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Abstract

We investigate the possibilities of automating equivalence proofs

for recursive schemas. A formal proof system, adapted from deBakker-Scott

[4], is shown to be complete with respect to provability of equivalence

of pure recursive schemes. The result is obtained by showing the

correspondence between operational and denotational semantics of a simple

recursive language.
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1. Introduction

The theory of program schemas, as illustrated for example in [1],

[11], [14], [16] or [22] has been mainly motivated by the study of

sequential Algol or Fortran like programs. Within the framework of more

general semantic theories, such as those of Scott [23], where one also

considers parallel programs or infinite loops with interesting side-effects

(as, for instance, a program enumerating the prime numbers), the results

about program schemas have a different flavor, as shown for example in

[2], [7], [21] or [25].

In this work, we are more interested in results regarding tools for

formal description of programming languages, than in the more traditional

decidability questions for equivalence of program schemes.

A programming language and its semantics are described, in the manner

of Scott and Strachey [28]. By semantics, we mean here what has been

called denotational semantics, i.e., a mapping between programs and their

intended mathematical meaning as opposed to operational semantics, i.e.,

some kind of interpreter for the language. In the usual practice of

Mathematical Logic, the first one would be called semantics and the other

one syntax.

In [8] a canonical domain of interpretation, akin to the Herbrand

universe for first order theories is constructed, and it is proved that

(Theorem 1) semantic properties are true if and only if they are true in

this particular interpretation. Using this result as a basic tool, we

exhibit a normal representation for programs, and show that equivalence

between recursive program schemes is decidable. It is also possible to

obtain this decidability result via a coding of schemas into deterministic

simple languages, where equivalence was shown to be decidable by
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Hopcroft-Korenjak [13].

Using this normal representation, we show (Theorem 2) that the

semantic definition used is the best possible compatible with evaluation

rules such as the copy rule. More precisely, we show that, in the ter

minology of Milner [19], the semantics is both adequate and fully-

abstract with respect to the copy rule. Another way to put this is that

the semantics chosen is compatible with all operational semantics for the

language, and it is not more than this because all terms which are seman-

tically equivalent are computationally equivalent with respect to a par

ticular representation of the program.

Finally, we introduce a formal proof system, adapted from [4] and

[18], and prove (Theorem 3) that all equivalences between monadic terms

or programs which are semantically valid are (effectively) provable

within the formal system. With minor modifications, this result is

shown in [9] to also apply to the formal proof systems studied by

deBakker [2], who has already obtained a similar result for a smaller

class of languages: we show (in [9]) that a slight extension of deBakkerfs

proof system is complete with respect to provability of equivalence

within the class of free recursive program schemes studied by deBakker-

Scott [4] and Ashcroft-Manna-Pnueli [1],

2. Syntax and Semantics of the Language

2.1 Syntax

In an approximation of BNF notation, the syntax of our programming

language is defined by:



FX(X) <= <term 1>
<program> ::=

Fk(X) <= <term k>

<term> ::= x|g1(<term l>,...,<term p >)

|g2(<term l>,...,<term p >)

|g (<term l>,...,<term p,>)

|F.(<term>)

|F, (<term>)

Typical examples are:

FX(X) <=g1(X,F1F1(X))

F1(X) ^8i<X»F2(X))
F2(X) <=g2(F2(X),F1(X))

where standard conventions regarding omission of parenthesis are applied.

Among the program thus defined are "parameterless" programs, such as

F(X) <=F(X) or F(X) <= g1(F(X) ,F(X)), which we want to exclude (at

"compile time") from our language. Let us therefore associate to each

term T in the context of a program P: <F.(X) ^P.,... ,F,(X) «=P > a

natural number 6(T) as follows:

(i) 6(X) = 0.

(ii) 6(g (T ...,T )) = 1+ min (6(T4))
Pi 1^-!^« Jiijfpi

(iii) 6(F,(T)) = 6(P.{T}).

Here P{T> denotes the result of substituting T for all occurrences of

X in P. Whenever 6(T) is not defined, we say that 6(T) = «>. For

example:



if F(X) <=g1(X,Fg2(X)) then 6(F(X)) « 1 and 6(FF(X)) = 2 while,

if F(X) <=g1(F(X),F(X)) then 6(F(X)) =«> and 6(g;L(F(X),X)) = 1.

This use of the symbol " is legitimate since it is clearly decidable

whether 6(T) = °° or not for any term T and program P.

From now on, we shall only concern ourselves with programs which

satisfy the following syntactic restriction:

Definition: A program P=<FX(X) <=?v ... ,Fk(X) <=Pfc> is acceptable

if and only if 6(F±(X)) ^ » ^or all 1 < i < k.

It will also be convenient to insist that 6(F (X)) ^ 0 for all i in

acceptable programs.

It is easily seen that, if P is acceptable, then any subterm T1

of an arbitrary term T has a finite 6(Tf), and

Lemma 1: For any terms T and T1, 6(T{T'}) = 6(T)+6(Tf).

Proof: The proof is by induction on 6(A) where A = T{Tf}.

If T = X then 6(T) = 0, A = T' and 6(A) = 6(T») = 6(T) +6(Tf).

If T = g(T ...,T) then A = g(A.,...,A ) where A. = T.{T'}
x P 1 P 3 3

for 1 < j < p. By definition of 6, we know that there exists i and
Jo

^ in [l,p] such that:

(i) 5(T) = 6(T. )+l < 6(T, )+l and
3o Jl

(ii) 6(A) = 6(A. ) + l<6(A. )+l.
Jl Jo

Since 6(A ) < 6(A) and 6(T. )+ 6(T!) < 6(T) + 6(T») - 6(A), we
1 Jo

know by induction that 6(A ) = 6(T. )+ 6(T») and 6(A ) = 6(T. )+ 6(T«).
Jo Jo J_l Ji

It then follows from (i) and (ii) that 6(A) = 6(T)+6(Tt).

If T = F(T1), then it is easily seen that 6F ^ ~ implies that



6(T) « 6(Tf) for some T* = g(T_f,... ,Tf) and we are back to the previous
1 P

case. 0

2.2 Semantics

Let us first retail some definitions:

Definition: A complete partial order (c.p.o.) is a. set D together

with a partial order C over D such that

(i) D has a minimal element j_n.

(ii) Every chain x. C x0 C ••• C x C ••• has a least upper (l.u.b.)
j_ — £ — — n — • — •• ' • —ft-s

U x. .

i>0 1

Actually, Scott [26] uses complete lattices instead of c.p.o.fs but

c.p.o. 's seem to be easier to work With, and have been used for example

in [8],. [10], [18], [21], [23] and [31]. Discussions regarding the

choice of c.p.o.fs versus complete latrices are given in [10], [23] and

[31].

Definition: A mapping f: D •* D* between two c.p.o. fs D and D*

is continuous if, for every chain X C D, we have Uf(X) = f(LK).

Note that every continuous function is also monotone, i.e. x C y

implies f(x) C f(y).

We denote by [D •>• D1] the set of continuous functions between the

c.p.o.*s D and D'. For polyadic functions, continuity it meant com

ponent-wise.

Lemma 2: If D and D! are c.p.o.'s then [D -»• Df] is a c.p.o.



Lemma 3: Every continuous f e [D •> D] has a least fixed point

.n
Y(f) e D and Y(f) = \J f (J.).

n>0

We can now define the semantic interpretation of our programming

language. We shall only do so for programs with only one recursively

defined function F. The generalization to mutually recursive systems

is straightforward.

Definition: An interpretation I o£ a_ program P consists of

(i) A complete partial order D.

(ii) To each function symbol g. with arity p. ^ 0 is associated
P±

a. function g, e [D -»• D].

Given an interpretation I, we construct the semantics 5[[T]] of

the term T in the context of the program P as follows i given a

meaning f e [D .-»• D] and a e D for the variable names F and X

respectively, we define the interpretation S[[T]]{f/F,a/X} inductively

as follows:

(i) $[X]Kf/F,a/X} = a.

(ii) S[[g(T-,...,T )]] {f/F,a/X} = g(t ,...,t ) Where g is the
j- p i p

(continuous) function associated to g in the interpretation and

t± = 5t[T±]] {f/F,a/X} for 1 < i < p.

(iii) $[F(T)]] {f/F.a/X} = f(S[TB {f/F,a/X».

For the sake of readability, we abbreviate Xa.5[[T]] {f/F,a/X} by

S[T]] {f/F} and Xf.3[T]] {f/F} by £[[T]] .

Lemma 4: For any term T, S[[Tj\ e [[D->D] -»• [D-*-D]] and we denote by

Y(S[T]]) the least fixed point of 3[T]] .



In the context of a program F(X) <= P, the interpretation I[[T]]

of a term T is then defined as

IttTD =StTB {fp/F} where fp = Y($[p]])

For example, if the domain of interpretation is

0 1 ••• n

JL

and F(X) <= g1(X,g2(X,Fg3(X))), with gjL(x,y) = if x=0 then 1 else y

and g2(x,y) = x*y (x times y) then I[[F(X)D = Xx.x! (x factorial).

If the domain of interpretation is the set of real intervals [x,xT] with

0 1 x £ x' i°° and x, x1 e1R, ordered by [x,x'] C [y,y'] if and

only if 0 < x < y < yT < x' < oo (See [26] and [31]), and F(X) <=» h(F(X),X)

with h(x,y) =1+^-, then I[[F(X)D =Xx.v^x is the square root func
tion, for x _> 1;

If P is a program and I an interpretation, we write P |=, T = T1

for ZffTj = IffT1]].

Definition: Let P be a program, T and TT two terms. We say

that P|= TET' if and only if P^TET' for all interpretations I.
We say that two programs P = <F (X) <=P1 ,... ,F, (X) <=P > and

P' = <F^(X)<=P|,...,F^f (X)<=Pk,> are equivalent if and only if

P, P' h FX(X) E F|(X).

In [8], a canonical interpretation H is constructed which has the

property:

Theorem 1: For any terms T, T' and program P, the equality

P |= T E Tf holds if and only if P|= TET\



Proof: (See [8]). It is convenient to view elements of H as

infinite formulae. For example, if F(X) <=g(X,F(X)), then tt|[F(X)]]

"behaves" like g(X,g(X,g(X,...)...) ad-infinitum. D

For example, if P=^(X) <=g(X,F1(X)) ,F2(X) <=g(X,g(X,F2(X)))>,

then P(= FX(X) =F2(X) and P|= F£(X) Eg(X,F1(X)) are valid, while

P |= g(X,X) E k(X) is not valid. More generally, it is easily shown that:

Corollary: P|= g (T ,... t ) E g.(Ti,...,T» ) if and only if i « j1 1 p^ j l p *

and P |= T, E T.' for 1 < k < p..
k ~ ~k

It is also proved in [8] or [31] that the following properties of

left and right simplifications holds:

Lemma 5: For any terms T, T1, T" and acceptable program P,

Ph T{T"} E Tf{T"} Mandonly_if P|= T"{T> = T"{T'} if and only if

P [= T E Tf.

Note that this is not true if P is not acceptable, as shown by

the counterexample: P = F(X) <=G(F(X)), T = X, Tf = T" = F(X).

3. Decidability of Equivalence Between Acceptable Programs

Let P= <F1(X)<=P1,...,Fk(X)<=Pk> be an acceptable program. We

associate to P an equivalent program P1 as follows: first, each P

of the form F (T) is replaced by P.{t} until all P.'s are of the

form g (^.....T ). (This is possible because P is acceptable).
Pj

Then, to each proper-subterm of the P.fs of the form g (T-,...,T ),
i °n 1 p

*n

we associate a different name, F. ,.(X) through F (X), replace in P,
kti m i

the subterm by the corresponding F.(X), and add the defining

equation F (X) <= g (T.,...,T ). We
3 n J- P_
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obtain a new program P' = <Fn (X) <=P',... ,F (X)<=Pf> where each P! is of the
l l m m i

form G, (M.,...,M ) with M = F. •••F. (X). We say that such a program Pf
J 1 Pj q 11 1s

is an standard form, and it is easily seen that P and P' are equivalent,

For example,

F. (X) <= F9F9(X) F- (X) <= g(F9(X),F1F9(X))
if P= r l l then P1 = \ x l LA

|F2(X) «=g(X,F1(X)) [F2(X) ^g(X,F1(X))

and, if P = <F1(X) <=g(g(X,F1(X)),F1g(X,F1(X)))> then

Pf =

F1(X) *=g(F2(X),F1F3(X))

F2(X) ^g(X,F1(X))

F3(X) <=g(X,F1(X))

To be precise, we should use different symbol letters, say F*

through F' for the variables of Pf but no confusion can arise here
m

since P, Pf |= F.(X) E F! (X) for 1 < i < k.

We can now concentrate our attention to programs in standard form.

As a notational convenience, we reserve the letter M for terms of the

form F. ---F. (X).
i. l
1 s

Before describing an algorithm for deciding the equivalence between

standard programs, thus between acceptable programs, let us establish

two preliminary results:

Lemma 6: The set of valid formulae of the form P (= F (X) = M is

finite and the letter F. appears in M if and only if M=F.(X).

Proof: By Lemma 1, if M = F. ---F (X) then 6M = \ 6(F. (X)).
11 s l<j<s Xj

Since 6(F. (X)) _> 1, the number of valid equalities P(= F±(X) EM
1j



is bounded by, say,
k-1

Furthermore, if F. occurs in M, it must be alone. D
1 '

Equations of the form P |= F.(X) EM will be called elementary

equations.

Lemma 7: Let P be jLn standard form. If any equality

PhFi(M1) EF.(M2) holds, with 6(F±)£6(F), we can find M3 such
that:

P(= F^X) EF±(M3) and P\= ^ =M^} .

Proof: We prove the more general result [P |= M {M } EM.{M9} and

6(M±) <6(M.] implies [P (= M. EM^M^ and P|= K± =M3{M2>] by induction

on 6(M.).

If 6(M.) = 0, i.e., M. = X we choose M0 = M^.
i i 3 j

Otherwise, M± = Fi(Mf.) and, since 6(M.) >_ 6(M ), we must also

have M = F.(Ml). Let P. = g(M. ,... ,M ) and P. = g(M. ,...,M. )
333 X xl p 3 31 Jp

be the defining right-hand-side of F.(X) and F.(X) respectively in P.

Note that the two g's are identical because of the corollary of Theorem 1,

For the same reason, P|= M {M } E M.{M9> implies P|= M {M»{M }}
ii j z 1. 1 1

E M. {M' {M0}} for all 1 < k < p. Let us choose k so that3k 3 2 - -*•
6(M. ) = 6(P.) -1. It follows from Lemma 1 that 6(M {M»}) = 6(P )

1k 1 k
+ 6(M|) - 1 =.6(M.)-1.

By induction, we can therefore find M.. such that P|= M- = M^{M9).

It follows that P|= M±{M1} EM±{M {M2>} EM.{M9> and, by Lemma 5,

P h M.{M„} E M4. •
i 3 j

The reader who is familiar With the results of Hopcroft and Korenjak

[13] about simple deterministic languages has noticed the similarity

6(F±(X)h

11

, where k is the number of F *s in P.
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between this last result and some of the Lemmas in [13]. The corres

pondence between our schemas and deterministic simple languages is expli-

cited in [6] and results obtained in each formalism can be translated

into the other.

We can now describe an algorithm for deciding if P |= M E Mf,

where P is any program in standard form. The structure of the algorithm

is:

start: simplify; generate new equations; go to start;

In the simplification part, all equations MEM1 which are not

elementary (i.e., of the form F (X) = M) are replaced by a set of ele

mentary equations through repeated use of Lemma 7. Once all equations

are elementary, we replace F.(X) E F.(M') by G.(M. ,...,M. )

3 1 \
E G.(M. {M1},...,M. {M'». We assume here that

J Jl JP.
3

P = <F (X) <= G (M ,... ,M ) for 1 < m < k>.
m . m m_ m — —

1 P

If i ^ j, we terminate with a no answer. Otherwise, we replace

this equation by M. E M. {Mf},...,M, E M. {M1}.
11 p. p.

i 3

The algorithm terminates with a yes answer when no new elementary

equation is found after the simplification stage (the number of such

equations is finite by Lemma 6); it terminates with a no answer when a

false equation P (= g.(M..,...,M ) E g.(M*,...,M' ) with i ^ j is
Pi 3 Pj

generated at either stage.

For example, if

FX(X) <=g(X,F3(X))

P = <F2(X) <= ĝ (X) ,F2F2(X))

F3(X) <=g(F2(X),F3F2(X))
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The algorithm, with input F2 E F F- proceeds as follows:

F =FF simplify generate
r2 Vi *2 'ri *i - V

F F E F F simplify F = F F
r2 *3 1 *1 ~ V 2 " 'rr

F3EF2F1 *enerat6>F3EF3, F1EF1, F2F2EF3Fr F£ EF^,

F3F2EF2F2F1 Simpllfy>F3EF3, FlSFr F, EF^, F S^

The algorithm terminates here with a yes answer since no new elementary

equation (except the trivial one F- = F^) is generated. Of course,

this is a crude presentation and there are many ways in which we could

improve the efficiency of this algorithm.

4. Equivalence Between Operational and Denotational Semantics

We now define a canonical representation for programs and for terms.

Let us consider a standard program P = <F. (X)«=P-,...,F (X)<=P > and
1 1 m m

valid equation P |= F.(X) EM which is not of the uninteresting form

P \= F. E F.. Any such equation can be used to "simplify" P as follows:

for all j ^ i, replace F.(X) <=P. by F.(X) <=P.{M/F.} where

P.{M/F } denotes the result of substituting in P. all subterms of the
«* j

form Fk(Mj) by mCm^.}. Replace then F (X) <=P. by F.(X) <= M. We

say that a variable F. which does appear in any of the right-hand-sides

of the defining equations of a program P is active. In this sense,

the variable F. is no longer active in the simplified program P. We

can perform simplifications in such a way that the defining equations

F (X) -*= P are of two forms: either F. is active and P. = G, (M-,... ,M )
3 3 j j j 1* p_.

or F. is not active and P. = M, in both cases, M and the M.'s are
3 3 i

of the form F. •••F. (X) where the F, are active variables.
Is k

3
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Definition: A canonical representation P of P is_, among all

such representations, one for which the number of active variables is

minimal and such that the sum of the indices of active variables is also

minimal.

For example, if

then

if

then

f =

F^X) <=g(X,F3(X))

P=<F2(X) <=g(F1(X),F2F2(X))

J?3(X) <=g(F2(X),F3F2(X))

'FX(X) «=g(X,F1F1F1(X))

P=I F2(X) <=F1F1(X)
^F3(X) «=F1F1F1(X)

F1(X) <=g(F2(X),F1F3(X))

P=<F2(X) <=g(X,F1(X))

^F3(X) <=g(X,F1(X))

rFx(X) <=F2F2(X)

F2(X) «=g(X,F2F2(X))

F3(X) <=F2(X)

Of course, we must prove that P does not depend upon the order in

which eliminations are performed, i.e.:

Lemma 8: The canonical representation P o£_ a_ program P is unique,

Proof: Assuming the existence of two canonical representations V-

and P9 of some program P, we prove that they are identical.
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First we notice that the active variables must be the same in P.

and P„; otherwise, let us consider an i such that F. is active in
2 i

P, and not P.. Therefore P. 1= F. E F. •.-F. hence P. f= F, E F. ---F.1 2 2' i ^3± 3s lr i 3l J,
If any of the F. is not active in P., we can replace it by some

3k
M = F •••F where the F are active in P- . It follows that

nn n n, 1
1 p k

P., |= F. E M1 where M* = F, •••F. with the F. active in P.. But
1 ' l k, k k. 1

1 r 3
this is impossible, unless M1 = F., otherwise, we could simplify P-

further and reduce the number of active equations by one. If M* = F.,

this implies that the defining equation of F. in P? was F.(X) <=F.(X),

with F. active in P0. If i < j we can use F. instead of F. as3 2 J i j

active variable in P?; but this is impossible since this would decrease

the sum of the indices of active variables. If i > i, then P, 1= F. = F.j 1 r i 3

and we could use F. instead of F. as active variable in P-; this
Ji 1'

is again a contradiction since it would decrease the sum of the indices

of active variables in P . It follows that active variables are the

same in P and P . We still have to show that the defining terms are

the same in P and P . For this purpose, it is sufficient to prove

that, in a canonical representation P of P, valid equations P |= M E M*

where M and M' are of the form F,, •••FJ (X) with F. active are
i. i i.
Is k

of the trivial form MEM, that is P |= M E Mf if and only if M = M1.

This is easy by induction on 6(M): if 6(M) = 0, then 6(M') = 0

and M = M! = X. Otherwise, M = F.(Mj and Mf = F.(M') with say
l 1 J 1

6F. < 6F.. If i where different from i, we could use Lemma 7
i—i J *

and

generate an equation F.(X) = F.(M«) which could be used to reduce by
J i j

one the number of active variables in P. Therefore i = j, and by

Lemma 5, P \= M.. E M' By induction, this implies M.. = M' hence

M = Mf. •
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This representation is only canonical with respect to a given program,

and not to all equivalent programs. For example,

•rF1(X) <=g]L(X,F2F3(X)) fFl(X) *=g1(X,F2(X))

P1 =/ F2(X) <=g2(F2(X),X) and ?2 =/ F2(X) <= g2(F2(X) ,F3(X))

^F3(X) ^=g3(X,F3(X)) ^F3(X) <=g3(X,F3(X))

which are both in canonical form are equivalent yet not identical.

Using the results of Courcelle [5], [6] about simple languages and

recursive schemes, it is easy to construct such a canonical representation,

but this will not be necessary for the purpose of this paper.

We now define a canonical representation for terms (in the context

of a given program P):

Definition: A term T jls said to be reduced with respect to the

program P if it has no subterm T1 = G. (T..,... ,T ) such that
pi

P |= T* E F.(R) for some term R and variable F..j 3

Lemma 9: To each term T and program P, we can associate a unique

term T reduced with respect to P, which we call the canonical

representation T of T.

Proof; We prove that T exists and that it is unique.

First, we eliminate in T all variables F^ which are not active
i

in P; this is done by replacing T by T{M/F.} where F. is defined

by F.(X) <= M in P. A term Tf such that P |= T' E T is thus obtained,

in which all variables which do occur are active. Let us show that there

exist T which is reduced with respect to P and such that P \= T' E T

hence P (= T = T.
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The proof is by induction on the structure of T. If T = X then

T = X is reduced. If T = F (T») then we know by induction that T1

exists and we take T=F±(fT). If T=g (^.....T ), we know by
P^

induction that T ,...,T exist. Let Tf = g.(T ,...,T ). Suppose

-, PJ
that P |= T* = F (R) for some R and active F . The defining equation

F^(X) <=P of F in P must be of the form P. * g. (M.,... ,M ), and
J 3 3 j °i 1 ' p.

_ i

therefore P(= T EM±{r} for l<i<p„ It is easy to see (using

Lemma 7 again) that such an equation implies that T. = M.{ff.} with
l ii

Ph T^ ER and T^ reduced with respect to P. We can then take

T = F.(T!).
3 i

In order to prove that f is unique let us consider f.. and T9

and prove by induction on the structure of f- that P |= T- E T9 if and

only if ^ - f2. If T± =X then T must also be equal to X. If

Tx = F±(fp then T£ cannot be of the form X or G(T" ...,T"),

otherwise it would not be reduced. It is therefore of the form

T2 = Fi^TP and 3 = 1 otherwise, by Lemma 7, P would not be canonical.

By Lemma 5, P|= T| Ef' and, because of the induction hypothesis;

TJ =T» hence T± =f.,. If T± =GCT*^,... ,T ), then
T2 ~ ^T2 l'***»T2 d^ otherwise T would not be reduced and the argu

ment carries through by induction. D

In order to relate operational and denotational semantics, we need

to define the computation rules in our language. For this purpose, we

say that ^ ^ T whenever T2 is the result of replacing some subterms

F (T') of T by P.{Tf} in T., where P. is the right-hand-side
3 1 3 1 3

corresponding to the definition of F. in P. Let 4 be the reflexive
3 p

and transitive closure of ^. This relation, which models Algol's copy

rule, has been studied by Vuillemin [30] who showed that the set {T'| T*Tf}
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is a lattice, called the computation lattice of T according to P.

The relation * induces an equivalence relation (see [31]) over the

set of terms:

Definition: We say that two terms T-. and T« are interconvertible;

Tl VT? with respect to P if there exists T. such that T, %T„
j. r £. j 2. Y 3

and T2|T3.

This syntactical notion of equivalence between terms can be used to

characterize semantic equivalence in the following sense:

Theorem 2: For any acceptable program P and term T, the set

{T'I P |= T E T'} of terms semantically equivalent to T coincide with

tne set {T*| T-e->Tf} of terms interconvertible to T with respect to

the canonical representation P of P.

Proof: First, we notice that T •$ T where T is obtained by
pa a J

replacing in T the variables which are inactive in P. We then prove

that the set {T! | P|= T E T1} of terms equivalent to T coincide
a a

with the computation lattice {T*| f £ T'} of f by P. This implies
a p a

in particular that T *T hence T^T ; it is easily seen that
a p a pa* J

Ta = T, and since by Lemma 9, P|= T E Tf implies T = T1, we have
— ^t 4c

T 1 T' thus T-h^T1 for all T' semantically equivalent to T.
? ?

The proof that P |= T = T1 implies f ± T' is by induction ona a p

the structure of T': If T' = X, then T = T = X and indeed X -* X.a a p

If Tf = F (T!) then T? must be of the form T = F^fl), otherwise
ii a aii

it would not be reduced. By.induction, T! $ T! hence f ±j'
1 p ! a p *

If Tf = G(T',...,TM then either T = G(f.f,... ,f») or T =F.(Tf).
J- P a 1* ' p aia
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If T = G(T',. .-. ,f') the argument proceeds nicely by induction. If

Ta = ^(T^), let Pi = G(M1,...,M ) be defining right-hand-side of T

in P. By definition of §, we have f * G(M. {Tf },... ,M {T1}).p ap 1 a ' ' p a '
Since M.{Tf} is reduced and P 1= M.{T'} = T! for 1 < i < p,

ia 'iai __*-»

we have M.{T'} = T| by Lemma 9, hence M.{T'} £ T! and T $ T'iai iapi ap

follows by definition of -*• again. D
P

For example, let P = <F(X) <=» g(X,k(g(X,k(F(X) ,F(X))) ,F(X)))>,

T± = F(X) and T2 = g(X,k(F(X) ,F(X))). It is easily seen that the

number of occurrences of the letter F in a term T~ such that T- £ T~

is odd, while it is even in a term T. such that Tn * T.. It follows
4 2 p 4

that T^ and T are not interconvertible with respect to P and yet

PHTx =T2. If we now consider P=^(X) <=g(X,F2(X)) ,F2(X) <=k(Fx(X) ,F][(X))>
and T^ = FX(X), T£ = g(X,k(F;L(X) ,F;L(X))), it is easily checked that

T{ =f£ =F1(X) and F^X) *Tj, F^X) |T£ thus V and T^ are
interconvertible with respect to P.

5. A Formal Proof System and Its Completeness

In this section, we describe a formal system for proving properties

of programs in our language and prove its completeness. The system is

a straightforward adaptation of [2] or [18].

5.1 Description of the System

Terms are the same as terms of the programming language, with the

addition that we can take the greatest-lower bound (g.l.b.) min(T.. ,T?)

of any two terms T and T .

A well formed formula (wff) is a conjunction of inequalities TCT1
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between terms; we use T = T' as an abbreviation for the conjunct TCT',

T' C T.

An assertion A is an expression P, $ |- ¥ where $ and ¥ are

wffs and P is a program, i.e., a set of defining equations of the form

Fi(X) <= Pi, where P is a term expressed without min. We assume that

each 1? is defined at most once in P. If F.(X) <= P occurs in an

assertion A, we say that F is bound in A; variable F is free in

A if it is not bound. We assume the variable J_ to be always bound by

-L(X) <=J_(X).

A proof of an assertion A is a sequence of assertions A ,... ,A
o* ' n

where A = A and each assertion is derived from the previous ones by

application of the axioms or induction rules.

(Reflexivity) Al

(Transitivity) A2

(Minimality) A3

(Monotonicity) A4

(g.l.b.) A5

A6

A7

(fixed-point) A8

Axioms

|-TCT

T1-CV T2^T3>T1^T3
-L(X) <=_L(X) \-±(T) C Tf, T{jJ C T

Tl - T2' T3 - T4 I" W - T2{T4}
T£ Tr TCT2|-TC m,in(TrT2)

hmin(TiaT2) C T±
r-min,(TltT2) C T2

F(X) <=P |- T E T{{P/F}}

Here, T, T^, T2, T , T, and P denote arbitrary terms. A discussion

regarding the introduction of min into the system can be found in [31]



21

Rules of Inference

They include the propositional calculus rules:

(Inclusion) Rl: pr^p^r if P£P«, $C$» and fCf (here C
is the set theoretic inclusion).

(Conjunction) R2: ' p%%, [LV,r

(Cut) R3: MH **\-K
P.*hx

as well as Scott's induction rule:

Auction) R4= ^^^gUjff^^^ (F free ln *h*)

Here, $, $', V, H" and x denote arbitrary wffs, P and Pf programs.

By ¥{P/F}, we mean the wff obtained from ¥ by substituting T{P/F>

for each terra T which occurs in ¥.

Although they can be derived from the previous ones, it will be con

venient to also introduce the rules:

(Renaming) R5: t-jt if A' is obtained from A by renaming some of

the F variables.

p p^ $|_y
(Subsumption) R6: —y—'^i^w if none of the variables bound by P1

occurs free in $(-¥.

P' ,*f-VU/F-.... ,-L/F, } P' ,*fy|-YCP, /F. ,... ,P, /F, }
(Parallel R7: --=-?— K > . x—^ • nt Z\ Z ——
induction) F^X)^,...^)^,?',^

provided each F. is free in P1 ,$\-V for 1 £ i <_ k.
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A theorem is a provable assertion. Here are some examples of

theorems easily proved within the system:

(i) F(X) ^T^}, F'(X) <=T^{T|} f- F(X) ETj, F»(X) ET£
where T| = T^F'/F} and T£ =T^F'/F};

(ii) F(X) <= F(G(X)) f- F(X) E j_(X);

(iii) FX(X) «=G(X,F1F1(X)), F2(X) «= G(X,F1F2(X)) |- F^X) EF2(X)
It is not quite so easy to find a proof of

(iv) P |- F(X) C F (X) where

P= {

F(X) <=g(X,FFF(X),FFF(X))

Fq(X) <= g(X,F1FQF1(X).F^X))

F1(X) *=g(X,FoF2(X),F2F1(X))

[F2 (X) <= g(Fq(X) ,F2F2 (X) ,FoF2F1(X))

The proof of (iv) generated by the method of Theorem 3 (below) uses Scott's

Induction, on assertion

P1 \- F(X) CFq(X), F(X) CF;L(X), F(min(Fq(X),F±(X)))CF2(X) ,

where P' is obtained from P by removing the defining equation for F.

It is not known to the authors whether this particular proof (or any

other for that matter) indeed requires the use of min.

Completeness of the Formal System

We now prove the main result of this section:

Theorem 3: The formal system described above is (effectively) com

plete with respect to acceptable program P, i.e., P |= T E T* if and

only if P (- T = T1.
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Proof. Just for convenience, we restrict ourselves to acceptable

programs in standard form, since there is no difficulty in extending the

result to all acceptable programs. The direction P |- T = Tr implies

*P (= T = T* expresses the soundness of the system which is shown in [18]

or [31]. In order to prove that P |= T E T* implies P (- T E Tf, we
ft

notice that, using only axiom A8, it is easy to prove that T-<-*Tf
P

implies P|-T = T'.

ft

By Theorem 2, we know that P |= T E T' if and only if T-*-*T'.
P

It follows that P |= T = T' if and only if P f- T = Tf and

Theorem 3 is proved for programs P in canonical form. Let

P |= <F. ^P-,... ,F <=P > be an arbitrary program in standard form and

P = <F_ <=±P..,... ,F <=P > its canonical representation. In order to prove
l ± m m

that P |= T E T* implies P |- T E Tf, it is sufficient to prove that

P,P\-F EF.,...,^ EFm . (a)
ii mm

We know that P |= T E T1 implies P |= T E TT where

f = T{F./F1,... ,F /F } and P 1= T E ff implies P I- T E fT; formula
11mm ' ' '

(a) implies P, P )- T E T, T' E Tf thus P |= T E T' implies

P |- T E T\

It is easy to show that P, P I- F, C]? ,... ,F Cf and we leave this
1— 1 m— m

to the reader. In order to prove the other way around, i.e.,

P, P \- F.CF F Cf , we introduce the following notation: let
1 1— 1 m— m

£(M) represent the greatest lower bound of the finite set {M'| P(=M* =M}

of terms equivalent to M. For example, if P|= F- = F9F« is the only

valid elementary formula, then ^(F^) = min(F;.F2,FpF^Fg,F^F..) which

is just an abbreviation for mi^(F1F9,min(F9F9F9,F9F1)).

For any 1 _< i _< m there is a unique valid formula P \= F. EF. •••F.
1 Jl 31
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where F. ,...,F. are active variables in P. Let w. represent the
Jl Jk 1

wff F. (£(F. •••F. )) C F. and $ be the conjunction /\ w. of all
31 32 Jk 1 l<i<m x

w.'s. In order to prove (a), it is sufficient to prove

P, P |- $ • (b)

If F. is active in P, then w. is F. C F. and, since we know P, P \- F. C F
1 li—i ' ' l— i

proving (b) implies P, P |— F. E F. for all F. *s which are active in P.

If F. is not active in P then P \-F. =F. •••!?. by A8, and

F. ,...,F are active in P; it follows from the remark that anything
Jl 3k
which is true in P is provable that P |— F. •••!, C N for any

J2 _
N e £(F. '"F. ), hence, by repeated use of A5: P |- F. '"F, c I(F. •••]?. )

J2 Jk _ Jl fc J2 3k
Since we already know that P, P |- F. E F. ,...,F. E F. we

_ J2 32 3k 3k
obtain, by A2 and A4 P, P|-F. C F. 1(F. •••F ). Assuming (b) now

1_ 31 32 3k
implies P, P \- w., i.e., P, P |- F. J|(F. •••F. ) C F. hence, by A2

1 31 32 3k ±
again P, P |- F. C f. for all 1 < i < m.

Before proving (b), we need to establish the following

Lemma: P|= M-M9 =M and all variables in ML actiye in P implies

Oj-M^^M^} CM.

Proof. The proof is by induction on 6(M).

If 6(M) =0 then M=M =M2 =X and $(- XCx by Al.

If 6(M) > 0 then M = F.(Mf). Let P 1= F. = F. ••«F.

F. ,...,F. active in P. We consider two cases:
Jl Jk

Case 1: 6(Mn) >_ 6(F.)
1 l

In this case Mn = F. •••F. M' and we must prove
1 31 3kX

(-F. ---F. {Kl{l0i9)}} CF (Mf).
Jl Jk X

with

k
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Since 6(F .•-F ) < <5(F.) < 6(M), we know by induction that
2 Jk 1

$|-F '"-F Cn for any Ne J(F. •«.F. ). Hence, by repeated appli-
J2 Jk 32 3k

cations of A5, we obtain $ [- F. •••F. C £(F. -.-F. ), hence, by A4
32 3k 32 3k

*f-F •••? Cf (J(F ...F )), Since 5 (|(F ...F )} CF belon
Jl Jk 31 32 3k 31 h jk *" x

to $ by construction, an application of A2 gives us $ f- F •••F C F .
jl Jk" *

By induction again, we know that $ |- mMJCM-)} C Mf and one appli

cation of A4 allows us to conclude $|- M.{£(M9)} C m.

Case 2: 6(M ) < 6(F )

Then M. = F. •.-F. with n < k and P h M = F " *F M'.
1 Jl 3k 2 Jn+1 3k

It is clear by definition of J and repeated applications of A6 and

A7 that |- ZOO £ I(F ...F. ){I(M')} hence, by A4
Jn+1 3k

*|-M {£(M9)} CM {£(F. ...F. ){][(M')}}.
Jn+1 ^k

By induction, $ |- F. •••]?. £(F. ».«F ) Cn for any
32 3n Jn+1 3k

N e £(F "'F. ). Hence, by repeated applications of A3:
2 _ k

*|-F ...F {£(F ---F. )}Cj(F. ...F. ). Using the same proof as
J2 3n Jn+1 Jk 32 3k

in case 1, we then obtain $|-M,{E(F. •..F. )} Cf.. Since |- £(Mf) Cm'
Jn+1 3k X

by A6 and A7, we can combine everything into $|- M-{£(M9)} C F. (Mf) . D

We are now ready to prove (b), i.e., P, P \- $ by parallel Scott

induction R7 on P |- $.

Basis: We must prove P|-${jl/F.} for all F. active in P. This
J J

is easy using A3.

Induction: Assuming P, $, we must prove ${P./F.} for all F.
3 3 3

active in P, i.e., that \- P. {£(F. - •-F. )} C F. for all 1 < i < m.
31 32 3k 1

Let P = g(M ,...,M ); using A8, we show P \- P. E F. thus it will be
lip ° ' l l

sufficient to prove that $ |-P. {T(F. •••F,, )} Cp., The term P. can
- Jl J2 *k ~ X 3±

only be of the form P. = g(M ,... ,M ) and thus, all we need to prove
3j_ -*- P

is $ (- M, {£(F ...F. )}Cm for all 1 < k < p. Since we know from
K Jo Ji, K — —
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the preceding Lemma that this is the case, we can regroup everything

using A4 and the proof of Theorem 3 is completed. •

6. Conclusion

There are many directions in which this type of study could be

generalized. We simply mention a few outstanding unanswered questions:

1. Are the main results obtained here still valid without the

restriction that 6(F.(X)) $ ~?

In terms of languages, this means being able to decide the equiva

lence of simple language over infinite as well as finite words. The

corresponding problem for regular languages is solved in [7].

2. Is equivalence between polyadic programs decidable?

It is shown by Courcelle in [5] that equivalence between polyadic

recursive schemes is decidable if and only if equivalence between deter

ministic pushdown automatons is also decidable.

3. Do similar results exist about the typed X-calculus and

X-calculus? Is Milner's LCF [17] complete if we remove conditionals?

4. Can one prove Theorem 3 without introducing min or, (as the

authors conjecture), show that min is necessary?
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