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Abstract

There are a number of algorithms in the literature which both

theoretically and empirically are known to be only locally convergent.

These include such well known algorithms as secant, Newton, quasi-Newton

and primal-dual algorithms. Locally, these algorithms tend to be

highly efficient. Consequently, it is very desirable to find ways of

extending, or modifying, these algorithms, so that they become globally

convergent while retaining their attractive local properties. This paper

describes a set of techniques which have recently emerged for stabilizing

such algorithms and illustrates their application by means of a number of

examples.
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1. Introduction.

As one examines the literature on optimization and solution of

equations, one comes across a number of locally convergent algorithms

with very attractive properties. In this category, we find such well

known algorithms as the classical Newton method [7 ] the more recent

extensions of Newton's method to the solution of simultaneous, nonsquare,

systems of equations and inequalities [13], [14], various versions of

secant and quasi-Newton methods [2], [3], [4], and multiplier methods

[6], [12], [5], [1]. The first set of these algorithms converge super-

linearly, provided a sufficiently good initial guess is available, while

the methods of multipliers reduce a constrained optimization problem to

an unconstrained one and converge, some superlinearly, provided a suitable

convexification parameter has been found.

Over the last few years, a number of papers have been written such

as [7a] [8] [9] [11], in which these locally convergent algorithms have

been stabilized,. i.e., made globally convergent, without loss of their

local properties. An examination of these papers reveals a certain pattern

in the manner in which the stabilization has been accomplished. In this

paper we shall formalize this pattern into a set of theorems which we

shall then illustrate by examples from the literature.

2. Abstract Stabilization Schemes.

We begin by stating an abstract problem.

Problem 1: Given a closed set F of feasible points in a Banach space

X, find a point z* ^ A C F, where A, a closed set, is the set of desirable

points.
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As a reference point, we need the following algorithm model (1.3.9

F
in [10]) for solving Problem 1, with A: F -> 2 an iteration map

1

and c: F ->- IK an abstract cost.

Algorithm Model 1 .

Data: zQ G F.

Step 1; Compute y € A(z.).

Step 3: If c(y) < c(z.), set z. . = y, i = i+1 and go to step 1; else,

stop. H

We shall also need the following result (Theorem (1.3.10) in

Theorem 1: Suppose (i) c(#) is continuous and (ii) for every z £ F,

z £ A, there exist e(z) > 0 and 6(z) < 0 such that

2.1. c(z") - c(zf) <_ 6(z) V z» e B(z,e(z)), V z" e A(zf),

where

2.2. B(z,e(z)) = {z'lllz'-zll < e(z)}

Under these assumptions, (i), if Algorithm Model 1 constructs an infinite

sequence tz±}±Si0> then every accumulation point is in A; (ii) if {z.} is

finite, then its last element is in A. n

Our first, and simplest, estension of Algorithm Model 1 is directed to

the stabilization of a locally convergent algorithm of the form z.+1 ^

A1(z±), i = 0, 1, 2, ..., where A.: F •> 2 , «. " ~ *iwith A CF, CF. We

Fassume that in addition to A1 we also have an iteration map A„: F •*• 2

and an abstract cost function c: F -*- lr\ , both satisfying the assumptions

of Theorem 1 (with A = A„).
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Algorithm Model 2

Data: zQ G F.

Step 0: Set i = 0.

Step 1: If z. £ F. compute a y £ A_(z.) and go to step 2; else compute

a y £ A_(z.) and go to step 2.

Step 2: If c(y) < c(z.), set z.,- - y and go to step 1; else stop. n
i ItJL »

F
Theorem 2: (i) Suppose that the map A: F -> 2 defined by A(z) =

A,(z) if zG F-, A(z) = A2(z) otherwise, together with c(0 satisfy the

assumptions of Theorem 1, then the conclusions of Theorem 1 apply to

Algorithm Model 2. (ii) In addition, suppose there exists an open subset

FA, whose closure FA C F., such that A C FA, and A-(FA) C?, and that
A A 1 A 1 A A

Algorithm Model 2 constructs a compact infinite sequence {z^^g' Then

there exists an integer N such that z.+1 € A^z^ for all i >_ N.

Proof: Part (i) is obvious, (ii) Since by (i) every accumulation point

of {z.} is in A, and A C F , with F. an open set, there exist an N such

that zXT € FA.. But this implies that z. G F for all i >. N. n
N A 1 Zi

Our next model is significantly different and is directed to the

stabilization of superlinearly converging algorithms of the form xi+1

e A1(x±), i=0, 1, 2, ..., where A^ F1 -> 2F, with ACF1 CF, with
an associated abstract cost c-: F- ->• K . Again we assume that we have

amap A«: F^ 2F and a c?: F-* R ,satisfying the assumptions of

Theorem 1 (with c = c«, A = A2).

Algorithm Model 3

Data: y G (0,1), xQ e F.

Step 0: Set i = 0, j = 0.
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Step 1: If x± G F, and c.(x.) <_ y g° to step 2; else go to step 3.

Step 2: Compute an xi+1 G A.(x ), set z. = x±, set j = j+1, set i = i+1,

and go to step 1.

Step 3: Compute a y G A2(x.).

Step 4: If c2(y) < c2(x±), set x±+1 = y, i« i+1 and go to step 1;

else, stop, n

Theorem 3: Suppose (i) A^.), c2(.) satisfy the assumptions of Theorem 1;

(ii) cx(.) is continuous; (iii) V y e(0,l) there exist an open set F

such that A C F C F C Fn, A. (F A) C F A and
yA yA 1' lv yAy yA

2.3. ^(x1) <y CjL(x) Vxe F , Vx1 ^ Ax(x).

(iv) if c1(x*) =0, then x* e a.

Under these assumptions, (i) if Algorithm Model 3 constructs a compact

infinite sequence {x±}, then every accumulation point of {x.} is in A; (ii)

if {x±} is finite, then its last element is in A; (iii) if {x } is

infinite and compact, then there exists an integer N such that x. - €

A1(x±) for all i >_ N.

Proof: (ii) is obvious. Hence we only need to prove (i) and (iii).

(i) (a) Suppose that there is an N' such that x -G A2(x.) for all

i >_ N1. Then by Theorem 1, all accumulation points of {x.} are in A.

(b) Suppose that there exists an infinite subset K of {0,1,2, } such

that x±+1 € A1(x±) for ie k. Then we must have c.(z ) -*• 0 as j •*• ».

Since {z } is a subsequence of {x.} and {x.} is compact, there exist a

z e F, and a subsequence {z } such that z. -> z* and hence we must

* j^lhave c1(z ) = 0, which implies that z* G A. But F is an open set and
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Kl
z -> z . Hence there exist an N and a j._ such that z± = x„ G F ..
J JN N % ^ YA
Now c. (z ) <_ y , by construction of z. ; it now follows from the fact

that AX(F^) C F^A, that xi+1 e A1(x±) for all i>N, x± eFAfor all

i >_ N, and c1(x±) -*• 0 as i -* ». Consequently, any accumulation point

x* of {x±} satisfies c^x*) =0, i.e. x*6A.

(iii) To show that (a) above cannot occur, suppose j„t is the last

value of j. Hence, since {x^ is compact, and by (i) it has accumulation

points x* G A, there must exist and Nsuch that x^ G F and c-CO <. y^N1.

But this immedaitely implies that x. G F A for all i > N, i.e., that x.,^'
i yA — i+1

e A1(xi) for all i >_ N. «

We now turn to the stabilization of algorithms whose convergence

depends upon the correct choice of a parameter and there is no practical

a priori way for selecting this parameter. We model a scheme for

automatically selecting the required parameter, as follows. We assume we

are given sequences of iteration maps A.: F •* 2F, of abstract costs c.:
i J J

F-* IR ,of tests t: F-• IR1 and subsets A C F, with j= 0, 1, 2

Algorithm Model 4

Data: x_ € F.

Step 0

Step 1

Step 2

Step 3

Set i = 0, j = 0.

If t.(x ) <_ 0, go to step 2; else go to step 4,

Compute a y £ A.(x.).

If c.(y) < c.(x^ set x.+, = y, i = i+1 and go to, step 1; else

stop.

Step 4: Set z = x±, set j « j+1 and go to step 1. n

Theorem 4: Suppose that (i) for each j, j =0, 1, 2 ..., c, A , A
«J <J «J

satisfy the assumptions of Theorem 1, (with c, A, A replaced by c., A ,



A ); (ii) t (•) is continuous for j » 0, 1, 2, ..., (iii) for j = 0, 1,

2, ..., {z G A |t (z) <0}CA; (iv) for every z* € F there exists a j

and an e* > 0 such that t.(z) < 0 for all j > j*, for all z G B(z*,e*).

Under these assumptions, (i) if Algorithm Model 4 constructs a finite

sequence {z.}, and {x.} is infinite, then every accumulation point of

{x } is in A; (ii) if {z.} is finite and {x±} is finite, then the last

element of {x } is in A; (iii) if {z } is infinite, then {z.} has no

accumulation points.

Proof: Again (ii) is obvious and we only need to prove (i) and (iii).

(i) Suppose that {z.} is finite, with last element*z.,. Then, by Theorem

1, all accumulation points of {x.} are in A.,. Furthermore, since t. ,(•)

is continuous and t ,(x.) £ 0 for all i >^ i', for some finite i', if x

is an accumulation point of {x.} it must also satisfy t.t(x ) <_ 0. Hence

x* G a. (iii) Suppose {z } is infinite and that it has an accumulation

point z*. Then there exists an infinite subsequence {z1.} such that
K J j € K

z. •*• z . Now, by assumption, there exist integers j and N such that

t^2^ 1° for a11 k^ j*»j >^ N, jeK. Hence, given any j€K, j >^

max{N,j }, we find that the Algorithm Model 4 would not increment j to

j+1 at x. = z , which is a contradiction. Hence {z.} has no accumulation

points. n . .

3. Applications

We present applications without proof. Those interested, will find

the proofs in the corresponding references. Our first application is to

the stabilization of Newton's method for the problem

3.1 min{f°(z)|z e Rn}
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where f (•) is three times continuously differentiable, but not necessarily

convex. For this case, we introduce three parameters: ct € (0,1), 3 e (0,1),

32f°( ) iCPD.and y > 0 large, and the notation H(z) = 2~* We now <tefine F = "*>

0 az
c(0 = fU(0,

3.2a A= {z|Vf°(z) =0}

3.2b F. ={z<= ^IDhW"1! <y, f°(z-H(z)"1Vf(z))-f°(z)

' <_ -a<Vf°(z),H(z)"1Vf()(z) >}

and A : F •* (Rn by

3.3 A1(z) =z-H(z)"1Vf°(z)

and A_: R •*• Rn by

3.4 A2(z) =z-3k(z)Vf°(z)

where (with Z= {0,1,2,3,... .})

3.5 k(z) =arg min{k €2?|f0(z-3kVf°(z))-f°(z) <-3kaUvfO(z)02}

The stabilized algorithm is obtained by direct substitution into

Algorithm Model 2 (see [9] for a more complicated application).

Next we consider an application of Algorithm Model 3 to the

stabilization of the Pshenichnyi-Robinson [13], [14] extension of Newton's

algorithm (see [11]).

This algorithm solves problems of the form: find z£ AC IK with

3.6 A = {z|g(z) = 0, f(z) = 0},
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where g: lF^n -* F\m, f: F\n + F\q are continuously differentiable

functions. We use superscripts to denote components of f, g, z, etc.

After selecting some b » 1 we define, f: Rn •* Rq by

3.7 £J(z) = <
L II zO - b j = q + 1

3.8 G(z) AIfisi, F(z) ^ilili.
9z 3z

3.9 fj+(z) =max{0,fj(z)}, j= 1,2,...,q+1,

Next we define F= Rn, and the cost function c0: fRn «*• ^1

3.10 c2(z) *il8(«)l2+i !?*•(«)

2. -i - -r by

A 1 n ,_xii2 . 1 1.7H-,-*n2

It is not difficult to see that c2(.) is continuously differentiable.

Using a given initial guess, zQ, we define

3.11 C(zQ) = {z|c2(z) lc2(zQ)}

The functions A^ A2 and c^ and the set F. will be defined in the algorithm;

but first we state assumptions which ensure that our algorithm is globally

convergent.

Assumption 3.1: The derivative matrices G(*) and F(.) are Lipschitz

continuous.
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Assumption 3.2: The pair (F(z), G(z)) satisfies the Robinson LI condition D-4]

for all zG C(zQ), where z is the initial guess to a solution for (1)

and b is sufficiently large to ensure that the set C(z0) contains at

least one such solution; i.e. for all z £ c(zft)

uTF(z) + vT G(z) =0

and u = 0, implies that u = 0 and v = 0. n

Algorithm

Data: zQ e(Rn, b» DzQ02, ae(0,1/2), 3^(0,1), I >1, y<= (0,1).
Step 0: Set i = 0, j = 0, xQ = zQ.

Step 1; Compute g(x.), f(x.), c2(x ), G(x.), and F(x±). Stop if c2(x±) = 0.

Step 2: Compute a vector v. which solves the problem

3.12 c1(xi) =min{Uvlloo|g(xi) + G(x±)v = 0, f(x±) + F(x±)v » 0}

where tlvll = maxlv I
00 I I

r

Comment: Due to Assumption 3.2, the linearized problem (3.12) always has

a solution, obtainable by linear programming techniques.

Step 3: If c1(x±) <_ y^ and x± +v± eC(zQ), set xi+1 »x± +v±, set
z = x., set j = j + 1, set i = i + 1 and go to step 1; else go to

step 4.

Note: Fx ={x± e C(z0) |x± +v± e C(zQ)}, A1(xi) -{x± +v±|vi e Arg
mlnCMJgCxj) +G(x±)v =0, f(x±) +F(x±)v <0}. Steps 2, 4, 5, 6, 7, 8

on

define amap A£: F2 -*• 2 n ,where F2 C Rn and steps 9, 10, 11, 12 define

amap A£: Rn -)• 2 Rn
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Step 4: Set w± = v±, <J>(x±) = - ^(z^.

Step 5: Set A - 0.

Step 6: Compute c2(x.+3 w.) .

Step 7: If

3.1 c2(x± +3£w±) -c^x^ <3£a*(x±)

set A = A, set x = x± + 3 w± G A^(x±), set i= i+ 1 and go to step 13;

else go to step 8.

Step 8: If A < A set A = A + 1 and go to step 6; else go to step 9.

Step 9: Compute Vc2(x±), set w± =-Vc2(x±) and set <J>(x.) =-Uvc (x )U2.
Step 10: Set A = 0.

Step 11: Compute c2(x +3*w ).

Step 12: If (3.13) is satisfied, set A. = A, set x -. = x + 3 w ^

AjjCxj) set i = i+ 1 and go to step 1; else set A = A+ 1 and go to

step 11. n

Thus, in the algorithm above, A2(x) = AjJ(x) if (3.13) is satisfied at x,

otherwise A (x) = A"(x) .

Finally, we present an algorithm [ 8 ] which corresponds to Algorithm

Model 4. This algorithm is of the primal-dual type and it solves problems

of the form

3.14 min{f°(z)|g(z) =0}

where f: R' -»• R and g: Rn -*• Rm, with m <^ n, are three times

continuous differentiable and, for any z€ Rn the matrix f^z* has
dZ

maximum rank. This algorithm uses a family of convexified Laprangians
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c : Hn •> R1, defined (as by Fletcher [ 5]) by

3.15 Cj(x) =f°(x) +< y(x),g(x) >+|Yj Hg(x)a2, j =0, 1, 2...

where for j =0, 1, 2... y _ > y > 0, and y .-»• » as j -»- » is a pre

selected sequence and

The algorithm uses a Gauss-Newton type approximation H.(x) to the matrices
2 J
9 c (x)

i , defined by
3xZ

3 17 H(x) - a2&(x,y(x)) 3g(x)T 3y(x) kfci.* SafeL +y 3gfe£ J|G£
J* jw ax2 + 9x 3x 3x 9x Tj 3x 3x

where A(x,y(x)) = f (x) + < y(x) ,g(x) >. It is shown in [ 8 ] that

32c (x)
H (x) = •*-=— for all x such that g(x) = 0, j = 0, 1, 2 We

3x

define A= {x G Rn|g(x) = 0, V A(x,y(x)) = 0}, A = {x € Rn|vc (x) = 0};
x j j

the maps A., t., will be defined in the algorithm, with F = R .

Algorithm: Parameters: a€(0, t), 3e (0,1), 0 < eQ « 1, 0 < ex « 1,

Yll, {y..}.j=q« Initial guess: zQ = xQ.

Step 0: Set i = 0, j = 0.

Step 1: If Vc,(x.) $ 0, go to step 3; else go to step 2.

Step 2: If g(x.) = 0, stop (x G {x € A.|t (x) <0}CA); else go to

step 9 (since t.(x.) > 0 by inspection).
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T -1. 8g(x ^ /3g(x) 3g(x)M

+ Ug(x.)H £0, go to step 4; else go to step 9.

Comment: The test in step 3, roughly, is on the angle between Vc. (x,)

A3g(x±)T /3g(x±) 3g(xi)T\~1
and the Newton direction v(x.) = — I— — J g(x.) , for

2 3g(x±)
solving g(x) = 0, defined by v(x ) = arg min{lM |g(x.) + —- v = 0}.

Step 4: If |det H.(x.)| >_ e0, go to step 5; else go to step 6.

Step 5: If-

<Vc (x ), H (x.)_1Vc,(x.) ) >

3.18 min{e1,IIVcj(xi)llY}IIVc.(xi)ll IIh (x^"1 Vc (x±) II,

set h(x.) = - H.(x.) vc.(x.) and go to step 7; else go to step 6.

Step 6: Set h(x±) = - Vc.(x±).

Note: The two alternatives for h(x.) (step 5 or step y) define two maps

A', A" which combine to form a single map A., in accordance with the

rules governing Algorithm Model 2.

Step 7: Compute the smallest nonnegative integer A. >^ 0 such that

A A

3.20 Cj(x± +3Vx^) -Cj(Xi) =3*(* <Vc <x±) ,h(x±) >

£iStep 8: Set x±+1 = x± + 3 h(x ) G A (x.), set i = i+1, and go to step 1,

Step 9: Set z. = x±, set j = j + 1 and go to step 1. «

Another example conforming to Algorithm Model 4 can be found

in [7a].
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Conclusion

We have presented in this paper two models for stabilizing algorithms

with good local convergence properties and are model for Btabilizing an

algorithm which requires the automatic selection of a parameter. An

examination of the original proofs given for the algorithms which we

selected as applications, shows that they satisfy the corresponding

assumptions stated in the theorems in this paper.
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