasi

ble transformation of J( (J), ^°(J) such that T(j(°(J)) is

the minimum among all feasible transformations of <J\ (J). jx O)



is called an optimal transformation of '^A (J). SC_A (J)) is
s s

called an optimal execution-sequence. Fig. 3-26 shows tj\ (J)

171

corresponding to _^ (J) in Fig. 3-25.
s

Unfortunately, no simple solution for the optimal sequencing

problem seems to exist. All the solutions currently available are

exhaustive in nature and the amount of computation involved in find

ing an optimal sequence of any sizable job is intolerable. Possible

recourses are to aim at the nearly optimal sequencing by using

simple procedures and to divide the sizable job into a number of

job-segments so that each job-segment can be sequenced independently

of others.

In the next section, the difficulty of optimal sequencing is

demonstrated by considering the simplest case where the ALPS con

sists of a single pipeline.

3.2.2 Optimal Sequencing for the ALPS of a Single Pipeline

In this case, every t(n[i],n[j]) in (J^ (J) is a multiple
s

of the cycle of the pipeline solely constituting the ALPS. Each

forced delay is again equal to the cycle.

However, even in this simple case, no simple solution seems

to exist, although a branch and bound strategy utilizing some

simple properties can be developed.

Lemma 3-1. Given a feasible transformation (J\ (J) in the

ALPS of a single pipeline, SQJx (J)) is an ordered set of nodes.
ss

That is, no two nodes have the same earliest activation time.

Proof. Since no two nodes are independent in _A (J). Q.E.D,
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Definition 3-3.

(1) Given a feasible node-subset N' C N in <J\ (J) as
5

defined in section 3.1.1.3, a feasible partial transformation of Nf

denoted by tjA (N*) is the portion of a feasible transformation
s

<J\ (J) containing N*. A feasible partial execution-sequence
s

indicated by ^(N1) is denoted by S(_4f(N')).' Or, S(wAf(N1))
s s s

is called a feasible subsequence of Sdj\ (J)).

(2) Given _Af(N*), the frontier-subset of N1 is defined
s

as in section 3.1.1.3 and denoted by Z(N'). The execution-time

of Âf(N!) is defined as T,(n[l],n[k]) = max T,(n[l],n)
1? neZ(N')d

in <J\ (N1) and n[k] is called the terminal node of ^(N1)
s s

or S<Lylf(N')).

(3) Given <Jk (N1), the score of each node ne^ (N') in
s ys

L-A (J) denoted by y(n) is defined as follows.

[T.(n[l],n[i]) in^OT) + t(n[i],n)] ,

(n) = <

max t-,

n[i]e .^(n)
if the terminal node of ^f(N»), n[k] e .^(n)

s

max{Td(n[l],n[k]) inJ^(N') +x(y);
max [T(n[l],n[i]) in^(N') +t(n[i],n)]} ,

n[i] ei^"1(n)
otherwise.

(4) The strongest successor of _A (N') or S{J\ (Nf)) is
s s

defined as the node n eQ (N') satisfying that

y(n) = min y(n[i]). With these notations, the following
n[i]eqjy(N')

property can be described.



Theorem 3-1• There always exists an optimal execution-

sequence of J for the ALPS of a single pipeline, S04°(J))

= (n[k ],n[k.],...,n[k~]), satisfying the following property:

for any feasible subsequence of S(^J\ (J))» S(^A (N1)), where
s s

the terminal node of S(^4°(N»)) is n[k ], 1 < i < £-1, n[k -]
S 1 l"t*l

is the strongest successor of Sd^Jx (N1)).
s

Proof. Suppose n[k _] is not the strongest successor of

S('_,A (N')) in a given optimal execution-sequence S(_A (J)),
s s

Denote by n[k.] the strongest successor of S(_A (N1)). Then
J • s

k... < k.. n[k.] can be moved in between n[k.] and n[k.,-]
l+l j 3 i i+1

in an execution-sequence without changing the total execution-time,

since [t(n[k ],n[k. ]) +x(y)] < t(n[k ],n[k.+1]) from the defi

nition of the stronger sucessor. Thus the resulting execution-

sequence is still optimal. Q.E.D.

Based on these properties, the branch and bound procedure can

be formed as follows. Starting from n[i], order nodes into a

sequence of strongest successors untilmore than one strongest

successors are encountered. Whenever more than one strongest suc

cessors are met, branching is done with each of them. Then a

sequence of strongest successors are again found following each

branch until the next branch point, and so on. The bounding pro

cedure can bebased on the following criteria. Given a feasible

node-subset N1, a partial feasible execution-sequence S^ of

N' is said to dominate another partial feasible execution-sequence

S2 of N' if for all neZ(N') in ^g(J), Tj(n[l],n) in S±
is less than or equal to T,(n[l],n) in S2» Fig.3-27
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-jl (J) for the ALPS of a Single Pipeline
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illustrates an optimal transformation of >J\ (J) for the ALPS of
s

a single pipeline.

However, as the number of nodes increases, the amount of

computation required by the algorithm rapidly increases in

general.

3.2.3 Optimal Sequencing for the ALPS of Multiple Pipelines

As implied by the complexity involved in optimal sequencing

for the ALPS of a single pipeline, optimal sequencing in this

general and practical case becomes an immensely complex problem.

The property Theorem 3-1 or any similar property does not hold any

more. Exhaustive enumeration seems inevitable.

Therefore, optimal sequencing is infeasible even if it is

attempted in the course of producing programs. First of all, the

precise sequencing model is not available before run-time.

Second, the complexity of the optimal sequencing is intolerable

even with a moderate size of program as indicated above.

This leads to the desirability of suitable heuristic proce

dures of small complexity aiming at nearly optimal sequencing for

both static sequencing, i.e. the sequencing performed before run

time and dynamic sequencing, i.e. the sequencing performed by the

IPS at run-time. The heuristic procedures for static sequencing

are used to find and indicate a good (not necessarily optimal)

sequence in the program, while the procedures for dynamic sequenc

ing are used to order tasks with a little amount of computation,

using more precise sequencing, models and the recommendation provided

from static sequencing. In Chapter 4, the scheme of performing
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dynamic sequencing with the reduced cost of overhead will be

discussed.

3.2.4 Sequence Indication and Removal of Redundant Dependencies

As mentioned before, the product of static sequencing is

typically a recommendation to the IPS. In such a case, the

simplest way to indicate the recommended sequence in the program

is to attach priority numbers to control instructions. The reso

lution in the case of more than one ready instruction having the

same priority is a partof dynamic sequencing.

On the other hand, the nearly precise sequencing model of a

job-segment is often available before run-time. If such a job-

segment takes a significant portion of execution-time of the job,

then it is worth attempting the high degree of optimization through

sophisticated static sequencing.

In addition, such a job-segment will be associated with

higher priority than other parts of a job and the execution-

sequence of tasks in the job-segment derived by static sequencing

may be indicated more firmly inside the program than by priority-

assignment .

The simple and firm indication of the derived execution-

sequence in the program is to add dependencies by changing ini

tiation-thresholds and successor-lists of control instructions.

One thing noteworthy is that such addition of dependencies

may lead to the program containing redundant dependencies defined

in section 3.2.1. Arcs (n[l],n[3]) and (n[2],n[4]) in Fig.3-27

are examples of redundant dependencies. A general problem of



removing redundant dependencies from the given PTG, G = (N,A),

in which each arc is associated with the time-delay, can be solved

by the following procedure. This procedure makes use of the

algorithm for finding a transitive reduction [aho 72],

Algorithm 3-3.

1. Obtain the transitive reduction of A, rJ (A), and set

A<- rJR(A).
2. M^-A\fJr(A).

3. For all (n[i],n[j]) e M, do the following.

3.1 Obtain N1 ^^(nti]) nQ"1^]).

3.2 T(n[i],n[i]) + 0, N"«-{n[i]}.

3.3 Obtain Q (N") H N' and pick any number n[k] in it.

3.4 T(n[i],n[k]) + max [T(n[i],n)+t(n,n[k])]

3.5 N" «- N" U{n[k]}

3.6 If N" ^N\ go back to 3.3. If N" =N', continue

to 3.7.

3.7 See if for all n[k] e(9-1(n[j]) O N1),

t(n[i],n[j]) > T(n[i],n[k]) + t(n[k] ,n[j]). If it is,

A •*• A U{(n[i] ,n[j])}. Otherwise, do nothing.

4. Terminate. G = (N,A) represents the new PTG containing no

redundant dependencies.

The correctness of this algorithm is evident from two facts.

One is that (n[i],n[j]) e M if and only (n[i],n[j]) e A and

there is a directed path from n[i] to n[j] not containing the

arc (n[i],n[j]). The other is the definition of redundant depen

dency itself.
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3.2.5 Minimization of Reconfigurations

There is another parameter involved in sequencing for the ALPS

consisting of reconfigurable pipelines. As mentioned before, the

overhead involved in reconfiguration is not negligible.

In fact, the delay forced between two independent tasks being

served continuously by the common pipeline when reconfiguration is

required, is much greater than the cycle of the pipeline. The

tasks in the middle of the previously configured virtual pipeline

must pass through it before the new virtual pipeline is configured.

The reconfiguration overhead varies depending upon the type of

transition between virtual pipelines.

Therefore, the variable amount of the forced delay must be

introduced in obtaining optimal or nearly optimal transformation

of <J\ (J) discussed in sections3.2 and 3.3. In addition,

t(n[i],n[j]) in <J\ (J) must be obtained by taking the reconfi-

guration overhead into account. This further increases complexity

of sequencing.

In the simplest case considered in the following, all tasks

in fj/x (J) are mutually independent. Then the only possible delay

between activations of tasks is the forced delay between those

competing for the same pipeline.

Independent tasks competing for a non-reconfigurable pipeline

can be sequenced in any arbitrary order since the only possible

delay, i.e. the forced delay is uniform. Sequencing of independent

tasks competing for a reconfigurable pipeline becomes the following

problem.
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Lemma 3-2. Given a reconfigurable pipeline capable of con

figuring m virtual pipelines, the problem of finding an optimal

execution-sequence of n independent tasks requiring one of those

m virtual pipelines becomes the traveling salesman problem with

m+1 cities.

Proof. This sequencing problem can be transformed into the

following traveling salesman problem. First, n independent

tasks are partitioned into a class of m task-sets {S[l],S[2],...,S[m]}

such that all tasks belonging to S[i], 1 ± i ± m, require the

i-th virtual pipeline. To each S[i], 1 <_ i <. m, a city y[i]

corresponds. There is a road between every pair of cities and

each road from y[i] to y[j] is assigned the traveling cost

equal to the reconfiguration overhead required for transition from

the i-th virtual pipeline to the j-th virtual pipeline. An

additional city y[0] is added to a set of m cities. The tra

veling cost associated with a road from y[0] to each y[i],

1 £ i <_ m, is the overhead required for configuring the i-th

virtual pipeline, and the traveling cost from y[i], 1 £ i <. m

to y[0] is 0.

Then it becomes apparent that the optimal sequencing problem

is equivalent to finding a minimal-cost-tour starting from y[0]

visiting every y[i], 1 <_ i < m, exactly once and then returning

to y[0]. Q.E.D.

This is illustrated in Fig. 3-28.

Various solutions are available for the traveling salesman

problem with a limited number of cities [bel 70]. Therefore,
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Figure 3-28 Transformation of a Sequencing Problem

Into a Traveling Salesman Problem
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provided that the number of virtual pipelines configurable in

each reconfigurable pipeline is small, optimal sequencing of inde

pendent tasks becomes feasible. Once an optimal tour is obtained,

it may be incorporated as a fixed component into the IPS.

PARDO-loops are major sources of such independent tasks and

the effectiveness in sequencing them can effect the performance

of the system to a significant extent.

So far, the problem of optimal sequencing has been discussed.

Although a more practical and feasible optimization is found to

be the nearly optimal sequencing using simple heuristic procedures,

the efficiency of a heuristic procedure is generally dependent

upon the characteristics of a job. The performance evaluation of

a heuristic sequencing procedure is beyond the scope of this

investigation.
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3.3 Static Storage Allocation

The problem of memory-conflict is the one having a signifi

cant effect on the performance of any system exploiting parallel

ism. This problem generally occurs when more than one task

being executed concurrently needs to access the same memory-

module.

Even in a conventional system with its CPU possessing little

parallel processing capability, this has been a problem. In such

a system, memory-conflicts occur typically between the tasks served

by the CPU and the tasks served by the I/O processors. These

are here called the CPU-I/O memory-conflicts.

On the other hand, in the system possessing high parallel

processing capability such as the basic machine described in

section 2.1, additional and more severe memory-conflicts occur

among tasks concurrently served by several processing units in the

ALPS and the IPS. These are here called the intra-CPU memory-

conflicts.

Solutions to this problem must be approached in two directions:

organization and management.

In designing the basic machine in section 3.1, the reduction

of memory-conflicts was an important motivation behind the separa

tion of the program memory (PM) from the primary data memory (PDM).

Parameters characterizing a particular configuration of each memory

generally include the number of memory-modules, the access time of

a module and the size of each module. With respect to the current

state of the art, the speed of memory cannot be much faster than



the speed of each processing unit. Typically the former is slower

than the latter.

In order to achieve the bandwidth required to support the

powerful ALPS or IPS with the slow memory, the number of memory-

modules must be sufficiently large and/or the data-transfer-path

must be sufficiently wide. Even if a high speed memory is avail

able, the probability of memory-conflict is still sensitive to

the number of modules in the memory. In this section, memory-

conflict is treated as a technology-independent problem whose

existence is independent of the memory speed. The term memory-

module is used in the rest of this section to refer to a unit

whose bandwidth is sufficiently high to support any processing

unit.

Given the configuration of each memory, its management, i.e.,

allocation becomes the major factor influencing the number of

memory-conflicts. Memory allocation is performed through two

phases: static storage allocation and dynamic storage allocation.

In this report, static storage allocation refers to mapping by

the compiler from symbolic addresses used in the symbolic program

to (possibly relocatable) numeric addresses used in the machine

program. The set of all numeric addresses used in a machine pro

gram is called a logical-address space while the physical-address

space consists of the set of actual memory locations directly

addressable, [wat 70] Then dynamic storage allocation is a

process of run-time binding between a logical-address space of a

program and the physical-address space.
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To be more precise, a logical-address a_ is a pair

(iil , r ), where hl represents the logical-module number and

r represents the relative address within the module addressed
Li

by m, . A set of all a^ 's in a program J containing the same

el is called a logical-module address space of J and denoted by

A . The logical-address space of J denoted by A^(J) is

then the family of all A fs. Similarly, a physical-address

a is a pair (iil,, r ) where nu represents the assigned physical-

module number and r represents the relative address within the

module addressed by nip. The physical-module-address space A

is the set containing every ap pointing to a cell

in the module addressed by m . The physical-

address space is then the family containing every A such that

there is a module addressed by iil in the memory.

The binding between m. and iil, as well as the one between

r and r , is the main part of dynamic storage allocation.
L P

THe binding between each variable or program-element in the

symbolic program and a. - (el , r ) is the main part of static

storage allocation. As far as memory-conflict is concerned,

binding involving r and r does not
Li if

have any effect. Thus the part of storage allocation relevant

to reduction of memory-conflict is the assignment of iil to each

variable or program-element, called static storage partitioning,

followed by the binding between dl and m_.

The degree of sophistication of dynamic storage allocation

varies depending upon the environment. In a system oriented for
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achieving high computing power, sophisticated dynamic allocation

is not acceptable due to the large overhead involved. Therefore,

static storage allocation becomes the main source of optimization.

The conventional approach to the resolution of the problem

of memory-conflict has been memory-interleaving [mea 70, bur 70].

In practice, memory-interleaving is a design technique. However,

it is logically equivalent to the kind of static storage

partitioning in which adjacent instructions or symbolic variables

successively introduced in a symbolic program are assigned

different _l fs. That is, it is equivalent to the heuristic

partitioning procedure utilizing the high probability of consecu

tive execution of adjacent program-elements in a sequential

program.

It is easy to envision the insufficiency of memory-interleaving

as a resolution of intra-CPU memory-conflicts occuring during the

execution of a parallel program. It is desirable to employ a

more effective and deterministic partitioning utilizing properties

inherent in a parallel program. A fundamental basis for the develop

ment of such a partitioning technique is the dependency relation

ship among tasks, since intra-CPU memory-conflicts exist only among

parallel processable tasks. In subsequent sections, such

approaches in static storage partitioning are examined. Static

program-storage partitioning, i.e., assignment of hl to each

program-element, is discussed first in section 3.3.1, and then

static data-storage partitioning, i.e., assignment of m^ to each

variable, is discussed in section 3.3.2. Throughout this section



M denotes the set of modules {m } in the PM and M denotes

d P
the set of modules {m } in the PDM. Q denotes the size of a

module in the PM and ti denotes the size of a module in the PDM.

Without loss of generality, a symbolic program is assumed to be a

structured parallel program.

3.3.1 Static Program-Storage Partitioning

The objective of static program-storage partitioning is to

allocate a program-text into a number of modules in the PM in such

a way that parallel initiation of functional instructions by the

FIIU in the IPS may not be hampered by conflicts in accessing

the PM. It is implicit that the FIIU abstracted in Fig. 3-24

possesses high parallel processing power.

The model of a program J used for static program-storage

partitioning, ,^lp(J), is atriple (Gpp, Q, w), where

(1) G = (N,A) is a directed graph called the parallel

processability graph representing the structure of 'wAp(J),

(2) Q is a finite set of non-negative integers representing

numbers of memory-words, and (3) w is a function w: N -*• Q.

G_p is obtained through a series of steps proceeding in a top-down

direction and starting with the outermost block in J. Each step

involves the restructuring of the block dealt with and the sub

stitution of the restructured block for its abstraction, i.e., a

single program-element representing it in its scope. During each

step dealing with a certain block B, blocks nested in B are

treated as single functional program-elements.
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As the first step, the structure of the outermost block B,

G, in which blocks nested in B are represented by single nodes,

is obtained, and G is restructured into G. This G is the

temporary model resulting after the first step, Gp. At the

second step, one of the blocks nested in B, B, is taken and its

structure G is restructured into G. Then Gp is obtained by

replacing the single node in Gpp representing B with G.

Then the third step, as well as all subsequent steps, repeats the

same procedure of the second step. Apparently, this iteration

terminates when all the blocks in J have been processed.

The restructuring and substitution procedures vary depending

upon types of blocks.

Case 1: A PAR-block B.

G is obtained by removing the PARBEGIN- and PAREND-nodes from

G.

Case 2: A SEQ-block B.

All A-BRANCH- and XOR-nodes, as well as the SEQBEGIN- and

SEQEND-nodes, in G are removed first. Then all remaining f-nodes

are restructured into an arbitrary chain of f-nodes in G without

violating the precedence relationship. That is, if there is a

directed path from a f-node n[i] to another f-node n[j] in G,

then n[i] must be positioned earlier than n[j] in the chain in

G. The reason for this restructuring is that no two program-

elements represented by two nodes n[i] and n[j] in G, e(n[i])

and e(n[j]), are parallel processable.
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Case 3: A PARDO or SEQDO-block B.

The blockhead and the block-tail in G are removed to obtain

G.

Case 4: A WHILE-REPEAT-block B.

The WHILE-REPEAT- and WHILEEND-nodes, as well as the feedback

arc from the WHILEEND to the WHILE-REPEAT, are removed.

Replacement of the node n[i] in the temporary model G p represen

ting B with G is made in the following way. Arcs are drawn

in Gp from the immediate predecessors of n[i] to the entry-

nodes in G, and from the exit-nodes in G to the immediate

successors of n[i].

The final model Gpp is the one containing only f-nodes

representing basic functional program-elements. G is apparently

an acyclic graph. A pair of independent nodes in G represent

parallel processable program-elements.

Then for each node n in Gpp, w(n), i.e., the number of

memory words required to store the program-element e(n) is

obtained. Fig. 3-29 illustrates lA (J) of J in Fig. 2-5.

In the rest of this section, w(N'), where Nf C N, denotes

_ w(n).
neN

Definition 3-4. If no two parallel processable program-

elements are allocated in the same module in the PM, such a

static program-storage partitioning is said to be conflict-free.
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(3)

Fig. 3-29. Jx (J) for Static Program-Storage Partitioning.
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Definition 3-5. Given an acyclic G = (N,A) and its reacha

bility relation R, (1) a chain in G, denoted by c, is defined

as a sequence of nodes (n[i ], n[i_], ..., n[i, ]) such that

V 1 < j < k, n[i.] e N and Vl<il£m<k, (n[i ], n[i ])e R.
J Jo m

The chain-node-set of c denoted by N(c) is defined as:

N(c) ::= {n[i.] | 1 < j < k} . (2) a chain decomposition of G

denoted by D (G) , is defined as a set of chains such that
c

{N(c) I c e D (G)} is a partition of N. (3) a chain decomposition
c

with the smallest number of chains is said to be minimal and

denoted by Dm(G).

For each chain c in <j/xv(J), w(c) denotes £ w(n) and
neN (c)

P(c) denotes T-^f-1 . For each D (G) in 'jL(J), p(D (G))
Q c r C

denotes £ P(c).
ceD (G)

c

Theorem 3-2. Assume _/Vp(J) is given.

(1) If #(Dm(G)) > #(M ), there does not exist any conflict-free
c

static program-storage partitioning.

(2) If there is a D (G) satisfying that P(D (G)) < //(M*),
c c —

there exists a conflict-free static program-storage partitioning

corresponding to D (G).

Proof. (1) If #(Dm(G)) > //(M*), then there is amaximal

independent set of nodes in G whose cardinality is greater than

#(M). So, there are more than #(KT) number of program-elements

which are parallel processable with each other.

(2) Allocation of p(c) number of modules to £(N(c)) for each



c e DiG), apparently results in a conflict-free static program-

storage partitioning. Q.E.D.

The first condition in Theorem 3-2 can be easily detected

because there exists an efficient algorithm for finding D (G).

[for 62] Depending on if this condition is met or not, static

program-storage partitioning varies.

Case 1: #(Dm(G)) > #(!_*).
c

Since there is no conflict-free partitioning in this case,

the problem becomes the one of finding a partition leading to

the minimal number of memory-conflicts at run-time. Apparently,

the number of memory-conflicts can not be pre-determined. Thus

this optimization problem as it stands cannot be solved. However,

a number of practical solutions toward finding a good partition

can be conceived. The most typical among them is to derive for

every pair of functional program-elements the estimate of proba

bility that they will be in memory-conflict with each other at

run-time. Then the modified problem is to find a partition

satisfying that the sum of conflict-probabilities among all blocks

in it is minimal with the constraints of Q and #(M ).

This optimization problem is apparently the well-known

clustering problem, [sal 68] The effectiveness of this approach

would be more dependent upon the methodology of estimating

conflict-probabilities than on the clustering algorithm.

If #(Dm(G)) is much greater than //(M1*), there is little
c

chance that any sophisticated partitioning will be superior to a
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simple heuristic or random partitioning.

Case 2: #(Dm(G)) < //(M*).
c —

Determining the existence of D (G) satisfying that the

constraint p(D (G)) < #(m ) is a complicated process.

As the difference [//(M1*) - #(Dm(G))] is larger, it is more likely

that any D (G) will satisfy the constraint. However, when the

difference is small, the problem becomes very difficult.

A more feasible approach is to appropriately adjust a minimal

chain decomposition into a partition tt satisfying the condition

p(tt) _< #(m ). Such a heuristic procedure is not elaborated in

this report.

Therefore, the pay-off of any static program-storage parti

tioning is highly sensitive to #(m ).

3.3.2 Static Data-Storage Partitioning

Static data-storage partitioning is much more complex in nature

than static program-storage partitioning. The model used for this

purpose, f_7tp(J), is obtained as follows.

First, the parallel processability graph, G is obtained

as described in the preceding section. Let ~\J denote the set of

all variables used in J. Then for each node neN in G , its

variable-set X(n) is obtained. Next, H/ is partitioned into a

set of variable-sets ti(\)) such that for each member variable-

set V e TfC\)) there corresponds a unique node-set N* in Gpp

such that (1) V n e Nf, V C X(n), (2) V n e (N \ N'), V n X(n) = <J>

and (3).there does not exist any other variable-set V' 3 V satisfying

(1) and (2).
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N' is called an user-node-set of V and denoted by N (V).

Then an undirected graph G - (.Tt(\))t A ) is constructed

in which V V[i] e -n(\j) V V[j] e ti(\))9 (V[i], V[j]) e A„ iff

Vn[k] eNu(V[i]) Vn[£] eNu(V[j]) in G_p, n[k] e<£Cn[£])
or n[A] eQ(n[k]).

Figure 3-30 illustrates a G . A is called the composability

relation. Then it is apparent that each maximal clique in G

represents a family of variable-sets of which no two members,

if exist, are accessed in parallel during the execution of J.

Therefore, a partition of G consisting of a minimal number of

maximal cliques (including single nodes), denoted by. D (G ), plays

a role similar to the one of D (G) in static program-storage

partitioning. A variant ofTheorem 3-2canbe formulated using #(D (G )).

However, the computational complexity involved in finding

maximal cliques is intolerable. It is also true that

m A

//(D (G )) will be mostly larger than //(M ). Therefore,

the use of a good heuristic procedure is more inevitable

in static data-storage partitioning. Development of such pro

cedures as well as their evaluation is another important subject

of future research.
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Fig. 3-30. ,J( (J) for Static Data-Storage Partitioning.
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3.4 Program Validation

With increasing sizes of large PRC systems the reliability

of their programs has become a very frequent and serious problem.

Programs with bugs can be very disastrous in most PRC systems.

Even with sequential programs, the current state of art cannot

always guarantee the acceptable reliability of a large program.

With parallel programs, this problem becomes more serious

and difficult to solve. It becomes very difficult to envision

the dynamic processes which will occur under their controls.

This difficulty is much reduced when the parallel program has

a certain desirable structure. The definition of both the basic

parallel program and the structured parallel program made in

chapter 2 was substantially influenced by this consideration.

A program can be said to be correct only when it produces the

desired responses to every input and also satisfies the performance

requirements such as response time limit, storage space limit, etc.

That is, a correct program should possess the exact behavioral

characteristics specified by the designer. Each time a new program

is produced, it should go through the process of software validation,

which guarantees its correctness.

It is apparent that program validation becomes much easier

in high level language programs than machine language programs.

Therefore, the discussion in this section is confined to the

validation of a structured parallel program.

The complete validation is a process of assuring the absolute

correctness of a program through the verification of its complete
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behavioral characteristics. In spite of various serious efforts

made so far to achieve this ideal goal, currently available

techniques seem to be infeasible to solve the problem of reliability

in large programs. Therefore, this section is concerned with more

cost-effective and feasible approaches which establish an accep

table degree of confidence in the correctness of a program without

requiring an exhaustive verification of its absolute correctness.

It is aimed at the partial validation of a program, using techniques

that are subject to a high degree of automation. The common

principle in these techniques is to verify the correctness of a

program under some representativecircumstances [ram 74a].

In other words, the underlying basic strategy is to decompose

the complete behavioral characteristics of the program into a

certain number of classes and then to validate each class of

characteristics to a limited extent. Software testing is the

usual approach. Software testing serves to detect and locate errors

in a program. In this discussion we shall define software testing

as the act of determining the presence of errors and debugging as

the process of error location and correction [elm 71]. Software

testing consists of exercising the program with selective test-

inputs and evaluating outputs to determine the correctness.

Two fundamental problems are encountered in the development

of an automated software testing system: (1) generation of represen

tative test-cases, and (2) generation of test-inputs. A suitable

set of test-cases must be determined and then each of them must be

tested with the appropriate test inputs.



These two processes are again objects of optimization.

Therefore, the principle of level-by-level optimization prevailing

discussions throughout this report is applied once more. That is,

the strategy of level-by-level validation is adopted.

There are basically two aspects in level-by-level validation:

component validation and composition (interface) validation. That

is, one is to validate each component in isolation from others,

and the other is to validate a composite system consisting of a

number of components without concerning the internal behavior of

each component module. In comparison to the case where the

validation of a composite system always involves the examination

of the combination of both internal behaviors of its components

and ones of their interfaces, level-by-level validation can be

superior in terms of cost-effectiveness and practical feasibility.

The structured parallel program is highly amenable to this

level-by-level validation. Each block can be validated independent

of others and its internal behavior is not closely observed when

its scope is validated.

The validation or testing techniques of a block vary depen

ding on the type of the block. Among five types of blocks in the

structured parallel program, the SEQ-block and the PAR-block are

the main objects required to be thoroughly tested.

3.4.1 Testing of a SEQ-Block B

3.4.1.1 Test-Case Generation

As indicated before, the process of generating test cases can
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be regarded as the decomposition of the complete behavioral

characteristics. The program structure serves as a useful basis

for this test-case generation. More specifically, each control

flow path is a suitable candidate to be a test-case. A control

flow path denoted by p is roughly defined as a syntactically

legitimate execution-sequence of program-elements, where each

program-element is either a basic program-element or a block

nested in the SEQ-block B. Advantages of using p fs as test-
c

cases are two-fold. One is the high coverage of testing achieved

by using such test-cases and the other is the convenience in

generating test-inputs as well as evaluating test-outputs.

Test-inputs are always driven in front of the block-head

SEQBEG1N primitive, and test-outputs are always taken after the

block-tail, SEQEND primitive.

It is apparent that this is more advantageous in comparison

to the case where test-inputs are driven inside B and test-

outputs are taken inside B.

Therefore, the model of B used for this testing, (_^t_(B) is

a triple (G, V_, Vn) where

(1) G = (N,A) "represents the structure of B,

(2) V represents the set of all variables which are used as

operands in B but have been assigned values before entering

into B, and

(3) Vn represents the set of all variables which are used as

result variables in B.

For test-case generation, only G is used. V and V_ are used
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for test-input generation and test-output evaluation. Apparently

G is an acyclic graph and each node incident to more than one

outgoing arcs represents an A-BRANCH or SEQBEGIN primitive. Each

p corresponds to a connected sequence of nodes from n[l] to the

last node n[A] representing the block-tail, SEQEND primitive.

Thus, enumeration of every p becomes a simple process.

Let P denote the set of all p fs in B. If the number of
c rc

p fs, //(P ) is small, every p can be used as one of test-cases.

That is, each p becomes a test-path.

However, if #(P ) is too large, a suitable subset of P

can be selected.

Among a number of schemes of selecting a subset of P , a

simple but suitable one is to take the minimum number of p 's

covering all arcs in(j/vT(B). Such a set of p fs is called a

minimal arc-covering set of p *s. There are normally a number

of minimal arc-covering sets and one of them can be obtained by

the following simple procedure.

Algorithm 3-4

1. Set G1 = (N'.A1) <- G = (N,A), P <- <J> and Pf «- (J>.

2. Find a directed path from any entry node to any exit-node in

Gf, p.

Then P •*• P U{p>

3. Remove all arcs (not including nodes) on p from G*.

4. If exist, remove from G1 all nodes having no incoming arcs

and no outgoing arcs.
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5. If G* V <J), go back to 2.

If G,=(|>, VpeP do the following

5.1. If the starting node of p is n[l] and the terminal node

of p is n[£], then go to 5.4.

5.2. If the starting node of p, n[i] is not n[l], find any

arbitrary path from n[l] to n[i], p(n[l], n[i]) and set

p •*- p(n[l], n[i]) op, where ° denotes concatenation.

5.3. If the terminal node of p, n[j] is not n[H], find any

arbitrary path from n[j] to n[jt], p(n[j], n[&]) and set

p «- p o p(n[j], n[£]).

5.4. P1 «- Pf U{p}

6. Terminate. Pf represents a minimal arc-covering set.

Figure 3-31 illustrates this algorithm.

Another simple one is to take the minimum number of p 's

covering all nodes in'j/L,(B). Such a set of p 's is called a

minimal node-covering set of p 's. Again there are normally a

number of minimal node-covering sets. The problem of finding one

of them is a slight variation of the problem of finding a :

minimal chain decomposition of G in lAt(B) ,which was

introduced in section 3.3.

The consequence of using one of these subsets of P is that

the testing becomes less expensive although the assurance obtainable

is also reduced. When the program is supposed to have few bugs if

it does at all, these strategies become more cost-effective.

There is one intrinsic problem in program testing. A control

flow path p reflects only syntactic aspects of the SEQ-block.



P- |l •3•A•6•7J

P = <

1 • 3 • A • 6 • 7,

3- 6 ,

3 • 2 • 5 • 7,

1 • 2 • A • 5

=>

1 • 3 • A • 6 • 7,

3- 6

1 . 3 • A • 6 • 7,

1 • 3 • 6 * 7,

, K I L3. 2- 5. 7,

1 • 2• A• 5« 7

Figure 3-31 A Minimal Arc-Covering Set of p *s
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However, it is possible that some p *s could become invalid

when the semantic aspect of the program is taken into account.

A p is said to be unexecutable if no inputs to the
rc

program can lead to the execution of the p . Although some

unexecutable paths are sometimes detected by the brief examination

of the program text, this detection in general requires an exhaus

tive process of logical inferences. Analogous to the complete

validation, the complete detection of unexecutable paths seems

infeasible at present. At any rate, this is a factor contributing

to some efficiency degradation in any validation process.

3.4.1.2 Test-Input Generation and Program Instrumentation

After generating a suitable set of test-cases (paths), the

next problem is how to generate inputs which lead to the execu

tion of these test-cases. The difficulty in test-input generation

has been well understood so far. Problems encountered in the

complete validation approach reappear in the automated synthesis

of test inputs. Human judgement is inevitable in general.

However, useful information obtained from program specifica

tion and construction phases can greatly reduce the difficulties

in test-input generation.

3.4.1.2.1 Test-Input Generation Schemes

Depending upon the extent of information available, the

following three schemes can be conceived.

First, when the information is sufficient to deterministically
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generate test-inputs for the given test-path, the generation

scheme becomes the direct automated synthesis. Otherwise, either

the iterative synthesis or the manual synthesis has to be employed.

The iterative synthesis is to repeatedly generate test-inputs using

the information insufficient for direct synthesis until the inten

ded test-path is exercised. The iterative synthesis can be incor

porated into two classes of testing strategies: sequential testing

and stochastic testing. In the former, all test-paths are ordered

linearly and tested one by one according to the order. Thus testing

each path may require a number of iterations before the relevant

test-inputs are generated.

On the other hand, in the case of stochastic testing, a program

is continuously tested with a certain number of randomly generated

inputs. That is, generation of random input and the exercise of

the program with it is iterated a certain number of times. Test-

outputs are evaluated collectively at the end of a series of test-

runs. During a series of test-runs, the number of traversals

through each test-path, called path-traversal-frequency» is

measured. Then test-paths with high frequencies may be regarded

as sufficiently tested, while the remaining ones may be taken for

the next step. The next step may be either the complete repetition

of the above process with a new reduced set of objective test-paths

or the sequential testing when the number of test-paths remaining

unexercised becomes sufficiently small. This continues until

all test-paths are validated.

Test-output evaluation is closely related to the input
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generation. When the test-input is generated, it should be

accompanied with the appropriate information to be used for the

evaluation of test-output. The information will vary from the

exact output values expected to some simple properties such as

checksum, functional relationships between output values, etc.,

which should hold for reasonable output. That is, the output

evaluation scheme again depends on the amount of information

available from program specification and construction phases. In

general, the exact output values seem more likely to be available

where the test-input can be generated through the direct automated

synthesis. Sometimes incorrect output can be caught watching if

the unexpected flow-path is exercised. On the other hand, in the

case of iterative synthesis, the information provided may be

mostly simple properties which can be used to check the reason

ableness of test-output.

In all of these cases, there arises an essential need to

closely observe the behavior of a program during the test-run.

First, the path exercised during the test-run must be identified

in both direct synthesis and iterative synthesis. This is

essential for systematic performance of testing process as well as

for ascertaining the correct synthesis in the case of iterative

synthesis. Second, it is desirable to stop exercising the program

as soon as possible, once the flow gets out of the objective test-

path. In the case of direct synthesis, this may occur due to

the incorrect synthesis of test-inputs or the errors in a program.

In the case of iterative synthesis, the earlier stop directly leads



to the improved testing efficiency. Third, it is desirable to

detect the erroneous condition as soon as possible after it occurs,

or detect in the place as close to the source of the error as

possible.

The most effective way of satisfying these needs seems to be

the use of software monitors. A software monitor is a code-

segment which is installed inside the target program and operated

for the purpose of observing the dynamic behavior of the program.

Two problems get involved in this approach: instrumentation

and operation. The more monitors are employed, the more infor

mation can be obtained. However, each monitor accompanies

operation overhead in terms of the extra amount of execution time

and storage. Therefore, it becomes desirable to install a

minimum number of monitors at the suitable locations inside a

»

program while providing all necessary capabilities. In sections

3.4.1.2.3 and 3.4.1.2.4, algorithms are developed for the instrumen

tation with a minimum number of monitors and their efficiencies

are analyzed. Next, there is a problem of how to operate the

installed monitors. With respect to instrumentation overhead

involved, it is desirable to install general purpose monitors,

while the role (function) of each monitor should dynamically

change as the testing proceeds. This is discussed in sections

3.4.1.2.2 and 3.4.1.2.5.

3.4.1.2.2 Types of Monitors

The fundamental and useful monitors are (1) the ones used for
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test-path sensitizing, called flow-controlling monitors m 's,

(2) the ones measuring p -traversal-frequencies f(p ), called

f(p )-counters m 's, and (3) the ones detecting erroneous con-
c P

ditions, called error detectors mj's> such as variable-out-of-

range, excessive delay, etc.

The decision about the number of m,fs and their locations
a

can be made more flexibly than the one about other kinds of

monitors. In general, the minimum number of m,fs required is

rather hard to be rigorously defined.

On the other hand, the minimum number of m 's capable of

sensitizing every p can be precisely obtained. A p [j] in

B is said to be sensitized when it is the only executable p .

In order to sensitize a p [j], all other p *s must be set to

be unexecutable by m's installed on them and controlled by the

test supervisor. The test supervisor here refers to a composite

system consisting of the components performing the selection of

the next test-path, test-input generation, monitor control and

output evaluation. A flow-controlling monitor mf is a code-

segment installed on an arc, i.e., between two program-elements.

Its function is to transfer the control either merely to the next

program-element on the test-path or to the test supervisor,

depending on the status dynamically assigned by the test super

visor, (e.g. Figure 3-32 )

A mf is said to be closed when it is set to transfer the

control to the test supervisor, and open otherwise.

Similarly, the minimum number of m fs required for counting
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f(p ) of every p in B can be obtained. It is shown later in

this section that m *s installed on same locations as the
P

minimum number of m 's are sufficient to measure f(pc) of every

p . This useful property leads us to the strategy that once we

find the minimum number of mf?s and their suitable locations,

we can install that number of general purpose monitors capable

of the functions of all three nu, m and m, at those locations.
f p a

Therefore, this section concentrates on the instrumentation with

nu *s.

A set of mffs in B is said to be complete if it is

sufficient to sensitize every p in B. By this definition,

there may be a number of complete sets. A complete set is said

to be redundant when its proper subset is also another complete

set, and irredundant otherwise. Among all irredundant sets, the

smallest one, i.e., the one consisting of the smallest number of

m *s is obviously the minimal set.

In the next section, an algorithm is described which generates

a minimal set in the case of a GOTO-less structured parallel

program, but nearly-minimal set in the case of a general structured

parallel program. Another algorithm generating a minimal set for a

general structured parallel programis provided in section 3.4.1.2.4.

p = p[l]«>p[2] denotes that path p is the concatenation of paths

p[l] and p[2]. P[l] « p denotes that p[l] is a subpath of p.
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3.4.1.2.3 A Minimal Algorithm for a GOTO-less Structured

Parallel Program

Let SI (MI) denote a set of all nodes incident to single

(multiple) incoming-arcs, and SO (MO) denote a set of all nodes

incident to single (multiple) outgoing-arcs. That is,

SI = {n^CAjjjCn)) =1AneN ofCAT(B)}. And SISO =SI OSO.

Similarly, SIMO, MISO, MIMO are defined.

The algorithm 3-5 is represented by the flowchart in

Figure 3-33. It proceeds in such an order that each node can be

precessed (i.e., becomes ready) only after all its predecessors

have been processed. F contains a set of arcs which have been

chosen as locations for m's as the algorithm proceeds. In

Figure 3-34 , this algorithm generates a redundant set of 9 m's

while the minimal set consists of 8 m's. The assertion that

this algorithm produces a complete set F is proved in the

following.

For the sake of simplicity, the following terminologies are

adopted.

Definition 3-6. A detour subgraph in G ofcjAt(B) ,represented

by gD = (N[i], n[j], d[m], d[n]), is a subgraph in which (1) there

are exactly two paths, d[m] and d[n], from its sole entry-node

n[i] to sole exit-node n[j], and (2) d[m] and d[n] are dis

joint except in their starting and terminal nodes n[i] and n[j].

(e.g. gp = (n[l], n[3], 1-2-3, 1-3) in Figure 3- 34)

d[m] and d[n] are called detours. gD is said to belong to

its exit node n[j]. Similarly, detours d[m] and d[n] are said



Fig. 3-33 Algorithm 3-5

F contains a

(nearly-minimal)
complete set.

\ : set subtraction
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De(nC33)

={1-3,1-2-3}

D$(nt33) ={2-3}
Nd(n[3]) ={l}

D$(nL5D)={2-3-5}

D$(nCU) =l A • a nearly-minimal set
generated by algorithm 3-S

X • a minimal set generated
by algorithm 3-6

D,(n[43)«{l-2-4Il-4}

0$(n[4]

Nd(nC4l

"-0e(nC6l

D,(nC6]

Nd(nC6l

={2-4}

={2-6,2-4-6}

={4-6}

y®0$(nr8])={2-48,4-8}

T= {2-3-5-9,4-6-7-9,6-7-9,4-6-9,6-9,
2-4-8-9,4-8-9}

De(n[9]) ={2-3-5-9,6-7-9,6-9,4-8-9}
Fig. 3-34 m 'a generated by Algorithm 3-S and 3-6
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to belong to n[j], A complete set of detours in G, denoted by

D(G), are meant all distinct detours found in all gp's in G.

Lemma 3-3 . A set of m's installed in B is a complete

set if and only if it contains at least one member installed on

every d[m] e D(G).

Proof. (1) Assume there is a detour d[m] with no mf on

it. Then there exists gD = (n[i], n[j], d[m], d[n]). Let p[y]

denote any path from the entry of G to n[i] and p[z] denote

any path from n[j] to the exit of G. Whenever the path

p[l] = Pty] o d[n] o p[z] is executable, p[2] = p[y] ° d[m] ° p[z]

is also executable. So, neither p[l] nor p[2] can be sensi

tized. (2) Assume every detour has a mf on it and there is

p[l] which cannot be sensitized. Then there exists p[2] which

is executable whenever p[l] is executable. So, there exists

gD =(n[y], n[x], d[m], d[n]) such that d[m] «p[l], d[n] «p[2]

and either of d[m] and d[ri] has no mf on it. Contradiction.

Q.E.D.

Lemma 3-4. . The algorithm 3-5 generates a complete set with

2 • //(A) arc-references where //(A) represents the number of

arcs in G.

Proof. For every detour d[m], its starting node n[i] e MO

and its terminal node n[j] e MI. At the end of algorithm 3-5 ,

F contains at least one arc on every path between any pair of

nodes, n[i] e MO and n[j] e MI. So, from Lemma 3-3 , it



generates a complete set. Since the algorithm' processes each

node once and each process consists of examining its incoming-

and outgoing-arcs, 2 o #(A) arc-references are involved. Q.E.D.

If d[j] « d[i], d[i] is said to be redundant. If there is

no d[j] satisfying d[j] «d[i], d[i] is called an essential

detour d [i]. D (G) represents a complete set of d *s in G.
s e e

Theorem 3-3 . A set of m*s in B is a complete set if

and only if it contains at least one member installed on every

do e D (G).
e e

Proof. From Lemma 3-3 and the definition of d . Q.E.D.
e ^

Algorithm A is particularly suitable for instrumentation of

GOTO-less structured parallel programs.

Lemma 3-5. For a SEQ-block B in a GOTO-less structured
9

parallel program, algorithm 3-5 generates a minimal set.

Proof. To each arc contained in F, (n[i], n[j]), resulting

from the application of algorithm 3-5, there corresponds a unique

pair of nodes (n[k], n[&]) satisfying the following:

(1) n[k] e MO, n[£] e MI, and (2) there is only one path from

n[k] to n[£] passing through the arc (n[i], n[j]) and

satisfying that every node on the path except n[k] and n[Jt]

is a member of SISO. The path is apparently a d . That is,

there corresponds ad to each arc in F. Moreover, from the

semantics of SEQBEGIN and SEQEND primitives, the set of arcs
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on each d is disjoint from the one on any other d . So,
e e

algorithm 3-5 produces a minimal set. Q.E.D.

3.4.1.2.4 A Minimal Algorithm for a Structured Parallel

Program

Algorithm 3-6 generating a minimal set for a SEQ-block in a

structured parallel program consists of two parts. The first part

is to obtain the necessary and sufficient condition which a set

of m 's must satisfy to be a complete set. The second part is

to select a minimal set among all complete sets, i.e., ones

satisfying the condition.

3.4.1.2.4.1. Requirements for a Complete Set

Theorem 3-3 states the necessary and sufficient condition

for a set of m's to be a complete set. Thus the first part of

algorithm 3-6 comprises identifying the complete set of de?s

Lemma 3-6 * Let D (n) denote a set of all d fs belonging
_———— g e

to the node n. {D (n[j])|n[j.J e Ml} is a partition of Dfi(G).

Proof. (1) The terminal node of any de> n[j] £ MI.

(2) Each d belongs to only one n[j] e MI. From these, Lemma3-6

is evident. Q.E.D.

Therefore, the first part of algorithm 3-6 aims at obtaining

every D (n) where n e MI. Similar to algorithm 3-5 , algorithm

3-6 processes each node only after all its predecessors have been



processed. It is described by the flowchart in Figure 3-35.

Dg(n) = {dg(n)} denotes aset of detour-segments of the node n,

where each dg(n) represents a path from any node m e MO to n

but not as yet recognized as detours. N,(n) denotes a set of

nodes which have been identified as entry-nodes of g fs belonging
d

to any node m£(2~\n). Tand Tj are temporary variables. Figure
3-34 illustrates the first part of algorithm 3-35.

3.4.1.2.4.2 Selection of a Minimal Set

The second part of algorithm 3-6 is to select a minimal set

among all complete sets satisfying the condition. The condition

obtained in the preceding section can be represented by the

d - table denoted by E in which E.. is 1 if the arc
—S ij

corresponding to row i is a segment (subpath) of the d

corresponding to column j, and 0, otherwise.

Using E, the second part of algorithm 3-6 becomes a well-

known set-covering problem [koh 70]. Therefore, various available

techniques can be directly applied to E in order to find a

minimal set. This completes algorithm 3-6 . Figure 3-34 shows

a minimal set generated by this algorithm.

3.4.1.2.5 Path-Sensitizing and p -Traversal-Frequency

(f(pc))-Counting

In a program instrumented with a minimal set of m_'s, the

simplest way of sensitizing each p would be to close all m's

except the ones on the p . Again, a procedure can be developed
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Fig. 3-35 Algorithm 3-6

217



for finding a minimum set of mf*s which need to be closed to

sensitize the pc« However, the overhead in using such a complex

procedure will usually more than nullify the gain due to the

reduction in the overhead for closing a m .

The relationship between mf and m is described by the

following lemma.

Lemma 3-7 . Given a complete set of m's, a subset of those

that are on each p is unique.

Proof. If there are two p *s with the same set of m's,
*c f

none of them can be sensitized. That is, the given set of m's

cannot be the complete set. Q.E.D.

218

This lemma implies that a set of m 's installed on arcs
P

selected by algorithm 3-5 or 3-6 is capable of measuring f(p )

for every p . That is, when all m Ts on a p are consecutively

traversed, f(p ) is incremented. This is illustrated by Figure

3-36.

However, if a program is to be instrumented with only m fs,

a minimal set can be obtained by the following simpler procedure.

Lemma 3-8 . Denoting a set of arcs not in a spanning tree

t of G by A , a set of m 's installed on Afc is a minimal
J t p t

set capable of measuring f(p ) for every p £ P . Moreover,

for the set of arcs A' generated by algorithm 3-6 , there exists

at least one A C A1.



m„[l]* C5

Fip,. 3-36

A sequence of n 's
H P

n <1>
P

m <2>
P

1.2-6

1.4.5.6

1'4'6

1.3«««5'6

1-3«A.6

n <3>
P

m <5>
P

a <A>
P

D <5>
P

D <4>
p

Monitor Function

oi <1>
P

m <2>
p

m <3>
P

m <4>
P

m <5> :
P

f(1.2«6) - f(1.2-6) + 1

Status «• 2

Status - 3

lF(Status = 2) f(l-4.6) +
f(l-4«6) + 1

IP(Sdtus •= 3) f(l-3.4'5) -
f(1.3'4«6) + 1

Status " 0

lF(Statns - ?) f(1.4.5«6) "
f(1.4-5-6) + 1

IF(Status = 3) f(l-3.A.5'6)

f(10'4-S«6) + 1

Status - 0

f(p ) - count inj'
c
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Proof. (1) Each p covers a unique subset of A .
c t

(2) No set of arcs A± such that #(A^) <#(Afc), satisfies (1).
(3) Removal of A* from G will result in a set of trees. They

can be connected into a spanning tree t by connecting a subset

of A', A" CA\ So, aMa'^^Ca', Q.E.D.

3.4.1.2.6 Evaluation of Algorithms 3-5 and 3-6

Each algorithm has its pros and cons. Algorithm 3-5 has an

apparent merit in its computational simplicity but it does not

guarantee the minimality of the set of monitors generated by it

for a general SEQ-block. Algorithm 3-6 has a merit in that it

always generates a minimal set for any SEQ-block but it has a

serious drawback in its large computational complexity. In other

words, the former leads to smaller instrumentation overhead but

larger operation overhead than the latter.

3.4.2 Testing of a PAR-Block B

In the case of a PAR-block B, the notion of a control flow

path pc becomes insignificant because there is only one p .

That is, once the block-head PARBEGIN is executed, all the program-

elements in the PAR-block will be executed. Therefore, the cover

age of testing in terms of the number of times each program-element

is executed during the testing, which has been an important para

meter in determining a suitable testing strategy for a SEQ-block,

is no longer a factor of any significance here.

On the other hand, a PAR-block possesses a unique
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characteristic, i.e., simultaneous execution of parallel proces-

sable program-elements. Furthermore, it is highly probable that

the parallel program produced by a human user contains an incorrect

indication of parallelism. For example, successor program-elements

of a JOIN primitive may use same variables as their result

variables. Naturally, the verificiation of parallel processability

indicated in the program becomes the main part of testing a PAR-

block.

Of course, parallel processability can be validated to a

certain extent by using techniques of detecting useful parallelism

discussed in section 2-3 or their variations. However, detection

of useful parallelism is an optimization process and thus it has

a fundamental difference from the validation process considered

here.

More specifically, if the exact variable-set used by each

program-element is not known, the use of an approximate super-set

was tolerable in detecting useful parallelism. It is no longer

acceptable in validation because of insufficient assurance obtained.

In addition, verification of parallelism indication is a part

of the total validation.

The model of a PAR-block B used for its testing'^ (B) is

the same (G, V , V ) as in the case of a SEQ-block B.

Testing of parallel processability can be effectively

performed in two steps. First, the commutativity of program-

elements is tested and then followed by the testing of data-

independency.



Definition 3-7 . Two program-elements e(n[i]) and

£(n[j]) indicated to be parallel processable in B, are said

to be commutative if any execution of B in which £(n[j]) is

initiated only after the completion of e(n[i]), produces the

same result as any execution of B in which e(n[i]) is initiated

only after completion of e(n[j]), does. It is denoted by

e(n[i]) * e(n[j]).

Apparently, parallel processable program-elements in a correct B,

are always commutative. The second step is a more time-consuming part

than the first step.

3.4.2.1 Commutativity Testing

For any pair of program-elements £(n[i]) and £(n[j])

indicated to be parallel processable in B, commutativity testing

necessitates two test-cases, one corresponding to the execution

in which £(n[i]) is initiated after the completion of £(n[j])

and the other corresponding to the execution in which £(n[j]) is

initiated after the completion of £(n[i]).

Preparation of a test-case corresponds to transformation of

B into B1 by adding a set of dependencies such that £(n[i])

becomes dependent on £(n[j]) or vice versa. Such a B1 is

called a test-transformation of B. Similarly, an'_/^T(B,) is

called atest-transformation of^A^(B). One useful property in

reducing the number of test-cases required is that test-cases

for two pairs of program-elements can be overlapped. Suppose

there are three program-elements £(n[l]), £(n[2]) and £(n[3])

which are indicated to be parallel processable in B.
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Then the following two test-transformations are sufficient.

One is B'[l] in which e(n[2]) is dependent on e(n[l]) and

e(n[3]) is dependent on e(n[2]) and the other is B'[2] in

which e(n[2]) is dependent on e(n[3]) and £(n[l]) is

dependent on e(n[2]). Apparently, each pair of program-elements

becomes dependent at least once in two opposite orders. Thus the

number of test-transformations required for testing commutativity

between every pair of program-elements indicated to be parallel

processable in the given program is another object of optimization.

However, parallel processability is not a transitive relation

since the dependency represented by G is a partial ordering.

Nor is commutativity here. That is, e(n[i]) ^ c(n[j]) A

fc:(n[j]) *v* £(n[k]) does not necessarily imply that

£(n[i]) 'v e(n[k]).

This leads to the immense complexity in finding the minimum

number of test-transformations sufficient for commutativity

testing. In the following, a simple procedure for obtaining a

nearly minimal number of test-sequences is developed. The number

of test-sequences generated by the procedure is mostly bounded

by a small number and thus the procedure is subject to high

cost-effectiveness.

Definition 3-8. Given G of tjn,T(B), the independent node-set

of a node denoted by A(n[l]) is defined as a set of nodes N' Cf]

such that Vn e N1, n V n[i] A n \£]2(n[i]) A n t"P~ (n[i]). i.e.,

J)(n[i]) ={n|n eNan^n[i] an\£ftn[i]) AntT2_1(n[i])}.



And g(J>(n[i])) =(e(n[k]) |n[k] £^(n[i])} is called the
parallel processable program-element-set of e(n[i]) in B.

Lemma 3-9 . A set of test-transformations a = ^(B1)}

are sufficient for commutativity testing of B, if a satisfies

the following: for each n[i] £ N, there exist two members of a,

onecAT(Bf) in which J)(n[i]) injL(B) is asubset of
Cl?(n[i]) in 'JlT(B') and the other J^B1) in which ^(n[i])
in ^4T(B) is asubset of ^^(nfi]) in cAT(Bf).

Proof. Since every n[i] becomes dependent on every

n[j] £ £/(n[i]) at least once and vice versa. Q.E.D.

Apparently, the condition given in this lemma is a sufficient

condition. There may exist a minimal set of test-transformations

not satisfying the condition. On the other hand, it is possible

that there does not exist any minimal set satisfying the condition.

However,.on the basis of this condition, a simple and prac

tically feasible procedure can be developed by which a nearly

minimal set containing a practically manageable number of test-

transformations can be obtained.

Among a number of sets satisfying the condition, one of the

smallest sets is said to be minimal with respect to the condition.

Theorem 3-4. Given a set of test-transformations, a, which

is minimal with respect to the condition in Lemma 3-9 ,

#(X) < #(a) < 2 • #(X) ,
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where X represents a minimal node-covering set of directed paths

from n[l] to n[£] in G.

Proof.

(1) Pick any path p £ X. Then G of »J\ (B) can be

transformed into G* ofu4 (Bf) satisfying that for every n[i]

on p, J)(n[i]) in GC1?(n[i]) in G\
This is because for any pair of nodes n[i] and n[j] on p

such that n[j] £l3(n[i]) in G, %} (n[£], n[k]) £ (^.(n[i]) x

^(n[j])) ffn[£] eQ(n[k])L

Similarly, G of<J\ (B) can be transformed into another G1

of< ^^(B1) satisfying that for every n[i] on p, J-(n[i]) in

GC^Cnli]) in G\

Since X covers all nodes in G, #(a) < 2 • #(X).

(2) //(X) is equal to the maximal number of nodes which are

independent of each other.

Denote such a set of nodes by N... Then for each member n[i] £ N ,

there must exist one G1 of _Am(K') in which (NM \ n[i]) C

^(nfi]). Therefore, #(a) >//(I^) =//(X). Q.E.D.

This theorem shows that the number of test-transformations

in a minimal set with respect to the condition in Lemma 3-9 is

mostly small in practice. Furthermore, it provides the basis for

the development of a procedure by which a set, a, containing

2 • #(X) number of test-transformations can be generated.

Such a procedure would consist of two steps, one for

obtaining a minimal node-covering set of paths and the other for



obtaining two test-transformations for each path.

Since the procedure for finding a minimal node-covering

set of paths was already introduced in sections 3.3 and 3.4.1,

a procedure for obtaining two test-transformations is discussed

in the following. Given a path p in G, Algorithm 3-7 produces

G1 of _nT(B') satisfying that for every node n on p,

J)(n) in GC T^n) in G\

Algorithm 3-7 .

1. Set A1 «- (j) where G1 = (N,Af).

N «-{n[l]l n -*- n[l], n «- the immediate successor of
tps

n[l] on p.

2. Obtain^ (N ) in G.
y t

3. Check if ng eft (Nfc).

If so, go to 4.

Otherwise, go to 5.

4. A' <- A» uAIN(ns).

N «- N U{n 1
t t s

n •*- n .

P s

GO TO 6.

et of nodes N ='^~1(n ) n*J_5. Find a set of nodes N =^&~ (n )n15 (N ).
r s y t

Do the following for each n £ N

5.1 A' <- A* UAIN(n) U{(np,n)}.
5.2 N •*- Nfc U{nl

6. If N = N, terminate.

Otherwise, n
s

and go back to 2.

Otherwise, n -*- the immediate successor of n on p,
s P
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Figure 3-37 illustrates this algorithm.

A similar algorithm can be developed for producting G* of

>Jk (B1) satisfying that for every node n on p,

J)(n) in GC^di) in G».
It is not elaborated here.

3.4.2.2 Data-Independency Testing

Parallel processable program-elements must be not only com

mutative but also data-independent of each other. As mentioned

before, a verification of data-independency between program-

elements indicated to be parallel processable in the program is

a difficult problem.

The main difficulty lies in obtaining the exact vector-

variable-set used by each program-element. No currently available

techniques are guaranteed for completeness in this recognition.

One possible but brute force recourse is to aim at partial

validation of data-independency through simulation. That is, each

time a V-variable is read or assigned during a test-run, infor

mation including the identification of the program-element

associated with it, its current index and its role is stored into

the table. Then the table is used for post-mortem analysis to

ascertain data-independency between program-elements indicated to

be parallel processable in the program.

One drawback of this approach is that it requires a large

number of test-runs to obtain any reasonable degree of confidence

in data-independency. Moreover, the size of the table used to
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record all V-variable-accesses can be very large so that the

practicality of the approach is further reduced.

More cost-effective techniques are desired for data-

independency validation and this is an Important topic for future

research.

3.4.3 Testing of Other Blocks

Testing of a PARDO-block B requires the same techniques

used for testing a PAR-block. The number of iterations to be

executed can be taken as a certain number, k , and then each of

the iterations can be treated as a single program-element so that

the problem is reduced to the testing of a PAR-block.

Similarly, the number of iterations to be executed can be

taken as a certain number k for testing a SEQDO-block B. If

its block-body is a PAR-block B , B is treated as a single

program-element, and then the testing of B becomes the one of a

chain of k program-elements. If its block-body is a SEQ-block

B, the model for testing B,^T(B) is taken as aconcatenation

of k'^A (B)fs. Then the wholeL^T(B) can be treated as the model
of a large SEQ-block and techniques discussed in section 3.4.1

can be readily applied.

In the case of WHILE-REPEAT-block B, the number of iterations

to be executed cannot be easily taken as a certain number k.

Both test-case generation and test-input generation become more

difficult in this case. A simple and typical approach in test-

case generation is to use a concatenation of two iterations as the
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model and to select a set of p *s in the model using techniques
c •«

discussed in section 3.4.1 . Then a test-path corresponding

to each selected p is flexibly defined as any execution-sequence
c *&

covering the p as at least one of its subpaths. Thus the

strategy of stochastic testing becomes more appropriate in testing

a WHILE-REPEAT-block B.

This completes the discussion of practical approaches to the

partial validation of structured parallel programs.
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CHAPTER 4

DYNAMIC OPTIMIZATION

In the preceding chapter, various optimization techniques

which can be advantageously employed at the design phase were

examined. Optimization at run-time i.e. dynamic optimization is

considered in this chapter.

As-mentioned before, the highest reward from optimization

can be achieved by a harmonious combination of static and dynamic

optimization. Whereas dynamic optimization can benefit from precise

information about the dynamic behavior of the job which becomes

available during its execution, it is substantially hampered by the

computational overhead involved in it.

This overhead is typical in task-initiation which is one of

the major objects of dynamic optimization. In section 4.1, a scheme

for performing dynamic optimization with the minimized effect of

overhead (called the dynamic look-ahead model (DLM)) is discussed.

The implementation aspect, as well as the performance evaluation

through simulation, is dealt with in that section. Subsequently,

the statistical analysis of the DLM from the macroscopic viewpoint

is discussed in section 4.2. Section 4.3 is concerned with the

problem of look-ahead of conditional branches during job-execution.



4.1 Dynamic lookahead model (DLM)

The necessity of dynamic optimization has been repeatedly

emphasized. The conditional branch, the task execution-time, and

the job-mix in the multiprogramming environment are major factors

degrading the effectiveness of static optimization. Much free

from these difficulties, dynamic optimization can be advantageously

employed, provided that the overhead involved is insignificant.

The amount of overhead involved varies depending upon the

type of dynamic optimization. One of the major objects of dynamic

optimization is task-initiation. Sequencing of independent tasks

competing for the common resource at run-time, called dynamic

sequencing is an important dynamic optimization. Although various

types of overhead can be considered together, the overhead involved

in dynamic sequencing is considered typical and is examined in this

section.

The principal unit in the basic machine responsible for dynamic

sequencing is the CIIU. In essence, the function of the CIIU is of

an administrative nature. Therefore, any computation required by

the CIIU is administration overhead. However, unless this

administrative computation by the CIIU contributes to increased job-

execution-time, it is not a critical overhead. On the other hand,

if the FIIU or the ALPS happens to be idle while waiting for the

output from the CIIU, the idle time becomes a critical part of the

overhead.

Thus it is an important problem in operating a powerful parallel

processing system to conceal this administrative computation behind
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the execution of functional tasks so that the administrative

computation does not become the critical overhead factor.

The basic machine described in section 3.1 provides little

opportunity for the CIIU to contribute to the critical overhead. It

runs ahead of the FIIU most of the time interpreting control

instructions related to the initiation of successor tasks, while

current tasks are initiated by the FIIU or executed by the ALPS.

On the other hand, the CIIU, employing only a trivial random

sequencing strategy, may often run too far ahead of the rest in the

basic machine so that it may have to be idle periodically. Then,

the question arises as to whether it is possible to better utilize

the CIIU, which is frequently becoming idle, so that the overall

efficiency of job-execution may be improved. This is thearea inwhich

dynamic sequencing plays a host. By employing a more effective

sequencing procedure in the CIIU, the capability of the ALPS can

be better utilized and thus the turnaround time of jobs can be further

improved. Here is an obvious trade-off between the sophistication

of the sequencing procedure employed and the freedom from the critical

overhead. That is, a sophisticated sequencing procedure accompanies

a large amount of computation so that the probability of contributing

to the critical overhead is increased.

In order to be free from both the hazard of critical overhead

and the frequent idle state, the CIIU must be adaptive to the dynamically

varying situations while the job is executed. It should be able to

dynamically regulate the extent of dynamic sequencing depending upon

the situation. The primary parameter determining the extent of
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dynamic sequencing is the type of sequencing procedure employed by the

CIIU. However, it is rather a design parameter than a parameter

which can flexibly vary during job-execution.

Once the type of sequencing procedure employed by the CIIU is

fixed, the next major parameter determining the extent of dynamic

sequencing is the size of a job-segment or the size of the control

part of a program taken at a time for sequencing. In a trivial

random sequencing, the sequencing model can be regarded as consisting

of a single task because the CIIU does not examine more than one

task in order to determine the execution sequence.

In contrast, any non-trivial sequencing procedure requires the

examination of several tasks before the execution sequence is

determined.

The control part of a program taken at a time by the CIIU is

here called the t-segment. Its size in terms of the number of

tasks (FUNCTION-CONTROL instructions) contained is called the

t-segment-size. This t-segment-size can conveniently vary within

the range determined by the size of the ACM. Therefore, the remaining

problem is how to achieve the maximal effectiveness of dynamic

sequencing without involving any critical overhead through the adaptive

selection of the t-segment of a suitable size at run-time.

In order to provide a convenient basis for the analysis of the

problem, the basic machine (Fig. 3-24) employing effective dynamic

sequencing can be modelled as shown in Fig. 4-1. The model is called

the dynamic look-ahead model (DLM). In this model, the basic machine

is viewed as a system composed of two major units and the buffer
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storage between them. One unit is called the look-ahead unit (LAU)

and it represents a combination of the CIIU and the ACM in the basic

machine. The other unit is called the executer (EXEC) and it represents

the rest of components in the basic machine except the CPM and the

buffer of the FIIU. The buffer of the FIIU is represented by the

buffer between the LAU and the EXEC in the DLM. Thus the LAU picks

a t-segment from the control program residing in the CPM, and deter

mines the execution sequence of tasks in the t-segment. Then it sends

the sequenced t-segment i.e. the determined execution-sequence, as

well as the addresses of functional instructions, into the buffer.

Then the EXEC executes functional instructions (tasks) according

to the execution sequence stored in the buffer. Both units run

asynchronous of each other unless the buffer becomes saturated or

the LAU has gone ahead of too many undetermined decision-elements

i.e. BRANCH instructions.

4.1.1 Dynamic Segmentation

The most harmful state of the DLM to be avoided is the one

where the EXEC is idle and waiting for the arrival of a sequenced

t-sement while the LAU is busy. On the other hand, the optimal

state of the DLM is the one where the execution-time of tasks

corresponding to each t-segment spent by the EXEC is equal to the

time spent by the LAU for analyzing the successor t-segment. From

now. on, the execution-time of tasks corresponding to a t-segment

is simply called the execution-time of a t-segment. Using the

example shown in Fig. 4-2, the optimal state is where the execution-
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time of t'-segmetn A is equal to the sequencing-time of t-segment

B so that the sequencing overhead of t-segment B is completely

hidden behind the execution-time of t-segment A. In fact, the

DLM in this optimal state can be viewed as a high-level pipeline.

Or optimal operation of the DLM may be viewed as dynamic balancing

of the DLM into a pipeline. Apparently balancing is achieved by

controlling the size of the t-segment. The process of picking a

t-segment of the size determined to balance the DLM is called dynamic

segmentation. In order to develop a criteria for determining a

suitable t-segment-size each time, it is desirable to know the

relationship between the t-segment-size and the sequencing-time

of a t-segment of the size. The relationship is called the overhead

characteristic function (OCF).

Due to the statistical nature of the OCF, a simple but reasonable

way of obtaining the OCF is by experiments. Figure 4-3 shows the

graphical representation of an example OCF. It was obtained by

experiments with a number of randomly generated sequencing models

and a simple heuristic sequencing procedure described in [red 72,

ram 74]. The random generation procedure is described in section 4.1.3.

This heuristic procedure assumes the following simple environment.

It is assumed that once a task enters into a pipeline, its results

become available only when it has passed through the pipeline. Thus

the minimum delay between a task and any of its dependent successors

becomes equal to the turnaround time of the task and there is no

need to associate the delay-time with each dependency in this case.

But the heuristic considers the case where the turnaround time of
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Fig. 4-3 The Overhead Characteristic Function (OCF)

239



a task through a multi-functional pipeline varies depending upon

the type of the function, i.e. the function-code. The heuristic is

based on a priority function, f ., by which the priority for each

ready node n[i] representing the i-th task is determined.

fpri(n[i]) = SIGN(t(n[i]) - tg(n[i]))

• MIN(t(n[i]), t (n[i])),
s

where t(n[i]): = turnaround time of the i-th task and

t(n[i]) = MAX t(n)

S n€()(n[i])

240

Then the task of the highest priority is added to the partial

execution-sequence obtained up to the present, the set of ready

tasks is updated and the above priority calculation is repeated.

Apparently, the applicability of this heuristic is limited.

However, the development of various heuristic sequencing procedures

as well as their comparative evaluation is not of major concern

in this discussion.

More meaningful in Fig. 4-3 is the shape of the curve rather

than the numerical significance or the applicability of the heuristic

procedure, since the latter depends upon the method of implementation

or the type of the ALPS.

The smooth curve in Fig. 4-3 is an approximation of the data

represented by the discontinuous line shown on it. The curve

approximate a polynomial. From now on, the OCF refers to a continuous

function f(x) where x represents the t-segment-size and f(x) is
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sufficiently close to the average sequencing-time of a t-segment of

size x in the given system. In fact, the OCF in a system employing

m> any non-trivial sequencing procedure would be a polynomial function

of one kind or another, it not an exponential function.

Given the OCF in Fig. 4-3, if the LAU estimates the execution-

time of the just sequenced t-sement as 75 time-units, the suitable

size of the next t-segment will be chosen to be 21 tasks by consulting

the curve.

To be more precise, the LAU uses the estimate of the execution-

time of all t-segments queued in the buffer. Thus if the queue of

t-segments in the buffer becomes long, the LAU will select a larger

t-segment whose sequencing-time is expected to be equal to the

execution-time of all t-segments queued up so that the LAU may

complete the analysis of the next t-segment about the time when

the EXEC completes execution of the t-segments queued. This

safeguards the DLM from being too much out of balance in its

workload distribution.

Next, a t-segment of the determined size must be taken from

the control program without violating precedence relations between

tasks. In theory, this selection can be regarded as the part of

© dynamic sequencing and its optimization may be attempted. However,

since the effect of the selection method on the overall system

a * performance is not easily visible, a sophisticated method requiring

a large overhead would not be favorable unless it makes the

significant increase in the system performance. Experiments have

confirmed the unfavorableness of the sophisticated procedure [ram 74].



242

4.1.2 The analysis of the OCF

From the polynomial OCF, two properties of the DLM under the

steady-state become immediately apparent. First, the average t-

segment-size under the steady-state can be estimated. This size is

called the stabilized t-segment-size. The estimation is performed

as follows.

The straight lines 1,2,3 of Fig. 4-4 called the normal execution-

time function (NEF) curves represent the expected execution-time of

a t-segment depending upon its size, when T is 1.5, 2.5 and 4.0

respectively. Here T denotes the average effective execution-time

per task for the given job and it is obtained as follows:

T

T = a
e ADPP

where T denotes the average execution-time per task i.e. the

average turnaround time of a task through the EXEC, and ADPP

denotes the average degree of parallel processing which is in turn

defined as the average number of tasks being executed concurrently

during the execution of the job. Provided that the EXEC is always

busy, 1/T is the average number of tasks which the DLM executes

in one time-unit. T is mostly dependent upon the characteristics

of pipelines composing the ALPS and thus it is reasonably static

between jobs or t-segments. The ADPP is dependent upon both the

degree of parallelism in a job and the one in the EXEC. If the job

possesses abundant parallelism, the degree of parallelism in the EXEC

will be a dominant parameter in determining the ADPP. If the ADPP

-*
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can be assumed to be reasonally static between t-segments, T also
e

becomes reasonalby static between t-segments, and the size of a

t-segment multiplied by T can be taken as a reasonable estimation
e

of the execution-time of the t-segment in a steady-state.

The crosspoint of the NEF curve with the OCF curve (excluding

the origin) is called the stabilized point. Since the OCF is

generally a polynomial curve, there will exist a unique stabilized

point. The stabilized point represents the stabilized t-segment-

size and the sequencing-time of a t-segment of the size. For instance,

the stabilized t-segment-size is 36 when T = 4.0 in Fig. 4-4. The

reason is as follows. Let z[i] denote the i-th t-segment-size

selected by the LAU, OCF(x) denote the sequencing-time of a t-segment

of the size x, and NEF(x) denote the normal execution-time of a t-

segment of the size x. Suppose z[l] is 30 which is smaller than the

stabilized size 36. Then NEF(z[l]) = 36 x T = 120. Now z[2] is
e

obtained such that 0CF(z[2]) = NEF(z[l]) = 120. So, z[2] = 32 from

the OCF curve, and NEF(z[2]) = 32 x T = 128. Similarly, (z[3] = 33,

NEF(z[3]) = 132) => (z[4] = 34, NEF(z[4]) = 136) -> 0z[5] = 35,

NEF(z[5]) = 140) =* (z[6] = 36, NEF(z[6]) = 144) "> (z[7] = 36, NEF(z[7])

= 144) =*" By the same reasoning, it can be intuitively

seen that z[i] iteratively converges to the stabilized size 36 in the

case where z[l] is greater than 36.

The second apparent property is the feasibility of estimating

the lower bound of T in the DLM below which the hazard of critical
a

overhead increases abruptly. Line 1 in Fig. 4-4 is the derivative

of the OCF curve which passes through the origin. It corresponds
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to T =1.5. This T multiplied by the ADPP is the lower bound of

T . Below this bound, the LAU becomes the constant bottleneck

disabling the dynamic balancing of the DLM and thus the idle time

of the EXEC, i.e. the critical overhead increases rapidly from zero.

If this happens to be the case, it becomes inevitable to replace

the current sequencing procedure with another one requiring less

overhead. On the other hand, given T , the suitability of a sequencing

procedure can be judged on the basis of these properties.

4.1.3 Simulation of the DLM

As an attempt to validate the feasibility of the DLM, some

simple simulations were carried out. A sequencing model of a job

instead of its control program was used as the main input to the

simulated DLM. The sequencing procedure used, as well as the

environment assumed, is the same as described in section 4.1.1. In

order to test a wide range of inputs, the random PTG generator

(RPTGG) has been developed. The RPTGG is parameterized such that

a user can control the arc density and the pattern of the graph

G = (N,A) being generated to tune it up to the desirable pattern

based on intuition or experience. It is a useful tool for various

studies in parallel processing. Input parameters to this RPTGG are

//(N), S and P, where S and P are ones influencing the pattern of

G = (N,A). The basic algorithm is as follows.

Algorithm 4-1

1. Generate of a class of node-subsets



{N[l], N[2] ,N[k]} as follows.

1.1. set i •*- 1, SUM «- 0

1.2. Generate the size of N[i], #(N[i]), randomly.

1.3. SUM ^- SUM + #(N[i])

1.4. Check if SUM _> #(N).

If so, go to 2.

otherwise, set i •«- i+1 and go back to 1.2.

2. Set k «- i, and

#(N[k]) + #(N[k]) - (SUM - #(N))

3. Starting from N[l], do the following for each N[i], i <_ i <_ k.

3.1. do the following for each node n S N[i].

3.1.1. Pick randomly S nodes belonging to any of node-

subsets generated later than N[i]. Draw an arc

from n to each of S nodes.

(If i = k, this step is omitted).

3.1.2. Pick randomly P nodes belonging to N[i - 1].

Draw an arc from each of P nodes to n.

(If i = 1, this step is omitted.)

4. Terminate

After each G was generated, a pipeline-code to be associated

with each task (node) was randomly generated. The OCF shown in

Fig. 4-3 was generated and incorporated into the simulated LAU.

The execution-time of each task was also randomly generated using

the average value T . Simulations were performed for several
a

values of T (1,2,5 and 10 time-units). One time-unit represents
a

1 millisecond taken by the simulated LAU. The whole simulator was
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prepared in FORTRAN and run on the CDC 6400 computer. As a measure

of performance, the following quantity was used:

T

Gain (%) = (1 - ijt ) x 100
s

where T = turnaround time of a job in the DLM and T = sum of
c s

execution-times of all tasks in a job.

The diagrams in Fig. 4-5 shows the typical results obtained.

Curves 1 and 2 represent the extreme case used to compare the

performance of the DLM represented by curves 3 and 4 with. They

represent the case where dynamic segmentation is not performed, i.e.

the whole job is regarded as one t-segment and analyzed at a time

by the LAU and then sent to the EXEC. Curve 1 is the case where the

overhead is completely ignored. That is, it can be interpreted as

the upper bound of the gain obtainable by the DLM, given the sequencing

procedure. Curve 2 is the case where the full sequencing overhead

contributes to the critical overhead.

Curves 3 and 4 represent the case of the DLM. Curve 3 is the

case where the sequencing-time of the first t-segment is completely

ignored, while curve 4 is the case where it fully contributes to the

critical overhead.

Curves 1 and 3 can be regarded as those situations in which jobs

are continuously entering the system and the sequencing of the new

job is fully overlapped with the execution of its preceding jobs.

On the other hand, curves 2 and 4 can be regarded as those in which

jobs are entering at discrete intervals and the sequencing of the

new job is not at all overlapped with the execution of preceding

jobs. Therefore, the gain under the continuous operation will range
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between those of curves 1 and 2 for the system employing dynamic

sequencing without dynamic segmentation and between those of curves

3 and 4 for the DLM.

The first thing apparent in Fig. 4-5 is that the performance

of the DLM was drastically degraded when T was less than the lower

bound (when T = 1 in Fig. 4-5 (b)). Second, it is noteworthy that
a

the DLM maintains a high gain close to the maximum upperbound of
«

performance (curve 1). This implies that it is highly adaptive to

a dynamically varying situation. More specifically, it steadily

maintains over 85% of the maximum gain obtainable, when T is larger

than 2 time-units.

This simulation did not compare the performance of the DLM

with the one of the system in which no dynamic sequencing but trivial

random one was employed. Although it could have provided additional

results on the amount of possible performance improvement of the DLM

over the system not employing dynamic sequencing, such results would

be highly dependent on the sequencing procedure as well as job-

characteristics .
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4.2 Statistical analysis of the DLM

The state of the DLM during the operation is reflected by

the number of tasks queued in the buffer storage. Thus by analyzing

the dynamic behavior of the queue of tasks in the buffer, a

macroscopic measure of the steady-state performance of the DLM can

be analytically derived. Such a measure together with the stabilized

t-segment-size can be a basis for the optimal design of the buffer.

When all the capacity of the buffer is filled with the queue

of sequenced tasks, the LAU will spend idle time holding the sequenced

t-segment. On the other hand, if the buffer is mostly empty, it is

highly probable that the EXEC will spend much of idle time waiting

for the arrival of a new sequenced t-segment. In general, the

amount of the buffer filled will dynamically vary depending upon

parameters such as variance of execution time of a t-segment from

the normal execution time, variance of sequencing time of a t-segment

and the capacity of the buffer. That is, it is subject to statistical

behavior and thus its statistical analysis can be applied to obtain

a macroscopic measure of the system performance. In other words, from

the macroscopic viewpoint the DLM can be viewed as a queueing model

consisting of a single source, a single server and a queue [cof 73].

For the sake of simplicity in analysis, the EXEC can be modelled

by the server taking one task at a time and completes its execution

in average of T time-units. That is, tasks queued are served one

by one at the average interval of T time-units. Similarly, the LAU

is modelled by the source producing one task at a time at an average

interval of y time-units, where -r is obtained by dividing the

sequencing-time of a t-segment by its size. Thus sequencing of a
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certain t-segment in the DLM is modelled by sequencing of tasks in

^ the t-segment one-by-one at an average interval of —time-units.

The completion of the execution of a task is called a departure

* and the completion of the sequencing of a task is called an arrival.

y = — is called the departure rate and X is called the arrival
e

rate. Whereas y is static, X varies as the t-segment-size varies.

Therefore X is a function of time t, X(t).

The maximum length of the queue of sequenced tasks denoted by

L is defined as the capacityof the buffer plus one, corresponding

to the capacity of the EXEC holding the task being executed. That

is, the task being executed is treated as the first element of the

queue. The number of tasks in the queue at time t is called the

Q-length at that time and denoted by x(t).

Let t[i] denote the time when the LAU completed the sequencing

of the i-th t-segment. Then the expected execution-time of tasks

in the queue at time t[i] except the one being executed is obtained

by T • {x(t[i])-l}. The next t-segment-size k[i+l] must be chosen

such that OCF(k[i+l]) = T «{x(t[i]) - 1}. i.e. k[i+l]
e

= OCF""1^ -{x(t[l]) - 1}) Thus X(t) during the interval (t[i],
e

t[i+l]) is:

vn4.ii OCF^OT .{x(t[i])-l})
Mt; OCF(k[i+l]) T .{x(t[i])-l> ' V ;

9 e

provided that x(t) <_ L-l during the period. Therefore, X(t) is

constant within each interval between two consecutive sequencing-

completions of t-segments, whereas it may change between different

intervals. This greatly complicates the analysis of the model.

Thus a simpler model is adopted at the sacrifice of some accuracy,



in which X(t) is solely dependent upon the current Q-length x(t)

rather than x(t[i]). That is, the difference between x(t) and

x(t[i]) is ignored in order to enable the approximate analysis of

the steady-state behavior. Now,

r j- =y ,if x(t) =o, 1
e
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w-

OCF""1^ -{x(t)-l})
T.{x(t)-1} •" 1 <X(t) <L (4"2)

e

0 , if x(t) = L

The departure process here is assumed to conform to a Poisson

process with the departure rate p. That is, denoting by At and

0(At) any small element of time and any quantity having an order

of magnitude smaller than At, the probability of no departures in

the interval (t,t+At) is 1 - yAt + 0(At) and the probability of

one departure is yAt + 0(At). Departures in (t,t+At) are

statistically independent of t and of departures in any other non-

overlapping interval.

On the other hand, it is assumed that the probability of no

arrivals in the interval (t,t+At) is 1 - X(t)-At + 0(At) and the

probability of one arrival is X(t)*At + 0(At).

Let p (t) denote the probability that x(t) is equal to n where

n= 0,1,2,...,L i.e. pfl(t) = Pr[x(t)=n], t> 0, n = 0,1,2,...,L.

Let also X denote X(t) where x(t) = n. Then

P (t+ t) = p (t)-U-(X +p).At+0(At)}
n n n

+ pn+1(t).{y-At+0(At)}

+ p n(t)-{X -At+0(At)} for 0 < n < L.
n-1 n-±
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PL(t+At) = pL(t)-{l-yAt+0(At)}

4 + pL_1(t)-{XL_1.At+0(At)}

pQ(t+At) = p0(t)-{l-A0.At+0(At)}

+ p1(t)-{yAt+0(At)} (4-3)

And

p (t+At)-p (t)

<*«> " "«L ° At
At-K)

= M-P^^t) - (Xn+M)-Pn(t) + Vl-Vl(t)

for 0 < n < L

PL(t) " XL-l'PL-l(t) " M'PL(t)

p^(t) = yPl(t) - XQ-P()(t) (4-4)

Since lim p'(t) =0, 0 < n < L in the steady-state,
t-x»

^Pn+l" (VM)'Pn+ An-l*Pn-l = °

AL-1*PL-1 " M'PL = °

P*pl " VP0 = ° (4~5)

So,

X - n

p = p -JlZi = p .Te.X - = p -Tn- n X. _ (4-6)
*n rn-l y *n-l e n-1 r0 e . l-l

, 1 <_ n £ L

Since

L

Z P = 1
n=0 n

p0={1+ £ (Te* .«, Ai-1)} (4-7)

n=l i=l



Here p0 is the equilibrium probability that the server is idle,

and the equilibrium probability that the server is busy is given

by l - p0.

The mean Q-length at the steady-state is:
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x = £ p -n (4-8)
n=0 n

With these general formulas, let us now examine a simple

2
example case of the DLM. In this example system, OCF(y) = y .

Then the stabilized t-segment-size denoted by ft is obtained:

OCF(ft) = ft2 = T •fi
e

=> ft = T
e

From (4-2),

X = {T -(n-1)} 2 for 1 <n <L
n e

and X - X- - —

e

From (4-6), PQ = Pl = P2

p = p -T -X .
*n n-1 e n-1

y(n-2) - j
= P0 e 'Un-2)!} , 3<n<L

Figure 4-6 shows pn and x for various cases.

The result in Fig. 4-6(a) indicates that the probability that

the EXEC is idle, p_, sharply decreases as L increases from L = Tg

to L = 3'T , and thereafter prt becomes static. Since the stabilized
e 0

t-segment-size is equal to T in this case, it can be concluded

that the optimal buffer-capacity with respect to pQ is three times
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the stabilized t-segment-size. This conclusion is further supported

j by the result in Fig. 4-6(b). The mean queue-length becomes static

as L increases beyond the size equal to 3#T .

% In addition, the sensitivity of pn to the change in T shown

in Fig. 4-6(a) can be used to judge the suitability of the

sequencing procedure for the given T . For instance, if T = 2

and the objective pn is required to be less than 0.1, the sequencing
2

procedure with its OCF(y) = y , is found to be unsuitable.

In summary, from statistical analysis of the macroscopic

queuing model, -some insight can be obtained on the suitability of

the buffer-capacity as well as the one of the sequencing procedure.



4.3 Priorities of tasks related to BRANCHTs

In any non-trivial sequencing procedure, there is one

important aspect which should be reflected in assigning priorities

to tasks.

As mentioned before, if the branch-index of a BRANCH

instruction being interpreted by the CIUU is not available, all

instructions in its successor-list are interpreted. As a result,

tasks belonging to different branches are initiated and the

selection of the real successor is deferred to the DU. Apparently,

a cluster of BRANCH instructions will hamper the look-ahead by the

CIIU, thereby increasing the critical overhead.

It is desirable to execute the task producing a result to be

used as the branch-index as soon as possible. That is, such a task

should be assigned a high priority. When there are several ready

tasks each producing a result to be used as the branch-index of

a successor BRANCH instruction, relative priorities between them

should be determined on the basis of dependency relation between

them. With respect to the complexity involved, such a priority

assignment would be more appropriate, if it is performed as part

of static optimization.

Decomposition of a SEQDO or PARDO block by using techniques

discussed in secion 2.3 reduces the frequency of occurrences of

undetermined iteration-number at the time of interpretation.

However, similar techniques for reducing the occurrence of

undetermined branch-index remain to be developed in the future.
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CHAPTER 5

CONCLUSION AND EXTENSION

This investigation has been an attempt to establish some

foundation for solving application problems requiring the com

puting power beyond that achievable with conventional computer

architecture. The adopted approach was to achieve the super

computing power through optimal utilization of computational

parallelism. Following the principle that successful parallelism

utilization can be realized only with all of its constituent

phases suitably optimized, various optimization techniques

relevant to each phase have been developed. Three

major phases in parallel processing have been considered:

representation and detection of computational parallelism, design

oi a powerful parallel processing system, and operational manage

ment of the system.

As tools for parallelism representation, two sets of initiation

control primitives were synthesized. The first one called the

basic set of initiation control primitives was intended to be the

control part of the parallel programming language at the machine

level. It was an outcome of an effort to provide sufficient

generality in representing parallelism while keeping the tool

amenable to efficient interpretation by the basic machine. The

fUTond oik- w;ih r.ilk'd Llw til rurLtired set of Initiation control

primitives and intended to be the control part of the parallel

programming language at the source level. One of the basic



considerations which influenced its synthesis was that the

parallel program at the source level must possess the desirable

structure enabling the efficient analysis. As a result, the

strict enforcement of scope-rules was incorporated into the

synthesis. The program structured by this set of initiation

control primitives was called the structured parallel program.

In regard to the highly probable incompleteness of manual

detection of parallelism, foundation for detecting useful paral

lelism remaining hidden in the structured parallel program was

established. Developed techniques included not only ones for

detecting hidden parallelism but also ones for decomposing a

block into smaller blocks which in turn lead to the detection

of additional parallelism as well as to the easier analysis and

operational management. A variation of the structured parallel

program was conceived along the line of GOTO-less programming.

Studies on the design of a powerful parallel processing

system included both basic machine design and program design.

Viewing the basic machine as a composite of three subsystems, the

ALPS, the IPS and the MS, a general and modular architecture of

each subsystem was developed. The optimal ALPS was conceived of

as consisting of a set of pipelines. A general model of a pipeline

was formulated for the optimal design of a pipeline, and the

development of buffer implementation schemes as well as optimal

pipeline balancing techniques was based on it. The machine code

implementation of the basic set of initiation control primitives

was developed and termed control instruction. The separation of

260



•*

261

the control part of a program from its functional part was the

basic philosophy behind the modular IPS that was developed. The

main goal in its design was to provide the capability of efficient

interpretation of control instructions. A solution to the problem

of synchronizing dependent tasks was also provided by using associ

ative memories in the DU. The complete resolution is in fact

achieved by the cooperation of both the DU and MS.

The emphasis in designing the modular MS was laid on providing

the high bandwidth through maximally asynchronous operation of PDM

modules in couple with the RCU and SCU buffers harmoniously coopera

ting with each other.

On the basis of this basic machine, optimization techniques

applicable in the course of designing parallel programs were sub

sequently studied. Techniques studied ranged over two categories,

namely ones oriented toward the improvement of job-execution

efficiency and ones for the improvement of program reliability.

Static sequencing and static storage allocation techniques were

studied under the first category.

A model for sequencing a partially ordered set of tasks was

formulated and some useful properties for optimal sequencing in a

simple environment were revealed. Techniques for compact indication
f
*, of the derived sequence in the program were discussed. However,

the infeasibility of optimal sequencing in most environments
» **

^ became apparent as a result. The sequencing model established

should serve as a solid basis for developing more practical

heuristic sequencing procedures producing nearly optimal sequences
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with small overhead. The development of such heuristic procedures,

as well as their evaluation, was left as the subject of future

research.

In addition, sequencing aspect in the more complicated situation

where the ALPS consists of reconfigurable pipelines was examined.

Optimal sequencing in the simple case of sequencing independent

tasks was studied.

In an effort to minimize the probability of memory conflicts

at run-time, techniques for optimal allocation of static storage

were studied. Models for both program storage allocation and data

storageallocation were formulated. The infeasibility of optimal

allocation was againdemonstrated, although sufficient foundation was

established for the future development of effective heuristic

procedures.

Under the second category, techniques for program validation

were studied. Realizing the difficulty involved in complete

validation, cost-effective techniques aiming at the practically

acceptable degree of confidence in program correctness, were

developed. Major efforts were directed into the development of

techniques for automated testing of both sequential and parallel

blocks in a structured parallel program. Various test-case

generation schemes were developed for sequential blocks. In order

to get around the difficulty in automated test-input generation

for sequential blocks, various practical recourses incorporating



program instrumentation were conceived, and automated instrumen

tation techniques were developed.

Automated testing of a parallel block was conceived as a

composite of two processes, commutativity testing and data-

independency testing. Cost-effective techniques for commutativity

testing were developed but no efficient techniques but a brute

force recourse using simulation have been found for data-

independency testing.

Studies on efficient operational management of a powerful

parallel processing system were concentrated on the aspect of run

time overhead.

Envisioning that various dynamic optimizations can be advan

tageously employed without incurring critical overhead through

the dynamic regulation of the extent of optimization, the goal

of this study was to develop techniques for concealing the over

head behind the execution of functional tasks so that the over

head does not become the critical overhead. In order to support

an efficient analysis required for the development of an optimal

regulation strategy, a model of the system called the dynamic

look-ahead model (DLM), was formulated. Based on it, an effective

dynamic segmentation strategy was established to achieve the

above objective of concealing overhead, and some properties on

dynamic behaviors of the system which can be utilized in selecting

suitable optimization procedures and the related processing

elements, were easily discovered. A simple macro-level simulation

demonstrated the effectiveness of dynamic segmentation strategy.
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As an attempt to obtain an analytic performance measure of the

system employing dynamic segmentation, the statistical analysis

with the macroscopic queueing model was performed. As a result,

the sensitivity of the performance to the buffer-capacity as well

as to the average task-execution-time was observed, and some

insight was gained in determining a suitable buffer-capacity.

Apparently all these outcomes are more of foundations in

nature and by no means complete. Naturally, numerous problems are

remaining to be solved by the future research. Among them, a few

ones deserving immediate attention can be listed as follows.

First, the development of various heuristic procedures for

each optimization aspect studied in this report as well as their

comparative evaluation is believed to be of great significance.

Second, with respect to the increasing importance of program

reliability, the development of an efficient technique for data-

independency testing is urgent. Any success in such an attempt

will as well provide the sound basis for efficient implementation

of techniques for detecting useful parallelism.

Third, there may arise a need for replicating some or all

components composing the IPS in order to support the ALPS of a

high computing power. Although the modular architecture of

the IPS in Section 3.1 is amenable to variable degree of replication,

cooperation between processes occuring under the control of

replicated components requires an efficient solution.

Last and most important of all, there will be no substitutes

for experimental design of a powerful parallel processing system

•^



+ solving a particular problem or its micro-level simulator in

achieving significant progress in this-direction.
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