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1. Introduction

Optimization problems with equality constraints contain the

implicit difficulty arising from the need to solve a system of equations

while optimizing a cost function. This difficulty tends to result in

doubly infinite algorithms, i.e. algorithms constructing infinite

sequences based (explicitly or implicitly) on an infinte number of

"inner" iterations for each "outer" iteration. An obvious example of

explicitly infinite "inner" iterations is found in all penalty function

methods. (See, e.g. [5], [10].) Implicitly infinite "inner" iterations

are found in gradient projection [7], [9], [11], [13], [19], [20],

gradient restoration [14], [15], and reduced gradient algorithms [1],

[2], [6], [12], [21]. An important question which has not been

analyzed in the literature relating to gradient projection, gradient

restoration and reduced gradient methods is that of how the inner

iterations should be truncated, without destroying convergence.

In this paper we present a general scheme for implementing algo

rithms of the gradient projection, gradient restoration and reduced

gradient type, i.e., for converting them into convergent algorithms with

finite inner iterations. The scheme is computationally quite efficient,

but it is moderately complex. To make it transparent, it is presented

by taking the reader through three successively more elaborate algorithm

models. A particular application to a gradient projection method is

given so as to illustrate that the application of our results is

reasonably straightforward.
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2. Basic Algorithm Model

We begin by considering the problem in a general setting. Let X be

a normed linear space and let T be a closed subset of X. Suppose that

T contains a nonempty subset A of desirable points, and our problem is

to find a point in A.

We shall denote the norm on X by II* II and we shall use the notation

B(z,p)^{XeX| Hx - zll <p}, R+ = [0,»), X- {0,1,2,3,....}. Any
00

sequence {z.}. « which is contained in a compact set, will be called a

compact sequence.

Quite commonly (see R.6], [£2]) an algorithm for finding a desirable

— T
point will make use of an iteration map A : T -»- 2 and of an abstract

cost (or descent) function c : T -*- IFr and will have the following form:

Algorithm Model 1

Step 0

Step 1

Step 2

Step 3

Compute an Xq G T and set i = 0.

Compute a y G A(x.).

If c(y) - c(x ) < 0, go to step 3; else stop.

Set x _ = y, set i = i + 1 and go to step 1.

— T
The requirement that A : T -»• 2 means that the sequence (x } con

structed by Algorithm Model 1 must be feasible (i.e., x E T for all i).

This causes no difficulty in the case of algorithms such as the

methods of feasible directions [23] for solving problems of the form

min{f(x)|hj(x) <0, j=1,2,...Z}, where T={x|hj(x) <0, j-1*2,...1}

and has an interior, but it does cause implementation difficulties

in gradient projection, gradient restoration and reduced gradient

type methods (see, e.g. [14], [20], [1]) for solving problems of the

It is easy to generalize our result to topological spaces which are not
normed or metric by restating our results in terms of sequential conver
gence rather than in terms of balls.

-3-



i i kform min{f(x)|hJ(x) <_ 0, j = 1,2,...,£; g (x) = 0, k = l,2,...,m}

where T = {x|hJ(x) < 0, j= 1,2,...,1; gk(x) = 0, k= 1,2,...m} has no

interior. The main reason for this difficulty is that when y G A(x)

is approximated by a nf T, it is not possible to maintain the require

ment that c(xi+1) < c(x±) be satisfied. Consequently, a simple-minded

implementation of Algorithm Model 1 which merely substitutes approx

imations n to y G A(x±) for y may result in jamming at an x. $ T, or in

false convergence, i.e., in convergence to a point not in A and possibly

not even in T.

We now present an implementation of Algorithm Model 1, which has

the same convergence properties as Algorithm Model 1 (see Theorem 1.3.1

In [l6J)and which is specifically conceived for the case where T has

no interior. In this new algorithm model we make use of an abstract

cost function c :X+ (R which is an extension of c, an iteration func-

tion A :X x IK + 2 which approximates A, a proximity function

p :X -»• IR ,which is used to provide ameasure of closeness of a point

x to the set T, and a restoration map r :~L x x -»» X, which will be used

to drive points into T. As we shall later see, frequently Newton's

method can be used to define r.

Assumption 1

(i) c :X + 1R is continuously Frechet differentiable.

(ii) p :X -*- IR is continuous and satisfies p (0) = T.

(iii) For any x e X, (a) the sequence {r(k,x)}!° converges to a

point in T, and (b) r(0,x) = x.

(iv) For any compact subset Cof X there exists an M > 0 and an

e > 0 such that
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(2.1) llr(k,x) - r(x)H < Me, Vx G c O P(e), Ve € [0,e], Vk 6l ,

where

(2.2a) P(e) = {y G X|p(y) < e},

(2.2b) r(x) = lim r(k,x).
k-x»

(v) For all x e X, and for all e > 0, A(x,e) C p(E).

(vi) For any z G t, satisfying z f A, there exist p(z) > 0, 6(z) < 0

and e(z) > 0 such that

(2.3) c(y) - c(x) < 6(z), Vy G A(x,e), Vx € B(z,p(z)), Ve € [0,e(z)]. n

We can now state our new implementation scheme. The reader will

note that it has certain structural similarities with the implementation

scheme (A.1.1) in [16 ]. (See Step 5 below.) The scheme (A.1.1) in [16]

is directed towards the case where T has an interior, and requires the

construction of feasible sequences, whereas the one below does not.

Algorithm Model 2

Parameters; e > 0, y > 0, $ G (0,1).

Data: zQ G x.

Set i = 0, j = 0, e = eQ.

Set k = 0.

If p(r(k,zi)) _< e, go to step 4; else go to step 3.

Compute r(k+l,z.), set k = k + 1 and go to step 2.

Step 0:

Step 1:

Step 2:

Step 3:
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Step 4: Compute a y G A(r(k,z.),e).

Step 5: If c(y) - c(r(k,z.)) <_ - ye, go to step 6; else set

Xj = r(k,z±), (y. = y,e = e), e= 3e, j =j+ 1 and go to step 2.

Comment: y and e. above and £., k. and e. below are defined only

to facilitate proofs to follow.

Step 6: Set z±+± = y, (£± = r(k,Zi), e± = e, k± = k), i= i+ 1, and

go to step 1. n

We now establish the convergence properties of Algorithm Model 2.

First, it follows easily from Assumption 1 (ii), (iii) and (vi) that

the following proposition is true.

Proposition 1: (a) Algorithm Model 2 cannot cycle indefinitely in the

loop defined by steps 2 and 3. (b) If Algorithm Model 2 jams up at z.,

cycling indefinitely between steps 2 and 5, which results in an infinite

00

sequence {x.}. n9 then x. •> x* G A as j •* «>. n
J 3=0 3 J

Next, we observe that if Algorithm Model 2 constructs infinite

OO 00

sequences {z.} and {e.}. n such that e = e* > 0 for all i > i , for
i i-0 i i=0 i — o

some i , then k = 0 for all i > i and hence ^ = r(kJ,zJ) =
o' i — o si v i' 1'

r(0,z.) = z. for all i > i . But this implies that c(z.^-) - c(z.)
i i — o r i+1 i

_< - ye* for all i _> i , so that c(z.) •*• -» as i -*• °°. Consequently, we

get the following

Proposition 2; Suppose that Algorithm Model 2 constructs a compact

infinite sequence {z }. Then the corresponding sequence {e.} converges

to zero.

The next result is nowhere near as obvious.
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Proposition 3: Suppose that Algorithm Model 2 constructs a compact

infinite sequence {z.}. Then any accumulation point of {z.} is in A.

Proof: Suppose that Algorithm Model 2 has constructed infinite sequences

{z1>, {£.>> {e.} and {k.}, and that the sequence {z.} is contained in a

compact set C. Then, by Proposition 2, e. -»• 0 as i •* «>. Next, since

by construction £. = r(k.,z ), z. = r(0,z.) and p(z.) <_e. - for all i,

it follows from Assumption 1 (iv) that there exist an M > 0 and an

integer i such that for all i > i ,
o — o

(2.4a) ll£. - r(z.)!l < Me. -,
i i — l-l

(2.4b) Dz. - r(z.)II < Me., .•
i l — i-1

Hence there exists a compact set C' 3C which contains {z }, (r(z.)} and

{£.}. It now follows from Assumption l(i) that c(-) is Lipschitz con

tinuous on C, with constant L, and hence for any i ^ i , because of

(2.4a), (2.4b),

(2.5) c(£.) - c(z.) < LH. - zjl < 2LMe. ...
l l — *i i -- l-l

Note that if e. = e, ,, then since z. G A(£, -,e. ,), it follows from
l i-1 l *i-l l-l

Assumption l(v) that p(z.) < e. - = e., and z... G A(£.,e. .). Hence
r i — l-l i l+l si i-1

we must have £. = z. whenever e. = e. ,.
l i i l-l

Now, suppose that {z-}.j£T is a subsequence converging to z*.

Since p(z.) _< e , for all i, it follows from Proposition 2 that

p(z ) + 0 as i -v °°, so that p(z*) = 0, and hence, from Assumption l(ii)

that z* G T. Referring to (2.4a), (2.4b) we conclude that not only
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z± + z* as i + «, i G i, but that also £ + z* and r(z ) + z* as i -»- ~,

iG I. Now suppose that z* $ A. Then by Assumption l(vi) there

exist p(z*) > 0, 6(z*) < 0 and e(z*) > 0 such that (2.3) holds for

z = z*, and hence, since e. •*• 0 and £ -* z*, as i -* «, i € i, an<j

zi+1 e A(Ci,e ), there exists an i > i such that

(2.6) c(z±+1) - c(C±) < 6(z*) < 0 Vi > i ,iG I.

Combining all the results obtained so far, we conclude that for all

(2.7) c(zi+1) -c(, )= I c(Zjl+1) - c(«t)

Wl Wl

l

+ * [(c(,W ~c(V> +(C(V -C(ZH))]

+ it I(c(W •c(V> +(c(V "C<Z*»J
«$I

Ve*-1
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i i

< I 6(z*) + 2LM I e
i=±1 Jl=i

1

< I 6(z*) + 2LMe0/(l-8),
*=±1
AGI

since ^e£_i^£=i> eo ^ eoi is a subsequence of {e 3 }?__«• Hence c(z )-*» -°°

as i -*• °°, i G i. But this contradicts the continuity of c(«) at z*,

and hence we conclude that z*^A is false, i.e., that z* G A. H

We can now summarize our conclusions as follows.

Theorem 1: (i) If Algorithm Model 2 stops at a particular z and

constructs an infinite sequence {x.}, then x. -»• x* £ A as j -* °°.

(ii) If Algorithm Model 2 constructs a compact infinite sequence {z.},

then any accumulation point z* of {x.} is in A. n
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3. A Structure for the Map A

In specific applications, such as gradient projection, gradient

restoration and reduced gradient methods, the map A, corresponding to

the one in Algorithm Model 1, has a very specific structure, viz. it is

a composite map made up of a direction finding map, a step size map, a

restoration map and other bits and pieces. The appropriate map A will

usually have to be considerably more complex. Because this specific

structure occurs so frequently, it is possible to save considerable

effort in applications by working out in advance the implications of

Assumptions 1 (v) and (vi) on the composite parts of A for this type

of structure. We shall therefore do it in this section.

We shall define the map A in terms of a first-order-cost-reduction

estimate function $: X "*" IR , a set-valued, descent direction function

D : X -*- 2 and a curvilinear Armijo type [3 ] step size function

A : R+ x X x X + K1.

The following hypotheses on <j> and D will ensure that Assumption 1

(v),(vi) are satisfied.

Assumption 2

(i) The function <}>(•) is upper semi-continuous,

(ii) <j> (0) H T is a nonempty subset of A.

(iii) Given fixed, but arbitrary constants Xc > 0, a- G (0,1), 3_ G (0,1),

for any z G T, z ^ A, there exist a p > 0 and an integer £ _> 0 such

that for any x 6 B(z,p ), for any d G D(x) and for any k G*2.,

£ £

(3.1) c(r(k,x+Xs32Zd)) -c(x) <«]* 32%(x).

-10-



We now proceed to define the step size function. First we define

k : X x (0,<») +T by

(3.2) k(x,e) = min{k GX|r(k,x) G p(e)}

Next we define y : X x 1R -> S by

(3.3) y(x
r(k(x,e),x), if e > 0,

if e = 0,

rr(k(x

U(x),

i.e. y(x,e) is the first element of the sequence (r(k,x)} to satisfy

p(r(k,x)) <_ e. Proceeding, given X , 39 as in Assumption 2 (iii), and

X > 0, arbitrary, but fixed, we define a set-valued function
e +
A : K+-21* of step size candidates by

(3.4) A(e) ={Xg32|Xs32 1 Aee, £^1}

Finally, given fixed, but arbitrary constants Y-, > 0, o G (0,1), we

define the step size function X :IR x X x X+fR by

(3.5) f0 if <Kx) >- YjE,

X(e,x,d) = - 0 if c(y(x+Xd,e)) - c(x) > a X<f>(x), VX G A(e),

>max{X G A(e)|c(y(x+Xd,e)) - c(x) <_ a X<J)(x)}

otherwise.

Combining all the pieces, we now define the iteration map A : X x flv* -* 2i

-11-

by



(3.6) A(x,e) = U {y(x+X(e,x,d)d,e)}
dGD(x)

Proposition 4: The iteration map A defined by (3.6) satisfies Assump

tion 1 (v), (vi).

Proof: Since by construction y(x+X(e,x,d)d,e) ^ p(E) for any x G X,

d G x and e > 0, Assumption 1 (v) is obviously satisfied.

We now show that Assumption 1 (vi) is satisfied. Suppose

z £ T and z f A. Then, by Assumption 2 (iii), there exist a p > 0
z

and an integer £ _< 0 such that for all x G B(z,p ), for all d G D(x),
z

for all k G"I ,

£ £

(3.7) c(r(k,x+Xg32Zd)) -c(x) <c^A B^fcO.

Next, since z | A, it follows from Assumption 2 (i), that

there exists a p(z) G (o,p ) such that
z

(3.8) <Kx) ±h(z) < 0, Vx e B(z,p(z)).

Now, let e(z) > 0 be such that for all e G [0,e(z)]

1 l
(3.9) - <j)(z) < -y-e and X 3* > X e.

2 — 1 s 2 — e

It now follows from (3.7), (3.8) and (3.9) that for all x GB(z,p(z)),

for all d G D(x), for all e G [0,e(z)]

£ £ £

(3.10) c(y(x+X 30Zd,e)) - c(x) < a1X30Z<J.(x) < a.X3 Z<f>(z)/2 < 0,
S 2. ± S ^ — lS^

-12-



(3.11) <|>(x) <-|*(z) •< -y^,
£

(3.12) X 32Z >. Xe.
£

Consequently, we must have X(e,x,d) _> X 32 >0 for all x£ B(z,p(z)),

for all d £ D(x), for all e € [0,e(z)]. Therefore, for all x ^ B(z,p(z)),

for all d G D(x), for all e G [0,e(z)],

(3.13) c(y(x+X(e,x,d)d,e))- c(x)

1 %z A<. a1X(e,x,d)(j)(x) <^X^^K2) =6(z^ <°*

Thus, Assumption 1 (vi) is satisfied. n

Substituting for A from (3.6) into Algorithm Model 2, we obtain

the following expanded version.

Algorithm Model 3

Parameters: c^ G (0,1), 3 G (0,1), 32 € (0,1),

\ >0, Y2 >0, Xg >0, eQ >0, Xe 6 (0tXg/e0).

Data: z G X.
0

Step 0: Set i = 0, set j = 0, set e = eQ.

Step 1: Set k = 0.

Step 2: If p(r(k,z.)) <. e, go to step 4; else go to step 3.

Step 3: Compute r(k+l,z ), set k = k + 1 and go to step 2.

Step 4: Compute <|>(r(k,z.)) and a dfc £ D(r(k,zi)).

Step 5: If (|>(r(k,z.)) <_ -Y,e, go to step 6; else set y = r(k,z±) and

go to step 12.

Step 6: Set X = X .
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Step 7: If X >_ X e, go to step 8; else set y = r(k,z.) and go to
e i

step 12.

Step 8: Set m = 0.

Step 9: If p(r(m,(r(k,zi) + *dfc))) <_ e, go to step 11; else go to

step 10.

Step 10: Compute r(m+l, (r(k,z±) + Xd.)), set m = m + 1 and go to step

9.

Step 11: If

c(r(m,(r(k,Zi) + Xdfc))) - c(r(lL,z±)) <a A*(r(k,z )),

set y = r(m,(r(k,zi) + Xd )) and go to step 12.; else set X = X3« and

go to step 7.

Step 12: If c(y) - c(r(k,z.)) <_ ~Y2e> go to step 13; else set

x = r(k,zi), set j = j + 1, set e =.e31» and go to step 2.

Step 13: Set z±+1 = y, set i = i+ 1, and go to step 1. n

We note that in programming an algorithm of the form of Algorithm

Model 3, one would remove the obvious redundancies which appear in

Algorithm Model 3 only so as to exhibit its exact correspondence to

Algorithm Model 2. Thus, step 5 would be modified to read: "else,

set e = e3-, x. = r(k,z ), j = j + 1 and go to step 2," since the out

come of the test in step 12 is obvious at this point and hence can be

omitted.

We now present a specific application of our implementation method.
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4. A Gradient Projection Algorithm

The algorithm we shall present in this section solves problems of

the form

(4.1) min{f(x)|g(x) = 0,h(x) < 0}

where f:IRn -*- fR , is continuously differentiable and g :Rn -> JR-m,

h :K +flvare twice continuously differentiable.

We shall denote the components of a vector by superscripts; the

elements of a sequence by subscripts. Vector inequalities are to be

interpreted componentwise. We shall use the Euclidean norm "•" throughout,

and we shall denote the feasible set by ft = (x|g(x) = 0,h(x) < 0>.

Our algorithm makes use of two special functions: h+, h~ :Rn -»• R

defined, componentwise, by h ^"(x) =max{0,h±(x)} and h_i(x) =miniOjh1 (x) },

i = 1,.. -^respectively. The restoration function r which we shall use

necessitates a special condition on g, h.

Assumption 3: For any x € Rn, the pair of Jacobian matrices

C^1' -^0 satisfies the LI condition [17]; viz. ^^~\x +^^v =0,
and v > 0 implies that y = 0, v = 0. n

Proposition 5: Under Assumption 3, the set ft satisfies the Kuhn-Tucher

constraint qualification. (See theorem 3.3.17 [4]) n

Proposition 6: The system 9f(x) v=a, 3^x) v<bhas asolution for
ox dx =

any x^ Rn, a^iRm, b^^ ,if and only if Assumption 3holds. (See 0.7]).°

The algorithm in this section finds Kuhn-Tucher points, which we

define as follows.

-15-



Definition 1: We shall say that a point xG IRn is a Kuhn-Tucher point

(KTP) if x G a and there exist multipliers p > 0, ij> such that

(4.2) vf(x) +M££r%+3Mx^ =Q
3x v ax M

and <p,h(x)> = 0. Let

(4.3) ~K ={xGft|x is KTP}. n

Given a zG ft, zfYJx, - Vf (z) defines a direction from z in which

the cost is reduced. However this direction does not, in general,

generate points in ft. A projection map tt : Rn •> ft maps this half

line into a feasible curve c(z) = {ir(z-XVf(x))|x ^0} C ft, along which

the cost can also be reduced. This fact gives rise to the classical,

conceptual gradient projection algorithm [9] which, given z G ft,

computes z±+1 according to z±+1 = arg min{f(y)|yG (z±)}. However,

the work of projection can be reduced substantially by first computing

the negative gradient projection direction d(z), which is defined by

(4.4) d(z) -arg min{tlvf(z) +dll2|g(z) +3f<z)d =0,

h(z) + 3^z)d <0}
dX =

for a given z G q, and then computing Ti(z+Xd(z)), because the direction

d(z) satisfies the constraints to first order. This idea yields a some

what more complex, conceptual gradient projection algorithm, as follows.

For any z G ft, let K(z) = {ir(z+Xd(z)) |X >_0}. Then, given any z. G ft,

zi+1 = arg min{f(z)|y G C(z )}. To obtain an implementable algorithm

from this conceptual one, we replace the minimization scheme for

selecting X by an Armijo type scheme, and we approximate the projection
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map tt by a restoration map r. In constructing the implementation we

are guided by Algorithm Model 3.

We identify X with Rn, T with ft, A with ?K and c(«) with f(«)

We define p : IR- -*• R. by

(4.5) p(x) =|
g(x)

h+(x)
1=\ llg(x)H2+f Hh+(x)U2,

and the proximity function p : IK -»• IK by

(4.6) p(x) =v/2p(x) .

The restoration function r :"Z- * X -*• X is defined recursively as

follows:

(4.7a) r(k+l,z) = a(r(k,z)), k = 0,1,2,...,

(4.7b) r(0,z) = z ,

where a : IR -> R is defined below.

Restoration Iteration Function a:

Parameters: a2 G (0,1/2), 3 G (0,1) to be specified by user.

Data: x G R .

Step 1: If p(x) = 0, set a(x) = x and stop; else go to step 2.

Step 2: Compute v(x) as a solution of

(4.8) min{Uvll2|g(x) +*&&- v=0, h(x) +-^1 v<0}.
oX dX —

Step 3: Compute the smallest integer k >_ 0 satisfying

(4.9) ?(x+33v(x)) <(l-2a2B3>i(x).

Step 4: Set a(x) =x+3^v(x) and stop, a
Proposition 7: The function a is well defined.
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Proof: It follows from Assumption 3 and Proposition 6 that v(x) is well

defined. Next, if p(x) * 0, since Vp(x)=as(x) g(x) +-^x^h+(x) we
3x ax '

have, because of (4.8),

(4.10) <v?(x),v(x)> =<g(x), ^^(x)) +<h+(x)> ah<*>y(x))

<- llg(x)||2 - ||h+(x)U2 =-2^(x) <0.

It now follows from the mean value theorem that a finite k, satisfying

(4.9) exists. n

The restoration function a is due to Huang [8] and is based on

Robinson1s extension of Newton's method [17]. In [8] Huang established

the global convergence of this algorithm, but he did not give the bounds

and rate of convergence stated in theorem 2, below.

Theorem 2: With r defined as in (4.7),

00

(i) Given any x, either {r(k,x)l has no accumulation points, or it
k=0

has a unique limit point x G ft and r(k,x) + x quadratically.

(ii) Given any compact set UC Rn, there exist e > 0, MG (0,«) such

that for all x ^ p(e) n U, for all k Gl, r(k,x) G B(x,Mp(x)), where P is

defined as in (2.2a) with p as in (4.6). a

The proof of this theorem is given in the Appendix.

We define d : Rn •* Rn by

(4.11) d(x) =arg min(ll7f(x) + dMI2 ^j' =0, h"(x) +^^1 <0}
d» e Rn

ax " v> w T ax

and associate it with the map D ; R. -> 2 appearing in Algorithm Model

3 by setting
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(4.12) D(x) = {d(x)>

We note that d is an extension of d as defined in (4.4).

We shall prove in the appendix the following

Proposition 8: The function d :Rn-»»Rn defined by (4.11) is

continuous. H

Proposition 9: A point x G IR is a Kuhn-Tucker point if and only if

p(x ) = 0 and d(x ) = 0.

Proof: =* If x is a Kuhn-Tucker point, then p(x ) = 0 and d1 = 0

satisfies the Kuhn-Tucker conditions for (4.11). Since the Kuhn-Tucker

conditions are both necessary and sufficient for (4.11), d(x ) = 0.

«= Suppose p(x ) = 0 and d(x ) = 0, then applying the Kuhn-Tucker conditions

to (4.11), we immediately obtain that x* is a Kuhn-Tucker point. n

Proposition 10: For any xG Rn, (i) lld(x)ll < 2flvf(x)U, and (ii)

<Vf(x),d(x)> <-| lld(x)ll2.

Proof: Since the zero vector is feasible for the min problem in (4.11),

lld(x) + Vf(x)fl2 < llvf(x)fl2. Hence

(4.13) lld(x)0 < lld(x)+ Vf(x)ll + DVf(x)II < 2llvf(x)ll.

Hence (ii) follows from

(4.14) Hvf(x)02 + Ild(x)D2 + 2<Vf(x),d(x)> <. (Ivf(x)ll2. n

We now define <f> :R ->- IR by

(4.15) <f>(x) = <Vf(x),d(x)> .
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Proposition 11: The function <J> defined by (4.15) is continuous. a

In what follows we depend on the following assumption, which will

generally be satisfied.

Assumption 4: For any x G R , the sequence {r(k,x)},_ , with r defined
K U

as in (4.7) has a unique limit point. n

Lemma 1: Given a point z G ft, such that z^ (J\t there exists a

p > 0 and an integer I >_ 0 such that for any k GX and any x G B(z,p ),
z z z

(4.16) f(r(k,x+32ZXsd(x)))- f(x) <afahjix).

Proof: Let zG ft, with z ^ \'K> and let U be a compact neighborhood

of z. Then, because of Theorem 2, there exist e > 0, and M € (O,00)

such that r(k,x) 6 B(x,M /2p(x) ), Vx € U H p(e), vk el, Next, because

of the continuity of d(") (Proposition 8) and because U ^ P(e) is a

neighborhood of z, there exist a p. > 0 and a X G (0,1) such that

(x+Xd(x)) GuH p(e), Vx € B(z,p ), VX G [0,X ]. Now the functions

3e 8h
f, -r , r- are continuously differentiable, and hence there exists a

Lipschitz constant L > 0 as used below.

Let x G B(z,p ), X G (0,X ] and k eX . Then, making use of Proposition

10,

(4.17) f(r(k,x+\d(x))) - f(x) - xa;L <vf(x),d(x)>

= [f(r(k,x+xd(x))) - f(x+Xd(x))] + f(x+Xd(x)) - f(x)

- Xa;L <Vf(x),d(x)>

< LM/2p(x+Xd(x)) +X sup Ovf(x+sXd(x))-Vf(x)U Ild(x)H
se[0,l]

- X(l-a ) Hd(x)H2/2 .
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Let 9: Kn x R1 + K1 be defined by

(4.18) 9(x,X) £ LM/2p(x+Xd(x)) +X sup llvf(x+sXd(x)) - vf(x)[| Ild(x)
sG[0,l]

-(l-0l) lld(x)ll2/2.

Now, for any XG [O.X^, it follows from (4.11), since g(z) = 0 and

h(z) =h"(z), that g(z) +X^^- d(z) =0and h(z) +X^h(z) <0.
Hence for any X G [0,X ],

1

(4.19) llg(z+Xd(z))ll =llxf (a«(^(«)) _i|lzi)d(z)dtI, £LX2,|d(z)„2j
t)

j.

(4.20) Hh(Z+Ad(z))ll =llxf (3h<2!tAd(z)> - -&M)d(z)dt || Lx2Dd(z)y2
J oX 3x

0

and hence

(4.21) /2p(z+Xd(z)) < /2 LX^ Ild(z)lr

Hence, for all X G [0,X ],

(4.22) 6(z,X) <X[/2 L2MXlld(z)H + sup Dvf(z+sXd(z)) -Vf(z)H
s^[0,l]

- (l-a1)lld(z)H/2]Hd(z)ll.

and there exists a X2 G (O.X^ such that for all XG [0,X ], 6(z,X) <
1 9

-•£ X(l-ai)Ild(z)U . It now follows from the uniform continuity of 6 on

B(z,a) x [0,X ] that there exists a p € (0,p ] and an I > 0, with
a z i z

As32Z G (0,X2] SUch that

(4.23) 8(x,39ZX ) <-3>ZX (l-a1)lld(z)il2/8, Vx GB(z,p ),
^ s z s J. z

-21-



which completes our proof. n

We can now show that Assumption 1 is satisfied. Thus, the

functions f, g and h are continuously differentiable, Assumption 1 (i)

is satisfied and it follows from (4.5) and (4.6) that Assumption 1 (ii)

is satisfied. Assumption 1 (iii), (iv) follows from Assumption 4 and

Theorem 2. Assumption 2 follows from Lemma 1 and Propositions 9 and 11,

since Proposition 10 implies that d(x) =0 if and only if <J>(x) = 0. It

now follows from Proposition 4 that Assumptions 1 (v), (vi) are satisfied

Consequently, Theorem 1 implies the following.

Theorem 3: (i) If the gradient projection algorithm jams up at a point

xv' then xv e "A. (ii) If the gradient projection algorithm constructs

either an infinite sequence {x }or an infinite sequence {z.} then any

accumulation point of such a sequence is in^C/C (iii) If neither (i)

nor (ii) takes place, then the gradient projection algorithm constructs

an infinite unbounded sequence {z }. n

This concludes our analysis of the gradient projection algorithm.
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Appendix

In the next two proofs we shall need the following result: For any

x G IP , we define

(Al) u(x) Amax {min{llvll|-&^v =a, -^^v <b}
9x * 8x

< 1}.

Because of Assumption 3, it follows from [L7] and [18] that u( •) is well

defined and upper semicontinuous.

Proof of Theorem 2

8s(x) + 3h(x)
First, since any v satisfying g(x) + °v 7v = 0, h (x) + v < 0

<JX qX

also satisfies the constraints in (4.8), we must have

(A2) Hv(x)ll < y(x) g(x)

h+(x)
= y(x) /2p(x) = u(x)p(x).

Then, making use of (4.10), the continuity of p(«)» the fact that

Vp(x) = 0 if and only if p(x) = 0 and Theorem 1.3.10 in H6], we conclude

that for any x G IR , any accumulation point x* of {r(k,x)},_ satisfies

p(x*) = 0, i.e., x* G ft.

00

Next, if {r(k,x)},_ has accumulation points, then p(r(k,x)) -*• 0
K— 0

as k + «. It now follows from (A2) and [17] that there exists a kf

00

such that the sequence {£.}.- defined by

(A3) 5j+1 =5j +v(C ), j=0,1,2,..., £Q =r(k',x),

converges to an x* G ft. Furthermore, there exists an M G (0,w) such

that

(A4) Dc - CjU £M iuj - e^n2, 3=1,2,... .
ag(^.)

Now, from (4.8) we have that IIg(£.)II < II -HI IIv(5.)II, and,
3 9X j
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hk(^) <
Therefore

/8h(C,)\

hx^K*
""k + 3h(5.)
, k = l,2,...,a. Hence Oh (£.)ll <ll -1 l)llv(g )

(A.5) p(^) <M» Hv(£.)!lZ,
1 38(5,) 2 3h(£ )2

where M1 = - sup(ll——M + II--—-M) . Combining (A2), (A3) and (A4),
^ . c»X <jX

we get

(A6) P(?j+1> <MMIv(5j+1)02 <M'M^vfc )D4 <4y(5j)2M,M2?(5 )2

Since u(») is upper semicontinuous and £. -»• x*, there exists an M* G (0,»)

such that

(A7) P(£j+1> < CM*F(C ))p(c ), j =0,1,2,..

It can be shown that kf can be chosen sufficiently large to ensure that

M*p(£.) <. (l-2a2) for j = 0,1,2,... . Hence, in the restoration

algorithm, we must have r(k'+j,x) = £ for j = 0,1,2,... . Thus part (i)

of Theorem 2 is true. Part (ii) of Theorem 2 now follows directly from

[17] n

Proof of Proposition 8

Suppose that d(«) is not continuous at x*, then, because of

Proposition 10, there exists a sequence {x.}. n such that x -»- x*, but

d(x.) -> d* ^ d(x*). Since 3f^"\ —^ and h~(.) are continuous, it
1 oX oX

follows that aS(x*?d* =0, h"(x*) +9^x*>d* <Qand hencellvf(x*) + d(x*)ll2
oX oX —

< II Vf(x*) + d*U2.

Now there exists a sequence {d } such that d satisfies the constraints

in (4.11) and for i = 0,1,2,... ,

-24-



(A8) Ud. - d(x*)ll < u(x )
1 i

pisn. *£±1, d(x*}
V 3x 3x ; aKK }

h (x*) - h (x.) +<-2|fcU ___i_)d(x*)

Hence d •*• d(x*), Ivf(x.) +d(x,)H2 <llvf (x.) +d.ll2, and
i i i — 1 x

Ovf (x±) +djLU2 •»• IIVf (x*) +d(x*)ll2. But by assumption
Ovf(x±) +d(xj + llVf(x*) + d*U >llvf(x*) + d(x*)ll and hence we have

a contradiction. a
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