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Abstract

This paper explores an approach to queueing problems using the recently

developed calculus of martingales. Specific results developed in this paper

include a general formula or virtual waiting time, and the formulation of an

optimal control problem on queues. A problem of optimal control with

quadratic cost is solved.
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1. Introduction

Standard approaches to problems in queues and congestion have been

primarily analytical rather than stochastic. By this, we mean that the

analysis is focused at a very early stage on distributions and averages

rather than on the processes themselves. Recent advances in martingales

[1-41
theory have made available a stochastic calculus for jump processes,

which in turn makes possible a new approach to queueing problems emphasizing

the underlying processes.

In this paper we shall introduce this approach by using it on a number

of relatively simple problems in queues. We should emphasize that the main

advantage of this approach is not so much in getting closed-form solutions

as in allowing more general problems to be formulated and analyzed. In

particular, problems involving feedback can be formulated with ease, thus

allowing optimal control for waiting line problems to be considered in a

natural way.

2. Martingales and Poisson Process

Let (SlyJpylP) be a probability space, and let {J^ ,t ^_ 0} be an in

creasing family of sub-cr-fields. A stochastic process {X ,t >^ 0} is said

to be adapted to {^V.t >^ 0} if for each t X is J -measurable. We say

{X ,j£»t >^ 0} is a martingale if

(2.1) E(Xt+s ^) = X with probability 1

for every t, s >_ 0. It will be convenient to assume all processes to be

right continuous.

We say {N ,t >_0} is a counting process if NQ = 0, and N is constant

except for a finite number of jumps of size 1 in each finite interval.
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We say {N ,J^>t > 0} is astandard Poisson process if N is acounting

process and {N -t, ir ,t ^ 0} is a martingale.

Aprocess {ft>t >_ 0} is said to be adapted to {^ }if f is

Jp -measurable for every t. It is said to be {-?. } predictable if as an

(u),t) function it is measurable with respect to the a-field of (a),t)

sets generated by all left-continuous and adapted processes. Let {f ,t >_ 0}

be an integrable (?t) predictable process. Then

(2.2) X_ = X, f -I f ds
t TT s l ssit JQ

where the summation is taken over the jumps of N, is an {Jj } martingale.

It is convenient to introduce the martingale

(2.3) qt = Nt - t

and write (2.2) as a stochastic integral

-•L(2.4) X, = fsdqs
'o

The martingale property of X then follows immediately from the definition

of stochastic integrals.

One can easily verify that the martingale definition of a Poisson

process is consistent with the usual definition of a Poisson process.

For example, write

'-1-E (e^-e^)
uN

e

s< t
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- E .--(.-.i)
s<t

f e^8" (eU -l) dqg +f e^S~ (eU- l)ds
Jo •'o

uN

If we define F(u,t) = Ee then we get

(u,t) -1=(eU -l) J F(u,s-)

which yields the generating function

00

_, _N (e11 - l)t - t V* un **F(u,t) = ev =e 2^ e ^7
n=o

3. A Model for Single-Server First-Come-First-Served Queues

Let X , Y , t > 0 be a pair of independent standard Poisson processes.

We assume that both X and Y are right continuous and denote by -^j.* jyt

and J- the respective a-fields generated by {X ,s <_ t}, {Y ,s <_ t} and
t s s

the two together.

Consider a single-server queue with Poisson arrivals at rate 1, and

with exponentially distributed service times, again at unit rate. Let

the system begin at t = 0 with no one in the system, and let Z denote

the total number of customers (waiting and being served) in the system

at time t. The process Z can now be represented in terms of a pair of

independent standard Poisson processes (X,Y) as follows: Let X represent

the arrival process so that the positive jumps of Z are given by the jumps

of X. Similarly, the negative jumps of Z can be represented by a Poisson

process Y except when Z is zero. Hence,
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t

(3.1) Z„ = X„ - | 1(Z _)dY
s—* s

where l(z) = 1 or 0 according as z is greater than 0 or equal to 0. More

generally, let f(t,z) be continuously differentiable in t, and let f(t,z) =

— f(t,z). Then

t

f(t,Z )•- f(0,0) =j f(s,Z )ds + 22 tf(s»z )-f(s,Z )]
J0 s<t s s~

when the sum is taken over all jumps of Z. Separating the positive and

negative jumps, we get

/t t

f(s,Zg)ds +j [f(s,Zg_ +1) -f(s,ZgJ]dX£
0 0

t

+j [f(s,Z -1) -f(s,Ze )]1(Z )dY
J s~ s" s" £

Although the integrals in (3.2) can be interpreted as Stieltjes integrals,

they are more usefully interpreted as stochastic integrals. If we introduce

the martingales

and

q = X - t
^xt t

yt t

then (3.2) can be rewritten as
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t t

(3.3) f(t,Zfc) -f(0,0) =jf(s,Zs)ds +f[f(s,Zg_ +1) -f(s,ZgJ]ds
0 -o

t

+ I [f(s,Ze - 1) - f(s,Z )]1(Z )ds
I s- s- s-

'0

t

+j [f(s,Zg_ +1) -f(s,Zs_)]dqxg
•'o

+J [f(s,Zs_ -1) -f(s,ZsJ]l(Zs_)dqys
4)

where the last two integrals yield martingales.
aZ

If we take f(Zfc) = e and G(a,t) = Ef(Zt), then (3.3) immediately

yields

r" t
s)ds + (e"a - 1) | G(a,s)dsG(a;,t) - 1 *= (ea - 1) j G(a,

•'o

- (e"

t

•a - 1) f
1)

P0(s)ds

T G(as
-'O

where PQ(s) = Prob(Zg = 0). The unknown PQ(t) can be determined by requiring

that G(£nz,t) be analytic on the open disk |z| < 1. This procedure yields

the generating function for Z , which is well known and of no particular

interest in this paper.

The process Z defined by (3.1) can be viewed as the standard queueing

process from which other queueing process considered in this paper will

be derived by a transformation of the probability measure.

4. Transformation of Probability

The objective here is to define a queueing process corresponding to
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general arrival and service rates. We shall do this via the standard

process introduced in the last section.

Let (ft, ^7, tr) be a probability space on which a pair of independent

standard Poisson processes (X,Y) is defined. Let vj = a(X ,Y , s <_ t).

A process <J> is said to be adapted to { J~ } if for every t (f> is :? -measurable,

A process {<j> ,t >_ 0} is said to be predictable (w.r.t. { j. }) if as an (o>,t)

function it is measurable with respect to the a-field generated by all left-

continuous adapted processes.

A positive random variable x is said to be a stopping time (of { J})

if {(o: x(w) < t} is Jr-measurable for every t. Let Ln denote the set
— t Jcoc

of all predictable processes <f> for which an increasing sequence of stopping

times x exists such that lim x = °° a.s. and for each n
n . n

•nt°°

x

CEl |(f> |dt < «

0

Let X and y be two positive processes in L and define

t

-I(4.1) A = II A n y exp{- I (X + y - 2)ds}
X< t s < t JQ

where x and s denote the times of jump for the two processes X and Y. From

the work of Doleans-Dade [5], we know that A is the unique solution to the

integral equation

t

A = 1 + [ AJ s-(4.2) A_ = 1 + | Ac [(Ac - l)(dXe - ds) + (yc - 1)(dYc - ds)]
S— So So

0

t

= 1 +

^0

/ A,.[.(A. "l>d<Jxs +<VS "!>%,]
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which implies that {At> •&} is alocal martingale, i.e., there exists an

increasing sequence of stopping time x such that x t » and for each n
n n

{A ,J} is a martingale,
n

Let A = lim A and assume E A = 1. Then we can define a new probability

measure (r via the transformation

(4.3) f£ =A
o

in which use A = E (A| ^ ) are just the likelihood ratios corresponding

to j . Bremaud [1] first suggested such a transformation as a means for

constructing generalized Poisson process, and he showed that under the

(r -measure

and

A
0

t

X ds
s

W/ ds
s

are local martingales. This justifies the interpretation of X and y as

rates for the processes X and Y under (r .

Once X and Y are constructed, (3.1) again generates a queueing process

Z with X and Y representing the arrival and service processes respectively.

Since the arrival rate X and the service rate y are allowed to be any L

process for which E A = 1, we have defined a queueing .process of considerable
o °°

generality. In particular, the fact that X and y can depend on {Z ,s _< t}
t t s

allows control problems to be considered in a natural way.

Let ^£ ^ = a(Z ,s < t) and denote
zt s' —
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(4.4) L =E(A |3Fzt)

It was shown in [ 2 ] that L satisfies the integral equation

,-/(4.5) K =1+| Ls_ [(As_ -l)dqxs + (ms_ -l)l(Za_)d^8]

where

(4.6) K =E<xtl ^t>
and

(4.7) 2*. =E^J ^j

are predictable processes by construction.

A, /t

If X and y are known functions of {Z ,s £ t}, then L is a known

function of {Z ,s <_ t}. Indeed, by the formula of Doleans-Dade, we have

t

(4.8) L = n Xy exp {-/ [(X - 1) + (y - 1)1(Z )]ds}
t x,a Ta J s s s"

0

where x and a denote the times of the positive and negative jumps of Z

respectively. Given any J -measurable random variable <f>, the formula

E(|> = E LA
o tY

provides, at least in principle, a means of computing E<j> by using the known

distribution of Z relative to the P measure.
o

Alternatively, (4.5) can be combined with (3.2) to yield

t

(4.9) f<zt)Lt -f<°) =f Ls_ ^s[f(Zs- +1} "f(Zs-)]dqxs
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+ y [f(Z - 1) - f(Z )]dqvQ
s s- s- ys

t

J+ | Ls_ {Xg[f(Zs_+ 1) - f(ZgJ]

which in turn yields the formula

t

+ yc[f(Zc -1) - f(z )]l(z )}ds

(4.10) Ef(zt) =f(0) +j E{xg[f(zs_ +i) - f(zgj] +ys[f(zs_ - i)
0

- f(Zc )]1(Z )}ds

If X and y are functions of only Z then (4,10) gives rise to the Kolmogorov
s s s-

differential-difference equation usually encountered in the queueing literature.

5. A Formula on Virtual Waiting Time

Let n be the time that a customer would wait before he is served if

he joins the queue at time t. n is called the virtual waiting time [6].

Suppose that at time t there are n persons in the system. Then nt is of

the form

n-1

(5.1) nt=^x. +xn- (t-tn)
j=l

where x,, xrt, ••••• x are the service times of the n persons in the
12 n

system at t, and t is the time at which service began for the person

being served at t. A sample function of n is illustrated in Figure 1.

The jumps of n occur at the arrivals, i.e., the jumps of X. Between

jumps n decays with slope - 1. Therefore, we can write
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(5.2) n = 2^ « " f KZC )ds
sit J S~

0

where ag is the service time for one arriving at s and the summation is

taken over the jumps of X. It is tempting to write (5.2) as

(5.3) nt =j vdXs -J l(ZsJds
0 0

However, at is not ^-measurable and it is not clear that the first integral
in (5.3) can be interpreted as astochastic integral. Of course, it can

always be interpreted as aStieltjes integral (which is just (5.21))

this does not make available the martingale calculus for computing En .

The°rem S'1 Let Gt "^yoo vixf Let Pq and P be defined by (4.3)
and (4.2). Suppose that: (a) yfc is ^-measurable, and (b) Ea _X <-.
Then nis a(^,{Gt» martingale and

(5.4) Ent =/"P0(s)ds -t+f E(as_Xs)ds
0 J0

where PQ(t) =P({o,: Zt(W) =0})

Remark (a) Equation (5.4) generalizes similar formulas derived under more

restrictive conditions. (See e.g., [6].)

(b) The condition that yfc is ^-measurable is anon-trivial
condition. It means that the service rate Pj. cannot depend on the arrivals.
In particular, this condition excludes the case where yinvolves feedback so
that yt depends on {Z ,s <_ t}.

Proof: First, we observe that afc is the time interval between the Z -th
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and (Zt +1) -th jumps of Yafter t. Hence, ot is G^predictable. Under
Po, Xand Yare independent standard Poisson processes, so that (X - t)
is a(Pq, Gfc) martingale.

Now, P is defined by (4.3), and we can write

where

and

dr
-TJS = A = A Aap** x00 y»

t

A = exp{ | [AnA dX - (X - l)ds]}
*»i* I So S

o

t

V =exp{ j[£nysdYs "(us "1)ds]}
0

Under condition (a), h is G -measurable for all t. Hence,yoo £

g = E (A|GJ = A E (A IGJ
t o ' t y00 o x00' t

Because A satisfies
Xoo

00

hV = X+ Axs<Xs - 1)d<Xs - S)

and (Xt -t) isa(^,6) martingale,

E (A^IGJ = E (A I3) = A
O Xf»' t ox00' t

Therefore, g satisfies

-12-

xt



t

g=A A = A [1 + | A (X - l)d(Xo - s)]
&t y°° xt y00 I xs s s

0

_t

= gn +I 8S(^S - Dd(xs ~ s>-I
It follows from the results of VanScfruppen and Wong [7] that X^. - | X ds

is a ( P,G ) local martingale. Let (5.3) be rewritten as 0
t'

t

^ = I a (dX - X ds) + / a X ds - It J s- s s J s-s J

The first integral is a (P,G ) martingale. Therefore,

t

: =f E(ct X)ds -fEZ^ =| E(a^ X„)ds -| E[l(Zg_)]ds

0

and (5.4) follows.

6. Optimal Control for Queueing Processes

In this section we shall consider the problem of controlling a queue

by observing the past of the queue-length and by varying the service rate.

For simplicity we will consider the case of a constant arrival rate, but

generalization to any Markovian arrival process poses no difficulty. Re

lated results have also been obtained by Boel and Varaiya [8].

Let (ft, 3^, IP) be a probability space. Let X, Y be a pair of processes

representing the arrivals and the service processes respectively. Let Z be

the queue-length process defined as in (3.1). We assume that under P , X

and Y are independent standard Poisson processes. Define
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(6.1) p* = n X n y exp[- j(A +u -2)dx]
s < t, < t Ei s < s. < t Sj~ J T T
-i- —J — s

where X = X has been assumed to be constant for t £ [0,1].

Let 3* = a(Z ,s <_ t). A nonnegative process y with value in E C r

is said to be an admissible control if it is <& -predictable and satisfies

(6.2) Vo(m) = X

We denote the set of all admissible controls by /t. We say an admissible

control is Markov if there exists a measurable function f such that

(6.3) yt = f(t,Zt_)

We denote the set of all Markov controls by /H.

If y is an admissible control then we can define a probability measure

K by

(6.4) iPo •po1(y)

The cost is then i»iven by

1

=E j c(s

° 1

=V'J f

(6.5) J(y) •Z8-

c(s3

,y)ds
m s

>Zs-,ys)d8]

The control problem is to find an admissible y*such that

J(y*) = inf J(y)
HG*7l
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First, we shall try to determine an optimal Markov control. Define

1

(6.6) W = inf E[fc(s,Z ,y )ds| % ]
y£??l y J S" S zt~

dP .
y _ i,Since j-j- = pQ(y), we have

1

. 1 1
E

o

't

{Po(w)f c(8,Z8_fp.s)d8|^tJ
(6.7) Wfc = inf

1

E (d^u) /
y e^n
= inf EQ{pJ(y) rc(s,Zs_,ys)ds| >t_}

Since y is Markov in (6.7) and Z is Markov under <r , W is a function of
o t

Z and not of its past, i.e.,

(6.8) Wt = V(t,ZtJ

From (6.6) we can write

t+h

V(t,Z,. ) = inf EV{J c(s,Zg_,ys)ds +j c(s,Zs_,ys)ds| J^J

t+h

= inf E

y ZTO.

t+h

p{J c(8,zs_,,s)ds +v(t+h,zt+h)|3rztj
or

t+h

(6'9> w1emE,,{tV(t+h'Zt+h) "V(t,ZtJ1 +J c<"'z.-'".>d,l ^zt-} •°
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The differentiation rule (3.2) now yields

.t+h

(6.10) V(t+h,Zt+h) -V(t,ZtJ -j (<£v)(s,Zs_)ds +(M^+h -m£)

where we have adopted the notation

(6.11) (^V)(t,z) =f- V(t,z) + X[V(t,z+l) -V(t,z)]
y ol

+ yt[V(t,z-l) - V(t,z)]l(z)

and

HMil = | [V(s,Zo + 1) - V(s,Ze )](dXc - Xds)

0

t

+ f [V(s,Zq_ -1) -V(s,ZQJ]l(ZfiJ(dYg -yads)
s- s- s s

0

We note that My is a local martingale respect to (<\ . -%«.)• Therefore,
t y zt

using (6.10) in (6.9), we get formally

t+h

inf E{( [(X V)(s,Z )+ c(s,Z ,y )]ds| > }=0
yeTn y Jt y s" s s zt

or

inf {(<^V)(t,Z. )+ c(t,Z ,y )vG 7A y t- t- t
t+h

£/ [(^yV +V^'V "(j!yv +V(t,Zt-)]ds}y

rt

Hence, continuity of J- V + c yields the Hamilton-Jacobi equation

(6.13) inf {(£ V+ c)(t,z)} =0

-16-



It turns out that if (6.13) has a solution then it is not only an optimal

Markov control but optimal in general.

Theorem 6.1 Suppose that V(z,t) satisfies

XyV(t,z) +c(t,z,v) >_ 0for all v€Z

(6.14) XvV(t,z) +c(t,z,v) =0for v=y*(t,z)

V(l,z) =0

•k

where c is a non-negative function. Then, y (t,Z ) yields an optimal

control, i.e.,

J(y ) = min J(y) = V(0,z)
y e 71

Proof: Let J denote V(o,z). Then

or

/"JM =% J dV<s>V>
0

1

=Ey{ r(^V)(s,ZsJds+ (M^)}
0

1

JM ""V I V(S,Zs-)ds + Ml}Vf V'

Using (6.14) and the fact that M^ is a local martingale, we get

IAt

-yf "V(s'zs-)ds +MuT>
Jo

-17-



-1/,T« lAT

""Vj <£yV<s>ZsJds] ±Eyt T nc(s,Zs_,ys)ds]
o 0

for an increasing sequence of stopping time x + ». Letting n -> ~ yields

<E I c(s,Z ,y )i

0

with equality for y = y . q.e.d.

n

1

7. An Example

Consider a cost function which is quadratic in the control, viz.,

2

(7.1) c(t,z,y) = ±r+ f(t,z)
X

Equation (6.14) becomes for this case

ftf V(tfz) +X[V(t,z+l) -V(t,z)] +f(t,z)

2

+ min{v[V(t,z-l) - V(t,z)] l(z) + ^- } = 0
X2

which yields

y*(t,z) =--| X2[V(t,z-l) -V(t,z)]l(z)

and V must satisfy the differential equation

(7.2) |_ V(t,z) +X[V(t,z+l) -V(t,z)] +f(t,z)

-j X2l(z) [V(t,z-1) -V(t,z)]2 =0

with V(l,z) = 0.
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We observe that if

f(t,z) = a(t)z2 + b(t)z + c(t) + l(z)d(t)

then (7.2) yields a solution of the form

V(t,z) = a(t)z2 + 3(t)z + y(t)

provided that d(t) bears a certain relationship to a and b. Specifically,

by equating like terms, we get

a - X a +a = 0

3- X2a6 + (b-1) + (aX+1)2 =0

y + X3 + c = 0

12 2d = iAZ(3-a)Z

The first two equations can be solved for a and 3 in terms of a and b.

The next two equations determine y and d. The optimal control is then

given by

y(t,z) =| X2l(z)[2az +(3-a)]

For example, suppose that a=l, b = c = 0. Then we find

a(t) = - j tanh X(t-l)

1

-19-



and

""Xcosh1X(t-l) {sinh A^t"1> "tan^falnh X(t-l)]
+2-2 cosh X(t-l)}

1

Y(t) =| X3(tf)dtf.

=-^ An[cosh X(t-l)] -^- [tan""1 sinh X(t-l)]2

+j tan"1 sinh X(t-l) +2(l-t)

X2 2d(t) = j- (3-a)Z

Y" [tan"1(sinh X(t-l)) +2cosh X(t-l)-2]2
4 cosh X(t-l)

If the average number of arrivals in the interval [0,1] is large, say

X ^ 10, then d(t) is nearly zero throughout the interval [0,1], which

means that the control

X2 2yv(t,z) =y- XZl(z)[2az + (3-a)]

is very nearly optimal for the quadratic cost function

/*. ^ 2 ... 2c(t,z,y) = y + z
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