

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ALGORITHMIC ASPECTS OF VERTEX ELIMINATION ON GRAPHS

by

Donald J. Rose and R. Endre Tarjan

Memorandum No. ERL-M483

November 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

*- ' 94720

ALGORITHMIC ASPECTS OF VERTEX ELIMINATION ON GRAPHS

Donald J. Rose

Applied Mathematics, Aiken Computation Laboratory
Harvard University

Cambridge, Massachusetts

and

R. Endre Tarjan

Computer Science Division
Department of Electrical Engineering and Computer Sciences

and Electronics Research Laboratory
University of California, Berkeley

Abstract

We consider a graph-theoretic elimination process which is related

to performing Gaussian elimination on sparse symmetric positive definite

systems of linear equations. We give a new linear-time algorithm to cal

culate the fill-in produced by any elimination ordering, and we give two

new related algorithms for finding orderings with small fill-in. One

algorithm, based on breadth-first search, finds a perfect elimination

ordering, if any exists, in 0(n+e) time, if the problem graph has n

vertices and e edges. An extension of this algorithm finds a minimal

(but not necessarily minimum) ordering in 0(ne) time. We conjecture

that the problem of finding a minimum ordering is NP-complete.

Keywords: graph, breadth-first search, lexicographic search, Gaussian
elimination, sparse linear equations, perfect elimination,
triangulated graph, chordal graph

'^Research partially sponsored by the Office of Naval Research under con
tract N00014-67-A-0298-0034 at Harvard University,and by the National
Science Foundation, Grant GJ-35604X, and a Miller Research Fellowship
at University of California, Berkeley. Part of this work was completed
while the second author was visiting the Weizmann Institute of Science,
Rehovot, Israel.

1. Introduction and Notation

A graph is a pair G = (V,E) where V is a finite set of n = |v|

elements called vertices and

E C {{v,w}| v, weV, v^w}

is a set of e = |e| unordered vertex pairs called edges. Given v e V,

the set

adj(v) = {wev| {v,w}eE}

is the set of vertices adjacent to v. The notation v—w means

w £ adj(v); W^w means w $ adj (v). If A C v, the induced subgraph

G(A) of G is the subgraph G(A) = (A,E(A)) where

E(A) = {{x,y}£E| x, y£A}.

For distinct vertices v, w £ V, a v,w chain of length k is a

sequence of distinct vertices u = [v*v. ,v«,... ,v, ,. = w] such that

v -—v. for i = l,2,...,k. Similarly, a cycle of length k is a

sequence of distinct vertices \i = [v.,v2,...,v.] such that v. -—v.

for i = l,2,...,k-l and v,—V-. We will always assume that G is

connected; that is, for each pair of distinct vertices v, w £ V, there

is a v,w chain.

For a graph G = (V,E) with |v| = n, an ordering of V is a

bijection a: {l,2,...,n} «-+ V. Sometimes we denote an ordering by

V = {x }* . G « (V,E,a) is an ordered graph. In G , the set of

vertices monotonely adjacent to a vertex v is defined by

madj(v) = adj(v) n{w£V| a"1(v) <a""1(w)}

The notation v •* w means w £ madj (v).

For a vertex v, the deficiency D(v) is the set of edges defined

by

D(v) = {{x,y}| v—x, v—y, x-r-y, x^y}

The graph G obtained from G by

(1) adding edges so that all vertices in adj (v) are pairwise

adjacent, and

(2) deleting v and its incident edges

is the v-elimination graph of G. That is,

Gv = (V-M, E(V-{v}) UD(v)) .

For an ordered graph G = (V,E,a), the elimination process

P(GQ) = [G-G0.G1.62,...,Gn_1]

is the sequence of elimination graphs defined recursively by G~ = G,

G-r = (G-_i) for ± = 1,2,...,n-1. If G = (V ,E.) for i = 0,1,...,n-1,

the fill-in F(G) is defined by
a

n-1

F(G) = U t4
a . n i

i=l

where T. == D(x.) in G. 1, and the elimination graph G* is defined

by

G* « (V, EUF(Ga)) .

The notion of vertex elimination arises in the solution of sparse

symmetric positive definite systems of linear equations by Gaussian

elimination. Given any symmetric nxn matrix M = (m. .) which

represents the coefficients of a set of linear equations, we can con

struct an ordered graph G^ = (V,E,a), where vertex x. corresponds to
ot i

row i (and variable i), and {x ,x } £ E if and only if m t 0 and

i ^ j. The unordered graph G = (V,E) corresponds to the equivalence

T
class of matrices PMP , where P is any permutation matrix.

Suppose we solve the system with coefficients M using Gaussian elim

ination, eliminating variables in the order l,2,...,n. Assuming no lucky can

cellation of non-zero elements, the edges T. correspond exactly to the

new non-zero elements created when row i is eliminated. For further dis

cussion of this correspondence, see [19,21], In order to make the elimina

tion process efficient, we would like to create no more non-zero elements

than necessary; that is, we would like to find an elimination ordering

which minimizes the fill-in.

Given a graph G = (V,E), an ordering a of V is a perfect

elimination ordering of G if F(G) = <|>. Thus a is a perfect elimina-
vX

tion ordering if v>-w and v + x in G imply w—x or w=x. A graph which

has a perfect elimination ordering is a perfect elimination graph. An

ordering a is a minimal elimination ordering of G if no other ordering

3 satisfies F(G0) C F(G) where the containment is proper. An ordering
p ex

a is a minimum elimination ordering of G if no other ordering 3 satis

fies |F(Gg)| < |F(Ga)|.

Any elimination graph G* is a perfect elimination graph, since a

is a perfect ordering of this graph. Any perfect ordering of a graph is

minimum, and any minimum ordering of a graph is minimal. If a graph is a

perfect elimination graph, any minimal ordering is perfect.

The problem we would like to solve is that of finding a minimum

elimination ordering for any graph G. However, this seems to be a very

difficult task in general; we conjecture that the problem of finding a

minimum elimination order is NP-complete.+ Thus we restrict our atten

tion to finding a minimal ordering for any graph and finding a perfect

ordering for any perfect elimination graph.

Perfect elimination graphs arise in contexts other than Gaussian elim

ination. Rose [19,21] has given several characterizations of perfect elim

ination graphs, including the one below.

Agraph G is called triangulated if for every cycle y= [v1,v2,...,vk]

"of length k>3, there is an edge of G joining two nonconsecutive ver

tices of u. Such an edge is called a chord of the cycle. For an arbi

trary graph G= (V,E) a set of edges F is atriangulation if G' = (V, EUf)

is triangulated. F is aminimal triangulation if Gq = (V, EUFq) is not

triangulated for any Fq C F.

Theorem A (Rose [19,21], Dirac [5]): A graph G is a perfect elimina

tion graph if and only if it is triangulated.

Triangulated or perfect elimination graphs have also been called

chordal [8], monotone transitive [21], and rigid circuit graphs [5].

Gavril [7] has presented efficient algorithms for finding all cliques, maximum

cliques, minimum colorings, maximum independent sets, and minimum clique coverings

in triangulated graphs (for arbitrary graphs, these problems are NP-complete).

These algorithms depend upon exploiting the necessary perfect elimination

ordering. Assuming that such an ordering is given, it is easy to implement

Gavril's algorithms to run in 0(n+e) time. (0(n+e) is optimum to within

a constant factor; the time bounds he gives are not tight.) Several

+The NP-complete problems, roughly speaking, are the hardest problems
solvable using non-deterministic polynomial-time algorithms. Either all
the NP-complete problems have deterministic polynomial-time algorithms
or none of them do. Many people have tried and failed to find polyno
mial-time algorithms for problems in this class, but no one has proved
that such algorithms do not exist. The tautology problem of propositional
calculus, the travelling salesman problem, the maximum clique problem,
and many other well-known problems are NP-complete. See [4,14] for
further information.

6

important classes of graphs, such as trees, k-trees [20], and interval

graphs [6,10], are triangulated, and a recognition algorithm for triangu

lated graphs can be used to recognize interval graphs efficiently [2,6,10].

The recognition problem for perfect elimination graphs bears a

superficial resemblance to the problem of testing a directed graph for

transitivity. It is easy to construct an 0(ne) algorithm to find a

perfect ordering of a graph, if one exists. Gavril [8] has developed a

way to find a perfect ordering of a graph G in 0(t(n,e)+n+e) time,

where t(n,e) is the time required to square the adjacency matrix of G.

If Strassen's method of matrix multiplication [24] is used, this

2 81
algorithm has an 0(n) time bound. Below we present an 0(n+e)

algorithm for finding perfect orderings. The algorithm uses a lexico

graphic search (or ordering scheme) which is a special type of breadth-

first search. Surprisingly, a similar ordering scheme is useful in

solving certain scheduling problems [3,13,23].

Ohtsuki, Cheung, and Fujisawa [17] have extended Rose's results in

order to develop algorithms for finding minimal orderings. Given a graph

G = (V,E), let V* be the set of vertices such that v £ V* if and

only if, for each {x,y} £ D(v), there is a chain from x to y which

contains no vertices in {v} U adj(v) - {x,y}.

Theorem B [17]:. An ordering a on G is a minimal elimination

ordering if and only if ct(i) £V*^, where P(Ga) =[G^G^Gj,G^]

and G± = O^.E^ for i = 0,1,...,n-1.

This theorem leads to an algorithm for finding minimal orderings.

Ohtsuki [18] has refined this method to get an 0(ne) algorithm for

finding minimal orderings. The lexicographic ordering we consider here

gives a significantly different 0(ne) algorithm for finding minimal

orderings, and our analysis of the properties of a lexicographic search

leads to a characterization of minimal triangulations in terms of the

cycle structure of the minimal triangulated graph.

We shall first study the more general problem of finding minimal

orderings and then streamline our algorithm to solve the easier problem

of finding perfect orderings. In §2 we derive some properties of minimal

and perfect orderings. In §3 we motivate the idea of a lexicographic

search by considering the relationship between breadth-first searches

and perfect orderings. In §4 and §5 we consider in detail the analysis

and implementation of lexicographic orderings, and in §6 we present some

additional remarks. Although our results deal mainly with the application

of lexicographic search to produce minimal and perfect elimination order

ings, we feel the notion of a lexicographic search is algorithmically

interesting and may have wider application.

2. Properties of Elimination Orderings and Fill-in

If we are to develop algorithms to find good ordering schemes, we

must know some properties of elimination orderings and of the fill-in

they produce.

Lemma_l: Let a be a perfect elimination ordering of a triangulated

graph G. Let x £ V. Then a is also a perfect ordering of

Gf = (V, EUD(x)).

Proof; We must show that for any {w,y}, {z,y> £ EUD(x) with

cf^y) <min(a~1(w),a~1(z)) and w^z, we have {w,z} £EUD(x). There are

three cases. If {w,y}, {z,y}e E, then {w,z}E E since a is perfect. If

{w,y}, {z,y} £ D(x), then w, z E adj (x) and {w,z} e EUD(x). The

last case is {w,y} £ E, {z,y} £ D(x) (or equivalently {w,y} £ D(x) ,

{z,y} £ E). This means y, z £ adj (x) and {y,z} ^ E. If w = x,

z £ adj(x) means {w,z} £ E. Otherwise (i.e. if w^x), a" (x) > a (y)

since a is perfect, and {x,w} £ E since x, w £ adj (y) and a is

perfect. But w, z £ adj(x) imply {w,z} £ EUD(x). •

Corollary 1: If G = (V,E) is triangulated and x is any vertex,

the elimination graph G = (V-{x), E(V-{x})UD(x)) is triangulated.

(This Corollary is also proved in [21].)

Corollary 2; If G = (V,E) is triangulated and x is any vertex

with D(x) = <{>, there is a perfect elimination ordering a with a(l) = x.

Lemma 2: Let G = (V,E) be a triangulated graph. Suppose

G* = (V, EUF) with F ^ <J>, EOF = <f> is also triangulated. Then there

exists some f £ F such that G'- f = (V, EUF-{f}) is triangulated.

Proof: We prove the theorem by induction on n = |v|. If n <_ 3,

the result is obvious since any graph with three or fewer vertices is tri

angulated. Suppose the result is true for n £ n and let n = n +1.

Let R = {x| D(x) = 4>} where D(x) is the deficiency in G. Let

S = {x| D'(x)=(J>} where D'(x) is the deficiency in G1. We know

R 4 <J> and S ^ <J>. There are two cases.

(i) For some x £ S there exists an edge f = (u,x) £ F. By

Corollary 2 there is a perfect elimination order 3 for G1 with

3(1) = x. Then 3 is also a perfect elimination order for G1 -f.

(ii) Case (i) does not hold. We prove that there exists some x £ S

with F J D(x). Pick any z £ S. If F £ D(z), let x = z. Otherwise,

since D(z) C EUF, EUF = EUD(z). In this case let x be any vertex

such that x £ R. By Corollary 2, there is a perfect ordering a of G

such that a(l) = x, and by Lemma 1, a is a perfect ordering of G'.

Thus x £ S. Since D(x) = <J>, F £ D(x).

Now G = (V-{x}, E(V-{x})UD(x)) and G» = (V-{x}, E(V-{x}) UFUD(x))
X x

are triangulated by Corollary 1. By the induction hypothesis there exists

f £ F-D(x) such that G1 - f is triangulated. But then Gf - f is

^triangulated since f £ D(x). D

Theorem 1: Let G = (V,E) be a graph and let G' = (V, EUF) be

triangulated with EOF = <t>. F is a minimal triangulation if and only

if for each f £ F, G* - f = (V, EUF-{f}) is not triangulated.

Proof: One direction is immediate from the definition of minimal

triangulation; Lemma 2 gives the other direction. D

Theorem 2: Let G = (V,E) be a graph and Gf = (V, EUF) be tri

angulated. Then F is a minimal triangulation if and only if each

f £ F is a unique chord of a 4-cycle in G*.

Proof: If F is minimal and f £ F, Gf-f is not triangulated

and hence contains an unchorded cycle, say \i of length I >^ 4. But if

p has length % > 4, a proper subset of u is an unchorded cycle in

G' of length & >_ 4. Thus G* - f must contain an unchorded cycle of

length 4, and f is the unique chord of this cycle in G*.

The converse is immediate from Theorem 1 since G* - f has an unchorded

4-cycle for any f £ F. D

Theorems 1 and 2 provide two useful characterizations of minimal

triangulations (and of minimal orderings, since a is a minimal ordering

if and only if F(G) is a minimal triangulation). In §4 we prove that

the lexicographic ordering scheme defined there produces an ordering

whose fill-in satisfies the unique chord property of Theorem 2. Thus

any lexicographic ordering is minimal.

Lemma 3: Let G = (V,E,a) be an ordered graph. Then {v,w} is

an edge of G* = (V, EUF(G)) if and only if there exists a chain

y = [v = v. ,v«,...,v, - = w] in G such that

cf1^) <min(a"1(v),a"1(w)) , 2£i<k .+ (P)

Proof: We show by induction on i = min(a (v) ,a (w)) that,

given any edge {v,w} in G , there exists a v,w chain with the

required property (P). Suppose £ = 1. Then v—w in G , hence in

G*, and (P) holds vacuously. Suppose the result holds when &<_%, and con

sider the case I = I +1. If v—w in G then again (P) holds
o a &

vacuously. Otherwise {v,w} £ F(G) and we have by the definition of

F(G) an x £ V with a" (x) < min(a~ (v),a~ (w)) and x—v, x—w

in G*. The induction hypothesis implies the existence of x, v and

x, w chains in G satisfying (P) and combining these chains gives

the required v, w chain.

The converse is established by induction on k, the length of y.

If k = 1, v—w in G* trivially. Suppose the converse holds for

k <_ k and consider the case k =k +1- Let y » [v =v^v^... »vk+1 =w]

and choose x=v where of1^) =max{cf (v)|2£j£k}. The induc
tion hypothesis implies that v—x and x—w in G*; hence v—w in Ga. •

For convenience, although at the risk of possible confusion, we adopt
the following convention: In the vacuous case where v—w and hence
{v2,...,vk} = <|>, the condition is regarded as satisfied. Similar con
ventions are followed below.

10

11

This lemma provides a characterization of the fill-in produced by

any elimination ordering. It is useful to have an efficient algorithm

for calculating the fill-in. We derive another characterization for

this purpose.

Lemma 4: Let G = (V,E,a) be an ordered graph. Then EUF(G)
ot tx

is the smallest set E* of edges such that ECE* and

v •»• w in E implies m(v) = w or m(v) ->• w in E (Q)

where m(v) is the vertex u with minimum a (u) such that v -*• u

in E*.

Proof: E* = EUF(G) clearly satisfies ECE* and (Q). We must

prove that any set E* satisfying ECE* and (Q) contains EUF(G).

Suppose (v,w) £ EUF(G). We prove by induction on i = min(a (v) ,a (w))

that (v,w) £ E*. Suppose this result holds for i <^ i and consider

the case i = i +1. If (v,w) £ E, then (v,w) E E*. If (v,w) £ F(G),
O 0.

there is some u with u -»- v, u •*• w in G*. By the induction hypo

thesis u -*• v, u •*• w in E*. Pick the u such that u -*• v, u -*• w in

* -1
E and a (u) is maximum. Then v = m(u) (otherwise m(u) -*- v,

* -1
m(u) -*- w in E by (Q) and a (u) is not maximum). But then m(u) •*• w

in E* by (Q); i.e. (v,w) £ E*. D

The following algorithm uses Lemma 4 to compute the edges in G*

for any ordered graph G = (V,E,a). If A(v) = {w| v->-w in G } for all

vertices v when the algorithm starts, then A(v) = {w| v+w in G*} for

all v when the algorithm finishes.

Algorithm FILL: begin

loop: for i:=l until n-1 do begin

v:=a(i)

m(v) :=a(min{a (w) | weA(v)});

add: for w£ A(v) do if w^m(v) then

add w to A(m(v));

end end FILL;

It is immediate from Lemma 4 that FILL correctly computes the edges

of G . Efficient implementation of FILL is discussed in §5.

3. Motivation: Breadth-First Search and Perfect Orderings

Given a graph G, a breadth-first search of G starting at a

vertex s is a systematic examination of the edges of G using the

following algorithm:

Algorithm BFS: begin

initialize queue to contain s;

level(s):s0;

while queue is non-empty do begin

remove first vertex v on queue;

mark v explored;

explore: for w £ adj (v) d£ jlf w is unexplored then begin

add w to end of queue;

level(w) :=level(v)+1;

mark {v,w} as a tree edge;

end end end BFS;

12

At each step, this algorithm picks an edge incident to the oldest

reached vertex and finds out where the edge leads. The edge may lead

either to a vertex already reached or to a new vertex, which is now con

sidered reached.

During execution of this algorithm, statement explore processes

each edge exactly twice; once for w £ adj(v) and once for v £ adj(w).

The effect of BFS is (1) to generate a spanning tree of G, given by the

.edges {v,w} such that w is unreached when statement explore is

executed with w £ adj(v); and (2) to partition the vertices of G into

levels: If v is a vertex, level(v) = i if the shortest chain from s

to v has length i. Figure 1 illustrates BFS applied to a graph.

Each edge joins two vertices on the same level or on adjacent

levels. If a is a perfect elimination order for a graph G, and a

vertex v is joined to a vertex w with level(w) = level(v) +1 and

to a vertex u with level(u) = level(v) -1, then

a_1(v) > min(a (u),of (w)) since {u,w} is not an edge of G. This

strongly suggests that any perfect elimination graph has a perfect order

ing which is consistent with the partial ordering by levels. This con

jecture is true. The numbering in Figure 1 shows a perfect ordering

with this property.

Thus the levels given by BFS convey some information about perfect

orderings. But we must break ties within the levels. We can use a

breadth-first search within each level to accomplish this, if the new

searches are guided by the inter-level edges. This idea leads to a

highly complicated way of generating perfect orderings which uses BFS

applied recursively. Fortunately, there is a simpler way to look at

this method. We present it in the next section. In its full generality,

13

the resultant algorithm gives minimal orderings, not just perfect order

ings, and it is highly efficient.

4. Lexicographic Search: Minimal and Perfect Orderings

To find minimal orderings and perfect orderings, we use a lexico

graphic ordering scheme which is a special type of breadth-first search.

The vertices of the graph are numbered from n to 1. During the search,

each vertex v has an associated label consisting of a set of

numbers selected from {l,2,...,n}, ordered in decreasing order. Given

two labels L1 = [p1,p2,... ,pk] and L2 = [q^q^... ,q^], we define

L. < L„ if, for some j, p = q for i = l,2,...,j-l and p. < q.,

or if p. = q. for i = l,2,...,k and k < I, L. = L0 if k = I
ri ni 12

and p. = q., 1 < i < k.

Minimal Orderings

Consider the following ordering scheme:

Algorithm LEX M: begin

assign the label 0 to all vertices;

for i :•= n step -1 until 1 do begin

select: pick an unnumbered vertex v with largest label;

comment assign v the number i;

a(i) := v;

update: for each unnumbered vertex w such that there is a chain

[v =v.,v2,...»v.+1 =w] with v. unnumbered and
label(v.) < label(w) for j = 2,3,...,k do add i to

label(w);

end end LEX M;

14

This algorithm constructs an ordering a for an initially unordered

graph G = (V,E) and constructs a label L(v) given by the final value

of label(v) for each v £ V. We call any ordering which can be generated

by LEX M a lexicographic ordering. Figure 2 shows the application of

this algorithm to an example graph. The complicated condition in state

ment update for updating labels is necessary because there may be fill-in

edges; we are trying to find minimal orderings, not just perfect ones.

-Label updating can be simplified if the object is to find perfect order

ings, as we shall see.

To establish the fact that algorithm LEX M produces a minimal order

ing, we will prove that the fill-in produced by a lexicographic ordering

has the unique chord property of Theorem 2. We need two lemmas which

characterize the labels L(v). For any vertex w with label L(w),

let

L±(w) = L(w) O {n,n-l,...,i+l} ;

that is, L (w) is the value of label(w) in LEX M just before the

number i is assigned to a vertex.

Lemma 5: Let G = (V,E) be a graph with lexicographic ordering a

and labels L(v), v £ V.

(1) If L±(v) < L±(w) then L (v) < L (w) for all 1< j < i.

(2) L±(w) < L (w) for all j < i.

(3) If a""1(w) = j <of^v) = i then either L (w) <L (v) and

L(w) < L(v) or L±(w) = L (v) and L(v) < L(w).

(4) If L(w) < L(v) with a_1(w) =j and a_1(v) = i, then either

j < i with L±(w) < L±(v) or i < j with L (w) = L (v).

15

(5) j £ L(w) if and only if a" (w) < j and there exists a v = ct(j),

w chain [v= v-,v«,... ,v, = w] such that L.(v.) < L (w) and

cf1^) <j, 2<i<k.
(6) {v£V| n£L(v)} = adj(a(n)).

The proofs of (l)-(6) are straightforward. Properties (1) and (2)

follow from the definitions of the labels and the order relation; (3)

and (4) summarize statement select of LEX M. Property (5) follows from

(1), (2) and statement update of LEX M; (5) means that the updated

labels produced by one execution of statement update depend only on

the old labels and not on the order of updating. Property (6) is an

immediate corollary of (5).

Lemma 6: If a is a lexicographic ordering of G = (V,E), then

in G*
a

L(w) = {of^v)! w+v}

for w £ V.

Proof: Suppose i = a (v) £ L(w). Then, by (5) of Lemma 5,

a" (w) < i and there exists a chain [v =v ,v2,... ,v, =w] with

L.(v.) < L.(w) for 2 < j < k. Thus, for each such j, L (v) < L (w)
iji — — mjm

for all m < i and hence of (v.) < a" (w). Then w •+ v follows from

Lemma 3.

The proof of the converse is somewhat less direct. Suppose that

w •+ v and let i = a" (v). By Lemma 3 there exists a chain

[v=V]L,v2,...,vk+1 =w] with cf^v)<a"1(w), 2<j<k. Since
of1(v.) <a_1(w) <i, we have L±(v)<L^w), 2<j<k. Now suppose

16

17

jn is the least such j with L (v.) = L.(w). Since0 i jQ 1
—1 —1a (v.) < a (w) = m (say) we have, in addition (Lemma 5, (1),(3)),

L (v.) < L (w), m < p < i. The chain [v = v. ,v0,... ,v.] is such that
Pj0-P -- 12 jQ

W <Li(V» 2- P- j0; henCe iGLi-l(vj }* But Li-l(vj) - Li-l(w)'
L (v.) = L. (w), and i E L (v) imply i E L. .. (w) by the lexico-

i JQ i i-i J0 i-i

graphic ordering of labels. D

Theorem 3t Let G = (V,E) be a graph with lexicographic ordering

a and labels L(v), v £ V. Then any edge {v,w} £ F(G) is the unique

chord of some 4-cycle y = [p,v,q,w] in G .

Proof: Without loss of generality we may assume a (w) < a (v).

By Lemma 5, part (5) there exists a v, w chain [v= v-,v2,...,v, =w]

in G such that L.(v.) < L.(w) and a" (v.) < j for 2 < i < k,a jij n-i/j __>

where j = a (v). Let %= max{of (v) | 2<i£k} and let p = a(£).

Then p -*• v and p •+ w in G* by Lemma 3.

Now p •* w in G* implies madj (p) -{w} C adj(w) in G*. Thus

L.(p) C L (w) by Lemma 6.

Since L (p) < L. (w) , there is some q E madj (w) - madj (p) with

a~1(q) > j. Then p-/-q in G*, w -»• q in G*, and v—q in G*

since w -• v and a is a perfect elimination order for G . Hence

y = tp»v,q,w] satisfies the theorem. D

Theorems 2 and 3 now immediately imply

Theorem 4: Let G = (V,E) be a graph with lexicographic ordering

a. Then a is a minimal ordering.

Proof: F(G) is a minimal triangulation by Theorems 2 and 3. •

Perfect Orderings

Since any minimal ordering of a perfect elimination graph is perfect,

we can test a graph G to see if it is perfect by generating a minimal

ordering a using LEX M and testing whether F(G) = <J> using FILL.

There is a better way, however. If G is perfect and a is a lexico

graphic ordering, then F(G) = <j>; and by Lemma 6, L(w) = {of (v) | w+v}

in G. Suppose we modify LEX M by simplifying statement update.

Algorithm LEX P: begin

assign the label <J) to all vertices;

for i:=n step -1 until 1 do begin

select: pick an unnumbered vertex v with largest label;

comment assign v the number i,

a(i):=v;

update2: for each unnumbered vertex we adj (v) d£ add i to label(w);

end end LEX P;

Algorithm LEX P will generate an ordering a which, by the obser

vation above, must be perfect if G has any perfect orderings, although

if G has no perfect orderings a may not be minimal (see Figure 3).

Figure 4 shows the application of LEX P to the graph in Figure 1. The

relationship between LEX M, LEX P, and BFS is as follows: Any ordering

generated by LEX M can be generated by LEX P, and any ordering generated

by LEX P can be generated by performing a breadth-first search, numbering

the vertices from n to 1 as they are reached. Thus the LEX M order

ings are a subset of the LEX P orderings, which are in turn a subset of

the breadth-first search orderings.

18

5. Implementation and Complexity

In this section we give linear-time implementations of FILL and

LEX P, and an 0(ne) implementation of LEX M.

Computation of Fill-in

To get algorithm FILL to run fast, we must make sure that the adja

cency lists A(v) do not contain too many redundant elements. During the

i iteration of statement loop in FILL, we read through the elements in

A(a(i)) and eliminate duplicates. We use a Boolean array test(j), setting

test(j) to true if and only if a(j) £A(a(i)). The implementation appears

below in Algol-like notation.

Algorithm FILL: begin

for j:=l until n do test(j):=false;

loop: for i:=l until n-1 do begin

k:=n;

v:=a(i);

comment eliminate duplicates in A(v) and compute m(v);

dup: for w£A(v) do

if test(a (w)) then delete w from A(v)

else begin

test(of (w)):=true;

k:=min(k,a (w));

end;

m(v):=k;

comment add required fill-in edges and reset test;

add: for we A(v) do begin
~~"~ -i ,57,B" "~

test(a (w)):-false;

if w^m(v) then add w to A(m(v));

end end end FILL;

Suppose this algorithm is applied to an ordered graph G = (V,E,a)

whose elimination graph G* has e' edges. Each time statement add is

executed, A(v) is free of redundancies since dup eliminates such

19

redundancies. The number of entries made to adjacency lists by one execu

tion of add is thus bounded by |A(v)|, and the total number of additions

to adjacency lists made by add over all iterations of loop is bounded by

e*. It follows that the total time spent in dup over all iterations of

loop is 0(n+e'), and the running time of FILL is 0(n+e!).

Perfect Orderings

The programming of LEX P is an interesting exercise in list process

ing, since the search requires that vertices be kept in a particular

order depending on their labels. To make the implementation efficient,

we do not actually calculate the labels of the vertices. For each label

value, we keep a set of all vertices which have that label. We keep the

sets in a queue ordered lexicographically by label (highest to lowest).

When a new vertex v is numbered, we create a new set S' for each old

set S containing a vertex w such that v—w. We delete from S all

such vertices w and add them to the new set Sf, which is then inserted

in the queue of sets just in front of S. It is easy to see that this

method maintains the proper lexicographic ordering without actually cal

culating the labels.

An implementation of this method is given below in an Algol-like nota

tion. To maintain the queue and the sets, we use cells, each containing

four items: flag, head, next, and back. Certain cells are used as set

headers. These cells are doubly linked using head and back in a queue

which is ordered lexicographically by set label. A single cell is used

as a header for this queue (it does not head a set of vertices).

Other cells are used to contain the vertices in the sets. Cells

representing a set are doubly linked using next and back. If c is the

20

header cell of a set, next(c) points to the list of elements in the

set. If c is an element cell, head(c) contains the name of the vertex

in the cell and flag(c) points to the header of the set containing the

cell. Figure 5 gives an example of this data structure.

The program uses certain other variables. If v is a vertex,

cell(v) points to the cell containing v. The list fixlist contains

pointers to the headers of the new sets created after a vertex .v is

numbered. Each such header h has flag(h) = 1 until after all the new

sets are constructed. The algorithm then empties fixlist, resetting

all the flags of the corresponding headers to zero.

Algorithm LEX P: begin

comment (implicity) assign label <J> to all vertices;

head(1):=2;

back(2):=l;

head(2):=back(l):=next(1):=flag(l):=flag(2):=0;

c:=3;

comment c is the number of the first empty cell;

for v £ V do begin

head(c):=v;

cell(v):=next(c-1):=c;

flag(c):~2;

back(c):=c-l;

c:=c+l;

a_1(v):=0;
end;

next(c-1):=0;

for i:=n step -1 until 1 do_ begin

comment skip empty sets;

while next(head(1)):*0 do begin head(1):=head(head(1)) ;

back(head(!)):=! end;

comment pick next vertex to number;

21

select: p:=next(head(1));

comment delete cell of vertex from set;

next(head(1)):=next(p);

if next(head(1))4 0 then back(next(head(1)):=head(l);

v:=head(p);

comment assign v the number i;

a(i):=v;

a (v):=i;

fixlist:=4>;

update2: for w£ adj (v) do if a" (w) =0 then begin

comment delete cell of w from set;

next(back(cell(w)):=next(cell(w));

if next(cell(w))4 0 then back(next(cell(w)):=back(cell(w));

h:=back(flag(cell(w)) ;

comment if h is an old set then create a new set;

if flag(h) = 0 then begin

head(c):=head(h);

head(h):=c;

back(head(c)):=c;

back(c):=h;

flag_(c):=l;

next(c):=0;

add c to fixlist;

h:=c;

c:=c+l;

end;

comment add cell of w to new set;

next(cell(w)):=next(h);

if next(h)4 0 then back(next(h)):=cell(w);

flag(cell(w)):=back(cell(w)):=h;

next(h):=cell(w);

end;

for h £ fixlist do flag(h):=0;

end end LEX P;

22

It is routine to verify that algorithm LEX P, as implemented above,

operates correctly and requires 0(n+e) time and space to order a graph.

We can use LEX P to generate an ordering and then use FILL to

calculate its fill-in. If the fill-in is empty, the graph is triangulated,

and the ordering is perfect. If the fill-in is non-empty, the graph is

not triangulated. Thus we have an 0(n+e) algorithm to test whether a

graph is a perfect elimination graph and to generate a perfect elimination

ordering if there is one.

Minimal Orderings

Algorithm LEX M apparently requires more execution time than LEX P,

because statement update in LEX M requires more graph searching than

statement update2 in LEX P. Here is an implementation of LEX M which

runs in 0(ne) time.

To keep track of the labels, we use a less complicated scheme than

used in the implementation of LEX P. Each unnumbered vertex w has an

associated label number &(w), such that £(y) = &(z) if and only if

y and z have the same label, and £(y) < £(z) if and only if the

label of y is less than the label of z. These label numbers are

integers between 1 and k, where k is the number of distinct labels.

When a new vertex v is numbered, each vertex w connected to v by

a chain of the type defined in statement update is assigned a new label

number V (w) » £(w) + -_-. '"Label numbers of other vertices are not changed.

The resultant label numbers are then sorted (using a radix sort) and new

label numbers assigned so that all label numbers are integers between 1

and the new value of k.

To find chains of the type defined in statement update, we conduct

23

a search starting from the newly numbered vertex v. First the search

passes only through vertices of highest label. Then the search is extended

through vertices of second highest label, and so on. In this way all

appropriate chains can be found efficiently. The program appears below

in Algol-like notation.

Algorithm LEX M: begin

for v£V do begin £(v):=l; a (v):=0 end;
KWC JUH AJK.BSH.K, H>iwJk.

k:=l;

loop: for i:=n step -1 until 1 do begin

select: pick an unnumbered vertex v with £(v) =k;

comment assign v the number i;

a(i):=v;

a (v):=i;

for j:=1 until k do reach(j):-<(>;

mark all unnumbered vertices unreached;

•_ w £ adj (v) and a (w)

add w to reach(&(w));

for w £ adj (v) and a (w) = 0 do begin

mark w reached;

£(w):=£(w)+l/2;

mark {v,w} as an edge of G ;

end;

search: for j:=k step -1 until 1 do

while reach(k) $ <J> do begin

delete a vertex w from reach(k);

for z £ adj(w) and z unreached do begin

mark z reached;

if Jl(z) < k then begin

add z to reach(&(z));

£(z):=£(z)+l/2;

end else add z to reach(k);

mark {v,z} as an edge of G*;

end end;

sort: sort unnumbered vertices by &(w) value;

reassign £(w) values to be integers from 1 to k,

redefining k appropriately;

end end LEX M;

24

It is an easy exercise to show that this program correctly imple

ments algorithm LEX M to compute a minimal ordering. The time required

per execution of statement search is 0(e) since each vertex can only

be marked "reached" once and thus each edge can only be examined once.

Statement sort requires 0(n) time when implemented as a radix sort

[16]. The running time of the program is thus 0(e) per execution of

statement loop, or 0(ne) time altogether. LEX M requires 0(n+e)

storage space.

6. Remarks

This paper has given an 0(n+e) algorithm for finding a perfect

elimination order on a graph if one exists and a related 0(ne) algorithm

for finding minimal elimination orderings. The algorithm for finding

perfect orderings is optimum to within a constant factor and is asympto

tically faster than anything previously published. The minimal ordering

algorithm, as implemented here, has the same asymptotic time bound as

Ohtsuki*s algorithm [18], but his algorithm does not calculate the fill-in

produced by the ordering. The approach here solves both the perfect

ordering and minimal ordering problems efficiently, reveals certain pro

perties of lexicographic search, and provides a new characterization of

minimal triangulations. It is not known whether there is a better

algorithm for finding minimal orderings, or whether the problem of

finding a minimum ordering is NP-complete.

It is possible to extend the notions of perfect, minimal, and minimum

elimination orderings to directed graphs; such orderings are related to

trying to minimize the fill-in when performing Gaussian elimination on

25

sparse asymmetric matrices [10,15], Lemmas 1, 2, and 3, Corollaries 1

and 2, and Theorem 1 all generalize to directed graphs. However, lexico

graphic search doesn't seem to help in finding good orderings on directed

graphs. We have constructed 0(ne) algorithms to compute the fill-in of

any ordering and to find a perfect ordering if one exists. We have devised

4
an 0(n) algorithm for finding a minimal ordering, using the proof of

4
Lemma 2 (Shiloah also claims an 0(n) algorithm [25]). We can show

that testing whether a directed graph has a perfect ordering or computing

any ordering*s fill-in requires as much time as testing a directed graph

for transitivity. These results will be reported in a future paper.

Minimum orderings are desired in practice, but finding them is time-

consuming. Minimal orderings are not necessarily close to minimum; for

instance, if the lexicographic ordering scheme described here is applied

3
to a graph representing an n by n square grid, the fill-in is 0(n),

while the nested dissection method [9,22] gives an ordering with

2
0(n log n) fill-in, which is minimum to within a constant factor [12].

The development of good ordering schemes for special cases (such as grid

graphs) and the theoretical study of heuristics seems to be fruitful

areas for future research.

In particular, two heuristics which seem to work well in practice

are the minimum-degree heuristic and the minimum-fill-in heuristic [21].

It seems possible that the minimum degree heuristic produces minimum

fill-in to within a constant factor, at least on grid graphs. A proof of

such a statement would be extremely interesting.

When performing Gaussian elimination in practice, it might be impor

tant to minimize something other than the fill-in, such as the total

operation count [1,21]. The problem of finding an ordering which minimizes

26

the operation count or some other criterion can be formulated graph-

theoretically; only the fill-in criterion has been studied extensively.

27

References

[1] U. Bertele and F. Brioschi, Non-Serial Dynamic Programming. Academic
Press, N.Y. (1971).

[2] K. Booth, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, private communication (1974).

[3] E.G. Coffman, Jr. and R.L. Graham, "Optimal scheduling for two
processor systems," Acta Informatica. Vol. 1 (1972), pp. 220-213.

[4] S. Cook, "The complexity of theorem-proving procedures," Proceedings
Third Annual ACM Symposium on Theory of Computing (1971), pp. 151-158,

[5] G.A. Dirac, "On rigid circuit graphs," Abh. Math. Sem. Univ. Hamburg,
Vol. 25 (1961), pp. 71-76.

[6] D.R. Fulkerson and O.A. Gross, "Incidence matrices and interval
graphs," Pacific Journal of Mathematics. Vol. 15 (1965), pp. 835-855.

[7] F. Gavril, "Algorithms for minimum coloring, maximum clique, minimum
coloring by cliques and maximum independent set of a chordal graph,"
SIAM Journal of Computing. Vol. 1 (1972), pp. 180-187.

[8] F. Gavril, "An n og2 algorithm for testing chordality of graphs,"
unpublished manuscript, Syracuse University (1974).

[9] J.A. George, "Nested dissection of a regular finite element mesh,"
SIAM Journal of Numerical Analysis. Vol. 10 (1973), pp. 345-363.

[10] P.C. Gilmore and A.J. Hoffman, "A characterization of comparability
graphs and of interval graphs," Canadian Journal of Mathematics.
Vol. 16 (1964), pp. 539-548. —

[11] L. Haskins and D. Rose, "Toward characterization of perfect elimina
tion digraphs," SIAM Journal of Computing. Vol. 2 (1973), pp. 217-224.

[12] A.J. Hoffman, M.S. Martin, and D.J. Rose, "Complexity bounds for
regular finite difference and finite element grids," SIAM Journal of
Numerical Analysis, Vol. 10 (1973), pp. 364-369.

[13] T.C. Hu, "Parallel sequencing and assembly line problems," Operations
Research, Vol. 9 (1961), pp. 841-848.

[14] R. Karp, "Reducibility among combinatorial problems," Complexity of
Computer Computations. R.E. Miller and J.W. Thatcher, eds., Plenum
Press, N.Y. (1972), pp. 85-104.

[15] D.J. Kleitman, "A note on perfect elimination digraphs," SIAM Journal
of Computing, to appear.

[16] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison Wesley, Reading, Mass. (1973), pp. 170-180.

28

29

[17] T. Ohtsuki, L.K. Cheung, T. Fujisawa, "On minimal triangulation of
a graph," Memorandum No. ERL-M351, Electronics Research Laboratory,
University of California, Berkeley (1972).

[18] T. Ohtsuki, "A graph-theoretic algorithm for optimal pivoting order
of sparse matrices," Proceedings Sixth Annual Hawaii International
Conference on System Sciences (1973).

[19] D.J. Rose, "Triangulated graphs and the elimination process," Journal
of Mathematical Analysis and Applications, Vol. 32 (1970),
pp. 597-609.

[20] D. Rose, "On simple characterizations of k-trees," Report #29-72,
Center for Research in Computing Technology, Harvard University
(1972).

[21] D.J. Rose, "A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations," Graph Theory
and Computing, R. Read, ed., Academic Press, N.Y. (1973), pp. 183-217.

[22] D.J. Rose and G.F. Whitten, "Automatic nested dissection,"
Proceedings ACM Annual Conference (1974), pp. 82-88.

[23] R. Sethi, "Algorithms for nonpreemptive scheduling on two processors,"
Computer Science Department, Pennsylvania State University, unpublished
manuscript (1974).

[24] V. Strassen, "Gaussian elimination is not optimal," Numerical
Mathematics, Vol. 13 (1964), pp. 354-356.

[25] S. Even, private communication.

5(
2)
«f
e-
-

8
(
l
)
*
*
r

0
(
0
)

(
b
)

F
i
g
u
r
e

1:
B
r
e
a
d
t
h
-
f
i
r
s
t
s
e
a
r
c
h
o
f
a

g
r
a
p
h
s
t
a
r
t
i
n
g
a
t
v
e
r
t
e
x

10
.

(a
)

G
r
a
p
h

(b
)

T
r
e
e

p
r
o
d
u
c
e
d
b
y
BF
S,

w
i
t
h

l
e
v
e
l
n
u
m
b
e
r
s
i
n

p
a
r
e
n
t
h
e
s
e
s
,

a
n
d
n
o
n
-
t
r
e
e
.e
dg
es

d
a
s
h
e
d
.

V
e
r
t
e
x
n
u
m
b
e
r
s

g
i
v
e
a

p
e
r
f
e
c
t

e
l
i
m
i
n
a
t
i
o
n

o
r
d
e
r

w
h
i
c
h

i
s

c
o
n
s
i
s
t
e
n
t

w
i
t
h

l
e
v
e
l

o
r
d
e
r
,

7(9,8)

2(6,5,4,3)

8(9)

I(5,2)
5(8,7,6)

Figure 2: Minimal ordering of a graph generated by LEX M.
Final labels are in parentheses, nine fill-in
edges are dotted. Ordering is not minimum since
there is another ordering with only five fill-m
edges.

2(5,3) (4,3)

5(6) 4(6)

Figure 3: Order generated by LEX Pfor a non-triangulated graph,
Fill-in edges are dotted. Ordering is not minimal
since another ordering has fill-in {{3,4},{3,5}}.

1(5,3)* 3(9,5,4)

5(9,8)

8(10,9) 9(10)

7(10) 6(10,7)

2(7,6)

Figure 4: Final labels and perfect elimination order
generated when LEX Pis applied to graph in
Figure 1.

Cell 1:

00 -O U M
td cd x u

iH a> <u cd
4-4 .C C .O

(10,9)

5 0 p

Figure 5: Data structure for Figure 4' example after vertices 10 and 9 have
been numbered. For convenience, vertices are assumed to be
identified by their elimination number. Implicit labels of the
sets are in parentheses.

(9)

	Copyright notice 1974
	ERL-483

