

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

\)

COSTS OF DATA ENCIPHERMENT ON COMPUTERS OF VARYING POWER

by

James Jatczynski

Memorandum No. ERL-M493

January 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

V

Abstract

Encipherment appears to be an attractive means of protecting
sensitive data in computer systems, but the costs of encipherment are
not yet well known, A series of timing experiments was conducted which
measured performance of enciphering tasks given each of two application
models, four additive encryption methods, and three different computers.
The applications simulated were file encryption and communication
traffic encryptioni the encryption schemes were a baseline null
transformation and a short key, long key, and pseudo-random key methods
the computers used were the CDC 6^00, PDP-ll/45, and PDP-lo/50.

Encipherment rates attained by the assembly language programs
Stnsf?/ftoni 22»700 by/s fo,r rardom key communication encipherment on the
PDP-11/^5 to 1,380,370 by/s for null file encipherment on the CDC 6*f00.
Estimated monetary costs ranged from ,6720 to 11.060 to encipher 1000
card images and from 6.600 to 3^.910 to support a 300 baud terminal for
one hour*

Costs of Data Encipherment+

1• Summary

The purposes of this study are to 1) explicitly define two distinct
date processing applications in which encipherment is likely to be used,
2) determine attainable enciphering rates in each application using
various additive encipherment methods. 3) determine the relative performance
of various computers in execution of enciphering tasks, and *) obtain an
estimate of the monetary cost of encipherment.

First, models of the two applications are' defined. Then encipherment
rates are determined by actually running enciphering program segments on
the computers under consideration and are verified by using instruction
timing data from manufacturers* manuals. Cost estimates are based on
computer center accounting rates.

Measured enciphering rates ranged from 22,700 by/s1 to 1,380.370 by/s
(a factor of 60) depending on the application model, enciphering method, and
computer considered. For asingle model and computer, rates between the
simplest and most complex enciphering methods differed by up to afactor of
nine. Expected costs of encryption were surprisingly low.

H» significant range of performance between various enciphering
algorithms and various processors indicated aneed for careful consideration
of equi^ent selection for enciphering applications. Aparticularly
interesting point brought out by the use of two application models was the
desirability of choosing aprocessor to fit the size of its intended task in
order that efficiency be maximized.

^Partially supported by National Science Foundation Grant GJ 36475,
by/s -byte/second where abyte contains 8bits.

2. Introduction

2.1 Background

With the increased interest in security and privacy aspects, of computer

systems has come the recognition of enciphering methods as an effective means

of protecting data. It has been recognized that cryptographic methods are

applicable to both file storage and intercomputer transmission of data (Pet,

Skap Bar, Fei, Hof, Pri). Encipherment may be effected, by either hardware or

software; however, only software encipherment will be considered here.

The goal of any enciphering method (or privacy transformation) is to

disguise data in such a way that they cannot be understood by unauthorized

persons. The datura under consideration at any time is called a message. Its

undisguised form is called cleartext and its disguised form is called ciphertext.

The transformation from cleartext to ciphertext must be performed in such a

way that the reverse transformation can be performed at a later time, and

furthermore that it can be performed only by authorized persons (Kah, Hof).

Thus an enciphering scheme normally consists of 1) an algorithm which gives

the general method to be used to transform the cleartext into ciphertext and

2) a kejr which is a parameter of the algorithm and is somehow combined with

the cleartext by the algorithm to generate the ciphertext; in essence, the

key selects a particular instance of the general algorithm. The algorithm is

designed to be invertible so that anyone who knows the inverse algorithm and

the key used in a particular instance can recover the cleartext message from

the ciphertext. Therefore, secrecy of the key is a necessary but not

sufficient condition for data security; Baran has suggested that secrecy

regarding the algorithm is neither necessary nor desirable (Bar). Thus the

encipherment process can be symbolized as follows (where T is the enciphering

algorithm or transformation, M is the cleartext message, K is the key,.and C

is the ciphertext) (Kof):

T(M,K) -* C (1) #

Deciphering can be viewed as

T-1(<2) -Trl(T(H,K)) -* M (2) .

The classical methods of encipherment include addition of cleartext and

key, substitution of one alphabet for another, and transposition of characters

of cleartext (Hof, Fri, Kah). Enciphering methods with non-linear properties

have also been considered (Fei). Because additive ciphers use the exclusive

or operation to effect addition they are extremely well suited for software

implementation, particularly from the standpoints of ease of programming and

speed of execution. Therefore only additive ciphers will be considered here.

An additive enciphering method works schematically as followst

CLEARTEXT + KEY -*. CIPHERTEXT (3)

where +symbolizes the exclusive or operation. Because of the additivity,

deciphering is algorlthmically equivalent to enciphering, namelyt

CIPHERTEXT + KEY ~& CLEARTEXT (4)

The text may be any length and it may naturally be divided into segments or

blocks such as characters or words. The key may be as long as the message

or shorter in which case it is used repeatedly in a cyclic manner until the

entire text is encrypted/decrypted. The natural portion of the text which

becomes available at a given time or which is most convenient to consider will
be called a segment.

Variation among additive methods arises from schemes of key generation.

A constant key which has length one segment is most convenient, but offers

little data protection. Longer constant keys (10, 100, 1000 or more segments)
offer more protection at some added expense in algorithm complexity and key

storage. Infinite key methods using pseudo random number generators to produce

an ever changing key provide potentially excellent security but have the

expense of generating the "random" numbers (Bar, Car, Kah).

The relative efficiency and absolute cost of various methods of encipherment
are of practical interest. Some of the data available to date are the following:

1) Carrol and McClelland (Car) report an encipherment rate of 37,000 by/s
for a pseudo random key method running on aPDP-lo/50.

2) Friedman and Hoffman (Fri) investigated several techniques on the CDC
6400. They were able to move data (null "encipherment") at 1,575,600 by/s,
effect constant one-segment-key encryption nearly as fast, long key encryption
(125-segment key) at 909,075 by/s, and infinite pseudo random key encryption
at 374,100 by/s. The 60-bit word was their segment.

3) Tests reported in (Hof) for the 360/67 showed adata transfer rate
(as in 2) of 700,560 by/s, one-segment-key rate of 514,800 by/s, long key rate
of 352.080 by/s, and infinite random key rate of 243,000 by/s.

Additional figures are given in (Fri).

2.2 Scope and Limitations

Ihree additive enciphering methods (constant-key, flong key, and infinite
random key) were studied here. Three different computers (CDC 6400, PDP-11, •
and PDP-10) were used. Two different data processing applications were
considered.

Certain encipherment methods were not studied because they closely
resemble other methods (e.g. long key vs. double key, see.(fri)) or because

they were deemed unsuitable for software implementation (e.g. Lucifer which
handled 96.970 by/s in ahardware implementation but only 2910* by/s on the
Honeywell'6180-(Ben)). (However, see Appendix I)

Thus we consider only avery small subset of the three-dimensional space
of application vs. enciphering method vs. processor. In addition, our cost

4

figures are very crude and should be judged as possibly in error by a factor

of 2 of 3.

3« Discussion

3.1 Application Models

Two models of application areas in which encipherment is likely to be used

are considered here. Application Model I concerns encryption of files within

a computer system (batch, timesharing, management information); Model II concerns

encryption of communication traffic between a computer system and a character-

oriented terminal typically used in timesharing applications. These applications

represent two extremes of data availabilityi In application I a large mass of

data is immediately available for processing; in application II data are available

only on a character by character basis, and furthermore, character arrivals are

separated by relatively long periods of time. These models imply simple but

significant differences in the programs necessary to handle encryption.

Application Model I. Encryption of a file within a system might be

accomplished by a command such as

ENCRYPT input-file output-file key

where the parameters are self-explanatory. The input file is immediately

available in total, and buffering techniques for input/output allow the encryption

routine to use the full power of the machine to read, encrypt, and write data

very rapidly. More specifically, once the machinate fast registers have been

loaded with parameters required by the encryption routine, it proceeds to

completion with essentially no additional overhead. The processing sequence

is illustrated in Figure 1, In this model, the segment size is one machine word.

Application Model II. In this situation single character encryption occurs

at intervals as characters are received at and transmitted by the system. We

C
ST

AR
T

*)
IN

lM
'J

P
A

R
R

A
Y

IN
R

E
T

R
IE

V
E

E
N

C
R

Y
P

T
IO

N
P

A
R

A
M

E
T

E
R

S

T
O

F
A

S
T

R
E

G
IS

T
E

R
S

M
E

M
O

R
Y

>
-

G
E

T
A

W
O

R
D

F
R

O
M

IN
P

U
T

A
R

R
A

Y

E
N

C
R

Y
P

T
I
T

S
T

O
R

E
I
T

IN
T

O
O

U
T

P
U

T

A
R

R
A

Y

j^
T

A
a

n
\

y
«

/
w

i
\

Y
E

S

\W
O

RD
J
^

C_
ST

O
P

}

[no
O

U
T

P
U

T

A
R

R
A

Y
IN

M
E

M
O

R
Y

U
P

D
A

T
E

P
A

R
A

M
E

T
E

R
S

IN R
E

G
IS

T
E

R
S

Fi
gu
re

1.
Ap
pl
ic
at
io
n
Mo
de
l
I
Pr
oc
es
si
ng

Se
qu
en
ce

C
ST

AR
T

Q
9—

}
W

A
IT

F
O

R

C
H

A
R

A
C

T
E

R

G
E
T

A

C
H
A
R
A
C
T
E
R

G
E
T

P
A
R
A
M
E
T
E
R
S

F
R
O
M

M
E
M
O
R
Y

T
O
F
A
S
T

R
E
G
I
S
T
E
R
S

E
N
C
R
Y
P
T

C
H
A
R
A
C
T
E
R

S
T
O
R
E
I
T

S
T
O
R
E

P
A
R
A
M
E
T
E
R
S

B
A
C
K
I
N

M
E
M
O
R
Y

Fi
gu
re

2.
Ap
pl
ic
at
io
n
Mo
de
l

II
Pr
oc
es
si
ng

Se
qu
en
ce

assume highly interactive applications where any character may be significant,

and thus each character must be deciphered (remember the algorithmic equivalence

of enciphering and deciphering) as it is transmitted or received. (Note that

enciphering of entire messages for transmission could occur as in Model I.)

Here, in addition to enciphering time, significant overhead is incurred because

1) enciphering routine parameters must be retrieved from memory for each

character (since characters are widely separated in time) and 2) a (say) 60-blt

machine operating on an 8-bit character is using only a fraction of its

processing power. The processing sequence is illustrated in Figure 2 (note

that in the figure "encrypt" is synonymous with "decrypt"). In this model,

the segment size is one byte«

3.2 Encipherment Methods

A "null encipherment" and three additive enciphering methods were considered

in this study. The null encipherment consisted of simply moving data from one

place to another in memory. The additive methods were those using a short one-

segment key, a long 128-segment key, and an "infinite" pseudo-random key. Let

M.0 E , and K. be the 1-th segment of the message, the enciphered message, and

the key respectively„ Then the enciphering methods can be symbolized as followsi

Method?

(5)

(6)

(7)

(8).

In (6), K is a constant one segment long. In (7)# K is a table of 128 key

segments. In (8), successive words of K are produced by a linear congruential

pseudo-random number generator. As before, "+" symbolizes the exclusive or

operation,

3 <>3 Computers

Three computers were used in these experiments, namely the (Control Data

6

1. Null Ei-Mi
2. Short Ei - "i + K
3o Long Ei " Mi + Ki mod 128

^o Random E = H + K

Corporation) CDC 6400 running under the scope operating system (CDC), the (Digital

Equipment Corporation) DEC PDP-ll/45 running under UNIX (Unx)t and the DSC PDP-10

(KA10 processor) running under the Timesharing Monitor (PIO). The main machine

characteristics are:

memory cycle clock

.5/(s high frequency

.85/is line

1.65/is high frequency

The memory "cycle" for the CDC 6400 is quoted as .5/*s because extensive memory

interleaving makes the .5«s access time rather than the l.Q^s cycle time

significant for the considerations here. Clock refers to the clock source used

to obtain timing information. The high frequency clocks provide timing accuracy

of better than 1 ms and the line clock provides accuracy of 16.6 ras. Thus much

longer computer runs had to be made on the PDP-11 to obtain reasonable timing

accuracy. Note that each of these machines can execute a full word exclusive

or via one instruction. These machines were chosen because one represents the

class of high-power processors (CDC 6400), one the class of medium-scale

processors (PDP-10), and one the class of minicomputers (PDP-11).

304 Experiments

Twenty-four separate timing experiments were performed. For each of the

two application models, four enciphering method 1programs were timed, and each

of these eight combinations was run on all three computers.

Computer Programs. For each computer eight programs were written. TWo

programs performed the null transformation, two the short key encipherment, two

the long key encipherment, and two the infinite random key encipherment. In

each case, one program simulated application Model I and the other simulated

word size

CDC 6400 7.5 by

PDP-li/45 2.0 by

PDP-10 4.5 W

application Model II. Figures 1 and 2 mirror the differences in programming

between application models very closely. In Model I programs, whole words were

enciphered at a time and enciphering parameters were kept in registers. However

in Model II programs, only character-at-a-time encipherment was performed, and

furthermore parameters were moved back and forth between memory and registers

for each character in order to reflect the fact that other processes would run

and thus usurp the registers between character times. In addition, of course,

a loop control test had to be added to Model II's programs.

All programs were written in assembly language for the particular machine.

In addition to the enciphering task each program contained code needed to obtain

CPU time information from the particular operating system.

Computer Runs. Each program was run 50 times on each computer in order

to obtain an average. However, there was very little deviation from run to run.

For the CDC 6400 and PDP-10 the programs were allowed to loop 20,000 times on

each run (i.e. to encrypt 20,000 segments be they words in Model Ior bytes
in Model II). (See Fri for astatistical analysis of CDC 6400 results). For
the PDP-11 with its less accurate timer, the programs were allowed to loop
524,288 times. Initially, variation of the number of loops showed that the

additional time introduced by the timing code was insignificant.

For each run, the enciphering rate in by/s and the enciphering time per

byte in s/by was computed. Results of all runs were combined to give an

aggregate enciphering rate and time for each model/method/computer combination.
Only the aggregate rates are presented here.

3.5 Timing Computations

In addition to measured times, theoretical execution times based on

manufacturers' timing information were computed in order to increase confidence

in the measured times. All computed times were within 5# of the measured times.

8

An example follows.

The segment of code which realizes the inner loop of Model II, enciphering

method 2 on the CDC 6400 consists of 7 instructions which fit into 3 words.

According to manufacturers' figures, the sequence should take 7.0/43. That is,

one character can be encrypted in 7.0;us. The measured figure was 7.26/g for

an error of 3.7#. In most cases, errors could be accounted for by memory

interference not considered in the calculations.

3.6 Cost Computations

A cost figure was computed for each model/method/computer combination.

For Model I, the cost of encrypting 1000 cards (» 80,000 characters) was computed.

For Model II, the cost of supporting one 300-baud terminal transmitting at

full speed for one hour (» 108,000 bytes) was computed. Costs were based entirely

on CPU time charges estimated as follows (Cos)i

CDC 6400 $7.00 per CPU minute

PDP-11/45 $4.00 per CPU minute

PDP-10 $5.50 per CPU minute.

This is somewhat unjustified because memory usage may be significant in some of

the applications (especially for file buffers in Model I). However, these

figures should give reasonable estimates of marginal costs of adding encryption

procedures to existing system routines.

4. Results

The objectives of this study were to determine time and money costs of each

enciphering model/method/CPU combination.

4.1 Timing Results

Table 1 gives the enciphering rate in bytes per second and the CPU time per

byte In/cs. For example, the CDC 6400 operating under Model I constraints is

Method

JNull

Short

Long

Random

CDC

6400

Model I

PDP

11

1»330,370 308,000
•72 3.25

U332,540
.75

897,850
1.11

159,980
6.25

215,000
4.65

95,700
10.45

48,200
20.75

PDP

10

259,740
3.85

217,860
^.59

162,600
6.15

140,650
7.11

CDC

6400

180,070
5.55

137,740
7.26.

81,286
12.30

38,250
26.14

Model II

PDP

11

109,000
9.17

64,300
15.55

32,000
31.25

22,700
44.05

PDP

10

87,730
11.40

47,250
21.16

33,670
29.70

28,360
35.26

Table 1. Measured Raw Enciphering Rates (by/s) and Enciphering Time per Byte (jis)

T*ble 2. Enciphering Time Coefficients for Processor/Model
Combinations

3
C5

fa

1,500,000n

1,000,000-

500,000-

o
o

vO

o
Q
O

PH I
2 3
CPU and Method

Figure 3. Model I Raw Enciphering Rates

200.000 -,

100,000-

o

s

a
o Pw

Oh
Q
Ph

2 3
CPU and Method

Figure 4. Model II Raw Enciphering Rates

Method

Null

Short

Long

*CDC

6400

92,020

88,840

59,860

Random i0c665

Memory

T77
Word Size

(by) 7.5

Model I

PDP

11

131,000

PDP

10

95,240

91,400 79,882

40,700 59,620

20,500 51,572

.85 1.65

2.0 4.5

Table 3. Normalized Enciphering Rates (by/s)

Method

Model I

K-cst to encrypt 1000 cards (cents)

Table 4. Costs of Encrypt!on

CDC

6400

90,040

68,870

40,640

19,125

Model II

PDP

11

92,700

5^,700

27.200

19.300

PDP

10

144,750

77.960

55.560

46.790

.5 .85 IT65

1.0 1.0

Model II
Cost to encrypt 108,000

1.0

^fSinte)

CO

o

o
o
o

C (0

-£ c
P<<Z>
>»o

o
c
©

o

•p
03
O

a

w
<D

O
o
o

CO
o

CO

c c

Pi"—
>>

o
c
o

o

-p
10
o

12,00 i

8.00 -

4.00 - P«

P«

40,00

30.00

20,00 .

10.00 -

•a
Pm

12 3
CPU and Method

Figure 5. Model I Encryption Costs

o
o

^5 r*
O P-,
Q Q
O P-.

P<
Q
P-4

2 3
CPU and Method

Figure 6. Model II Encryption Costs

capable of enciphering 897,850 by/s using a long key method; this is equivalent

to an enciphering time of l.lljus per byte. Figures 3 and 4 show this information

graphically.

Table 2 gives the enciphering time coefficients (Fri) for each model/CPU

combination taken across all methods. The enciphering time coefficient is the

ratio of the time taken to encipher a segment to the time needed to perform

the null transformation on that segment. Thus, for the example of the last

paragraph, the enciphering time coefficient is 1.11/.72 « 1.54. That is, it

takes 1.54 times as much CPU time to encipher a segment using the long key

method as it takes to simply move that segment.

Table 4 gives the estimated costs of encryption based ori the time figures

in Table 1 and the accounting figures mentioned previously. Figures 5 and 6

depict these figures graphically. Note that the amounts of data considered

under Models I and II differ. This was done in order to anchor the cost results

in the real world -related to each application model.

4.2 Gross Analysis

Since the null encryption method effects no transformation of the input

it was fastest in all cases. The short key method requires the addition of an

exclusive or operation between input segment and key and thus takes somewhat

longer. The long key method requires a table lookup, exclusive or, and

maintenance of a pointer into the key table, and thus takes even longer.

Finally the random key method requires calling a random number generator/or

computation of the next pseudo random number by a linear congruential method

and thus requires a multiplication and an addition to generate the key, and then

an exclusive or. In Tables 1 to 4 the trend in execution time with increasing

complexity is apparent.

Since in Model I aword is enciphered at a time and in Model II only a byte

10

is enciphered at atime, one would expect aratio of about the CPU's word

length in bytes between comparable boxes in Iand II of Table 1. For example,
for the CDC 6400 the ratio of the Model Ito Model II null transformation is
1.380.370/180.070 »7.67 and the word length is 7.5 by. This, however is only
arough rule since other factors influence this ratio, most notably the differences
in program structure for Model I vs. Model II,

Obviously, costs increase with the complexity of the enciphering algorithm.
One would expect, however, that for agiven model and enciphering method, the
cost of encipherment would be roughly comparable over CPU's (given well known
economic laws). For Model Iwe have cost differences up to afactor of 5J. and
for Model II the differences go.up to afactor of 2. These differences are due
to at least two factors:

1) Charges for CPU time may be based on factors other than the power of
the CPU and

2) Inaccuracies in CPU time charge estimates.

Nothing more will be said about costs since only preliminary estimates were
intended,

4.3 Detailed Analysis

It is the intent of this section to account for the differences in enciphering
times between processors based on CPU characteristics. The contributions of
both hardware and instruction set characteristics will be considered.

One conment should be made before beginning, however. The random key method
for Model Ion the CDC 6400 requires two calls of the random number generator.
This is because the generator produces only a48-bit random number, and the
word is 60 bits long. This anomaly does not arise on the other two machines.

Hardware Contribjjtions. Iwo main hardware factors effect enciphering rates.

11

V

namely word size and memory cycle time. With a larger word size, more data

can be manipulated at once (this, of course, is applicable in Model I but not

Model II). Similarly with a faster memory cycle, data can be manipulated more

rapidly and instructions can be fetched more rapidly.

Let R be the enciphering rate determined in a box of Table 1, C the memory

cycle time in /<s, and W the word size in bytes. Then we define N the normalized

enciphering rate by

N ~R(c/rf) (9). •

Table 3 presents the normalized enciphering rates. Whereas in Table 1 we have

rate differences across processors of up to 9j, in Table 3, these differences

are reduced to at most a factor of 3 (except for the pathological case mentioned

in the second paragraph of this section)jthe factor here is typically 1.5 to

2.0. We believe that this normalization accounts handily for the primary

hardware factors.

Instruction Set Contributions. Extremely detailed analysis is possible

here on several fronts. To shorten the presentation, one microscopic example

will be considered followed by broadbrush treatment of additional factors.

Table 2 will be the primary vehicle.

Consider the enciphering time coefficients for Model I, short key

enciphering. The CDC 6400 exhibits a near unity coefficient while those for

the PDP-11 and PDP-10 are considerably larger. This stems from the peculiar

CDC 6400 architecture which allows loading into registers 1 to 5 only and storing

from 6 and 7 only. For the null transformation we load say register 1, move

its contents to register 6, and store from register 6. For the short key method,

we replace the move with an exclusive or with a previously loaded key. A

programming peculiarity which required the inclusion of a NO OP instruction

introduced the small additional time. On the PDP-11 the null move is accomplished

12

by a single memory to memory move instruction. However, three instructions are

needed' to effect the short key method, namely move to register, exclusive or,

store. Thus the rather large time increase is seen. In the PDP-10 only a single

instruction is added to a4 instruction loop, namely/ exclusive or to register^

thus the increase in time is smaller.

With reference to the enciphering time coefficients in Table 2, two

general points of comparison between processors• efficiencies can be made:

1) PDP-11 coefficients in general grow the most rapidly. This occurs

because the instruction set architecture is such that as additional algorithmic

complexity is added, additional or multi-word instructions must be used, whereas

with the other processors simple modifications within instructions often suffice.

2) PDP-10 coefficients seem to grow the most slowly, perhaps due to the

fact that the PDP-10 has a relatively small spread in instruction execution

times (about 4 to 1) when compared to, say, the CDC 6400x (11 to 1) on the

instructions added to the enciphering programs as their complexity increased.

Only these two points will be mentioned here, but any aspect of inter-

processor comparison will yield to detailed analysis of instruction set

architecture and timing.

4,4 Accuracy

The accuracy of timing of CPU operations is of concern in estimating the

validity of these results. It is believed that the figures here represent good

working estimates so only brief consideration of their accuracy will be made.

This belief is based on l) close agreement between theoretical and actual timing
results and 2) use of various methods to eliminate timing errors.

Friedman and Hoffman (Fri) performed a careful statistical analysis of

their results on the CDC 6400 and quote a 95* confidence level for their

timing figures. It is believed that their analysis of timing accuracy is

13

applicable here since tests were performed at the same installation. In any

case, observed accuracy in the present study was typically better than 1 part

in 10,000.

The PDP-10 clock is inherently more accurate than the CDC 6400 system

clock because its handling routine is interrupt driven. Variance over test

runs was practically nonexistent. Accuracy here was typically 1 part in

25,000,

The PDP-11 line frequency clock was quite imprecise in that over any

interval it is guaranteed to be accurate only within 16.7ms. Timing accuracy

here ranged from 1 part in 200 to 1 part in 1400. Thus, only three

significant figures are quoted in PDP-11 results (in many cases, this should

be reduced to two),

5 • Conclusions

The time taken to encipher streams of data with two application models and

three additive encryption methods was measured on three distinct computers.

For comparison purposes, the time taken to effect a null transformation was also

measured. Enciphering-rates varied by a factor of 60 over all applications,

methods, and computers. Rates decreased with increasing complexity of the

enciphering method. Monetary costs were also estimated, and these varied by as

much as a factor of 16 (6) over all methods and CPU's in Model I (Model Il)j

overall, these costs were quite low. It. was found that much of the difference

in rates between CPU's could be accounted for by word size and memory cycle

time. Further differences are accounted for by appeal to differences in

detail of instruction set architecture and instruction timing. Results indicate

that a CPU should be chosen carefully to fit the particular enciphering

application considered while providing maximal efficiency.

14

6. Recommendations

Several specific recommendations are implied by this study»

1) Since only a small sampling of enciphering methods was considered, an

expanded study should be made which would include other methods such as Lucifer.

2) More realistic figures could be obtained by e.g. adding encryption code

directly to a COPY utility or the communication interface procedure of a given

system,

3) The choice of a processor to perform encryption should be based on the

particular application at hand; as seen in Model II figures, raw computing

power does not imply significant cost effectiveness. Benchmark data stream,

simulations should be set up and tested on several computers.

4) Standards for coding encipherment simulation and benchmark programs

are needed in order to insure comparability between implementations. It is

suggested that application models be formalized and program schema be agreed

upon.

15

Appendix I

Preliminary Investigation of Lucifer

Lucifer was deemed inappropriate for inclusion in this study for the

following reasons:

1) Its applicability to Model II is questionable because it deals with

blocks of 16 bytes instead of single bytes.

2) Its complexity is an order of magnitude above that of the methods

considered here and furthermore the algorithm is not In the spirit of the other

algorithms considered (i.e. successively more complex methods of key generation).

Thus, in a sense, they are incomparablej Lucifer would have been a somewhat ad

hoc addition to the experimental design.

3) The cost effectiveness of software implementation of Lucifer is

questionable.

However I have performed a preliminary analysis of Lucifer's performance

and cost, and the results are given here. First, existing results are considered.

3enedict wrote an assembly language implementation of Lucifer for the

Honeywell 6180 (Ben). He achieved an enciphering rate of only 2910 by/s for a

byte enciphering time of 344/ts. Since the Multics (block) communication interface

program required only 100/& to process a character, he concluded that serious

degradation in performance would occur if Lucifer were used on most terminal

communication. Generalizing this result adds weight to the inapplicability of

a software Lucifer system to general terminal communication. Estimating the CPU

time charge for the 6180 at $5.00/CPU minute, encryption of 1000 cards would

cost about $2.30 and support of a 300 baud line for 1 hour would cost $3.10.

These figures are significantly higher than those for the methods considered in

the text. However, tradeoffs of degree of protection vs. cost must be considered.

A preliminary program has been written for the CDC 6400 and manufacturer's

16

timing figures indicate an attainable enciphering rate of 8000 by/s or 125/us/by.

This gives costs at least 20 times greater than those for the random key method

used here. Encryption of 1000 cards would cost $1.16 and support of the terminal

as above would cost $1.60. These figures are given credence by the estimate

that the CDC 6400 is about two to three times as fast as the Honeywell 6180.

The above figures should be compared with those determined for a hardware

Lucifer system. A rate of 96,970 by/s or 10.3ty*s/by was achieved. No estimates

of cost effectiveness were available.

17

Appendix II

Comparison of Results with those of Friedman &Hoffman

The following table compares the results given in (Fri) with results
determined here for the CDC 6400 Model I programs.

(***) Present study
Nul1 <K76 5M
Short 4#78 ^

Long 8.25 •8.32

Random 20.05 46.88

Time to Encrypt 7.5 byte word (us)

Differences in the first three algorithms can be accounted for by single
instruction differences in the loop which processes a word.

The large differences in the random key algorithm is due to the calling
rather than in-line invocation of the random number generator. Only

descriptions (no listings) of random number generators could be obtained for
the PDP-10 and PDP-11. It had been decided that existing generators should
be used because their correctness could be reasonably assumed. The common ...

denominator implied by these two constraints Was that the system routines be

called rather than modified and placed ift-line. Functional similarity of
routines was assured by close examination of their specifications.

It remains to account for the timing differences explicitly. Timing for
subroutine call and return for the CDC 6400 is as follows:

call subroutine 2.1/<s
jump to return instruction U3/IS
jump back to calling routine 1.3iis

TOTAL kt?JUs

The random number routine must check its argument to determine which of
several functions it is to perform. This requires:

18

load parameter to X register 1.2^s
jump if non-zero (fails) ,5#s
non-overlapped instruction fetch .2^s
penalty for jump in slot two ' .^as
of instruction word

TOTAL 2.0/ts

GRAND TOTAL 6.7/tS

All the above must be done twice for a total of 13«^ms. However, we still

have to account for 13.43/^s/word or 6.72/(s per call of the generator. This

time comes from the required loading and storing of registers to avoid

conflicts with the generator. However a few microseconds are left unaccounted

for,

It is suggested that the standard program schema mentioned in the

recommendations (p. 15) use in-line invocation of the generator.

19

7• •References

(Hof) Hoffmanr L. J. Class Notes for Computer Science 244. University
of California, Berkeley. Fall 1974.

These notes were used in a graduate level course in computer
security engineering. They include consideration of hardware and
software safeguards, operating systems, physical and administrative
security, and models of secure systems. They include broad
coverage of encryption.

(Fri) Friedman, T. D. and Hoffman, L. J. Execution Time Requirements
for Encipherment Programs. Communications of the ACM. Vol. 17,
No. 8 (August 1974) pp. 445-449.

This paper reports a study similar to the work done here. A null
enciphering method and three additive methods were timed on the
CDC 6400, The enciphering time coefficient was introduced.

(Pet) Peterson, H. E, and Turn, R. System Implications of Information
Privacy. Proc. AFIPS I967 3JCC. Vol. 30, AFIPS Press, Montvale,
N. J., pp. 291-300.

The paper lists many threats to information privacy and
categorizes counter-measures into the areas of access management,
processing restrictions, threat monitoring, and privacy
transformations. It provides a good cross tabulation of threats
and countermeasures,

(Ska) Skatrud, R, 0. A Consideration of the Application of Cryptographic
Techniques to Data Processing. Proc. AFIPS I969 FJCC, Vol. 35,
AFIPS Press, Montvale, N. J., pp. 111-117.

In this paper, two cryptographic techniques are described. The
first is a substitution system using an additive method with two
key memories and the second is a route transposition system.
Consideration is given to the security of the methods.

(3ar) 3aran, P, On Distributed Communications: IX. Security, Secrecy,
and Tamper-Free Considerations. The Rand Corporation, Memorandum
RM-3765-PR, August 1964.

This paper states Baran*s principle regarding secrecy about
secrecy. It presents some basics of cryptography, describes a
real world application to a distributed message communication
system, and provides a critical examination of this system.

20

(Fei) Feistel, H. Cryptography and Computer Privacy. Scientific
American. Vol. 228, No. 5 (May 1973). pp. 15-23.

The paper- describes recent work done at IBM on nonlinear block
ciphers (the Lucifer system). It provides a lucid description
of the problems involved in producing a ciphering method which
is highly resistant to cryptanalysis.

(Kah) Kahn, D. The Codebreakers. (Macmillan, I967)

This book provides an extensive and fascinating account of the
techniques and history of cryptography from ancient times to the
end of World War II.

(Car) Carrol, J. M. and McLelland, P. M. Fast "Infinite-Key" privacy
Transformations for Resource-Sharing Systems. AFIPS 1970 FJCC,
Vol. 37, AFIPS Press, Montvale, N. J. pp. 223-230.

This paper describes privacy threats and countermeasures. It
discusses a two-stage random number generator and an implementation
of the associated privacy transformation. It also gives an
analysis of the goodness of the generator and gives timing figures
for an encryption using the generator on a PDP-10/50.

(Ben) Benedict, G. G. An Enciphering Module for Multics. MAC Technical
Memorandum 50. Massachusetts Institute of Technology, Computer
Systems Research Division, Project MAC.

This memo describes both a PL/l and an assembly language
implementation of the Lucifer system on the Multics System.
Complete program listings are provided and results of timing
experiments are summarized.

(CDC) Control Data 6400/6500/6600 Computer Systems Reference Manual.
Pub, No. 601000004 Control Data Corporation.(I969).

(P10) PDP10 Reference Handbook. Digital Equipment Corporation (1970).

(Pll) PDP-11/45 Processor Handbook. Digital Equipment Corporation (1973).

These three manuals contain all the information needed to program
the particular computer in machine language. In addition, each
gives complete Instruction timing information.

(Unx) UNIX Handbook. University of California, Berkeley. Department of
Electrical Engineering and Computer Sciences.

This manaul contains reprints of several manuals written at Bell
Laboratories which describe the operation of the UNIX timesharing
system for the PDP-ll/45.

21

(Cos) Cost estimates for CPU time.

These are my own estimates of CPU time charges. The CDC 6480
figure is that actually charged for a particular grade of
service at the University of California, Berkeley Computer
Center. The PDP-10 figure was obtained in a private communication
at the Lawrence Livermore Laboratory. The PDP-11 figure has been
widely circulated in the literature of small timesharing companies.

22

	Copyright notice 1975
	ERL-493

