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1. INTRODUCTION

The filtering problem for diffusion processes was considered by

Stratonovich [1], Kushner [2] and others. It is well known that except

for the linear - Gaussian case, the implementation of the optimal filter

is impossible. Consequently, suboptimal approximations to the optimal

filter have received considerable attention. Furthermore, there is no

tractable solution for the performance of the optimal filter (except for

a few special cases) which raises the problem of comparing the perform

ance of the suboptimal solution with that of the optimal one.

A possible way to overcome this difficulty is to derive useful

bounds on the mean square error associated with the optimal filter. Upper

and lower bounds for this problem were first introduced in [3]. The lower

bounds presented in [3] were based on information theoretic arguments.

Lower bounds for the estimation of Gaussian processes from nonlinear

measurements based on the Cramer-Rao bound, were derived in [4]. In a

previous paper [5] the authors have presented a lower bound on the

filtering error of certain Markov processes, the bound was based on the

Van-Trees version of the Cramer-Rao bound [6]. A heuristic proof was

given in [5] for the time continuous case and it seems difficult to

construct a rigorous proof along the same lines. A rigorous proof, by

a different approach is presented in this paper. In our special case of

estimating a Gaussian process from nonlinear measurements the results

coincide with those of Snyder and Rhodes [4].

The main results of the present paper are given in Sections 2 and

5. A general bound is derived in Section 2, it can be considered as an

infinite dimensional extension of the Van-Trees version of the Cramer-
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Rao bound [6]. The relation between the two is very roughly as follows,

let p(£, a,) be a probability density in the vector y_, a variables, then

the mean square error of estimating ot_ from y_ is lower bounded in [6] by

elements of the inverse of the matrix

E

J3log p(y.,oO 3log pfcoOl

Consider now the case where a is two dimensional and replace, 3 log p/3a

by

in this form the ratio p(^,a1+6,a«)/p(^,a. ,a«) can be replaced by a

Radon-Nykodym derivative and a general bound can be derived for the case

where a is infinite dimensional. The bound of section 2 is also applicable

to other problems and is, therefore, of independent interest.

The results of Section 2 are specialized in Section 3 to certain

diffusion processes. The a components of a being linear functionals of

a diffusion process x , 0 _< s _< T. In Section 4, it is shown that for the

linear case a limiting form of the bound is satisfied by equality. The

results derived in Section 5, when specialized to a one dimensional time

invariant diffusion are roughly as follows. Let

dx^ = m(x )dt + dw^
t t t

dyt - g(xt)dt + /N^ dv. (1)

yn = 0 and the density of x_ is p(x.). Let

-1

^=(/p«(^fPM)2-)
dm(x)/dx = m(x), dg(x)/dx = g(x). Define A , B by
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Afc = E m(xt)

N^B2 +A2 =E(m2(xt) +g2(xt))
(note that B is real). Consider the linear system

du = A u dt + dw

dv = Budt + MI dv (2)
t t t 0 t

2 2 2E u = 0, E u0 = an, where A ,B , oQ are as defined above. Then it is

shown in Section 5 that the filtering error associated with the linear

system (2) is a lower bound to that of the nonlinear system (1), namely

if xT =E(xT|yt, 0<t<T), uT =E{uT|vt, 0<t<T} then

E(xT -xt)2 >E(uT -uT)2

and a similar result holds for the smoothing problem

2. A GENERAL LOWER BOUND

Let (Y,(55v) be a measurable space and let (R.,M-5.), 1= 1,2,... be

replicas of the real line with the Borel a-field on the real line. Let
00

a =Y xn R.j'^Awill denote the minimal a-field over £R >Q± ±= 1,2,...).
i=l ^

Consider now the probability space (Q,'.^A,vO, ft = {(*>} where to = (y,0^,01 ,...)

where y £ Y, ct £ R .

For any A £ 'Jr and M 0 we define A(i,6) as follows

A(i,6) = {u>: (y,a1,a2,...,ai-1,ai+6,ai+1,...) ^ A}

namely, A(i,6) is obtained from A by shifting by -6 the i-th a coordinate

of all the elements of A. Obviously A (i,6) £ >Jk . Define now a new

measure p. »on (fi,^A) as follows: for all A^lA

v± 5(A) = y(A(i,6))

Let'_A be the sub-o-field of 'J\ induced by ^fi ,namely the cylinders with
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base in ^6 • Let uA_± be the sub-a-field of lA induced by ^6 and 45.,
i ^ j; then <^A . contains all the sets in lAsuch that A(i,6) = A,

- oo < <s < oo. e will be used to denote expectations with respect to the

u measure.

Theorem 1 Assume that vA * is absolutely continuous with respect to y,
C(V±>6 « y) i =1,2,...,N, Ea2 <oo, Jlajdu^

J(N,6) denote the N*N matrix

s < », i = 1,...,N. Let
o

<i0i.a))liJ.i[.^.^4)(i-^4) (3)
2Let a. = E(a. (^.J and let _e^ denote the error matrix

If J(N,6) is nonsingular then

Furthermore, if as 6-K), lim J[(N,6) exists and is nonsingular then

_^ >(11m J(N,6))_1. (5)
"" 6+0

Proof Note, first, that if f(w) is^A . measurable then

Jf(w)dy =Jf(a))dyij6
where the integration is over ft. Therefore, since for j ^ i, a. and a

are J\ . measurable
-x

iK{(0j.;,^.^iy} =o (6)
Also not that ja.dy. fi = |(a.+6)dy therefore

^{Ol-5!^-^)}--1 <7>
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Let

Setting

T
z

Id dyi»6
pi,6 6 V dy

=((a1-ot),(a2-a),...,(aN-a), p± 6»-«-»PN fi)

Tthen E £ £ >_ 0, therefore, by (6) and (7)

I J(N,6)/

where I is the N*N identity matrix. Therefore, for any pair of N vectors

u. v

(8)

Setting, in particular, v = -(J(N,6))~ u we obtain that for any u,

T 2 —1u (e - J )u >_ 0 which proves (4). Equation (5) follows by the same

argument after taking the limit of (8) as 6+0.

Theorem 2 Under the conditions of Theorem 1, if M < N then

4> (J-\N,6))M

ej >((lim J(N,6))~1)M
"" 6+0

where (A)w is the M*M matrix obtained from the N*N matrix A by deleting
M

^ 2 —1the last (N-M) rows and columns. In particular E(a -cL) >_ (J (N,6))^.

T T
The proof is the same as that of Theorem 1 except that u = (u.,0,...,0)

where u- is an arbitrary M vector.

Remark: The matrix lim J(N,6), 6+0, will be called the information matrix,
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3. THE INFORMATION MATRIX ASSOCIATED WITH THE NONLINEAR FILTERING
PROBLEM

Let x , _£ satisfy the stochastic differential equation

d^t = H<*t»t)dt + ^t dwi;

dy^. =^(xt,t)dt + Bt dvt (9)

where w , v are independent standard Brownian motions of dimensions
—t —t

m and g respectively, x and 2+ are m and 8 dimensional vectors respec

tively, y^ = 0, assumptions on x- will be made later. The elements of

the m vector m(x,t) are assumed to be differentiable with respect to

9m4(x,t)
x , 1=1,...,m and —jr is assumed to be bounded and continuous over
1 Xj

Hxll < °°, 0 <_ t <_ T. A similar assumption is made on the elements of the

g vector j>(x,t). Denote

3m±(x,t)
(m(x,t)) -—jj-

3

3g,(x,t)

J j

(the boundedness of m, g implies that m ang £ satisfy a uniform Lipschitz

condition. The continuity of m, £ implies the continuity of E nKx^t),

E£(x ,t) in t). C and 1> are mxm and gxg matrices respectively, non-

singular with continuous entries for 0 £ t <_ T. The requirement that Ct

be nonsingular can be relaxed as will be pointed out later. E will be

used to denote expectations with respect to the measure induced by (9).

Theorem 3 Let Xq = 0 and let y be the measure induced by ^sY^ 0<t<T

of (9). Let f.(t) be m dimensional vector valued function of t possessing

continuous derivatives f (t) =d f^t)/dt on [0,T], f^t) = 0. Let \i±^

be che meaauce induced by x*, y', O^t^T where
—X. t
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4=^ + 6 ft(t)

4 = y3

Then

=e|| (f±(t) +m(xt,t) f^t))*^*)"1 (fj(t)-m(xt,t)fj(t))dt

+j (AC^.t) f±(t))T(DtD^) X g(xt,t) fjCOdtj
0

Proof: From (9) we have

dxj. =6i±(t)dt +m^ - 6£±(t),t)dt +Cj. dw^.

<*4 =£(3^ - 6±±(t))dt + Dt dvt

Let

a± 6(s> =^(-^(x^.s) +m(xg - 6^±(s),s) +6^(8))

i* ^(s) " ^(-£(x ,s) +£(x - 6*.(s),s)) (11)

Note that a and b are bounded. By [7] and [8] the measures y and y. -
— 1, o

are mutually absolutely continuous and

.T

/ " _ i ". J v_„ « ". _'v_ ds +
dy

0 "0

|l^ =Exp jjaT(s)dwg -\ jaT(s)a(s)«

.T „T

+ jbT(s)dvs -I IbT(s) b(s)ds 1 (12)
0 0

We proceed through the following three lemma:
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Lemma 1

sup E(^i^l <
0<«<60 \ dy

Proof: By (12)

(^JL£j=Exp »!=S f(aTa +bTb)dt •
T T T

Exp || naT dw^. -I f- aTa dt + JnbTdvt

-|V^dt}
2 o< Exp S-=_a K 62 T

•Exp 1I naT dw - I —' aTa dt + I nbT dv

.T

-i/ ^i'id.}

The expectation of the second factor in the right hand side of the last

equation is 1 [7], therefore,

sup e(^M < ExpH"* K62T<»

Lemma 2 Let

a,(s) =-^"1(m(xe,s)i(s) - if>,(s))
—i —s s i

-1b^(8) =^f^1(^,8)^(3) d3)
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Then, as 6+0

»(-
dpi,S
dy

Proof: Let

!^ j #-> 4s. *\(s) dw + I bt(s)dv
—S I —X 8

Then

Now,

aT T

4,6(s)d*s-2 J %,6(s)%,6(s)ds +
u 0

T T

+J^,6<S>d^s-I J^,6(s)^i,6<S>ds}
A_' = dy. jj/dy. By Ito's rule of differentiation

1/dyi,6 _\ f 1 .1,6 T (A . . ,l^Tt"1) " J «V ^i,6(ds)d^s +

0

E(| Asi,64,6«id^s- J 4<S>dw-2)

= E J |As %,6<s> 1-*i<s> ds

< 2E »6 - l)2 1^1,6 (S) ds +

+ 2 | EU-M(s)"-i(s) ds

-10-
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The second integral tends to zero by the dominated convergence theorem

since a «(s)/6 and a. (s) are bounded. As for the first integral, since
—1,6 —i

a. ./6 is bounded and since E A ' =1
—i,o s

.T

E

"0 "0

.T

1 fJ(A*'6 -l)2 1^^(8)7612 ds <Kx EJ{(A*'6)2 -2A^6 +l)dt

£K1J
0

.T

2
, 6 KT nj.
(e - l)dt

Therefore, I A1' t a? x(s)dw converges in the mean to J a. (s)dw as
J s 6 —i,o —s 0

T
i i 6 T6+0. By the same argument I A ' b. «(s)dv converges in the mean to
I S """"X, o s

{T 0
b^(s)dw which by (15) completes the proof of the lemma.

o "S
Lemma 3 lim E( ) in the left hand side of (10) is equal to E lim ( )

6+0 **0
where the last limit is in probability.

proof A sufficient condition for the interchange of the limit and the

expectation (p.164 of [9]):

This will follow from the proof that

sup E±t (1 --~^- ) <oo (16)
0<6<60 64 \ dy /

By (14)

0

+ 2* ^((W,.*.)
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By [10] and since the elements of afc 6(s)/<5 and b± g(s)/6 are bounded

By Lemma 1, (15) is true which proves the lemma. Returning now to the

proof of Theorem 2, by the result of Lemma 2 there exists a sequence

6 +0 for which the convergence result of Lemma 2 holds also almost surely,

On a subsequence of the 6 sequence we will also have almost sure

i / ndyj,v\convergence for -7— (l -r-—— |. Since x_—^—• x, y^ *» y implies

a s.
x y » xy we get by Lemma 2
n n J

62 \ dy /\ dy

n n

±*± (\ %(s)d^s +ĵ i(s)d^s)(j 4(8)d-s +ĵ j(8)d^s)
The result of Theorem 3 now follows by Lemma 3.

Theorem 4 Let x. be a random variable with a density p(x). y and y. «

are as in Theorem 1 except that the condition 4.(0) = 0 is not required.

Let e be any unit m dimensional vector. The density p(x) is assumed to

satisfy

a) p(x + <$e) is absolutely continuous with respect to p(x)

for all 0 < 6 < 6Q

b) p(x) is differentiable in all it's variables
p(x + 6^)

c) |1 5^5— I<«f(x,6)

where f(x,6) satisfies for some e>0

-12-



Then

sup f fpW^(M),r.., <-
0<6<6rt J ••• J ~ ~* x m

0 —00 —00

s-M'-^K-V
=̂(0) (o^)""1!.^) +e|J (i±(t) -m^t) ^M)7(ctcTt)

.T

+

'0

<±j - ife^t) lj(t))dt +

J (i(xt,t)(J,i(t))T(DtD^)~1i(xt,t)

lj(t)dt 1
2 -1where (an) is the m m matrix

, -i f °° f°° 3 log p(x) 3 log p(x)
>}i,j =J ... J p(-)—"av ^T ^r...,dxm

Proof; By [8]

d"i,k pfe+«ii<°» 1>4
du p(x) AT

where A ' is as defined by (14). Therefore

l/, f!ii\ l/, p<* +*lj<0»\ , p(x +^(Q)) ! ,«
6 ^X " dy /" « \ P(*> / P(*> « U T ;

The rest of the proof is essentially the same as in Theorem 2, taking

first the conditional expectation given x~ and then taking the total

expectation. The details are therefore omitted.
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Remark The requirement that C be nonsingular can be relaxed as

follows. Replace C"1 and (C^)"1 by C*, (C_t,c£)+ respectively where
( )+ denotes the pseudo-inverse in all the equations of this section and

require that the equation in a ^(s)

-C % 6(s) » m(xg,s) -m^ - 6^±(s),s) -6±±(s)

has at least one solution which is continuous in x, s and 6, 0<6<6q and

that the first line of equation (11) is uniformly bounded for all x,

se [0,T), 0<6<6Q.

4. AN EXPRESSION FOR THE ERROR MATRIX ASSOCIATED WITH LINEAR FILTERING

Consider the linear system

djL. = A. }L. dt + C. dw.
—t —t —t —t — t

dv^ = B,. ir dt + IV dv
—t —t —t —t —t

(17)

where w is a standard m dimensional Brownian motion, _v is a standard

g dimensional Brownian motion independent of w^. Al , B^, CT D are

m*m, gxm, mxm, gxg matrices respectively with continuous entries. I) is

nonsingular for all t in [0,T], v^ = 0, u~ is assumed to be Gaussian
T 2 2Eu-M, E Unut = a*, crn is assumed to be nonsingular. All expectations

in this section are with respect to the measure induced by (17).

Let R = E u u: and let X., ±.(t) be the eigenvalues and eigen-
s,t s't i i

functions associated with R , s,t £ [0,T]. Let a. denote the coefficients

in the Karhunen-Loeve expansion of u , then u = £mja± ^M in the mean

and a.s., a are independent and Gaussian (0,X ).

Lemma 4 [Parzen]:

Let

-14-



N t

i=l 0

oj - E<ail:v °l8lT)
then, l<i, j<N

E(a1-a«)(a.-5»)=((^ +KN)-1) (18)

where rN is the N*N diagonal matrix [1^ j= x± 6ij»6ij beinS the

Kronecker 6, and K^ is the N*N matrix

<Vlfj «J(Bt ^(t))T (D^)"1 B^ ±.(t)dt
0

Proof: Equation (18) is a result of Parzen (Theorem 6.1) of [11]) where

in [11]

^ij^^' V'^RKl

(Vi,j "K\\ ±±(8)de' \\ ^(e)d6>RK2
J0 0

where <-9'>T>vi is the reproducing kernel Hilbert space scalar product
RK_L

associated with the process ut of (17) and <,»*>RK2 is the reProducin8

kernel Hilbert space scalar product associated with the process I P^d^.

The explicit expressions for r^, ]C, follow from Lemmas A-1 and A-2 (Appendix)

It follows from Lemmas A-1 and A-2 (Appendix) and (18) that

<S1 +V±.j-4<°> <°orlV0) +

(♦±(t) -̂ ±±M)(ct^)+ (ij(t) -4 ij(t))dt

J (J^ <I>i(t))T (D^)"1 ^ <f>..(t)dt
-15-



Theorem 5

B(.1-S1)(aj-5j)-u-[(r;1+^I)-1]ltj

a± = E(ajL|vg, 0<s<T)

and tZ + L is as given by (19).

Proof: Consider, first, the case i=j=l. Let ^Q , N>1 denote the a-field

generated by {v ,0<6<T; a .; a 2;...}. Then cL =ElaJ^fL} and

E{"llCBN+l} ="l+1- Therefore» the random sequence ^ forms areverse
aOO <"wN

martingale sequence in N and ([9] p.396) a- = 11m a., N+°° exist a.s..

*N 2
Furthermore, (a-) is a reverse submartingale sequence, therefore,

*N 2 ? ajj 2 AN
E(a--a..) = E aj - E(a-) is nondecreasing with N. Since the a are

aN 2
Gaussian with zero mean on uniformly bounded variance, E(a -cO increases

to E(a.,-cL) . It follows that ((r^ +O" )„ tends to a limit as N+».

It remains to be shown that this limit is E(ci..-qL) .

Let £R be the intersection of all the £R a-fields then an =
00 L,n 1

E(a1|4^oo). Let a{v }denote the a-field generated by v^, 0<6<T, then

obviously, <Qm Ca{v^. It has to be shown that <Qm =c^q}. Let A^(Q^

then A G^FL. for all N. Let IA be the indicator function of A then
N A

TI. - G q<(aM+x»aN+2»' ••) wnere G is a measurable function of the • , a ,

i>N+l variables. By the theorem that every section of a measurable

Tfunction is measurable ([9] p.134) it follows that for a fixed v^,

G T(ajTj.i»..«) is a measurable function of a., i>N+l. Furthermore, vT
-0

fixed, G T(aN+1,...) is a tail function of the independent random variables

-0

a., therefore, by the Kolmogorov zero-one law ([9] p.229) G is trivial

so that G is a function of vn only therefore Cf^ = o(yjJ).

-16-



The same proof holds for any i=j, N>i, the case i£j follows along

the same lines by considering «.+«.> N>i,j.

9 T 2 ""1Remark If ot =0then the results of Theorem 5 hold with ^(O^

replaced by zero in Equation (19).

5. A LOWER BOUND FOR DIFFUSION PROCESSES

Let x_, v_be as in Section 3. Let
—t -^t

A = E m(x_,t) (20)
—t 1

and let j| be a solution to the following equation

£ £(R, dV1 a B =E{(m(x ,t) - AJT(C C?)""1 (m(x ,t) - A)}
—t —t —t —t —t —t 1 —t —t t — t t

+E{(£(xt,t))T (D^. D^)"1 1(2^,t)} (21)

The right hand side of (21) is nonnegative definite, matrix, therefore,

it has a square root, this assures the existence of a solution to (21) for

B . Note that A,, and B.. are continuous in t.
—t —t —t

Theorem 6 Let sr ,_jr satisfy the conditions of Theorem 3 (Theorem 4)

consider the linear system (17) where A^, B^ are as defined by (20) and
T 2

(21). Xq = °» 2En ~ ° (E *o = °> E *(&\ " 1q respectively) then

E(1)(x±(T) -x±(T))2 >E(2)(u±(T) -u±(T))2 (22)

where E and E^ denote expectations with respect to the measures

induced by (9) and (17) respectively. x.(T) denotes the i-th component

of X(T), x±(T) =E(1){xi(T)|yt, 0<t<T}, u± =E(2){Ui(T)|vt> 0<t<T}.
Furthermore, let a be any functional on L„[0,T] then

E(1)(a-a(1))2>E(2)(a-a(2>)2 (23)

where S(1) =E(1){a|yt, 0<t<T}, S(2) =E(2){a|vt, 0<t<T}.

-17-



Proof: Let &.M denote the eigenfunctions associated with the u^,

0<t<T process of Equation (17). By the result of Lemma A-2, the ^(t)

have differentiable components on [0,T]. Since the measures induced by

(9) and (17) are equivalent [8], ^(t), i=l,2,... are complete with

respect to the x^ process of (9). Consider now the space (^., 0<t<T,

a ,a„,...) where

fT T
"b

Because of (20) and (21), the information matrix associated with the

nonlinear system (Equation (10)) is equal to the information matrix

associated with the linear system which is the same as Equation (10) but

with m, k replaced by A and B respectively. Therefore, by Theorems 1

and 5 the matrix

E<1)(«1-a(1>)(aj-sj1>) - E<2>(Vaf>)(araf>>
N

is nonnegative. Let a = £ 9. a. where 9., i = 1,...,N are constants
1

then E(a-a)2 =E T,*± e- E^.-a^a^^). Since ±±(t) are complete with
respect to x , 0<s<T, (23) and (22) follow,

s

APPENDIX

In this Appendix, we consider the random process defined by

di^ =^ Uj. dt +Ct dwt (A-D

where u«, A , C , w are as in the first line of Equation (17).
—0 ~Tl —t —t

Two lemmas associated with Equation (A-1) will be stated and then proved.

The reader is referred to [11] for the basic definitions and results on

the reproducing kernel Hilbert space associated with random processes.
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Lemma A-1 If C is nonsingular, 0<t<T and f. (t), i=l,2 are m dimensional
t i

vectors with components having bounded derivatives on [0,T], then the

reproducing kernel scalar product <Lt»^2>'BK associated with (A"~l) is

given by T

<frVRK =li<0)(4rl ^2(0) +j (ii(t) -^i(t))T(^t>
'0

(k.2M "4 f2(t))dt (A~2)
2.and if [ajh =0, fAO) =0, f_2(0) «0, the first term in the right hand

side of the last equation is zero, f(t) = df(t)/dt. Furthermore, if

instead of requiring the C be nonsingular we require that f^(t), f^Ct)

be in the reproducing kernel Hilbert space associated with (A-1) the (A-2)

T -1 T +
remains true with (CC ) replaced by the pseudoinverse (CLCL) .

t t t t

Lemma A-2 Let A , jL(t) be the eigenvalues and eigenfunctions associated

with the Karhunen-Loeve expansion of u , 0<t<T then the components of
t

jL(t) possess continuous derivatives on [0,T] and

f- «±j =4(o) <4rl vo) +J (ii(t)" ^ *i(t))T (^)+
1 0

•(ij(t) -^ 4>j(t))dt (A-3)

where 6.. is the Kronecker 6 and ( ) denotes the pseudoinverse. If

9 T 2 —1oT = 0 then the same result holds with ^(OKOq) 1,(0) replaced by zero.

Proof of Lemma A-1 Consider the process u' = f.(t) + ir then

duj. = (f(t) - At f(t) + Atu^)dt + C^ dw^

The Radon-Nikodym derivative of the measure induced by u^. with respect

to that of u* is given by [11]:
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Exp^u,!^ -\ <f.f^} (A-4)

provided that £_(t) is in the domain of the reproducing Hilbert space of

Equation (A-1). From [7] and [8], it follows that _f(t) is in the

reproducing kernel Hilbert space of (A-1) and by comparing the explicit

expression for the R-N derivative given in [7] and [8] with (A-4), we

get an explicit expression for <f^^ from which <l1»f2>RK aS given by

(A-2) follows immediately. If (I is singular for some t or for all t,

then the condition that £ is in the reproducing kernel Hilbert space of

(A-1) assures that the measure induced by (A-1) is absolutely continuous

with respect to that of u! [11] and the result of the final part of the

lemma follows by comparing (A-4) with the results of [7] and [8].

Proof of Lemma A-2 Let 4* be the mxm matrix which solves
—t

—- =* A ¥ V = I .
dt -t V -H) L '

It is easily verified that the solution to Equation (A-1) for t>s is

given by

u = I y 1 u + r n"1 c—t —t —s —s -t J —9 —<e d^e

therefore

T T —ITT

R . = E uJiZ s E u "I • (!o ) L. •—s,t —s—t —s—s —s .—t

T
Furthermore, it is easily shown that E u u = R satisfies the equation

' J —S~"S —s,s

d .R " T T
—r8^ = AR +R A+CC

dt —s—ss —s,s —s —s—s

Note that R , V_ , Y*" possess continuous derivatives over [0,T]. For
S S ™"S s

all t in [0,T]
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j*,.,. iiWd*+JIt., Vs)ds • Xi *i(t)

from the left hand side of this equation and the differentiability

properties of R , V , ]T it follows that the right hand side possesses
s, s s

a continuous derivative.

The eigenfunctions ±.(t) are in the reproducing kernel Hilbert space

of (A-1) (for X± * 0) and [11] <l1,lj>RK -X^1 <S±j • Therefore, (A-3)
follows from (A-2).
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