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Introduction

This paper may be viewed as a first step toward a general input-

output theory for arbitrary interconnections of multi-input multi-output

subsystems. In contrast to [1] it does allow, in several results,

unstable subsystems. It is closely related to [2] which gives necessary

and sufficient conditions for stability allowing for unstable subsystems,

The thrust of the paper is towards finding conditions under which

stability tests are greatly simplified. The results below constitute

an extension of results presented at the 1974 Allerton Conference [18].

The discrete-time extension is described in section IV.

The point of view adopted in the paper is that pioneered by

Sandberg and Zames [3,4]. This approach to stability problems has been

developed in many papers [5-9] and books [10-12]. A slightly different

but closely related approach is to be found in [13-16].

In the first section of the paper we describe the system under

consideration and review the pertinent definitions and facts needed to

state our results. The second section presents two basic examples

which are needed to understand some basic points related to the new

results. The third section states precisely the three basic theorems

and tries to describe the nature and interrelationships of the results.

All the proofs are relegated to the Appendix.



Notations. R*f «, R-(s),Jk denote, respectively, the fields of real

numbers, complex numbers, rational functions with real coefficients,

and the convolution algebra defined in [5] and [6]. Superscripts n

and nxn are used to denote the corresponding classes of ordered n-tuples

(e.g. Kn, Qn,,Jkn) and nxn arrays (e.g. R-(s)nXn), respectively. Laplace

transforms are denoted by a *; Z-transforms by a 'v. Operators and

matrix-transfer-functions are denoted by capitals (e.g. G-, G_).

Scalar transfer functions are denoted by lower case letters, (e.g. g(s)).

The abbreviations MlMO and SISO denote "multiple-input multiple-output"

and "single-input single-output", respectively. C and 8 denote '

the closed and the open right half-plane.
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I. System Description and Preliminary Definitions

We consider a feedback system S whose inputs, outputs, etc. are

defined on 9"cR: typically ^T »R.+, for continuous-time systems,
and^tT^X , (the nonnegative integers) for discrete-time systems. Let

^ = (f: & +0) }whereQj is anormed space with norm D*B. For any

TS?J., fT(t) =f(t) if t<T, and zero for t>T. Using the usual
definitions of addition and scalar product, we define the vector space

Sf = {f e^T Ivtg^ ,if o<»}
e • l

To avoid long concatenations of subscripts, we shall write

l«t for If I

The feedback system S is made up of two subsystems as shown in

Fig. I. Jf Q)= lR-n, then the two subsystems are n-input n-output

subsystems. The inputs u., errors e., outputs y. belong to y.e«

u. *Sb*

Fig. I

We define for i = 1,2

Gi' %.+ ^e

y± - G±(e) = G±e±

The equations are then

*2 +

(1)
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el=Ul-G2*2 (2>

e2 =6^ + u2 (3)

We make a general existence assumption which will hold throughout the

paper: ¥(uru2) €Cj^ xC^, g^^^ e^x^ which satisfy the
equations (2), (3) of the system. For general existence criteria see

[4, 11, 12]. Note that uniqueness is not required.- If uniqueness

holds, there is a map, denoted by H such that
e

V <VU2)I_> <V«2>

If uniqueness does not hold, H becomes a relation [17].

G± is said to be $£. -stable iff

3k <~ 3-Vx^ Sf', VT e9T (4)

nGiXnT <kflxiiT

The gain of G± is defined to be the infimum of all such k; it is

denoted by y(G±). Calculations of the gain for SISO and MIMO systems

can be found in [3, 4, 11, 12]. The incremental gain of G . ?(G ),

is defined as

t(g±) £inf (Y e R+| vXl,x2 ec£e, vt e 9T ,

°GiXl " Gix2BT - yBx1 "X2BTh (5)

For linear system y(G.) = ^(G.).

Let u, e, and ydenote the ordered pairs (u^), (e^), and (y ,y ), re

spectively. We also have the map H : u•—> y. It is important to note

-4-



Using * to denote Laplace transformed quantities, we have

In the linear, time-invariant, distributed case, we introduce the

Banach algebras \A and Jk as follows (see [5], [6], [12])

Jk -{f: R+ -IR |f(t) = I f^t-t^ +f(t) where
i=o

I l*±l <-. t >0 Vi, f 6L} (10)
i=o ax

Ae'^ n means that each element of the matrix AG<Jk.
jTXn - {A|A Gjkn**}. It is well known that lf £ £ ejfwnf then
K+G2> Gl G2G^nXn and V1 e^n ~Mdet ai(s)| >0.

s6«+

00

'».'.* I IhJ +[ |h(t)|dt (U)
i=0 J a

andifHe^nXn

llHll imax I 0h44 0 .
J-l ij a

Then if 1 < p <«,, u e Ln and He<J*Xvi then

(12)

8h*uH < HhO • DuO . n*\
p - a p

where ll«fl denotes the pth norm [12].

Two elements cJVI, H) of lA11**1 are said to be pseudo right coprime,

abbr. p.r.c, (resp. pseudo left coprime, abbr. p.I.e.) [12,19] iff
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that if we define J: <£ xS£ +S£ *S£e by Ju = (u-,^).. then

H = J(H -I) and H = I - JH ,
ye e y

(6)

where I denotes.the identity.

If both G- and G0 are linear maps, the map H : ui—>.e takes the
1 A e

form

e - (I+G^)"1 -G^I+G^)""1! fu.

Le2j ^(I+G^)"1 (I+GiG2)"1J LU*J

(7)

where G1G« denotes the composition of G- with G^.

The map, (or the relation), He is said to be Sf x SJj-stable iff
3k <o» such that Vu^^ G2Pe» VT e^ ,for i-1,2

•e±iT <k(«u1aT + au2nT) (8)

In other words, if in the product space we choose the norm Bull « Hu^ + nu^ll,

then we see that (8) is equivalent to Y(Hft) <-. From (6), Y(He) <°°

if and only if y(H ) < °°.

For the continuous-time, linear, time-invariant case, for

i = 1,2, we define

G±: R+ - R-nXn

by a convolution. To alleviate notation, we also use G± to denote the

kernel of the convolution operator, thus

y± • G± * er (9)
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A A ^A

(i) detCUAs) f 0 Vs e «+

and (li)<3lA(+q/c5=qA/ (resp.J^XlW)
A._A A <* A

Given a function 6: C ->• <E

(lA) ,<D ) is said to be a p.r.c. factorization, abbr. p.r.c.f. (resp.
A

p.I.e. factorization, abbr. p,l.c.f.) of G iff

*» - <A

(i) G=uM)"1 (resp. G-hF\}1 )
A A a. A

(ii) cAIjH) are p.r.c. (resp.eAf.H) are p.l.c.)
00 . .

and (iii) V sequences (s.), - C ffi and | s J -*- »

lim inf I'det^DCs^l > 0.
i>oo

A

The following fact has been established in [12]. If G€'J\ n and

(l/vIj^D) is a p.r.c.f. or a p.l.c.f. of G

then p £ in is a pole of 6

**• P G C. is a zero of detH).

If G G R(s)nXn and G is proper, then G has both a left- and a

right-coprime factorization.

In the linear, time-invariant, lumped case, G^,^ e " (o). and

G is said to be proper iff all its elements are bounded at infinity,

and

G. is said to be exponentially stable (abbr; exp. st.) iff it is

proper and has all its poles in I , (the open left half plane).
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II* Instructive Example

In the linear case, He is given by (7): He splits into four
partial maps: u±m» eJf i,j «1,2. Each one of these four partial

maps may be ££-stable or not: this gives 16 =24 possible patterns
of instability; this number is further reduced to 10 by interchanging

subscripts 1 and 2. In view of the fact that each of the four partial

maps depends on the same two functions G1 and G2, one might expect that

not all possible patterns of instability might occur and hence that one

might prove the S£ x$£-stability of He by studying only aproper sub
set of the four partial maps. This is, in fact, not so. Consider the

following two linear time-invariant examples.

Example^. If g (s) = 1/s, j (8) ° s/(s+l), then all submatrices of H
* e

are exp. stable except ^(l+g^)"1 which has apole at s-0.

Example 2. If G (s) = s/(s+l) 1/s'

-8-

G2(s) = l/(s+l) 1/s

0 I/sJ L0 l/(s+l)J
then all submatrices of He are exp. stable except (I+G^)"1 which has a
pole at s .» 0. A detailed study of all 10 possibilities is reported in

[18].

In conclusion, even in the lumped, linear, time-invariant case, in

order to prove that He is Sf x££ stable, one must investigate the
stability of each of the four partial maps u. i—> e., i,j » 1,2.



III. The Simplifying Theorems

In most design procedures and stability considerations one assumes

u9 =0and studies the stability of the map ^ «-> y^ namely,

G(I-MS^)"1. An interesting question is then: under what general
conditions does the ^-stability of G^I-K^)"1 fcnply the
92xS£ -stability of H? The following theorem answers the question for

a broad class of nonlinear systems:

(t)
Theorem 1. (Nonlinear time-varying MIMO)

Let G± be defined as in (1). If G2 and G(I+G2G )"X are Sf-stable,
and if the incremental gain of G2, ?(GA is finite, then H is Slx^L
stable.

In particular, if as in mostpractical cases the feedback subsystem,

G2, is linear, then the condition y(G2) <• is equivalent to that G2 be

y.-stable.

If G2 is unbiased (i.e. G20 = 0), choosing x, = 0 in (5) and com

paring with (4), we see that Y(G2) < y(g2)- Hence, we have the following

Corollary 1.1. (Nonlinear time-varying MIMO)

If G^I+G^r1 is 9P-stable, if G2 is unbiased and if G2 has a
finite incremental gain, y(G0), then H is 9. x§L stable.

& e

In order to bring to bear analytical tools,, we restrict ourselves

to linear time-invariant distributed systems. An important feature of

Theorem 2 arid its corollaries, is that they do not impose any stability

conditions on either G- or G~. This is in contrast to Theorem 1 which

requires that y(G«) < ».

(+)
All proofs are in the appendix.
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Theorem 2 (Linear time-invariant distributed MIMO)

Let G1 and G2 be represented by convolution operators as in (9).

Suppose that G± has p.l.c.f. and G2 has p.r.c.f. or G± has p.r.c.f. and
G2 has p.l.c.f... Suppose that V sequences (s.)™ C c and |s |-*• »

lim inf |det[I +^(s^^)]|>0 (14)
i-x»

U.t.c. if (a) G1(I^2ei)-1, G^nd^)"1 are in t>xn, and (b) \, G.
have no common ffi pole, then H ^jJ2n*2n.

Comment: this conclusion implies that H is L -stable for all
e p

P € [1,»], see.(13).

Corollary 2.1 (Linear time-invariant lumped MIMO)

Let, for i= 1,2, G± be a convolution operator, G.(s) G R(s)
and be proper. Let detd+fe^)^) f 0. U.t.c, if &(nfc^)"1,
A A A _1'

G2(I+G^G2) are exp. st. and if 5- and ?L have no common C, pole, then

H is exp. st.
e

The condition det(I4d G2)(») ^ 0 is related to well-posedness [11,

15]: with the &1(s) ^ R(s) and proper, this determinantal condition

is violated if and only if (I+G^)"1 and (I-W2& )-1 have apole at
infinity, i.e. the closed loop system transfer function H includes

differentiators!

Corollary 2.2 (Linear time-invariant lumped SISO)

Let, for i = 1,2, g be a convolution operator, g.(s)e "Hs) and

be proper. U.t.c. if g^l+g^)"1 and ^(l+gjgg)""1 are exp. St., then
A

H is exp. st.
e ..;..•

Note that for the SISO case the requirement that the transfer

functions have no common right-half plane poles is dropped. That this

condition is indispensable for the MIMO case is shown by Example 2 above,
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The basic algebraic reason is that in the algebra R(s) the cancella

tion law does not hold, whereas it does in the algebra K(s). More .

precisely R(s)nxn is a noncommutative ring which includes divisors_of

zero; R(s) is a field [17].

For a similar reason, Theorem 2 simplifies to the following

corollary in the SISO case.

Corollary 2.3 (Linear time-invariant distributed SISO)

Let, for i= 1,2, G. be SISO, hence denoted by g± and let it be a

convolution operator. Let §^§2 have P*c'f'- ^-t-c* if l1(1+i2gl^
and g2(l+g1g2)~1 are in Jk then H& SJP* .

Theorem 3 and its corollary are more restrictive: they exploit

the properties of the algebras J:n*n and R(s)nXn, resp. and impose some

stability requirement on G2»

Theorem 3 (Linear time-invariant distributed MIMO)

If <L and G, (I+Gi.)"1 are in cAn*n, then H is In (^
2 1 Z 1 c

Since the proof of Theorem 3 is purely algebraic, it obviously extends

almost verbatim to the lumped case.

Corollary 3.1. (Linear time-invariant lumped MIMO)
A A 1 *If G2 and G-U-kLg-) are exponentially stable, then so is He.

Note that it is this corollary which justifies the common design

procedures and the elementary discussions of MIMO feedback systems.
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IV. The Discrete-time Case

The results above except for Theorem 1 and its corollary are

stated for the continuous-time case. A study of the proofs would

easily show that they extend easily to the discrete-time case. The

n

required changes are listed in the Table I: B(0,1) and B(0,1) denote

the open unit ball centered on 0 in C and its complement, resp.;

A denotes the convolution algebra of absolutely convergent sequences:

I = {(z )°° c GlII^I *"M*or details see [12]).

Table I

Laplace transform -¥ Z-transform

\A -»• h
jnxn

-• J^nxn

K -• B(0,1)

«+ ->• B(6,i)q

s •*• °° -*• z ->• °°

R(s)nxn •+ R(z)nxn

9

-12-



References

[1] D. W. Porter and A. N. Michel, "Input-Output Stability of Time-

Varying Nonlinear Multiloop Feedback Systems," IEEE Trans4 AC-19, 4,

p. 422-427, Aug. f74.

[2] F. M. Callier and Cf A. Desoer, "Open-loop Unstable Convolution

Feedback Systems with Dynamical Feedbacks," Submitted to the IFAC

Congress, 1975.

[3] I. W. Sandberg, "Some Results on the Theory of Physical Systems

Governed by Nonlinear Functional Equations," Bell Syst. Tech. Jour.,

44, p. 871-898 (May-June 1965).

[4] G. Zames, "On the Input-Output Stability of Nonlinear Time-Varying

Feedback Systems," IEEE Trans. AC-11, 2, 228-238; 3, 465-467, (1966).

[5] C. A. Desoer and M. Y. Wu, "Stability of Linear Time-Invariant Sys

tems," IEEE Trans. GT-15, p. 245-250 (1968).

16] , "Stability of Multiloop Feedback Linear Time-Invariant

Systems," J. Math. Anal. Appl., 23, p. 121-130 (1968).

[7] F. M. Callier and C. A. Desoer, "Necessary and Sufficient Conditions

for Stability of n-input n-output Convolution Feedback Systems,"

IEEE Trans. AC-18, 3, p. 295-298, June '73.

[8] F. M. Callier and C. A. Desoer, "LP-stability, (1 £p <.«>), of

Multivariable Nonlinear Time-Varying Feedback Systems that are Open

Loop Stable," Int. Jour, of Control, 19, 1, 65-72, 1974.

[9] M. Vidyasagar, "Some Applications of the Spectral Radius Concept

to Nonlinear Feedback Stability," IEEE Trans. CT-19, p. 608-615,

Nov. 1972.

-13-



[10] J. M, Holtzman, "Nonlinear System Theory," Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1970.

[11] J. C. Willems, "The Analysis of Feedback Systems," MIT Press

Cambridge, Mass, 1971.

[12] C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input Output

Properties," Academic Press, New York, 1975.

[13] W. A. Porter and C. L. Zahm, "Basic Concepts in System Theory,"

Tech. Report 33, Systems Engg. Lab., Univ. of Michigan, Ann Arbor,

1969.

[14] M. J. Damborg and A. Naylor, "Fundamental Structure of Input-Output

Stability of Feedback Systems," IEEE Trans. Vol. SSC-6, p. 92-96,

1970.

[15] R. Saeks, "Resolution Space, Operators and Systems," Lecture notes

82, Springer-Verlag, 1973.

[16] R. De Santis, "Causality, Strict Causality and Invertibility for

Systems in Hilbert Resolution Spaces," SIAM J. Control, 12, 3,

p. 536-554, Aug. f74.

[17] S. MacLane and G. Birkhoff, "Algebra," The MacMillan Co., New

York, 1967.

[18] C. A. Desoer and W. S. Chan, "Interconnection of Unstable Linear

Systems," Proc. Twelfth Allerton Conference 1974, U. of 111.,

Urbana, Illinois.

[19] M. Vidyasagar, "Coprime Factorization and Stability of Multivariable

Distributed Feedback Systems," (to appear in SIAM J. Control).

-14-



APPENDIX: PROOFS

Proof of Theorem 1 Vu2 <= g^ and ^ €g^, let

u » G2G1e1 - GjC^+G^); then

D«0T <Y(G2)llGiei - (u2-H31e1)9T

= y(G2)Qu2Dt

From the systems equations (2) and (3), we have

ul = el + G2(u2+Glel)

/. ux + u = e1 + G2G1e1

Hence e± =(I+G^r^Uj+u)

and G^ =GjU+G^rVj+S)

The assumed 9!-stability of G^I+G^)" implies

3^ <«» =*-vt e <3T, vUl,u2 e ££e

llGlel°T ± *1 °U1 +SBT

1 i^'Vt + WT>

.< kL(Hu1llT +Y(G2)Du2aT)

Letting k2 = max {kL»k1 Y (G2)} , we have

BGlel°T ± V'Vt + Ilu2llT) (A1)
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Using (3) and (Al), we conclude that

3 K, <- 3-vt e <3T, ¥lli>ll2 e cg^

«e2BT< (l+k2)([lu1flT+Bu2llT) (A2)

The assumed 9l-stability of G and (A2) Imply that

3k <»3-vTe(cT, *u.,u0ec£
•j l z e

I,G2e2BT^k3(llul0T+ Bu2°T) <A3>

Using (2) and (A3), we conclude that

3k3 <- 3-vt e <3T, ¥Ui,U2 e g>e

l^i a+k3)<BUlaT +Du2BT) (M)

(A2)and (A4) imply that He is Sd x§£ stable.
Q.E.D.

Proof of Theorem 2

Case 1: Suppose 6± has p.l.c.f. xjtfffy and 62 has p.r.c.f. .fc^q)^

I - G1 • G2(I-Wia2)-1 «I - G^HG^r1 • G2 - (HG^)"1 (A5)

Assumptions (a) and (b) imply that

the three expressions (A5) have no G pole (A6)

Note the equalities

Now CD1,CD2,(fD1CrD2+o\l1o\l2) G (JtnXn and (A7) imply successively,
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pis a<C+ pole of (I+G^)"

» pis a<E+ pole of (<^D1^52+JK1JU2)""

» pis aC+ zero of det(^) 14)2+Jv)1^2)

hence by (A6), we have

det(^1<^2+J}1j(}2)(s) t 0 Vs €<C+ (A8)

From (A7),

det(^61(h1+^1J!i1) =det^ xdet^ x detd-W^)

by definition of p.c.f. and the assumption (14), we have

V sequences (s.). , C C and |s.| •*• °»

lim inf|det(4)^^^lX)^(s±)|>0
i-x»

this, together with (A8), imply inf |det(^1<:I)2+u\l1LAI2) (s)' >°
sS(C+

Hence (<t)1CD2+^10^2)^ ^^^ and in view of (A7)' so ls Q&fiJ'1•

The fact that (I-K^G-) €<J\ follows immediately by observing

A A _1 A A A — 1 A

(i+g^) x=1-g^i-k;^) xGj^
A. A.

= I -^^l^A^'^l

The last two conclusions together with assumption (a), imply that

fiee,J2nx2n.

Case 2: Suppose G. has p.r.c.f. (;^L,H),) and (L has p.l.c.f. (LaLHX^

-17-



The proof follows in the same manner as in Case 1by interchanging
subscripts 1 and 2 throughout,

Q.E.D.

Proof of Corollary 2.1

, adj(I+6.G0)
By Cramer's Rule, (I+d^J^1 = , WTJA2 "

1 2 det(I+G G2)

Hence, for the conditions under consideration,

A A _"J

(I+Gj-G2) is proper (a.9)

For i=1,2, G± e !R-(s)n nand 6± is proper, hence G has acoprime
factorization.

Now (A5), (A6) are valid; this together with (A9), imply that (I+G G,)"1
is exp. stable.

The fact that (I+G^)' is also exp. stable follows in the same manner
by interchanging subscripts 1 and 2 throughout.

These conclusions, together with the assumption, imply that H is exp. st.
Proof of Corollary 2.2 Q.E.D.

(l+g1g2)-1 -1- jx -. g^l+g^r1
By assumption, ivi2ll+i1&2)~1 are proper.

Hence (l+gjgp is proper (aj.8)

Suppose, for sake of contradiction, (l+g^)""1 has aC+ pole, say, p.
The assumptions of the corollary imply that ^(p) =|2(p) «0, hence

(l+S^) (P) = 1» which is acontradiction. Hence (l+jLg2) has no

-18-



C pole.

This, together with (A18) imply that

O+tjgp"1 =(1+g^)'1 is exp. st.

This, combined with the assumptions of the corollary guarantee that

A

H is exp. st.
e

Leoma.

Let £,,&« be meromorphic functions mapping <C+ into <S.

If g1(l+l2g1)~1 and g2(l+|1g2)~1 are bounded on <D+ then

inf |(XH-g g >Cs) | > 0.
sQE+ Xl

Proof:

Suppose, for sake of contradiction, inf|(l+|,g2)(s)|=0
s£(D+

.*. 3 a sequence (s.). , in (D. 3"
i 1=1 +

|(l+g^) (s±) |•*- 0as i+ oo (A10)

But &2(l+&^&2) is bounded on <D , hence

&2(s ) •*• 0 as i -*• «>

Similarly from ^(l+g^)"1 =^(lfft^)"1, we have

(L(Si^ •* 0 as i -*• «>

Hence |(l+g^) (s±) |-»• 1 as i-»• •

which contradicts (A10). Hence the proof is complete.

X

Q.E.D.

Q.E.D.
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Proof of Corollary 2.3

Suppose ^,§2 have p.c.f. (n^d^, (n2,d2), respectively

(uW1 =o+w"1 •-z^q <A")
a /i ,* * \*"l l 2

8l(l4828l) • nln2-hild2 • <*">

i^l+g^)"1 =̂ ^ (A13)
The assumption implies g^l-^^)"1, SjU+t^)"1 are bounded on C+.
Hence, by lemma,

inf|(l+g | )(s)| = inf |( 12 1 2)(s)[ >0 (A14)
s% X* ^+ dld2

By definition of p.c.f.,

for i = 1,2, n.,d. have no common G. zero. (A15)

gl^1+^2^ is boundea °n C+, hence by (A12) and (A15),

n2,d. have no common C zero. (A16)

Similarly,

g2(l+g1g2) is bounded on <C+, hence by (A13) and (A15)

n, ,d2 have no common <Z zero. (A17)

(A15), (A16) and (A17) imply

nln2' dld2 nave no common <C zero.

n1n2 + d^d2, d^2 have no common G zero.

Hence, it follows from (A14) that inf|(n-n +d d )(s)| > 0.
s&£+ x z 12
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.\ (nxn2 +d1d2)"1 G^ and in view of

so is d+g^r1 =.(i+Mi^1

(All)

This together with the assumption, imply that H

Proof of Theorem 3. Since

A A(I+G^)"1 =I-G1(I+G2G1)"'1 •G2

ft e,J2x2
Q.E.D,

(A20)

-1 ,- Jnxn „ ^ _,__ . A ./t_l^ n \-1 tz 2P*nwe have (I+G,G2) €>Jkn*n. Consequently, we also have G2» (I+G^)" G
Since

A A —1 A A A A «"J_ ' . —... V

(I+G2G1) I " G2#G1(I+G2G1) (A21)

we have (I+G^)"1 e^AnXn. Hence

He f~^ Q.E.D.

Proof of Corollary 3.1

Copy the proof of Theorem 3and replace "G^nxn" and neL£2n*2n««

by ris exp. st.IT. Q.E.D.
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