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Abstract

In this paper the notion of the Inners of a matrix is fully discussed.

The inners applications to Control Theory, Stability theory, Communication

Theory, Circuit Theory, Network Theory, Digital Filters, Bioengineering,

Sparse Matrix Theory, Quantum Physics and some topics in Mathematics are

enumerated and analyzed. It is shown in this survey that the inners

concept offers a theoretical as well as computational unification for

these applications. In addition the historical background and motivation

is presented for the inners approach. The import of the inners notion

to education, computation and research in system theory is surveyed and

evaluated. Future research problems using this concept are enumerated.

Finally, this survey is documented by many past and recent references.
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I. Introduction

The term "inners" is given to certain square submatrices that arise

in a square n x n matrix. This term as well as other definitions connected

with it, was first proposed [1] in April, 1970. It appeared first as a

journal publication [2] in June, 1971. Since that time many articles on

the theory and applications of this concept have been published. Most of

this work is discussed in a recently published book [3].

The widespread applications of inners in many fields, as will be

mentioned in this survey, have stimulated the writing of this survey to

bring to the attention of all the Proceedings readers the present and

potential uses of the concept. As an introduction to this work one may

mention inners applications in the fields of control theory, network

theory, circuit theory, digital filters, communication theory, sparse

matrix theory, quantum physics, stability theory, applied mathematics and

many others.

In this survey, we will present these various applications without

the details and will refer to the published manuscript [3] for complete

discussions, proofs, extensions and additional new material. Furthermore,

in order to confine the size of this article to reasonable limits, we

will dwell mainly on the inners theory and applications without much

discussion on general matrix theory applications. Such applications

are discussed thoroughly in both mathematical and engineering literature.

The importance of the inners approach lies mainly in the theoretical

unification of both continuous time and discrete time theories (especially

stability theory), as well as in the computational unification obtained

by utilizing only one algorithm for a number of differing applications.
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In addition, the inners concept has provided solutions to certain problems

for which no solution has previously been known. Such newly solved

problems will be discussed in this survey. Furthermore, we shall also

indicate open problems for which the inners concept may be an appropriate

tool in finding solutions.

Thus it appears that the inners theory is timely, useful and its

potentialities still not completely explored. For this and the reason

that there are many applications to many fields, it was suggested that

the review be written at this time. It is hoped that the reader will

benefit from this survey as a source of information to the theory and

applications of this concept.

Just as most new concepts are arrived at or motivated by earlier

important works and results, so is the inners concept. Many scientists,

and especially mathematicians have in fact worked with concepts and

generated results which have been important in setting the stage for the

inners concept. Because of this we devote the following section to

historical background. First, however we need to introduce the new defini

tions of the inners notion so that comparison and connection with earlier

work is facilitated.

Definition 1. Let A = A„ be an N x N matrix. Form from A the matrix
N

A„ „, of dimension N - 2 x N - 2, by deleting the first and last rows and
N-2

first and last columns of A; then A„2 is called an inner. Now repeat

this process on A„ 0 to form AXT . . Continue the process until it ends
N-2 N-4

thus forming A^ A3> A5, ..., AN_2 for Nodd and A£, L^, ..., AN-2 for
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N even. The appropriate set is called the inners of the matrix A.

Remark;

If N is even (larger than or equal to four), the number of inners is

(N-2)/2. The inners A£, L^y ... are designated as the first, second, ...

inners, respectively. If N is odd, the number of inners is (N-l)/2. The

first, second, ..., inners are A^ A3> ... respectively. Note that in

this case the first inner, A^ is aone element matrix, that is, ascalar

ExamPle 1- Let N » 6. The inners of a 6x6 matrix are formed as

follows

A6 =

all al2 al3 al4 ai5 al6

l21

l31

l41

*51

a22

a32

a42

a52

a23 a24

a33

a43

a34

a44

a53

A.

a54 '

a25 l26

35 l36

l45 l46

l55 l56

a61 a62 a63 a64 a65 a66

(1)

The two inners are A« and A,.
z 4

Definition 2. If the determinants of all the inners, as well as that of

the matrix itself, are positive, we designate the matrix as positive

innerwise or (pi). If all the determinants are negative, we designate

the matrix as negative innerwise or (ni).

Definition 3. If the determinants of the inners of A„ as well as that of
N

AM are zero, we designate AM as null innerwise. If none of the determinants
N 'N
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is zero, we designate it as nonnull innerwise. If some of the inners

determinants are zero while the remaining determinants are nonzero, we

designate it as a semi-innerwise submatrix. We note that the term innerwise

matrix referrs to any matrix whose inners determinants are to be

determined or have certain significance.

The importance and use of the above definitions will become apparent

when we discuss the various applications mentioned above. The relationship

between the above definition and past results will be discussed in the

following section.

II. Historical Background

When the innerwise matrices discussed in definition 1 take a special

form, i.e., a form which is characterized by a left triangle of zeros,

then they can be traced to Sylvester [4] and Trudi [5] in the last century.

In this section we will briefly review the work of these early investi

gators and indicate the relationship of their work with the contemporary

works of many researchers.

Sylvester's Matrix [4]:

Let A(z) and B(z) be the following polynomials:

A(z) = zn +a lZn_1 + ... + aft (2)
n-1 0

B(z) =b zm +b .z^1 + ... +b„ O)
m m-1 0

where z is a complex variable and {a , b.} are real or complex. We

assume that m <^ n. A basic result is that the determinant of the

(m + n)-order Sylvester matrix
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n-hn

1 a 1n-1 an-2 * • • ao

0
•

1
Vi • • • al

0 0 1
Vl

• b
m Vl

• . . . b
m

m m-1

m m-1 m-2

0 f
m rows

0
•

•

a,-k
0 •1i

bo
0 n rows

0

0
>'

(4)

is nonzero if and only if A(z) and B(z) are relatively prime [that is,

no common zeros exist between A(z) and B(z) or equivalently , the greatest

common divisor of A(z) and B(z) is a nonzero constant]. The determinant

IA , I is called the resultant R[A,B] of A and B. The determinants associated
1 n+m'

with the inners defined earlier are called subresultants or bigradients because

of the pattern of two sets of sloping elements.

The Sylvester matrix (also referred to as the Chevron matrix [6]) has

a certain pattern ofa left triangle of zeros, whereas in making the general

definition of the inners of a matrix, no such pattern is postulated. Thus,

the above definition is more general and includes the subresultants of

Sylvester's pattern as a special case.

If m < n and the coefficients a. and b. are real for all i and j, the

remainders of the Sturmian division [5] process in the two polynomials may

be computed as determinants that are called by Trudi [5] disencumbered

remainders. The matrices whose determinants constitute the remainers have

the same pattern as the inners of the Sylvester matrix, except that the

last column of each inner is varied, with each entry a certain polynomial.

Also Trudi showed that it is possible to form bigradients for any a^
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b that are themselves polynomials. Such polynomial bigradients play an
i

important role in obtaining the greatest common divisor of specified

degree of two polynomials. Further earlier work in this direction is

related to Netto [7].

Since the early works of Sylvester, Trudi and Netto, the theory of

resultant has played an important role in the theory of polynomials. For

example resultants can be used to solve two simultaneous polynomial

equations in two unknowns and have been incorporated [8] in an algorithm

for finding the zeros of a polynomial. They have been used [9] to obtain

relative extreme values of a one variable function f(z) as the zeros of

another one variable function h(z). Many other mathematical applications

t
appeared in the literature, and the classical treatises of Muir [10]

is an important source of results on the theory of resultants.

Recent applications also exist; for example, the theory of resultants

was also extended to multivariable polynomials [9,11] to provide a com

putational tool for solving systems of polynomial equations in many

unknowns, by repeated elimination of one variable at a time. This ex

tension is of importance in multidimensional stability problems as will

be briefly mentioned in Section III.2.(d).

Application of resultants or bigradients to the study of the stability

of linear continuous systems was first made by Fuller [12,13]. Based

on Trudi's results, Fuller obtained criteria for a prescribed polynomial

to have all zeros within the open often left half of s-plane which turned

up to be equivalent to the earlier derived Lienard-Chipart criterion [14].

In this criterion one needs to check the sign condition for either the

odd or even Hurwitz minors [12] plus the coefficient (or half of them in a

special order) of the characteristic equation. In this work Fuller was able to

See also the book of Bbcher [171]
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transform innerwise matrix to the Hurwitz minor array form. The latter

has a special pattern for its generation from the coefficients of the

polynomial. It is of interest to note that the matrix whose inners Fuller

studied has, like the Sylvester or Trudi matrices, a left triangle of zeros.

The inners of the Fuller matrix form are called by him as dotted frames,

innermost frames of an array and central minors. In recent years Householder

in a series of interesting articles [15-17] has also applied the bigradients

to the stability problem. In this case he discussed for a complex polynomial

the continuous time stability (or equivalently, the question of whether

or not the roots were clustered in the open left half plane). Moreover hewas not

aware of the earlier work of Fuller. It appears to this writer that

Householder was the researcher who was most appreciative of the overall

power of subresultants or bigradients, and for a historical review of

Trudi1s work, Householder's exposition is very enlightening. Other works

we might single out for mention include an interesting engineering appli

cation to synthesis of a network containing commensurate transmission

lines and lumped elements, in which Uruski and Peikarski [18] have applied

Trudi's results, with an extension to two variable polynomials to solve

their problem. Discussions which are not mainly concerned with the

relation between polynomial root distributions and inners include that of

Rosenbrock [19] and others [20-22] where a matrix similar to that of

Sylvester, is obtained but for matrix polynomials. Conditions on con

trollability, observability, invertibility can be readily obtained from

this innerwise matrix as will be explained later in the discussion of appli

cation part. We note too a discussion of resultants is covered in an

enlightening way by Barnett [23].

In following the trend of the above historical background, two points
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emerge. First, it is apparent that subresultants or bigradients have

been extensively used by many researchers sometimes independently and

sometimes without awareness of the work of others. Second, it is apparent

that many names have been given to these central minors arrays and their

determinants, which has of itself contributed a barrier to the unifying

of many of the concepts. Evidently, a need to unify this earlier work

now exists, (and has earlier been especially recognized by Householder [16]).

In my work I arrived at the inners concept from a completely different

point of view, stemming from my tackling of problems of discrete-time

stability, atopic not considered by all the above mentioned authors. In

a series of publications [24-27], I proposed the determinant, table form

and division method for tackling the discrete-time stability problem, i.e.,

checking the root distribution relative to the unit circle of a prescribed

polynomial. The determinant method I proposed possessed an innerwise form,

but I was not able to transform it in a simple way to the minor array form.

t
This is in contrast to Fuller's work for left half plane stability problem.

Thus for a period of some eight years, I have considered on and off in my

mind this contrast between the Hurwitz matrix (the minor form array) and

my matrix (the innerwise form). It was in April, 1970 that I decided that

probably the Hurwitz form is not necessarily the best formulation for the

continuous stability test and that the innerwise form provides a correct

formulation for both continuous-time and discrete-time stability problems.

This idea was the starting point of my concentrated investigations on this

problem which resulted in many publications summarized in the recent book

[3].

+This point will be illustrated in detail in the next section,
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Because of my work in discrete systems which spans over a quarter

century of investigations on stability problems, I was able to pursue

vigorously (and, it is hoped effectively) my new approach within recent times.

Certainly, I would not, however have been able to pursue with any success

such investigations a decade ago. It is equally certain that, with the

earlier discrete-time results, it would not have been possible to bring

out and to realize effectively the significance and importance of the

inners. As a final note in this section, I might mention that when I

introduced in 1970 the inners concept, I was not aware of all the preceding

works related to the inners, and I have only become acquainted with most of

it since my earlier publications on the topic. I also believe that none of

the above mentioned authors was aware of all the known works on resultants

or bigradiants, with the results that their importance and significance

escaped many authors in the past. Householder [15] introduced the inners

determinants (bigradients) for the continuous-time case only as an alternate

method to the classical minor array form. As with Fuller's inners work,

he did not offer (and in fact disclaimed) any significant new results.

However, his thorough discussion and the very fact of bringing it to the

attention of readers is of much interest.

III. Applications

In this section of this survey we will present the many applications

of the inners concept to many diverse areas of control and system theories

as well as to other areas of interest to the Proceedings readers. These

including communication theory, bioengineering, network theory, digital

filtering, quantum physics, and sparse matrix theory. Undoubtedly as time

progresses we will find many more applications of the inners concept to

-10-
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other disciplines of science. In the area of control theory, we will

emphasize stability theory, positivity and non-negativity of polynomials,

controllability, observability and invertibility. The problem of stability

is mainly related to the root-clustering properties of a polynomial. Con

ditions for stability may be represented in terms of positive innerwise

matrices. The positivity and non-negativity conditions are related

to special root-distribution of polynomials. The conditions are given in

terms of the sign patterns of the determinants of inners. The controllability,

observability and invertibility conditions are presented in terms of the

rank of innerwise matrices. In all the above tests the innerwise matrices

have the same unifying pattern, namely the left triangle of zeros. This

pattern is of much significance in obtaining a simplified computational

algorithm for calculating both the sign and magnitude of the inners determin

ants. This computational algorithm which is recursive and can be easily

implemented on a digital computer and will be discussed in part V.

1. Root-Clustering Problems

In this section we will present the necessary and sufficient condition

for the roots of a real or complex polynomial to lie in a certain region in

the complex plane. Checking the stability of linear time-invariant dynamic

systems (both continuous-time and discrete-time) becomes a special case of

the root clustering problem, because it amounts to checking root clustering

in the open left half plane and the inside of the unit circle in the

complex plane.

The problem of stability has been the subject of extensive investi

gations by many mathematicians, physicists and engineers during the last
+

century. The early work of Hermite [28] in 1854 was the pioneering

t
A recent enlightening review written by A.T. Fuller, "The Historical and
Mathematical Background to Routh's Stability of Motion 1877", University
of Cambridge, 1974, is notable reading background reading.

-11-



investigation into this problem. This was followed by Routh [29], in 1877

and Hurwitz [30] in 1895. The celebrated result which solves the

stability problem for continuous-time systems is now known as the Routh-

Hurwitz problem. Further significant results on this problem are provided

by the Lienard-Chipart criterion [31] of 1914. The counterpart of these

investigations for the discrete case is the work of Schur [32], 1917, and

Cohn [33], 1922. Later work on this problem was published by Jury [34],

1962 and Anderson-Jury [35], 1973. Since the early work of Hermite several

hundreds of publications have appeared on the stability problem. It is

not the intention of this survey to mention all these publications but

merely to indicate one approach in detail that is based on the inners

concept. There exists another unifying approach to this problem of root-

clustering which is based on the use of quadratic or Hermitian forms. In

a related publication [36], the connection between these two approaches

has been investigated in detail. These two approaches can be regarded as two

sides of a single coin, for they are related to each other by matrix multipli

cation. The works of Hermite [28], Hankel [37], Markov [38], Lyapunov [39],

Schur [32] and others are more closely related to the use of Hermitian

forms.

Another related unifying approach based on the companion matrix method

tt ttt
is also presented by Barnett [23]. Furthermore, Barnett has

also obtainedthe interrelationship between his approach and the symmetric

matrix approach. A detailed discussion of these approaches and their

interrelationships are discussed in [3]. In this survey we will concentrate

on the inners approach. However the other approaches are also important.

For the root-clustering region we will present the following criteria

and indicate,whenever possible,the engineering applications:

t
See also the works of Marden [40].

4.4.

See also the survey by Barnett [174].
ttt

S. Barnett, SIAM J. Appl. Math 22, 84-86, 1972.
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*2n-l =

a. Root-clustering of a complex polynomial in open left half plane

Re[s] < 0 [3,40]

Let F(s) be represented as follows:

F(s) =sn +UU * K-J*a~l + K-2 +Jan-2)sn"2 +-

+ a0 + Jao (5)

The necessary and sufficient condition for the roots of F(s) = 0 to

lie in the open left half plane is that the 2n-l x 2n-l matrix A« - given

by equation (6) be positive innerwise (pi).

- a
n-1

n-1

- a

• • • 1

0

0

0

0

0

a* 1 -n-1

n-1 a' on-2
a"
an-3 aA-u- <-5 •*u

1

0

0

0

an-l

n-1 a* on-2 a" on-3 aA-u

an-3

a1 o
n-3

an-U

a« .
n-5

"an-5

a' j,n-4

ft"
n-U

a* cn-5

- an
n-6

1

0

a' n -n-1

a" nn-1
—

n-2

a"
an-2

a' a
n-3

-a» .
n-1

-

• • •

i

a" on-2

*1

• • • an-2 a« _
n-3

L

an-l+

h

• • • a"
an-2 a* o

n-3
a" a« -

n-5

i

a"
n-6

2 a'
an-7

0 0

0 0

..• 0 0

tt

0 0

0 0

0 0

0 0

L

t

n-1 h-2

f (-i)(n+l>/2 a«

tt (-D(n-1)/2 al
when n is odd, (-1) ' a*

(-Dn/2 *"0when n is odd,

-13-
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An alternative form of the necessary and sufficient condition for

the roots of F(s) to be in the open left half plane (especially when the

coefficient of s is not unity) is that a certain matrix A„ be positive

innerwise (pi). This criterion is called the generalized Routh-Hurwitz

criterion [37] and is obtained as follows:

Let F(js) be given as

F(js) =(bn +jcn)sn +(b^ +jc^s11-1 +... +bQ +jCo, cn ^0

then A? is given as:

r

ol

2n (8)

n n-1

Remark:

The application of the above criteria lies in the study of relative

stability of linear continuous systems. Also it arises in the study of

stability of two and multidimensional continuous filters. These will be

-14-
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discussed later . It is also of interest to note as indicated by House

holder [16] that |A2n| is the resultant of the real and complex polynomial

parts of equation (7).

b. Root-clustering of a real polynomial in the open left half plane

[Routh-Hurwitz criterion]:

If we let F(s) in (5) be a real polynomial with a! = a. (and aV = 0),

the condition that the matrix in (6) should be positive innerwise, becomes

t
equivalent to about two half-sized matrices being positive innerwise. These

two innerwise matrices whihc represent the odd and even inners can be combined

into one minor form matrix. This matrix is known to be the Hurwitz matrix

[37], and the stability condition reduces to the Hurwitz matrix being positive

tt
(i.e., all leading principal minors are positive). This discussion can be

easily explained by the following example.

Let F(s) be:

5 4 3 2F(s) = s + a,s + as + as + a-s + an = 0

From equation (6), we have:

1

0

0

0
"a3

0
al

0 0 0 0

1

0

0 'a3
0 al 0 0

0

0

1 0 -a3
0 al

0

0 0 0 1 0 "a3
0 al 0

0 0 0 0 a4
0

~a2
0

a

0 0 0 a4
0 "a2 0 ao 0

0

0

a4

0

a4

.34
0

-a2
0 ao

0

0

0

0
"a2 0 ao

0 0

0 "a?
0

ao
0 0 0 0

w

4*

Such formulation can also be obtained from equation (8).

t+This definition is sometimes used in the literature.
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Some study of the above matrix will show that it is positive innerwise

if and only if the following two matrices are positive innerwise.

\ • . A,

"l

0

a3 ai 0 0

1 a. a. 0
3 1

0

0

0 a4

art

A ^
a~

ao

0

ai

4 2 0
An

a« a« 0 Jo
- A 2 0 ~J

The innerwise matrices can be combined into one matrix as follows:

l5H

!4
1

a2 ao

1
a3

A
2

al

0
a4 a2 (11)

(10)

The above matrix may be recognizable as the Hurwitz matrix for n = 5

In case the coefficient of s is a an arbitrary positive constant then

instead of unity, the entry a appears in the above matrix.

It is of interest to note as indicated by Miiller [20] that the
n n .

resultant of the characteristic polynomials £ a.s and £ a.(-s)
i=0 ± i=0

is related to the square of the Hurwitz matrix determinant. This can be

easily verified from Orlando's relationship [37].+ Thus a connection

between resultants and Hurwitz matrix determinant can be established.

See also reference [68]
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Lienard-Chipart Criterion [14,31]:

Let F(s) be the real polynomial

«/ \ n . »n~lF(s) = a s + a -s
n n-1

+ ... +alS +aQ, an> 0 (12)

The necessary and sufficient conditions for the roots of F(s) - 0 to

lie in the open left half-plane can be given as follows.

1. The a!s (or any half of them in a special ordering) be positive.

o e2. The following matrices A 1 and A _ for n-odd and n-even respectively,

are positive innerwise.

-1n
0 . . . . 0

n-1
(13)

n-1

n-1

a n . . 0
n-0

a2 a0 0 .... 01

It is of interest to note that the above innerwise matrix is

the resultant of the even and odd parts of F(s) [23].

-17-
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c Root-clustering of a complex polynomial inside the unit circle,

Schur Criterion T32.21:

Let F(z) be represented as

F(z) Vn +Vi2^1 +•••+V +a0 (15)

The necessary and sufficient condition for:, the roots of F(z) = 0

in (15) with complex coefficients a, to lie inside the unit circle is

that the following matrix A2n be positive innerwise (pi).

n

2n

n-1
a1 0 0

a
n

0

0

0

0

ao

a 1n-1
a „
n-2

0 0
a0

al

a2

an-2

a ,
n-1

a
n

a
n

0

0

, =0

a in-1
0

ao

al

Vl

a
n

a
n

>

ao

a
n

si 0

ai a2 0 0

a . 0 0
n-1

The bar indicates complex conjugate.

0 a '
/- 0

n'

(16)

Remarks:

1. In his earlier publication, Schur [32] presented his criterion

as one requiring the determinants of n matrices to be positive. Hence for

evaluating the positive sign one needs to find the determinants of n matrices,

The above form is a modification of Schur criterion as obtained by Jury [2].

It involves only one matrix whose entries follow a simple pattern. This

matrix has a left triangle of zeros as with equations (6) and (8). Hence

a unified form for the stability criteria for the left half plane and for

-18-
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the unit circle is obtained.

2. One application of the above criterion lies in the stability

study of two and multidimensional recursive digital filters. This appli

cation will be discussed in Section III.2.(d)

3. It may be noted following Schur-Cohn [32,33] the innerwise matrix

A2n is the resultant of F(z) and F (z) where F (z) = znF(l/z) and F(z) is

the same as F(z) except that all coefficients are replaced by their complex
4.4.

conjugates. Thus it is related to the critical stability constraints [3].

d. Root clustering of a real polynomial inside the unit circle [34,2]:

When the coefficients in (15) are real, then the root-clustering

condition within the unit circle can be further simplified, as happens with

the Hurwitz criterion, in the following way.

A necessary and sufficient condition for the root of F(z) (with a>0)

to lie inside the unit circle is:

n
F(l) > 0, (-1) F(-l) > 0 (17)

and the matrices A— , = X ,, + Y _ are positive innerwise (pi), where
n-1 n+1 — n-1

tt

X
n-1

(18)

This is also recently discussed by Kalman [172] and Barnett [69]

See also reference [68].
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n-1
(19)

n-2

We may note that the matrices L-_± are matrices with a left triangle of
zeros.

Simplified Determinantal Criterion [35]:

Analogously to the Lienard-Chipart Criterion for left half plane, we

also have the following simplified determinental criterion.

The necessary and sufficient condition for the roots of the real

polynomial F(z) =0 (with an > 0) to lie inside the unit circle is given by:

1. The matrix An_1 is positive innerwise (pi) ^n}

2. For n-odd, n= 2m-l, either

where

Note that

B2i >°' B2m-1 » °> or B2i+1 >0. BQ >0
i = 0,1,..., m-1

2m-l

B±£ I [K-D^-^a^)^1:1)
r=0 j

B2m-1 ° F(1) and B0 = "F(~1)

For n-even, n A. 2m, either

B2i > °* i = °»1»"«»m

or

B9<+i >0»"Bn > °» Bo™ > 0, i = 0,1,...,m-12m

-20-
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(23)
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where

2m

B = I [ E(-D
1 r=0 j

r-HL-j ,rN /2m-r.

ar(j)(i-j} (26)

[The summation over j is governed by max(0,2m-r-i) <^ j <_min(i,r)]

Note

Bn = F(-l), B. = F(l) (27)
0 2m

The form of (24) and (26) arises in the following way:

The coefficients B. are obtained from the bilinear transformation of
i

the polynomial F(z) to F-(w), whose roots are in the open left half plane.

Remark:

Having expressed the stability criteria for continuous-time and discrete-

time linear time-invariant systems, it should be clear that the innerwise

conditions provide a unifying form for stating the stability conditions.

This is illustrated in the following example:

Example: Let

4 3 2F(z) = a^z + a3z + a2z +az+ aQ, a, >0

The stability condition in the open left half plane is [12]

(a) .a > 0, k = 0, 1, 2, 3 (or half of them as noted by

Gantmacher [37])

(b) In the Hurwitz matrix,

A« =

1J

All > °» lA3l >0

-21-
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The inner form of the preceding Hurwitz matrix can be easily obtained using

t
the inner minor-array transformation [41] as follows:

a4 a2 ao

s1- :°> a3
A1

al

a0 a, X 0
3 1

(32)

The stability condition as presented above is that A« be positive

innerwise (pi) plus condition (a) above.

It is of interest to note that Fuller [12] had reversed the above procedure;

he transformed the innerwise form of (32) which he derived into the minor-

array form (Hurwitz) as can be easily done. At that time this was a natural

thing to do because the Hurwitz form has a simple pattern for its generation

(as in the innerwise form) and the Hurwitz form is after all, one of the

most popular and well known today in stability study.

For the same polynomial, the stability condition within the unit circle

is

F(l) > 0, F(-l) > 0 (33)

and A-r- are positive innerwise (or, equivalently, the simplified determinantal

criterion).

+
For instance to obtain Aq> we have

A3 = X3 + Y3 =

or

a4 a3 a2

0 a4 a3 +

0 0 a4

0 0

0 art a,
0 1

a0 al a2

(34)

It may be noted that inners can also be transformed to minors (other than
leading principal) as done by Barnett [69]. He termed these minors as
"Outers."
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4- s>
a3 a2+a0

a4+a0 a3+al

al Al a4+a2

Al can be obtained similarly.

(35)

The innerwise matrix A3 can be transformed directly into the

minor array form [43] whereby the inner h± becomes the leading

principal minor array and the determinant values of the matrices are

the same. The transformed array is given by

*, -

a.+a
_4_ _

a3

°-a'+
0

a4

a3+al

a2+a0

al ao
a4+a2

w.

Remarks:

(36)

1. In comparing the inner form for the left half-plane and for

the unit circle, the first element of the second row in both cases is
+

zero. This is the unifying feature.' The minor array form has no such

unifying pattern. Furthermore, there exists no inner-minor array
4.

transformation that makes the first element of the third row in A3

zero, as in the left half-plane. This is also valid for any n and

for more general regions in the complex plane.

2. Fuller [12] in his earlier work did not recognize this fact

because he was not considering the discrete case. Furthermore, Householder

[15], though he recognized that the inner form could result through bilinear

transformation from the left half-plane to the inside of the unit circle or

certain other regions, did not exhibit it directly from the available

This unifying feature is important in computing the determinants of the
inners as will be shown in part IV.
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criteria of Schur-Cohn or for the other criteria available for other

regions in the complex plane. Furthermore, he worked with complex

polynomials and was not aware of the earlier work of Fuller for the real

polynomial case (where the simplification of Lienard-Chipart criterion

arises). it appears now that in the early works of Fuller and House

holder the stability criteria for the discrete case were not available or

studied in detail and thus the unifying pattern was clearly not apparent,

except through bilinear transformation as indicated by Householder [15].

3. The relationships between the Hermite-Schur-Cohn, Lienard-Chipart

and the simplified determinantal matrices were recently obtained through the

bilinear transformation [42].

4. The root clustering problem for a complex polynomial f(s) is

equivalent to that for a real polynomial of twice the degree, viz f (s)f(s).

e. Root-clustering in a certain sector in the left half-plane

(Relative stability) [3,43,44]:

The relative stability of dynamic systems is important in obtaining

an acceptable transient response. Mathematically, this problem is

represented by finding the necessary and sufficient condition for the

roots of the system's characteristic equation to lie in a certain sector

in the left half of the s-plane. This sector is defined by a certain

damping ratio X> as shown in Figure 1.

Consider the characteristic eqution of the linear system in the

form

n

F(s) = I *lsK, a > 0 (37)
k=0 K n
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If the complex variable s is substituted by a function of a variable W

s=We3<9-*/2) (38)

the left half of the s-plane that is to the left of the straight line in

Figure 1 is mapped into the left half of the W-plane as shown in Figure 2.

After the application of the substitution of (38) in F(s) of (37), one

obtains the characteristic equation:

F.CW) = I , ejk(N/2) iJk =0 (39)
1 k=0 k

Now consider,

Fi <JW) = I a. ejk6 Wk =0 (40)
1 k=0 fc

ik9
The coefficients a e can be developed in the form:

\ eJke • \ +Jck <">

To check the conditions for the roots of (39) to lie in the left

half of the W-plane, we can apply the Hurwitz form (or the Generalized

Routh-Hurwitz Criterion discussed earlier) to F-(jW). This is

represented in equation (7) as being positive innerwise (pi) where,

v

b = (-1) a/T,(C), T (0 = Chebyshev function of the first kind;

:k =(-Dk+1 a^ A-C2 \(C) >\(0 =Chebyshev function of second

kind, with

TQ(C) = 1, TX(C) = ,UQ(0 =0, UX(C) =1.

The damping ratio C determines the relative stability or the sector angle

in the s-plane. Using the form (5) for F (W), the relative stability
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condition can be more conveniently represented as a requirement that the

A2n-1 matrix of equation (6) be positive innerwise (p.i.).

f. Root-clustering on the negative real axis (Aperiodicity)

[13,45,46,47]:

The problem of aperiodicity arises in obtaining a response which

has no oscillations or has oscillations of finite number only.

Mathematically, this is represented by obtaining the necessary and

sufficient condition for all the roots of the characteristic equation

to be distinct and on the negative real axis. This would also include

stability. These conditions are obtained from equation (12) as follows:

1. All the a *s are positive.

2. The following 2n-l x 2n-l matrix A2 , is positive innerwise.

n

n

2n-l

n-1 *n-2 n-3

- - ————

a
n

0

a
n-1 a On-2

(n-l)an .
n—lL?!il

na
n

(n-l)an.
"1

(n-2)a^ „
n—z

ln-4

n-3

(n-2)a
n-2

(n-3)a
n-3

0 ... a

0 ... 0

0 ... 0

0 ... 0

0 ... n
n

(n-l)an_1 (n-2)an_2 (n-3)an_3 (n-4>V4

na ... 3a0 2a0
n 3 2

t dF(z)
The above matrix is the resultant of F(z) and ,N f

dz

-26-
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.. 0

•• ac

.. a3

.. 0

... 0

... 0
'J
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g. Root-clustering within the unity shifted unit circle (stability

of discrete systems) [3,48]:

In the study of discrete systems it is often desirable to present

the formulation of stability in the i|) = z - 1 plane where the roots of

the characteristic equation F(z) = 0 in (5) should be within the

shifted circle as shown in Figure 3. The necessary and sufficient

condition for such root-clustering is formulated in [48]. It is

expressed in inners form as follows:

1. For n-even

F(0) > 0

F(-2) > 0
(43)

and the following (n-1) x (n-1) matrix be is positive innerwise in

addition to the coefficients A (or half of them in a special ordering)

given below being positive.

n-1

0, 2,p-l 4,p-2

0,p
\

2,p-l 4,p-2

/

/

ao,p

v>
/

l,r

A2,p-:L A4,p-2

A3,r-1

L A5,r-2

1An
1 ,r

A3,r-:

/

/

o/

l,r

/

i.r
A * A "A3,r-1 A5,r-2

-27-
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where,

and

p = r =
n-2

A = I (-Dy (y+V) a
m,V vi=0 y m~y

m = 0,1,2,...,n

v = 0,1,2,...,p or r

2. For n-odd

F(0) > 0

F(-2) < 0

(45)

(46)

and the following (n-1) x (n-1) matrix is positive innerwise as well

as the coefficients A (or half of them in a special ordering) given

below being positive.

n-1

where

l,r

\

0X
N

•
• \

. • \

•

k

0

0

. 0

3,r-l

I • y
y

Al,r A3,r-1
V

/

Vp A2,p-1
/

/

0,p 2,p-l

n-3 , -
r = — , p = r + 1

-28-
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and
m

V <»+V) a . Note: A« - a. <49>A = Y (-1V r ) a , huuc. «n t - <xn
m>v y=0 y U

m - 0,1,2,...,n

v = 0,1,2,..., p or r

h. Necessary and sufficient condition for, all the roots of a real

polynomial to be distinct and to lie on the real axis [3,49]:

The necessary and sufficient condition that (2) has all its roots

real and distinct is that A2 . in equation (42) be positive innerwise (p.i.)

System theory applications of this condition can be found in dis

tributed parameters system. In particular the existence and uniqueness

of the solution of the partial differential equation which arise as in

Lossless Transmission Lines [50] can be tested.

i. Necessary and sufficient condition for root-clustering on the

imaginary axis [2,3]:

For a polynomial

F(z) =az2n +a ,z2n~2 + ... + anz2 + an (50)
n n-1 1 0

to have all its roots distinct and pure imaginary, it is necessary and

sufficient that

1. All the coefficients of F(z) be positive and

2. The matrix A given in equation (42) be positive innerwise

(pi) •
Application of the above condition lies in obtaining a sufficient

condition for a function to be positive real, as will be discussed later.
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j. Physical Realization of an RC Passive Network [51]:

The necessary and sufficient conditions for a rational function

/\ Dis +b«s +

2^=f^= ^n, "n-1
as + a ,s
n n-1

+ blS + bQ

+ a1s + an

to be realizable as the driving point impedance of an RC network can be

formulated as follows:

1) All the a.fs and b.'s are positive,
li

(51)

2) The following matrix A of dimension (2n-l x 2n-l) is positive innerwise

(Pi).

A =

a a n
n n-1

n-1 *

b _ b n .
n-1 n-2

a2 al a0

a2 al

a
n

0

bn-l

n-1 an-2

b ,
n-1 bn-2

bn-3bn-2

b2 bl b0

bl b0 °

0 0

0 0

T

In case the degrees of the numerator and denominator are the same, write
Z(s) = r + Z (s) where Z.(s) is of the form (51), and r > 0.

-30-

(52)



k. Physical Realization of an LC Passive Network [51]:

The necessary and sufficient conditions for

„ b^-2n-1 +b^2n'3+"+V (53)

to be realizable as the driving point impedance of an LC passive network

are the same as conditions (1) and (2) of (j).

Remark:

The conditions in (j) and (k) are also root-clustering conditions.

The condition in j ensures the interlacing of poles and zeros of eqn. (49)

on the negative real axis, while the condition in k ensures such interlacing

on the imaginary axis.

I, Physical Realizability of the Impedance Function of Short-Circuited

Cascade of Uniform Lossless Transmission Lines (SCULL), [52,53]:

The physical realization condition can be expressed by the following

theorem:

Theorem 1:
su N su

n m > U

The reflection function ys) =F(s) ~F(~S)esu »with F(s) =2^°^
F(s) + F(-s)e n n=0

is a positive real function of s if it reduces to COnstant under repeated

application of the algorithm in [54]. When F(s) has integer exponents, the

reflection function ipQ(s) is the impedance function of short circuited

cascade of uniform, lossless transmission lines, and hence the test

reduces to
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F(s)
s=0

>0, (-1)N F(s) > 0

S=JTT
(54)

N

with F(s)=^ckeks, cN>0 (55)

k=0

and,

^n_i ~ xn-1 ± Yn_i» ls positive innerwise (p.i.), where

h-i =

N-1

°N ^-1 °N-2

0 °N Vl

0 0

0 0

0 c,

'0 *

Lc° cl c2

• •

• • ^

°N-4

°N-3

°N-2

(56)

(57)

Remark:

We can also use the above theorem for F(s) in (53a), provided the

exponents u are rationally related [54]. This would allow us to apply

the positive innerwise condition for non-uniformly discrete and distributed

parameter systems.

This matrix has a left triangle of zeros.
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m. Root-Clustering Within the Biological Region Tfi (Study of Bioengineering

Modelling) [55,56]:

The application of inners to the study of models which belong to the

neuromuscular control systems has been extensively studied [55,56], the field

of neuromuscular control systems has made in [55,56]; the salient features

necessary to define the root clustering region will be introduced.

Research has shown [56] that linear models which approximate muscles

are connections of first order systems; thus all the roots of the model

characteristic equation lie on the negative real axis. The vestibular

system may also be characterized as having negative real roots. Analysis

of the visual eye tracking system has yielded models of varying complexity

that have complex and negative real roots. The accomodation system, which

controls the power of the lens of the eye, and the pupillary system, which

controls the diameter of the pupil, may both be modelled by linear systems

with complex and negative roots. The neuromuscular system that controls

the hand may be modelled by a highly underdamped second order system.

These models define a region r_ depicted in Figure 4 within, which the

roots of most neuromuscular control systems are proposed to lie.

The region r will be chosen as a biconvex lenticular surface which

may be described as the intersection of two circles similar to those

depicted in Fig. (5), of equal radius shifted about the real axis to

enclose the roots of neuromuscular systems. Performing a transformation

to the unit circle in the z-plane for both circles with the subsequent

change in the coefficients of the original characteristic equation one

may be able to apply the results of part (d) for each circle and ascertain

whether the roots of the model characteristic equation lie within rfi. The

transformation to the unit circle is given by

w=(z-zQ)/p (58>
-33-



Hence the inners test provides an initial check on the appropriateness

of the model and increase the probability that it could accurately represent

the physical system. This would circumvent the tedious process of simu

lation of an inaccurate model.

n- Root-Clustering in More Generalized Regions [36,57-60]:

So far in the applications we have discussed specific regions of root-

clustering in the complex plane which are of significant engineering

application. However, from the mathematical point of view one is interested

in more generalized regions for root-clustering problems. Such problems

have been recently re-examined [57,58,59,60]. In the following we will

present a review of those results [57,36].

Let

n n

F<Z> '.£Vk =an TT (Z"V <»>
k=0 k=l

an * °» V Xi E C» k = °» 1» '••» n, i = 1, 2, • n

be a polynomial whose root-clustering is to be investigated. Let the

region r be given as follows:

r= {z|y(z)|2 - |«s(z)|2 >0} (60)

where y(z) and 6(z) are given polynomial and

|y(z)|2 - |<5(z)|2 ± constant for all zGr (61)

Cases:

21. If 6(z) = z - zQ, y(z) = r , r^R, then r in (60) is a circle

-34-
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centered at zQ, with radius r. If z. « 0, r = 1, then r is the unit

circle.

2. If y(z) = pz - g, 6(z) = pz - e, P, 3, e <C, then T is one of the

two half-planes divided by a straight line. In particular, if y(z) = z - 1,

6(z) = z + 1, then r is the open left half plane.

2 2
3. If y(z) = z -1, 6(z) = z , then T is a hyperbola.

2
4. If y(z) = 2z, 6(z) = z -1, then T is a certain region (distorted

circle) excluding the origin. Similarly, other regions can also be in

vestigated.

Remarks:

1. For the region r expressed in (58) one can formulate the root-

clustering problems in terms of a positive definite hermitian matrix as

shown by Kalman [57] or by a positive innerwise matrix as shown by Jury-

Ahn [36].

2. An alternate region ft that includes half-planes, circles, hyperbolas,

ellipses, and parobolas for the root clustering has been recently obtained

[58]. This region differs from T because it also contains ellipses and

parabolas. Again the condition for root-clustering can be formulated in

terms of a positive definite hermitian matrix or alternatively in terms of

a positive innerwise matrix.

3. The following question still remains open: "What is the largest

class of regions in the complex plane where the criteria can be expressed

by rational functions of only the coefficients (and their complex conjugates)

of the given polynomial?". This author believes that additional constraints

are needed for enlarging the regions discussed in this survey. Recent results

f
which stem from decision algebra formulations, shows that in principle any

region bounded by algebraic curves is a possible candidate.

B.D.O. Anderson, N.K. Bose and E.I. Jury, "Output Feedback Stabilization and
Related Problems, Solutions Via Decision Methods. To appear in IEEE Trans,
in A-C, Feb., 1975.
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°« Positive Innerwise and Positive Definite Symmetric Matrix

Relationships [3,36,61]:

In the preceding applications we showed the application of the

notion of a positive innerwise matrix to the root-clustering problem.

However, this notion can be extended to show its equivalence to any

positive definite symmetric matrix.

The test for positive definiteness of a symmetric matrix arises from

checking the positivity condition of the following quadratic form in x.

T T
Q = x Px, where x = transpose x. (62)

The necessary and sufficient condition for the quadratic form to be

positive is that P be positive definite, i.e.

p > 0 (63)

Without loss of generality we can take P to be symmetric matrix.

Using Sylvester's Theorem, the positivity condition is that all the

leading principal minors of P are positive.

If we denote these principal minors as D-, D«, .. D then we obtain

the values of n determinants. We can let these determinants be the leading

principal minors of Hurwitz matrix associated with a stability test for a real

polynomial in relation to the left half plane. Based on results obtained

[62,63] for the inverse Hurwitz Problem we can generate the coefficients of

the real polynomial. Having obtained them we can easily generate the innerwise

form for stability in the open left half plane. Hence we can obtain an innerwise

matrix for any symmetric matrix for which positive definiteness is required.

Also from a given positive innerwise matrix we can generate a positive

definite symmetric matrix and thus the appropriate quadratic form.

-36-



Remark:

We can also obtain an equivalent innerwise matrix for a real polynomial

whose roots should be inside the unit circle. This can also be done in

view of the known results [64] on the inverse Schur-Cohn stability criterion.

2. This correspondence between positive definite symmetric and

positive innerwise matrix is of importance not only for the root-clustering

problems but probably for other applications. It is hoped that in the

future this correspondence can be further utilized and explored.

3. An obvious necessary condition for a matrix to be positive definite is

that it be positive innerwise. This condition is obvious and was discussed in [3]

p. Positive Innerwise Matrix in Least Squares Prediction Problems f65,66]:

In a recent publication, Berkhout [65] has shown that certain algorithms

for the stability test of linear discrete systems and the algorithms for

least-square prediction of stationary discrete-time sequence are closely related.

The point is that recursions in Levinson's [67] algorithm for the latter

problem are the same as those given by Cohn [33]. In his formulation,

Berkhout also obtained a condition involving a positive innerwise matrix.

In Levinson, the basic least-squares prediction equation is

N

^fN(m)R(k-m) =c6 Q(k=0,l,...,N) (64)
m=0

where R represents the autocorrelation function of the stationary sequence.

The function f«(m) represents the impulse response of the optimum

"inverse filter."

Equation (64) can be written in a matrix form (choosing c such that

f (0) = 1) as follows: (The star asterisk denotes complex conjugate)
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R(0) R(D

R*(N-2) R*(N-3)

R*(N-1) R*(N-2)

R*(N) R*(N-1)

or

R'F' = C'.

R(N-2) R(N-l) R(N)

R(0) R(D R(2) 0

0

R(D-

R(0).

R (1)

R (2)

0

R(0)

*

R (1)

0

R(D 0

M

R(0) m' 0 . •

R*(D R(0)

0 0

i

R*(2) R*(l)
M.

0

0

0

R(N-l)

R(N-2)

R (N) R*(N-1) R*(N-2)---R(0)

fN00

fN(2)

fN(D

fN*(D
*

f*(N)

(65)

From equation (65), Berkhout verified that the determinants of the Inners,

ML of R1 can be written as:
n"

|M
n K-n-ll

M
n-11

- » for n = 0, 1, ..., N-1
n1

(66)

with Im^I = 1, and |Afc| is the Schur determinant of order 2k.

Berkhout concluded that the linear discrete system, represented by

the characteristic polynomial PN(z) =z^U/z) ,f is stable if and only if
R1 in equation (65) is positive innerwise. The above can be also ascertained

from the application of part III section (c) and equation (66).

Remarks:

1. The above results indicate an application of the inners concept

N
m

The polynomial F„(z) is defined as FM(z) = 5Z FM(m)z
N N p0
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to problems of communication theory. In an outstanding survey, Kailath

[66] had thoroughly discussed Levinson's work as well as its connection with

orthogonal polynomials and other properties of least-square prediction problems!

Hence, it appears that much can be exploited from this work in future research.

2. The innerwise matrix of equation (65) has no left triangle of

zeros. Thus, it is not in the form of Sylvester's matrix. This supports

my general definition of innerwise matrices. It is an open question

whether the matrix Rf can be transformed to an innerwise matrix with

left triangle of zeros.

2. Special Root-Distribution Problems:

In this section we will present necessary and sufficient conditions

for positivity and non-negativity of polynomials. These conditions are

related to the concept of positive real functions, which was first intro

duced by Brune [70], and which has found many applications in the synthesis of

electric networks [71,72]. In recent years this concept has become of

importance in many diverse areas, such as the absolute stability [73-75],

hyperstability, optimality [76-78] and sensitivity [77] of dynamic systems.

In presenting the inners concept for this problem, we will present

the conditions first for regular real polynomials and then for even

polynomials that arise in the positive real functions. A complete dis

cussion of these problems appear in [3].

a. Positivity of real polynomials:

Determination of sign definiteness of forms is necessary in stability

studies of nonlinear autonomous systems, via the direct method of Lyapunov.

The positivity of quadratic forms is simple to determine as discussed in

[79]. Results for determining the positive definiteness of binary
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quartic forms are available [79-81]. In this discussion we will express

the positive definiteness condition in terms of signs of the inner determinants

[81].

A binary form of degree n is expressed as follows:

tt/ \ n _i_ n,~l i • n—1 . n //r-7\V(xrx2) = a^ + an_lXl x2 + ••• + a^^ + a^ (67)

It is a simple matter to show that V(x-,x„) > 0, for all x-, x« not

simultaneously zero if and only if, the single variable non-homogeneous

polynomial

V. (x) =ax +a ,x + ••• + a.x + a0 (68)
1 n n-1 1 0

is (i) devoid of any real root

and (ii) has V.^0) = aQ >0 , (69)

The test of condition (69) is based on the following theorem [3].

Theorem 2:

The number of distinct real roots, N, of equation [68] with a > 0

is

N=Var. [1, -|A^|,|A3|,...(-l)n|A^n>_1|] -Var. [1, \^\, |A3|,...,|A2n_11]

where "Var." denotes the number of variation of signs, and |A.|, i = l,3,..,2n-l

are the inner determinants in the innerwise matrix A- shown below

in equation (71), and |A„ ,| ^ 0. Critical cases when other A.s may be zero

are handled routinely [37]. When the discriminant [23], |a« nI= 0, the

greatest common factor, V«(x) of V-(x) and -j— can be routinely extracted
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J A
2n-l

using the inners [3] and hence (70) is applied to V2(x).

Another way the inners can be used to test (68) is to transform

V (x) of (69) into V (jx) and hence the positivity condition reduces to

one for the absence of pure imaginary roots of V^jx). Now

V.(jx) is a complex polynomial of degree "n" and can be easily used to

generate a real polynomial of degree "2n" by coefficient conjugation. The

absence of imaginary roots of the "2n" degree real polynomial can be readily

ascertained by the inners formulation [3] and its associated algorithm for

computing the inners determinants,as will be discussed later on.

Remarks:

1. The condition for positivity requires that N = 0 in equation (69).

This indicates that there exists many alternative sign patterns for the

inners determinants for satisfying this condition. Hence, the positivity

test is much more complicated than the stability test, in which case one

needs to satisfy one positive innerwise matrix condition.
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2. For literal coefficients (i.e. coefficients which are not numbers)

in equation (68), one can formulate the positivity conditions for only

lower order "n". For higher order n, i.e. n > 4, the conditions become

extremely complicated [3].

b. Positivity of even real polynomials:

One of the conditions in the test for strictly positive real functions

[74] is the requirement that an even real polynomial be positive for all

o), that is,

n(u2) >0 for all a) (72)

In reference [3], it is shown that the testing of condition (72) reduces

to that of checking if F(z) as defined by equation (50) is devoid of

any positive real roots [74]. This condition can be ascertained using

the inners determinants by letting N = 0 in the following theorem:

Theorem 3: [3,82]

The number of distinct positive real roots of F(z) = 0 given in

aqn. (50) is

N=Var [1, - |A*|, |A?|, ..., (-l)n|A?J]z n zn (?3)

-Var [1, |A^|, |a*J ...., lA^J]

1 2where A is given in eqn. (71) and A of dimension 2n x 2n is given as

follows:
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J4,

Remarks:

1. In the counting of N in (73), some of the -|A. |*s could be zero,

but |a? I= (-l)naJAi .Ii 0. For such a situation, a modification
1 2n' 0 Zn—1'

indicated by Gantmacher [37] for the Hurwitz determinants can be readily

adopted for this case too. A discussion of^these critical cases will be

briefly mentioned later and is thoroughly discussed in [3]. It should be noted

that IaJ ,I can be zero and positivity still holds.
1 2n—1'

2. A sufficient condition for an even polynomial to be positive is

that all its roots are distinct and on the imaginary axis [82]. This condition

is presented in part III Section i [1,2]. This fact can be used to establish

the connection between positive innerwise (pi), positive definite (pd) and

positive real (pr) conditions [82].

3. The general condition required in checking positive realness of a

function is that a certain even polynomial be nonnegative.

It may be noted that this equation represents the Sylvester resultant
and Subresultants of F(y) and d/dy F(y), where y = z in (50).
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2
n(w ) >_ 0 for all w. (75)

Condition (75) is equivalent [74] to that of requiring the roots of

F(z) =0 in eqn. (50) to be devoid of positive real roots of odd

multiplicity. This condition can be also ascertained from eqn. (73) by

considering all the critical cases.

4. An alternate and effective approach was suggested and applied

by Siljak [74,3]. In this approach we rotate the real axis by 90° degrees

counterclockwise to obtain n(juj). The positivity and nonnegativity re-
2

quirement on n(o> ) is now reduced to that of having no pure Imaginary

roots in n(jtu) or having pure imaginary roots with even multiplicity. This

positivity condition can be achieved by requiring II(ja>) which is of degree

2n to have n roots with positive real part and thus, (because of symmetry,

to also have n roots with negative real part). Hence the Routh Table [29]
4.

can be readily applied and also the inner matrix of eqn. (8 ) can be also

used. This approach seems easier because the critical cases can be readily

handled as known from Routh Table and the inners determinants [83].

c- Positivity and nonnegativity of reciprocal polynomials that

arise in discrete systems [84]:

Similarly to the continuous case, we can also present the algebraic

criterion for positive realness of real rational functions with

respect to the unit circle in the complex plane. This criterion

can be used in the quantitative analysis of stability and exponential

stability of nonlinear discrete systems [85-87]. The algebraic

criterion can be formulated as the requirement that the following

t
Another form of use of Routh Table for testing positivity was also
applied by Fryer [100]. See also Van Vleck [173].
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polynomial, (reciprocal with respect to the unit circle)

««=Zv^k +z^ (76)
k=0

have no roots on the unit circle for positivity and roots on the unit

circle of even multiplicity for the nonnegativity condition.

Remarks:

1. The positivity and nonnegativity test can be computationally

implemented using the table form [26,88] or by using the inners determinants

In this case the innerwise matrix A_ of eqn. (16) can be obtained from

4,

ts.f(z)] ( the conjugate of the derivative of g(z) with respect to z) [3].

In this way we can determine the root distribution on the unit circle and

thus test the needed conditions.

2. The positive realness condition can be extended to more general

regions than the imaginary axis or the unit circle. Again the

inners concept can be used for ascertaining the required tests.

d. Matrix Generalization [74,84,89,90]:

The conditions for positive realness and strict positive realness

for rational matrices in both the continuous and discrete cases are of

much importance. The positivity condition arises in the stability study

of multinonlinear continuous and discrete control systems as well as other

applications [91,92].

The strict positivity conditions arise in the stability tests of

two and multidimensional continuous filters and multidimensional recursive

digital filters [93-97].

For the continuous case the condition can be formulated as that
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m x m polynomial matrix

r(jw) >0 for all a) >_ 0 (77)+

The matrix in eqn. (77) is Hermitian and hence the strict positivity

condition can be ascertained from the discussion of items (a and b). For the

discrete case, we require that the following Hermitian matrix

++

T(z) > 0 (78)

for all z on |z| = 1

The discussions of (c) explain how to check this condition. The

conditions for positivity, i.e. r(jw) >_ 0 and T(z) >_ 0 can be also ascer

tained from the previous discussions. However in this case the test

becomes much more complicated.

Remark: [91,98]

In the strict positive realness conditions for both continuous

and discrete systems, we can simplify the conditions by assuming that the

positivity conditions are satisfied at one point. That is, for certain

parameters in r(ju>), or T(z) it is known that r(joO > 0 for w- >_ 0 and

r(z;.) > 0 for a certain z on the unit circle.

Under the above assumptions the test for strict positivity reduces to

|r(ju))| > 0, for all a) and r(0) > 0 (79)

for the continuous case, or

|r(z)| > 0, for all z: |z| =land T(l) > 0 (80)

tThis matrix is defined as r(jw) = p (jt»)Q(jio) + p(jw)Q (jw), where the system

transmission matrix G(s) = /( and Q(s) is a real polynomial mxm matrix and p(s)

is a real scalar polynomial [3].

++This matrix is defined as T(z) = p(z)p(z*) [G*(z)+G(z)], where G(z) =^1
P(z)
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for the discrete case.

In concluding this section, one may notice that with the advent of

the inners notion, the difficult problem of testing for positivity and non-

negativity can be readily handled in a unified fashion in both continuous

and discrete cases. Furthermore, with the development of the computational

algorithm for inners the computational burden is much reduced. I believe

that inners have aided our understanding of the conditions and thus the Brune

problem posed more than four decades ago is now reduced to the use of compu

tational algorithms for inners. Of course other computational algorithms

exist for testing the positivity conditions.

3. General Root-Distribution Problems:

In this section we will present certain theorems related to the root

distribution of polynomials (real or complex) in certain regions in the

complex plane. In this case the sign variation of the inners determinants

plays an important role in obtaining information on the number of roots

in a certain region in the complex plane. Many excellent mathematical

tests and a tremendous number of article publications exist in the literature,

We will only present a few of the pertinent theorems which are related to

the applications mentioned in this survey. We will also defer the discussion

of the critical cases until a later section of this survey.

Theorem 4 [40]:

Consider the polynomial having no pure imaginary zeros

F(s) =sn +(an-1 +jbn_1) s11"1 +(an_1 +jb^) sn~2 +•••+<ax +jb^ s

+ (aQ + jbQ) (81)

where a., b are real

If the |A£s| of the innerwise matrix A of eqn. (82) are nonzero

for k = l,2,...n, then
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where Var. means variation of sign and p and q are the number of zeros of

F(s) = 0 in the half planes.

Re(s) > 0, and Re(s) < 0 respectively (85)

The critical cases of the above theorem are discussed in the literature [40]

The necessary and sufficient condition for F(s) to have all its zeros

(rootH) In the open left luiJ i plane in that the mnlrJx A,% , be positive
.2n-l r

innerwise (p.i.).

Remark:

When the polynomial is real, i.e. b.'s are zero, then the same conditions

holds provided the various entries of the b 's = 0 in the innerwise matrix are

inserted respectively. Note that when A2 is (ni) then theorem 4 gives

information on the root distribution i.e. in this case p = 1 and q = n-1.

Theorem 5:

Consider the polynomial

Tl Tl 1

F(z) = a z + & z + ••• + a-z + an, with a ^ 0
n n-l l 0 n

(86)

where a , a ., ••• are complex,
n n—± r

If the |A's| of the innerwise matrix A« given in eqn. (16) are

nonzero for k = l,2,...n, then

p=Var[l,|A2|,|A4|,|A6|,...|A2n|] (87)

q=Var[l,-|A2|,|A4|,...(-l)n|A2n|2 (88)

where p and q are the numbers of roots outside and inside the unit circle

respectively. Note that A2n is (pi) when all the roots are inside the

unit circle.
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Theorem 6:

When the polynomial F(z) given in eqn. (86) is real (with a^ > 0) then

the root distribution problem can be simplified by considering the sign

variation of two innerwise matrices [3] of size half that of the Schur-

Cohn matrix A« .
2n

Theorem 7: [99]

The number of distinct negative real roots of F(z) in Eqn. (86), is:

N=Var[l, -|A*|, |a*|, ... (-l)n Ia^J] (89)

-Var[l, -|a*|, |a*|, ... (-l)n |AJjj].

1 2
where A and A , are given in Eqns. (71) and (74).

Theorem 8: [37,3]

If the complex polynomial F(s) is given in the form of F(js) in

equation (7), then the number of its roots p in right half of s-plane

is given by:

p=Var[l,|A2|,K|,|A6l>-".li2„|] (9°)

where the non null innerwise matrix A„ is given by equation (8). The

number of left half plane roots q is given by

q = n-p (91)
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If F(s) is a real polynomial we can utilize the above theorem (by

inserting zeros for the imaginary part) to obtain information on the root

distribution. By utilizing the double triangularization procedure (to be

discussed) for computation of the inners determinants we can easily accommodate

the critical cases, that is some of the |A2]J 's are zero.

Remarks:

1. In this section we presented only a few theorems on the root

distribution of polynomials. These theorems are of importance in the

positivity and nonnegativity tests presented in the preceding section.

Also, in the preceding section we presented other theorems on the root

distribution.

2. The general problem of root distribution is of much interest in the

the mathematical literature and as mentioned before we can only make a

passing reference to the vast number of publications in this field.

Certainly, one may argue that the root-clustering problem is only a

special case of the general root distribution problem. However, following

this approach one may not obtain the simplest form computationally. This

has been borne out by the development of the Lienard-Chipart and the

simplified Schur-Cohn criteria. It is this simplification obtained that

tempted this author to discuss the three parts of this section in this

chronological order.

4. Magnitudes of Inners Determinants:

In the preceding three applications we obtained the needed conditions

by obtaining only the sign of the inner determinants. In this section we

will indicate applications of the inners concept where the magnitudes of

the inners determinants are required. We will discuss only four major

applications, however, there exist others which need further exploration.
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a* Integral (sum) of square of signals (continuous and discrete);

The problem of evaluating the total integral square (or sum) of a

signal arises in the analysis, and optimization of feedback control systems,

both for continuous and discrete systems and for deterministic and stochastic

inputs. It also occurs in communication and digital filtering problems.

This problem has been investigated during the last quarter of a century.

Many methods, similar to those used in the stability problem, have been

developed and discussed in the literature [88,101-135]. A complete dis

cussion of this problem is presented in [3]. In the following we will

only present a summary which is related to the magnitudes of the inners

determinants.

If we let I be the integral to be evaluated, then we have

•ioo jco 00

Xn "-SJ / 8(.)0<-)d8 =-gj f h(3f$.8) *=f 82(t)dt (92)
—joo —j00 0

where f(s) -bn_1s2(n"'1) +bn-2s2(n"2> +"'" +b0 (93>

h(s) = ans + an-1s ~ + ••+ aQS + aQ (94)

and G(s) = d(s)/h(s) , d(s)d(-s) = f(s) - (95)

In equation (92) we assume that G(s) is a stable system.

The formula for I in inners form is given as follows: [3]:

_(-1)^1 |Ab|
n " 2a TaT (96)

n ' n1

For n-odd
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A =
n

ln-l

a a 0 a .
n n-2 n-4

ln-l n-3

a i a o a cn-l n-3 n-5

a2 a0 °

For n-even

n-l 1

o\

\ a ..
\ n-l V3

\

/

'a
n an-2

a a a • • • a,-, art <
n n-2 2 0

. 0

. . 0

and A is formed from A by replacing the last row for n-odd and the

first row for n-even by

[Vr bn-2' •••' br V

(97)

(98)

(99)

It may be noted that for stability we require in addition to the a "s

being positive, that Ar be positive innerwise. Thus simultaneous testing for

stability and the evaluation of I can be carried out in the one algorithm.

Let *n be the infinite sum of squares of a discrete signal; then
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F(z)F(z"1)z~1dz

00

In =£ f2(kT) =JL j)
k=0 J .

unit

circle

where F(z) is the z-Transform of f(KT). Assume F(z) is given,

n

Zv1
F(z) -

ifO = Biz).
n A(z)

2ai2±
i=0

and F(z) represents a stable discrete system (i.e. its poles are inside

the unit circle), then the integral of (100) is obtained as

. IVl +Wb
n =anlXn+l +Yn+ll

where the matrix [X^, + Y -] is formed from X -+ Y - by replacing

the last row by

n

[2bnb0,2 EVW^ ..., 2I b±b1+li 2 £b*]
i=0

and

n+1

a a n
n n-l

0 a
n n-l

n_
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n+1

0 . . . 0

0 0

0 a0 al

a0 al a2

Let A ... be defined as
n+1

n+1 n+1 n+1

then I can be written as:
n

I =
n+l'b

" *>+!n' n+1

(105)

xn-l

n

(106)

(107)

Remarks:

+
1. The matrix A - is an innerwise matrix with a left triangle of

zeros as seen from equations (104 and 105) .

2. To relate this to a stability test, we can rewrite I in (107) as

follows [3].

n

(-1} lXn+l + Yn+llb
I =

n 2a A(1)A(-1)|a" J
n ' n-l1

(108)

For stability we require (in addition to the bilinearly transformed coefficients

as discussed before being positive) that also A , be positive innerwise. This

is discussed in Section l.d of this survey. Hence, similar to the continuous

case we can simultaneously check for stability and the evaluation of I .
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3. The inners concept of I can also be extended to higher order

moments. Again this area has not been completely explored.

b. Synthesis of an RC network and a digital filter: [3,12,51,72,136]

We can synthesize an RC network by calculating the inners determinants

of an innerwise matrix [3]. The basic idea is to use the connection

between the continued fraction expression coefficients of the input

impedance of the network and the inners determinants. This can be ac

complished because of the well known relationship between the continued fraction

fraction expression coefficients and Hurwitz determinants (or, equivalently,

Routh first-column entries). Since theorem (8) in section (3) can be used

to established [3] the relationships between the inners determinants and

Hurwitz minors or Routh table, the synthesis can be accomplished.

Similarly digital filter synthesis using a ladder network [136] ex

pansion can be obtained. Again, we relate the first column entries of the

Routh table to the inners determinants.

Remark:

Synthesis of other types of continuous networks and digital filters,

can be also obtained using the inners approach. This writer has not

developed this area of research in detail but he believes that much work

can be pursued along the discussion of this section. A recent work by

Weinberg [137] indicates the use of the inners approach in the synthesis

of mixed Lumped-Distributed Networks.

c Calculation of Chebyshev Functions: [3,73]

It is of interest in this application that we can construct an inner-
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wise matrix for T (£) (Chebyshev functions of the first kind) (0 < z, < 1)

Based on the basic definition of T and T-, we have

\l =To - 1
"i

a3I - xx =c

A5| = 2?|43| - |A1| = 2? -1= T2 >

A?| =2C|A5| -|A I=4?3 -3C =T3

A2k+ll "2?lA2k-ll "lA2k-3l =Tk J

The innerwise matrix is

'2k+l

-1

s2c

0 X

-10 0 0

c 0 0 1

0 >>0 0 0

0/ 10 1 0

A
3

1 0 0 0 1

(109)

(no)

Similarly we can generate an innerwise matrix for U, (c) = Chebyshev

function of the second kind, with 0 < C < 1 [3]-

+
An alternate form is given by Szego [175]
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Remarks:

1. Though the form of (110) is an innerwise matrix with a_left triangle

of zeros, it is not directly related to the root-distribution problem. This is

another example of the extended application of the inners determinants

as compared to bigradients or resultants.

2. Recent work has shown that, generally, polynomials orthogonal on the

. +
unit circle and on ellipse can be represented in terms of innerwise matrices

d. Response and stability of periodically varying systems: [l38]

In the analysis of an RC filter with sinusoidal variation in bandwidth

as shown in Fig. (6 )»one needs to obtain the solution of the following

equation:

bQ + 2jwR bn + 2jwR bn + 2ju>R bn + 2jwR
1

0

-1 i

bQ + jwR I bn + jwR bn + jwR i bn + jwR
0

-2 • -1

b0

'-2

.-_- bn I b9

bQ , bQ

-1JZ3—I
bA - jo)R , bn - jwR bn - jwR

1 II bn - jwR

-4 -3 -2 -1

bn - 2jwR bn - 2jwR b_ - 2jwR bn - 2jwR
0 0

l-l

l-2

•

d2/b0 + 2juR

dl/b0 + jwR

ao/bo

di/bo - juR

a-2/b0 - 2juR

The solution of equation (in) is unique if the innerwise matrix

determinant of the doubly infinite matrix is non-singular.

Furthermore the charge, and hence the voltage, can be obtained by

direct inversion of the matrix by truncating it to a suitable order. Hence,

(111)

See reference [177].

"^The coefficients bfc, a. and d. are the Fourier coefficients of the Fourier
Series expansion of the network signals and parameters [138].
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the magnitude of the matrix determinant is also required.

Remarks:

1. In the above application the innerwise matrix is doubly infinite

and hence by truncating it one must calculate the determinants of the

inners indicated in the dotted lines. Therefore the computational algorithm

to be introduced in the next part of this survey is of importance.

2. The innerwise matrix of (ill) differs from Sylvester's form by

the fact that it has no left triangle of zeros. Again this justifies the

introduction of the inners notion for general matrices.

5. The Rank of an Innerwise Matrix: [3]

In this section we will indicate four applications of an innerwise

matrix whose rank is to be determined. The determination of the rank is

readily ascertained by utilizing the double triangularization algorithm

developed for determining the inners determinants. In some of the following

applications the entries of the innerwise matrices are themselves matrices

which are associated with linear systems.

a. Test for controllability:

Since Kalman [139] introduced the concepts of controllability and

observability, many publications examining the concept have appeared and

are still appearing in the literature. In these publications several

tests for controllability are proposed. In the following we will introduce

a test which is based on the rank of a certain matrix. This matrix test

follows the work of Rosenbrock [140] who laid the groundwork for such a

controllability test. In this writer's work [141], the matrix of Rosenbrock

is reformulated to become an innerwise matrix and thus the theory of inners

can be applied. Details are as follows:
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A linear system is described by:

x = Ax + Bu, y=Cx+Du

where A and B, C and D are matrices defining the linear time-dnvariant

system. The controllability test is given by the following theorem:

Theorem 9 [140, 141]:

The linear system is controllable if and only if the following

2 2
n(n+£-l) x n matrix R has rank n where

R =

J

(112)

(113)

Remark:

It has been also shown [142] that in the process of double triangu

larization to check the rank of R, we can also extract the controllable

part of an uncontrollable linear system.

b. Test for observability [141]:

Similarly to the controllability test, we can reformulate the Rosenbrook

The dimensions of A = nxn, B = n*£, C = H'xn, and D = Jlfx£,
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[140] test by obtaining an innerwise matrix from his matrix. The test is

given by the following Theorem:

Theorem 10 [141]:

2
The linear system is observable if and only if the following n x

2
n(n+fcT-l) matrix R has rank n , where

R, n(n + £'-!) (114)

A similar remark to the controllability test also applies to the

observability test [142],

c Test for Invertibillty [143-153]:

Conditions for the invertibillty of linear time-invariant dynamical

systems are very important. The notion of invertibillty arises in many

different problems of system theory such as sensitivity theory, filtering

and prediction theory [66], pursuit evasion games, decoupling and multi-

variable control. In the following we will represent the invertibillty

test in terms of an innerwise matrix. This innerwise matrix is obtained

by the author [153] from the matrix of Wang-Davison [143] in a similar

fashion to the way in which the controllability matrix is obtained from

the Rosenbrock matrix. The test is given by the following theorem:
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Theorem 11: [153]

The necessary and sufficient condition for the linear system described

in equation (112) to be right invertible is that the following innerwise

matrix be of full rank:

M
n

L°

- C

V - D

0^ B - A

-A 0 I

I 0

- C O
- c

- A
(115)

O

We can also extract the invertible part similar to (a) and (b) for

controllability and observability. A similar condition exists for a left

t
invertible system.

d. Pole placement by output feedback: [154]

It has been shown by Brasch and Pearson [154] that to obtain an

arbitrary pole placement via output feedback a certain matrix $ must have

full rank.

The matrix * given in equation (116) is a rotated innerwise matrix and

thus the computational algorithm for the inners can also be used to determine

its rank. This matrix is given in the following way.

If $ is of full rank and that given the vector 6, the elements of

the feedback matrix K may be determined. The matrix * can be related 90°

counterclockwise to conform with the usual innerwise matrix with left

triangle of zeros.

+For discussion of right invertible and left invertible see reference [143].
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or

£ columns

0

r(fc + 1)
columns

f

1 V 0

( K
0 o/

$5 = 3

The entries a. and 3. are defined in ref. [154]
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W " W

6M-1* " 6*+l°

V " «i°

5 r - 6X0

3n+£-l " an-l

3n+A-2 " an-2

, (116)

h~«0
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e. The order of the transfer function matrix G(s): [16]

It has been shown by Rowe [6] that the order of the transfer function

matrix 6(s) arising as

G(s) = V(s) T_1(s) (117)

is given by

rank R1 - (p£-l)£ (118)

where R1 is an innerwise matrix with left triangle of zeros and given by:

Ri =

Where

I

0^

P-l p-2

p-l Vp-2

(p+pA-1) block columns

0 . . . 0

Tl T0 ' • •°

V V
vl vo

v0 o --- 0.

T(s) =InsP +T -s9'1 + ... + T-s + Tn
8, p-l 1 0

V(s) =Vp_1sP"1+ ...+Vl8+V0

"\

-/

p£-l

> Blocks

rows

p*

blocks

rows

(119)

(120)

(121)

The rank of R- can be determined using the double triangularization

algorithm to be discussed later. The above application is of importance in

the analysis and synthesis of multivariable feedback systems.

+This matrix is referred to as the generalized resultant [16].
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Remark:

1. It should be noted that in general the matrices R, Rq, M2j $ and R.

in the above applications are not square matrices. Since we are interested

in rank testing this does not cause any difficulties and indeed it represents

a major new application of the innerwise matrices. Again these matrices

(not square) constitute a departure from the Sylvester matrix, though the left

triangle of zeros also exists which indicates some relationship exists.

2. It should be pointed out that Rosenbrock [140] has also recognized

the similarity of his matrices to that of Sylvester. Indeed in his book [140]

the innerwise matrices appear in various applications.

6. Other applications of innerwise matrices:

In this section, we will present several applications which are not

directly related to the five earlier topics. These applications make use of

some of the definitions which were presented in part I but were not discussed

in the earlier applications . These are listed as follows:

a. Non-null innerwise matrices: [155]

The application of the above definition arises in obtaining the

necessary and sufficient condition for the rational function

i n—1 , , n—2 , , , . ,
a / n b _s + b 0s + ••• + bns + bn-

z(s) =fiil =_ilzl ^1— , 1 0, With a * 0 (122)
f(s) n , n-l , , n
v/ as +a -s + ••• + ans + an

n n-l 1 0

to have a certain continued fraction expansion [155]. The condition is that

by the following A_ 1 matrix is non-null.
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2n-l

0 /
/

/

0

b

r

n-l

L
n-l n-2

(123)

n-2

Other applications of the continued fraction expansions in terms of

innerwise matrices are of interest and need to be further explored [3].

A further application of a non-null innerwise matrix is discussed by

Berkhout [156]. It is given by the following theorem:

Theorem 12, [156]:

+The function fN(t) is a minimum-phase time function, if and only if

The sampled signal, with sampling interval A, represented by the discrete
tlinefunction »

sA(t) = £ s[n]6(t-nA), with s[n] = As[nA] is called
n=_oo

a minimum-phase signal if both sA(t) and its inverse f^(t) are energy-bound
one sided signals. The function %(t) is a general representation of a
one-sided discrete time function with duration (N+1)A:

N

fN(t) = f(t)[A J] 6(t-nA)].
n=0

Note the inverse of s.(t) is defined by

fA(t) * sA(t) = 6(t) for all "t" and * is a convolution.
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the following equation has a solution and this solution represents a

truncated autocorrelation function.

ffN[N) fN[N-l] ... f„(0) 0 0

\

o \ f-0»> N

^

f>

F R = C

W

fH(0) 0
I

I

I

0 0

R(-N) c

R[N-1] 0

R[-l]

• R[0]

R[l]

R[N]
i

0

The matrix F is an innerwise matrix with left triangle-of zeros.

R = autocorrelation function of inverse of fvt(t) .^

c = a scalar factor,

fN = fN conJugate-

The application of the above theorem in digital filter design and

communication systems is of much importance.

(124)

(125)

b. Semi-innerwise matrices applications: [3,83]

The application of the above definition arises in studying root

distribution with respect to the imaginary axis or the unit circle. The

semi innerwise condition arises when there are roots on the imaginary

axis, or on the unit circles, or roots which are reciprocals of each other

(critical root-distribution pattern). Some applications of such critical

cases have been discussed in section 2.

That is, fN(t) *R(t) = c6(t).
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c. Application of innerwise matrices in quantum physics [157]:

In the field of quantum physics, an innerwise matrix with a left

triangle of zeros arises in calculating the energy-level pattern for

rigid asymmetric rotors used in obtaining the rotational energies of

molecules [158]. The innerwise matrix in this case is used to obtain

a transformation to a certain symmetrized basis function and is referred

to in the literature as the Wang [159] symmetrizing transformation. It

is given as follows:

3 J /2

0

0

ft

0

0

(126)

d» Application of the innerwise matrix in sparse matrix theory: [160]

In the field of sparse matrix theory, the innerwise matrix is often

arrived at in order that no zero (block) matrices can become nonzero because

of roundoff error in the process o£ the Gauss elimination method of computation,

In these cases one would like to determine the permutation matrices P and

Q such that

A = P A Q

where A is an innerwise matrix with a left triangle of zeros and A is a given

sparse matrix whose inverse is to be evaluated.

The innerwise matrix A is given as follows:
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A =

11

lO^
\

i/

12

22

P+I.J

A - A 0
p,l p,2

n

1,P-1 ip

2,p-l 2p

PP

We can apply the computational algorithm to be discussed in the next

section to evaluate the determinant of A.

(127)

e. Application of innerwise matrix in power system stability: [161]

In study of the dynamic behaviour of a power system following a

disturbance, one needs to study the transient stability. In the course

of such a study one needs to determine the non-singularity of a Jacobian

matrix which has an innerwise form as follows:

0
l,m-l

J =
(128)

m+1,1 - Am+l,Am+l

The inners algorithm can be readily used to test the singularity of

J. Again this matrix is not directly related to Sylvester's matrix. It

may have relationships to controllability or observability matrices.

f. Generation of an innerwise matrix from the last inner: [3]

In this application one usually generates the elements of the matrix
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edges and by a combinatorial rule we generate all the inners. This has

application in obtaining the bilinear transformation matrix [162] or the

generation of the Schur symmetric matrix [163] from the entries of the table

form for the root distribution with respect to the unit circle [26],

IV. Computational Algorithm for Inners Determinants: [3,164]

In the preceding part we discussed applications of the inners

concept to many diverse areas of system theory. In all of these applica

tions we need to evaluate either the sign or the magnitude of the inners

determinants. In this part, we develop a computational algorithm to

compute the inners determinants in a recursive fashion. This algorithm,

which is a variant of the Gaussian elimination algorithm, is readily

programmed on a digital computer and can be used for the solution of

any of the problems discussed in the preceding parts. It is thoroughly

discussed and applied in [3].

In this part we will only mention that the algorithm can be presented

in two forms. In the first form we assume that the innerwise matrix A

has no zero elements, and we will compute the inner determinants. In the

second form we assume that the matrix has a left triangle of zeros. In

both forms the inners determinants can also be zeros (critical cases) [3].

To explain the steps involved in the algorithm for the second form,

we double triangularize the following (5x5) matrix.
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lll

0

0

0

l51

l12 13 l14

a22 a23 a24

y
a33

Al
a34

a42 a43 a44

l52 l53 l54

l15

l25

l35

l45

l55

Step 1. Make a. . and a., zero by pivoting on a„Q to obtain
34 35 33

11 "12 "13 "14
a13

a33
a34 a15

a13

a33
a35

a23

a33
a34 a25

_^23
a32 a35

a33

a33 a34 a35
a33

a33
a35

a43

a33
a34 a45

a43

a33
a35

a53

a33 a34 a55
_!53
a33

a35

l22 l23 24

l33 "34

l42 l43 "44

l51 "52 "53 "54

The matrix in eqn. (130) can be rewritten as follows:

a.
11 l12 13 14 15

l22 "23 24 25

33

l42 "43 44 45

l51 l52 d53 "54 55
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where a.. are the proper entries in (130)

Step 2: Make a9, and aoc; zeros by pivoting on a00, to obtain from
l24 '25 22!

Eqn. (131).

all a12 a13 a14 '7^ a24 a15 ~7^ a25

0 a22 a23 a24 "aj a24 a25 "ij a25

33

l42 . l42
a,%2 "43 "44 a22 "24 "45 a22 "25

l52 l52 .
'51 "52 "53 "54 a22 "24 "55 a22 "25

The above matrix can be rewritten as:

lll l12 13 14 15

22 23

33

l42 l43 "44 45

'51 l52 l53 l54 55

(132)

(133)

where a are the proper entries in eqn. (132).

Step 3 and 4: Make a,_ zero by pivoting on I., and I__ zero by pivoting

on a . We finally obtain the double triangularized matrix
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a12 a13 a14

a22 a23

A =
l33

(134)

a42 a43 a44

l51 a52 a53 a54 55

The determinants of the innerwise matrix A_ of eqn. (129) are

= a
33

^v

= a22a33a44~ a22lAll a44 >
(135)

=alla22a33a44a5=a55|A3lallJ

The algorithm presented in the above example can be illustrated as
Tfollows. By choosing a permutation matrix P, form A5 = PA$A such that

the determinants of the corresponding minors array of A~5 are the same

as those of the inners of A.. Perform the ordinary Gaussian elimination

on A,, and obtain A (where A- is directly obtainable from A5 by the

double triangularization algorithm [3]).

Remarks:

1. A modification of the above algorithm is suggested [165] in order

to lessen the round-off errors arising in the calculations. This modification

works by interchanging the columns of the' matrix while doing the iteration

in order to make it diagonally dominant without destroying the inners of
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the original innerwise matrix. This minimizes the round-off error, making

the algorithm stable and effective.

2. It has been indicated in application 6 part d that for computational

effectiveness of a sparse matrix, it is desirable to transform it to an

innerwise matrix with a left triangle of zeros [160]. Thus the above

algorithm can be effective for the inversion of the sparse matrix as the

round-off error is lessened.

3. When some of the inners determinants are zero (critical case)

the above algorithm is modified to account for such a case. In reference

[3] a complete discussion of this is presented as well as many computer

examples. To confine the length of this paper we presented the discussion

of this part of the survey in a very concise and brief manner.

V. Conclusions and Observations:

In this paper a comprehensive survey of the theory and applications

of the inners has been presented. In particular, applications have been shown

to many diverse fields of interest to both Proceedings readers and others.

The historical background of this work including the contribution of many

other researchers has also been presented. To help assess the value of

this survey as well as the inners concept, the following observations are

pertinent.

1. Since the early work of Sturm [166], Cauchy [167], Hermite [28] and

others on root distribution in the last century, a tremendous number of publi

cations have appeared in this area (probably over one thousand articles).

Because of this large number and because of lack of communication, particularly

in earlier times, many of the available stability and other criteria have

been rediscovered by different researchers. There is a long history of this
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type of duplication. In this survey, I have confined attention because

of space limitations and simple ignorance, to only that earlier theory related

to inners. Even with such a narrowing it is quite likely that I have not

discussed all the available literature in this area. If I have left out

reference to many aythors (as is very possible), it was because of ignorance,

and not ill will, and I offer my apologies for any such an omission.

2. The theory of inners having been presented, it is reasonable to

assess its value as well as shortcomings and limitations.

The impact of inners in education is, in the opinion of this author,

one of its strong points. The theoretical unification makes it easy for

the student to understand, or the teacher to present, the various problems

and solutions discussed in this paper in a unified fashion. This saves

much time. I have presented the inners in my courses at Berkeley during

the last few years and the student response was quite enthusiastic. Also,

some of my colleagues have presented it at other universities and again

the response was encouraging.

3. The advent of the computational algorithm connected with the

inners is another encouraging aspect of this theory. This algorithm is

general and can be applied to all the problems presented in this paper.

The question has yet not been investigated as to whether the inners

technique using this general algorithm is more or less efficient than

other computational methods for particular applications. More computational

comparison needs to be done and probably it will be several years before

a definitive statement can be made. However, the availability of a

unifying algorithmis of much interest.

4. The impact of the inners theory on research is of much significance.

During the past few years, this author in collaboration with Prof. B.
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colleagues in my university and various universities and by my students

in developing this work. I wish to offer my gratitude and appreciation

to all of these and in particular to Professors B. D. 0. Anderson,

Thomas Kailath, S. Barnett and N. Bose for offering constructive

suggestions in this survey. I also wish to sincerely thank the editorial

board of the Proceedings for inviting me to present the survey of my

recent work.
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