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Introduction

This paper may be viewed as a first step toward a general input-
output theory £or arbitrary interconnections of multi-input. multi-output
subsystems. In contrast to [1] it does allow, in several results,
unstable subsystems. It is closely ;elated to [2]'Which glves necessary
and sufficient conditions for stability allowing for unstable subsystems.
The thrust of the paper is towards finding conditions under which
stability tests are greatly simplified. The results below constitute
an extension of results presented at the 1974 Allerton Coﬁference (18].
The discrete-time extension is described in section IV.

The point of view adopted in the paper is .that pioneered by .
Sandberg and Zames [3,4]. This approach to stability problems has been
developed in many papers [5-9] and books [10-12]. A slightly differeﬁt

but closely related approach is to be found in [13-16].

In the first section of the paper we describe the systeh under
consideration and review the pertinent definitions and facts needed to
state our results. The second sectionpresents two basic examples
which are needed to understand some basic points ¥elated to the new
results. The third section states precisely the three basic theorems .
and tries to describe the nature and iﬁterrelationships of the results.

All the proofs are relegated to the Appendix.



Notations. R, c, R(s), u‘l denote, respectively, the fields of real
numbers, complex numbers, rational functions with real coefficients,

and the convolution algebra defined in [5] and [6]. Superscripts n

and nxn are used to denote the corresponding élassgs of ordered n-tuples
(e.g. Ezn, cn,¢)(n) and nxn arrays (e.g. ml(s)nxn), respectively. Laplace
transforms are denoted by ﬁ‘“; Z-transforms by a v. Operators and
matrix~transfer-functions are denoted by capitals (e.g. Gl’ él).

Scalar transfer functions are denoted by lower case letters, (e.g. g(s)).
The abbreviations MIMO and SISO denote "multiple-input multiple-output"
and "single—inéut single-output", respectively. c, and-§+ denote

the closed and the open right half-plane.



I. System Description and Preliminary Definitions

We consider a feedback system S whose inputs, outputs, etc. are
defined on <Cj c R: typically KJ’ = R.+, for continuous-time systems,
and %Ji=7l-+, (the nonnegative integers) for discrete-time systems. Let
Cj = {f: CJ -*Q) }"whereCU is a normed space with norm ﬂﬁ. .For any
T Gg»', fT(t) = f(t) if t < T, and zero for t > T. Using. the usual

definitions of addition and scalar product, we define the vector space
L =teeF |or T, Ig ) < =)

To a\;oid long concatenations of subscripts, we shall write
llfilT for lllel.

The feedback system S is made up of two subsystems as shown in
Fig. I. ' 1f CU = Rn, then the two subsystems are n-input n-output

subsystems. The inputs u,, errors e, outputs y i belong to %Qe'

Fig. I
We define for i = 1',2

Gy ¢ gee* gee

¥y = G3(ey) = Ceey W

The equatiouns are then



e =y, - Gye, o ' : . )

9 Glel +. u, | 3)

e

We make a general existence assumption which will hold throughout the
_ paper: V(ul,uz) € S,Qé x g_’e, 3 (el,éz) € ge x gee which satisfy the
equations (2), (3) of the system. For general existence criteria see
[4, 11, 12]. Note that uniqueness is not required: If uniqueness

holds, there is a map, denoted by He such that

He: (ul’uz) H (el’eZ)

If uniqueness does not hold, He becomes a relation [17].

Gi is said to be E;e-stable iff
CJkce vwed, weT o )
“Gix"'l‘ < kﬂx"T

The gain of G, is defined to be the infimum of all such k; it is
denoted by Y(Gi). Calculations of the gain for SISO and MIMO systems

can be found in [3, 4, 11, 12]. The incremental gain Of'Gi, '?(Gi),

18 defined as

7(6,) & infly € R, ¥x X, G&Qe, vredJ,

llGixl - GiXZHT < Yﬂxl - xzuT}. (5)

For linear system Y(Gi) = ?’(Gi).
Let u, e, and y denote the ordered pairs (ul,uz), A(el,ez), and (Yl’yz)' re-

spectively. We also have the map Hy: ur—>y. It is important to note



Using * to denote Laplace transformed quantities, we have

yi = Gi * -ei-

In the linear, time—invariant, distributed case, we introduce the

‘Banach algebras A and U4 as follows (see [5], [6], [12])

4. R >R |£(t) = Z £,6(e-t,) + £_(t) where
i—o

LIfgl <o e,20 w1, £ €1} (10)

x | '
A €u4n n means that each element of the matrix A € \)4

ﬁan A X
u"( = {A|A EuQn ). 1t is well known that if G ,G EJ4 , then

G1 +G,, G Eﬂn"“ and G1 u@axn ® inf|det Gl(s)] > 0.
sSc,
1f h €A
A v |
llhlla= glhil +I lha(t)ldt, S (11)
0 o
and if B € AP®
A .n
IRl = max } “hij"a . (12)

j=1

Then if 1 < p<w, u € L: and Hedlnxn then
Pa*ul < ul_ . Qul , ' (13)
| a p

where ll-ll'p denotes the pth norm [12].

N ’ N ’
Two elements LN , (ﬁ of u,pmn are said to be pseudo right coprime,

abbr. p.r.c., (resp. pseudo left coprime, abbr. p.l.c.) [12, 19] iff




. e )
that. if we define J: g—eé X, ie -+ %ee.x geé by Ju = (uz,*ul) » then
H = J(E_-I) and H_ =1 - Juy, (6)

where I denotes the identity.

If both Gl and G2 are linear maps, the map He: " u+—> e takes the

form

= - -1 S |
e= | e, |= (I+G2G1) -GZ(I+G1G2) uy
= . )
e, Gl(y'GZGl) . ,‘I+G1G2) u24

2

where G,G, denotes the composition of G, with G . _
The map, (or the relation), He is said to be %Q x %e-s?table iff

Jk < = such that ¥u ,u, € gﬂe, vweJ, fori=1,2

IleillT < k(ﬂulllT + HuzﬂT), - | : (8)

In other words, if in the product space we choose the norm lull = ﬂulﬂ + ﬂuz.",

then we see that (8) is equivalent to Y(He) < o, TFrom (6), Y(He.) < ®
if and only if Y(Hy) € o,
For the continuous-time, linear, time-invariant case, for

i=1,2, we define

nxn
Gi' R_'_-» R

by a convolution. To alleviate notation, we also use G:I. to denote the

kernel of the convolution operator, thus

b . | | o (9
Yy G ey - ;



Al e A
@) detQlks) #0 Vo€,
) _ A A ~ A A AN A A
and AUN+ QD= (resp. MDAV

Given a function G: € +-> ¢n><n

A ~ .
(LN ,CD) is said to be a p.r.c. factorization, abbr. p.r.c.f. (resp.

p.l.c. factorization, abbr. p.l.c.f.) of G iff

. (i) G = (_NCD (resp. G ; =CD;1LN )

A

(i1) JI,CD are p.r.c. (resp gﬂ D are p.l.c.)

and (iii) ¥ sequences (Si)i 1C d: and ls | >
1im inf |detCD(si)| > 0.
f>0

. ’ N
The following fact has been established in [12]. If G eg&n’cn and
(J[cf))lsaprcf oraplc.f.ofG

then p € ¢, is a pole of 6

@ p € ¢+ is a zero of detcﬁ.. |
If ¢ € R(s)™" and ¢ is proper, then G has both a left- and a
right-coprime factorization. ' )
In the J.inear, time~invariant, lumped casé, G ,éz € R(s)an and
¢ 1 is said to be m 1ff all its elements are bounded at ihfinity,

and

G, 1s said to be exponentially stable (abbr; exp. st.) iff it is
proper and has all its poles in &_ , (the open left half plane).



II. Instructive Example

In the lineaf case, He is given by (7): .H spi:l.ts into four
partial maps: uiH ej, i,j = 1,2. Each one of these four partial
maps may be ge-stable or not: . this gives 16 = 24 possible patterns
of instability; this number is further reduced to 10 by :Lnt:erchanging
subscripts 1 and 2. 1In view of the fact that each of the four partial
maps depends on the same two. functions Gl and G2, one might éxpect: that
not all possible patterns of instability might occur and hence that one
might prove the %9 x %Q’-stability of H by study-ing .only_ a proper Slﬁ’"

set of the four partial maps. This is, in fact, not 8o. Consider the

following two 1inear time-:l.nvariant examples.

Example 1. If gl(s) = 1/s, §2(s) ==s/(s+1), then all submatrices of He

are exp. stable except §1(1+§2§1)-1 which has a pole at s = 0.

Example 2. If 61(s)¥ 5/ (s+1) ;.lls‘ , G, () = [y ws

0 1/s 0 1/(s+1)

then all submatrices of ﬁe are exp. stable except (I-l-& G 1 ‘which has a

2 1)-
pole at s = 0. A detailed study of all 10 potssibilii:ies’ is reported in
[18].

In conclusion, even in the lumped, linear, timé—invariant case, in
: orderltO'prc.:,ve that H «.iS» ccse x 91’ stable, one must investigate the

stability of each of the four partial maps u, —>e,, 1,j = 1,2.

3



III. The Simplifying Theorems

In most design procedures and stability considerations one assumes

u, : 0 and 'atﬁdies the stability of the map u; > ¥y namely,

Py g-stability of B ? The following theorem answers the question for

a broad class of nonlinear systems:

Theorem 1. ( ) (Nonlinear time-varying MIMO)

Let Gi be defined as in (1). If G, and Gl(I+G -1 are %P-stable,

2 2%1)
and if the incremental gain of GZ‘, Y(GZ’), is finite, then l-le is gxg

stable. - -

In’ particuiar, if as in mostpractical cases the feedback éubsystem,

Gz, is linear, then the condition ?(Gz) < = is equivalent to that G

2be

ge-stable.
If G, is unbiased (i.e. G,0 = 0), choosing X, = 0 in (5) and com-
paring with (4), we see that Y(Gz) < *?(Gz). Hénce, we have the following

Corollary 1.1. (Nonlineér time-varying MIMO)

If Gy (I+G ) ié Coe-étabie, if G, is unbiased and if G2 has a

finite incremental gain, ?(Gz), then He is g x S,Q stable.

In order to bi'ing to bear !anélytical tools,. we restrict ourselves
to iinéaf timeé-invariant distributed systems. An important feature of
Theorem 2 and its corollaries, is that they do not impose any stability
conditions on either Gl or G2. This is in contrast to Theorem 1 which

requires that ?(GZ) < o,

(*)All'proof's are in the appendix.

-9-



Theorem 2 (Linear time-invariant distributed MIMO)
Let G1 and G2 be represented by convolution operators as in 9.

Suppose that G 1 has p.1. c.f. and G2 has Pp.r. c.f. or G1 has p.r.c.f. and

G2 has p.l.c.f.. Suppose that ¥ sequences (si)i=1 C2c4 and Isil +

Lin inf | det[T + &(s,)8,(s,)1] > 0 | (14)

i

. ' A ~ ) ‘~ —l ~ ~ -1 2 X A ~
U.t.c. if (a) & (146,870, 8,(146,8,)™" are in AT® and (b) G &,

have no common €, pole, then ﬁe Eijﬁznxzno

Comment: this conclusion implies that He is ‘Lp—stable for all
P € ;[1:”] ’ see-,f(13) .

Corollary 2.1 (Linear time-invariant lumped MIMO)

nxn
Let, for i = 1,2, G be a convolution operator, G (s) € R(S)
,and be proper. Let det(I+G ¢} )Gw # 0. U.t.c., if G (I+§ é

~

G (I+G 2) are exp. st. and if G and Q have no common C pole, then

2
H is exp. st. v

The condition det(I+C éz)cw) # 0 is related to ﬁell-posedness [11,

15]: with the & (s) GlR{s) and‘proper,.this determinantal condition

o -1 " a

2) and (I+G2Gl)

infinity, i.e. the closed loop system transfer function ﬁe_includes

is violated if and only if (I -1 have a pole at

differentiatqrs!

Corollary 2.2 (Linear time-invariant lumped SIS0) _

Lef:_,‘ for. 1= 1,-2-, 8; be a convolution operator, §i(s)e R(s) and
_be proper. U.t.c. if §1(1+§2§1)_1 and §2(l+§1§2)-1 afe exp. st., then
‘ﬁe is exp. st. . |

Note that for the SiSO case the requirement that the transfer
functions have no common right-half plane poles is dropped. Mzgat this

condition is indispensable for the MIMO case is shown by Examyle 2 above. .

-10-



The basic algebraic reason is that in the algebra E‘(s)nxn the cancella-’
tion law does not hold, whereas it does in the algebra R(s). More

précisely‘fi(s)nxn is a noncommutative ring which includes divisers of

e e e

zero; R(s) is a field [17].
For a similér reason, Theorem 2 simplifies to the following
corbllary in the SISO case.

Corollary 2.3 (Linear time-invariant distributed SISO)

Let, for i = 1,2, Gi

convolution operator. ‘Let gl,gz have p.c.f.. U.t.c. 1f~gl(1+g2g1)

be SISO, hence denoted by 84 and let it be a
-1
1 i o f2x2
and g, (1+8,8,) = are inudt then H € 04’2 .
2 1°2 e
Theorem 3 and its corollary are more restrictive: they exploit
A
the properties of the algebras L}{an and E{(s)an’ resp. and impose some
stability requirement on Gz,
Theorem 3 (Linear time-invariant distributed MIMO)
V-3
If G2'3nd G]_(I+G2G1)‘-1 are in L}lnxn, then He'is in L}lZnXZn.'
Since the proof of Theorem 3 is purely algebraic, it obviously extends

almost verbatim to tﬁe lumped case.

Corollary 3.1. (Linear time-invariant lumped MIMO)

1f éz and §1(1+62§1)-1 are exponentially stable, then so is ﬁe‘
Note that it is this corollary which justifies the common design

procedures and the elementary discussions of MIMO feedback systems.

-11-
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IV. The Discrete-~time Case

The results above except for Theorem 1 and its corollary are

stated for the continuous-time case. A study of the proofs would

easiiy show that they extend easily to the discrete-time case. The

required changes are listed in the Table I: B(0,1) and B(O,l)C denote

the open unit ball centered on 0 in ¢ and its complemgnt, Tesp.

21 denotes the convolutioqwg;gggpa ofhabsolutely c0nver§gnt sequences:

8 = {(ii): 'C:chlzi| < =} (for details see [12]).

Table I
Laplace transform > Z-transform
LAan > R,ln"n
& S B(0,1)

. TR+

G+ d B(0,1)
S > © : > Z > @™
R ()™ > R@™™

-12-
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APPENDIX: PROOFS

Proof of Theorem 1 ¥u, € %ee and Ve, € Co-ee, let

4= GZG]_e1 - G2 (u2+Glel); then

vved, vﬁZGS,Q
e
UuBT _5_7(G2)||Gle1 - (u2+G1e1)ﬂT

= 7((;2)Elu2ﬂ1,

From the systems equations (2) and (35, we have .

=]
1

1 = e + Gy(uyiGiey

1 e; + G618y

=

+

=
n

&
B
0
o
1]
]

iy -1 o
(I+GZG1) (u1+u)

-1 "
and Glel = Gl(I+G2(;1) (ul-l-u)

1)-1 implies

" The assumed S? -stability of Gl(I-IGZG

Jg <ovve T, v, L,

"GleluT.£ ki “ul + uﬂT

|A

kl(“ulﬂ'r + ﬂﬁlIT)

vl/\

g (T, Iy + 706 luy )
Letting k2 = max {kl,klf?’(Gz)} , we have

16,0,y < &y (Mu Iy + lu,0) (A1)

-15-



Using (3) and (Al), we conclude that
o € :
35< > %T g;mT%eQe
ﬂezﬂT < (1+,|<2)(ﬂulllT + u“z"r) | (A2)
The assumed S,e-stability of Gé and (A2) imply that
Jr, <ez>wred, %uy,u, € L |
||G2e2u,r < k3(ﬂu1[_l.,r + HuzﬂT) ‘ | (A3)
Using (2) and (A3), we conclude that
iy <eswed, wou,e L.

HeluT_i (1+k3)(ﬂu1ﬂT + ﬂuzﬂT) | ‘ (44)

(A2) and (A4) imply that He is %Q.x ;—Q stable.
Q.E.D.

Proof of Theorem 2

N » A A ~
Case 1: Suppose G1 has p.l.:c.f. '(J&,Cﬁl) and &2 has p.r.c.f. (_NZ,CDZ)

-n.;\. 0\A_1= -»\ Aa_l.hs AoA =]
I Gl G2 (I+G1G2) I Gl (I+G2G1) G2 (I+G1G2) (AS)
Assumptions (a) and (b) imply that
the three expressions (A5) have no € , pole . (A6)

Note the equalities

a2 = @D, A, DH =Cf)z(Cﬁlcb2*"~)(]1(Jﬁz)_]cﬁl

(A7)
~ ’~ 7~ A

Now Cﬁl, Cﬁz’(.CD]_CDZ"‘LNlLNZ) € U:tmin and (A7) imply successively,

-16-



p is a C_-pole of (I+§1@2)-1
o pisac pole of (CD CD LNLﬁz)
& p is a € _ zero bf det(CD 1C62+gle2)

hence by (A6), we have

det(ClS + A )(s) #0 ¥s € c, (A8)

From (A7),

det(Cﬁ CD +Jl d] ) detCD x detCD x det(I+3,6

12)

by definition of p.c.f. and the assumption (14), we have

¥ sequences (Si)i -1 ce, and ls | » =

lim inf|det(cb1q)2+wltﬂ2) (Si)l >0

i

. A A
this, together with (A8), imply infldet(CﬁICDZ-i-wlgNz) (s)| >0

sSc,

N A ‘
Hence (Cﬁl‘C62+LN1Lﬂ2)—1 ed{an and in view of (A7), so is (I-l-él@z) 1.

‘ ~ ~ - ) A . . .
The fact that (I+G2G1) 1 eud(nxn follows immediately by observing

R
(146,6,)

~ A A _1 -~
I - GZ(I-I-Gle) Gl

I “Nz(cﬁlcbz*"ﬂl‘ﬁz)-wl |

The last two conclusions together with assumption (a), imply that

€, JiZnXZn .

, . a A . .
Case 2: Suppose Gl has p.r.c.f. (Jll,col) and G2 has p.l.c.f. M‘Z’C‘[\)Z)

-17-



The proof follows in the same manner as in Case 1 by interchanging

subscripts 1 and 2 throughout,

Q.E.D.
Proof of Corollary 2.1
, N é -1 adj(I+a1é2).
By Cramer's Rule, (I+G1 2) = det (T 1G2)
Hence, for the conditions under consideration,
~ .a _1 -
(I+G1G2) is proper (A9)

For i = 1,2, éi € R(s)nxn and Ci 1is proper, hence éi has a coprime
factorization.

-1

Now (A5), (A6) are valid: this together with (A9), imply that (I+é1%2)

is exp. stable.

The fact that (I+é261)-1 is also exp. stable follows in the same manner

by interchanging subscripts 1l and 2 throughout.

These cdnclusions, together with the assumption, imply that ﬁe is exp. st.
Proof of Corollary 2.2 Q.E.D.

A A -1 A . A A -1
By assumption, §1,§2(1+§1§2)71 are proper .
Hence (1+§l§2)_1 is proper ' (A18)
Suppose, for sake of contradiction, (1+glgz)“1 has a C+ pole, say, p.

The assumptions of the corollary imply that él(p) = éz(p) = (0, hence

(1+§1§2)-1(p) = 1, which is a contradiction. Hence (1+§1§2)-1 has no

18-



<, pole..
This, together with (Al18) imply that
(1+8.8 L= (1;8 g 7L s exp. st.
1°2 2°1 :

This, combined with the assumptions of the corollary guarantee that

A

He is exp. st.

QOEOD.
Lemma.

Let gl,gz be meromorﬁhic functions mapping C+ into €.

- _1 ’
If gl(1+gzg1) 1 and gz(1+g1g2) are bounded on C+ then

inf | (1+8.8,)(s)| > O.
¢ 152
+

Proof:

Suppose, for sake of contradiction, inf|(1+glgz)(s)| =0

¢,

o

i=1
| (148,8,)(s)| >0 as 1 + = ' ' (A10)

'.I 3
Eﬂ a sequence (si) in ¢+

But g2(1+glgz)'1 is bounded on ¢+, hence

.o | gz(si) >0as i+

Similarly from g1(1+gzgl)'1 = gi(1+glgz)'i, we have
g,(s4) >0 asi+w

Hence |(1+§1§2)(si)| +lasi>ow

which contradicts (AlO); Hence the proof is complete,

- Q.E.D.

-19-



Proof of Corollary 2.3 .

Suppose gl,gz have p.c.f. (nl’dl)’ (n2,d2),'respective1y

d.d
A a1 _ -1 = 172 .
(l+glgz) = (1+g221) nn +d d . (All)
12 712
n,d '
~ A a =1 172 :
g, (14+g,8,) = ——F— ' - . (A12)
. 1 2°1 n1n2+d1d2 :
n_d
~1 271
g,(1+8.8,) = ——— (A13)
2 1°2 nln2+d1d2 '

The assumption implies 21(1+§221)-1, g2(1+§122)-1 are bounded on €,

Hence, by lemma,

. n1n2+d1d2 _
inf'(1+glgz)(s)| = inf '(T)(SH >0 (A14)
sE¢+ s€E+ 172

By definition of p.c.f.,
for 1 = 1,2, n,,d, have no common ¢, zero. - (Al15)

é1(1+§2§1)—1 is bounded on C,, hence by (A12) and (A15),
n,,d, have no common ¢, zero. | (A16)

'Similarly,

~

§2(1+§1§2)-1 is bounded on € , hence by (Al3) and (Al5)
n,,d, have no common €_ zero. ' '(517).
(A15), (A16) and (Al7) imply

n,n,, dle have no common c+ zero.
<o mm, + dle’ d,d, have no common €_ zero.

Hence, it follows from (Al4) that infl(nln2+dld2)(s)| > 0.
s€¢
+

-20-



A
(a,m, +c1]_<12)’1 e A and in view of (All)
-1 L -1
so is (1+glgz) = (1"'3221)

A
~ A2%x2
This together with the assumption, imply that H_ Gu"c

Q.E.D.

« ——————

Proof of Theorem 3. Since

R S e TP

-1
1 2 1)

(I+G1G2) . G2 (A20)

A

A A - Ai A A - X
we have (I+G1G2) 1 EQj4nxn. Consequently, we also have Gz-(I+GIG2) 1 e;ﬁ? n

Since

(8,87 = 1 - 8,08 (48,8 - (a21)

N

we have (I+@2§1)-1 EQJAnxn. Hence
4 eJz'inxen

e { Q.E.DO

Proof of Corollary 3.1

A
Copy the proof of Theorem 3 and replace " Gu‘lnxn" and "€ UlZnXZn“

by "is exp. st.". ‘ Q.E.D.
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