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NONLINEAR DIAKOPTICS

$
L. 0. Chua and L. K. Chen

ABSTRACT

The concept of diakoptic analysis is derived rigorously using only
elementary circuit-theoretic ideas. It is shown that all the published
versions of diakoptic analysis — including the dual concept of codiakoptic

analysis and the generalized concept of multi-stage diakoptic analysis —

are no more than special cases of a much simpler, yet more general, method

called generalized hybrid analysis to be derived in this paper. This

identification of diakoptic analysis with generalized hybrid analysis allows

a direct generalization to the analysis of large-scale nonlinear resistive

network by tearing the network into several small subnetworks and then
analyzing each subnetwork separately. Since the subnetworks are uncoupled,
this method of analysis is particularly suited for parallel computation
where several small computers are used concurrently instead of one much

larger computer.
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The authors are with the Department of Electrical Engineering and
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1. Introduction

The concept of diakoptic analysis was originally conceived by Kron
more than two decades ago [1]. The Significance of this concept, however,
has not been widely appreciated mainly because Kron's original writings
[1 - 3] were vague and extremely Qifficult to understand.1 Branin [4],
Baty [5], Brameller [6] and Happ [7,8]2 were among the few who appreciated
Kron's work and attempted to clarify the concept. Others, such as Roth [9],
Amari [10] and Wang [11] had responded to Kron's apﬁeal [2] and attempted
to derive diakoptic analysis rigorously using concepts from algebraic
topology. In spite of all these efforts, however, the exact domain of
applicability of diakoptic analysis remains unknown.3 Indeed, since almost
all published works [1 - 14] on diakoptic analysis had been exclusively
addressed to linear networks, it is not even clear whether the concept is
applicable to nonlinear networks. Our objectives in this paper are twofold.

First, we will derive diakoptic analysis via a very simple circuit-theoretic

approach and show rigorously that it is no more than a special case of the
generalized hybrid analysis4 to be derived in Section 4. In fact, we will

show in the Appendix that all pubiished variants of diakoptic analysis —

1Even Kron himself implied that many of his results are intuitive and
appealed to mathematicians for rigorous justifications [2].

2These references are listed in chronological order. However, many of Happ's
earlier works actually predate the reference cited here.

3A simple derivation of a modified form of diakoptic analysis using only
concepts from linear algebra was given recently by Wu in a seminar at
Berkeley. An earlier version of Wu's derivation will appear in [12]. Our
derivation is based on the familiar concept of equivalent circuits in
contrast to Wu's derivation which is based strictly on linear algebraic
manipulations.

4Any method of analyzing resistive networks which involves solving a
system of linear or nonlinear algebraic equations involving both voltage
and current variables will be referred to in this paper as hybrid analysis.
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including the dual "codiakoptic analysis" and the generalized "multi-stage
diakoptic analysis" proposed by Onodera [13,14], as well as the more recent
"modified nodal method" by Ho, Ruehli and Brennen [15], and the "linear
algebraic elimination method" by Wu [12] — are also special céses of the
generalized hybrid analysis.

Having established the generality and simplicity of the generalized
hybrid analysis in Section 4, our second objective is to generalize
diakoptic analysis to large-scale nonlinear resistive networks in Section 5.
Not only is diakoptic analysis directly applicable to nonlinear resistive
networks, but it is also possible to formulate the problem in such a way
that each stage of the Newton-Raphson iteration is equivalent to that of
solving a linearized resistive network by hybrid analysis. In other words,

each nonlinear resistor camn be linearized at the branch level, thereby

obviating the expensive process of numerically evaluating the Jacobian
matrix associated with the Newton-Raphson method.

In order to motivate the concept of an "open loop" and its "associated
generator" to be introduced in Section 2, it is perhaps instructive to give
first a somewhat intuitive explanation of what diakdptic analysis entails.
The clues to finding the "domain of applicability" as well as for uncovering
the many "subtle" points that needed justification will surface from this
brief introduction.

Let N be a network containing two-terminal elements and let NO be

a subset of branches of N —— henceforth called the torn branches —— whose

removal will separate N into "m'" separable subnetworks5 Nl’NZ""’Nm as

SA graph is separable if it is disconnected or hinged [16]. Although
the following derivation of diakoptic analysis is illustrated with dis-
connected subnetworks, our results are valid also for hinged subnetworks.




shown in Fig. 1(a). Observe that those "conmection branches" NO—k C No

which share a common node with subnetwork Nk (e.g., in Fig. 1(a),

= 4 6 .
Ny-p = b)), bZ(Nl)"'°’bnl(Nl)} ) must necessarily form a cutset.
Suppose for the moment that the current solution waveform of each

connection branch is given a priori7, then we can apply the current source

substitution theorem [17] and replace each connection branch by a current

source whose terminal current is prescribed to be identical to its solution
waveform, as shown in Fig. 1(b), without affecting the original solution of
the remaining branches. Since the connection branches in NO—k are all
current sources, the network in Fig. 1(b) can be transformed into the
"hinged" network shown in Fig. 1(c) without affecting the original solutions.
Since each group No_k of substituted current sources form a cutset, one
source isvclearly redundant and may be replaced by a short circuit.8 The
"separated" network shown in Fig. 1(d) remains equivalent to the original
network N in the sense that the solution waveforms of corresponding branches
are identical. Hence the solution of N can be found by solVing the component
subnetworks separately —- provided that each current source waveform Ij(Nk)
is given a priori. Unfortunately, this hypothetical situation seldom occurs
in practice and the waveforms characterizing each sﬁbstituted current source
must be treated as a variable for the time being. The basic concept of

diakoptic analysis is to transform each subnetwork N, into an equivalent

k

6bi(N1) denotes the branch bj in subnetwork Nj. Similar notations will be
used in the sequel.

7We assume throughout this paper that the network under consideration has
a unique solution for all time t.

8Observe that each separated node n(:)and its associated internal node

nt:>coa1esced into a single node in Fig. 1(d).
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acyclic subnetwork9 Nk containing the original set of nodes while
preserving the identit;qof the substituted current sources. This may be
achieved (in section 3) by removing all links with respect to some tree
inside Nk while replacing the tree branches with "coupled branches" (see
Fig. l(e)).10 Since, except for the deleted branches, the topology
remains unchanged, we will prove that the earlier transformation steps in

going from Fig. 1(a) to Fig. 1(d) can be reversed. Eventually, an equivalent

interconnected network Neq (Fig. 1(f)) can be obtained upon replacing the

substituted current sources by their original branches. Since each equivalent

subnetwork Nk contains no loops, the equivalent interconnected network Neq

eq
is a greatly simplified network which can be analyzed efficiently by

conventional loop analysis.11 A rigorous derivation of diakoptic analysis
based on the above equivalent network transformation technique will be

presented in Section 3.

2. Concept of an Open Loop and its Associated Generator

Let () be a directed graph with "n" nodes and "b" branches, and let
» Y ) .
GJ be a tree of (} and sl its associated cotree (i.e., complement of the
C}” Ef . s
tree). Elements of 7) and ~ will henceforth be called twigs and links,
respectively. For reasons that will be obvious soon, we will augment g}
with (n-1) external branches which also form a tree ?J;, henceforth called

a generator tree, of (]. For example, consider the graph §3 shown in

Fig. 2(a) withn =4 and b = 6. Let 5J = {4,5,6) and f = {1,2,3} be a

9A graph is acyclic if it contains no loops.

1OThis will be referred to in Section 3 as the fundamental-tree case.

|| . . . . .
Terminologies not defined in this paper can be found in [16] or [18].



prescribed tree and cotree. We can augment g] with several distinct

generatbr trees having n-1 = 3 external branches. For example, we can

pick the augmented tree Qj; = {4',5',6"} (dotted branches) shown in 3
Fig. 2(b).’ Observe that this particular augmented tree forms a node-to-

datum "star-tree" structure and will henceforth be referred to as the

node—to-datum generator tree. Another tree that we will often encounter

in the sequel is obtained by adding an oppositely directed branch in
parallel with each twig of the given tree‘ET as shown in Fig. 2(e¢). This
particular choice of ?j; will henceforth be referred to as the fundamental

generator tree. For complete generality, however, we will allow the

augmented tree Cjé to be arbitrarily chosen, such as the dotted branches
shown in Fig. 2(d).

Using the above notation, we can now define an open loop of g} with
respect to any generator tree ?j; to be any set of branches of (] which

form a closed loop with a branch, henceforth called the associated open

loop generator, of ?]é.lz For example, the seté of branches {1,3}, {3,4,5},

{5,6}, {2} all form closed loop with augmented branch 4' of the node-to-

datum generator tree in Fig. 2(b). They are, therefore, open loops induced

by the same generator 4'. Out of the many possible open loops induced by 3

the same generator, we will often choose the unique open loop consisting

-

exclusively of twigs (of the prescribed tree’r]5 and call it a fundamental
open loop. Hence, {5,6}, {4,6} and {6} are the three fundamental open loops

induced by the open loop generators 4', 5' and 6', respectively, in Fig. 2(b).

12An open loop is referred to elsewhere [1 - 9] as an open path with no
mention whatsoever of its associated generator. We introduce the idea
of an open loop and its associated generator in order that the concept
of codiakoptics may be derived in a dual manner as shown in Appendix C.




Similarly, {4}, {5} and {6} are the fundamental open loops induced by
the open loop generators 4', 5' and 6', respectively, in Fig. 2(e¢). From

now on, we will assign a positive orientation to each open loop to be that

induced by its generator. The orientation and branches of an open loop
can be precisely represented by a 1xb row vector pP- For example, several
open loops induced by the node-to-datum generator tree branches in Fig. 2(b)
are represented by: |
branches in original graph Q}
1 2 3 4 5 6

fundamental open loop

induced by 4' =(0 0 0 0 1 -1) & Py
fundamental open loop

induced by 5' = (0 0 0 1 0 -1) a Ps:
fundamental open loop

induced by 6' =(0 0 0 0 0 -1) A Pg 1
open loop induced by 4' = ( 0 0 -1 -1 1 0) 4 ﬁ4,
open loop induced by 5' = (1 1 0 0 0) A @5,
open loop induced by 6' = (1 1 o -1 0 0) A 56'

It is important to observe that the elements of the 1xb open loop row vector

belong exclusively to the original graph (J. Observe also that the set of

h)
all open loops of (3 does not form a vector space. In fact, the difference
between two open loops does not necessarily give rise to another open loop,

e.g.,
p4,-f>4,=(0 0 1 1 0 -1)Az

where 24 1s actually a closed loop! This observation turns out to be a
basic property of open loops as shown by the following lemma.

Lemma 1 The difference between any two distinct open loop vectors induced

by the same generator is always a closed loop.




Proof: Let p_ and Py be any two distinct open loops of (3 induced by the

~a

same augmented generator g. Define an augmented graph {] A (} U {g} and

three 1x(b+l) augmented vectors as follows:

branches in (3 augmented branch g N
Py A Pa ’ - 0 )
oAy 1 0 )
g A& ( 0 , 1 )

By the definition of an open loop, ;; A ;; + E and z. A Sg +'§ are both’
closed loops. The observation that the difference between two distinct

closed loops is another closed loop yields

z, -2, =, +8) - (py+8 =p, -p A

-~

' N

where z is a closed loop in Q]. Let z be the 1xb row vector containing the
first b components of z, then since z does not contain the augmented branch

g, 2z 1is a closed loop of the original graph (3. Hence, we have

Pg TP T2
where z is a closed loop of (]. u
It follows from Lemma 1 that an arbitrary collection of.open loop
vectors need not be linearly independent. The following important lemma &
shows us how to construct a maximal set of linearly independent open loop

vectors. ‘

Lemma 2. Let (} be a connected graph with "n" nodes and "b" branches and

let ?]' be any augmented generator tree. Then any collection of (n-1l) open
8

loops induced by the (n-1) distinct open loop generators in gj; are linearly

independent.

Proof: See Appendix A.
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In view of Lemma 2, it makes sense to define a full-ranked (n-1)xb

matrix T, henceforth called the open loop matrix, where each element %ij

is defined as follows:

~

13 1, if open loop 1 contains branch j and has the same

orientation as branch j;

-1, if open loop i contains branch j but has opposite
orientation as branch j;

0, if open loop i.does not contain branch j.

~

Observe that the number of columns in T is equal to the number of branches
of g}. In the special case where all open loops are chosen to be fundamental

open loops, the associated matrix will be called the fundamental open loop

matrix and denoted by T, without the "hat". An important property of the

fundamental open loop matrix T is given by:

Lemma 3. 1If the columns of the fundamental open loop matrix T are ordered

such that the links appear before the twigs, i.e., T = [?EB Tclj, where ?Ef

)
denotes the first (b-n+l) columns representing links in il and TCj'denotes

the remaining (n-1)  columns representing twigs in ¢]: then Egg = QEQ and

TC]‘is an (n-1)x(n-1) nonsingular matrix.

Proof: By definition, the branches in a fundamental open loop consists )
exclusively of twigs in ?}1 hence, ?Ef = QSQ’ Moreover, it follows from
Lemma 2 that the (n-1) fundamental oéen loops are linearly independent,
hence, 'gg is nonsingular. =
The significance of the open loop matrix ? is summarized by the

following main result of this section:

Theorem 1. Let (} be a connected graph with '"n" nodes and "b" branches




and let %]; denote an augmented generator tree. Then there exists a

1

unique coboundary matrix 3 §, henceforth called the associated coboundary

matrix, such that

t

LD
14 b

= }QT (1)

where i is any open loop matrix induced by the (n-1) distinct open loop

generators in %J;

Proof: Let %j’be‘ggz tree of the given graph {3. From Lemma 1, the
difference between an arbitrary open loop éj and a fundamental open loop

Ej is a loop Ej’ provided that both éj and Ej are induced by the same
generator. Let i be an arbitrary open loop matrix induced by QJ; and let

T be the fundamental open loop matrix induced by %J;. Since each row vector
of ? -T defines a loop, we can always decompose an arbitrary open loop

14

matrix T as the sum of a fundamental open. loop matrix T and some loop matrix

'§; nanely,

@

3>

=':]':'+

1|

It follows from Eq. (2) and Tellegen's theorem [16] that, if § is any co-

boundary matrix, then

t (3)

O
>
]
O
tH3
+
1O
ix-]]
]
1O
tH

13, coboundary (resp., cycle) matrix Q (resp., B) is a generalized cutset
(resp., loop) matrix whose rows repreéent linear combinations of fundamental
cutsets (resp., loops) [18]. Hence, any coboundary (resp., cycle) matrix

Q (resp., g) may be decomposed into Q = gQg (resp., B = PgB) where

Q(resp., B) is a fundamental cutset (resp., loop) matrix and Pq (resp., Pp)
is some nonsingular transformation matrix.

14Note that the row vectors of the (n-1)xb matrix B is, in general, linearly
dependent.

-10-
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From Lemma 3, T is given by

T = [0cp T~ (4)
2 - ¥ ,
where ch'is an (n-1)x(n-1) nonsingular matrix. If we choose Q = P Q,

where Q = [Q }:}1 is the fundamental cutset matrix and
t -1
P A (T~ 5
0 ’“(*GJ) (5)
then it follows from Egs. (3) - (5) that

A At
Q

=3

t t -1 | t -1t
=P, QT = (T Q.o 1~ = (T T~ =1
im0y Raigl| [ Py

Hence, the coboundary matrix

G-ry0 8 @pT o (6)
satisfies the property of Theorem 1. It remains to prove that the co-
boundary matrix Q is uniquely defined (i.e., it is independent of the
choice of the tree ?]'chosen in Eq. (6)). Suppose we choose another tree

%T" and obtain a different coboundary matrix @' such that

t

]

O
>

= }gT (7
By definition, any row of a coboundary matrix can be expressed as a linear

combination of the rows of the fundamental cutset matrix Q with respect to

the tree ?). Hence, there exists a nonsingular matrix ?é such that

@' = ?é Q. Equations (2), (4) and (7) imply that
Tgfl,
Qv.i,t = éth = P! l‘Q ) lf“'] = P! T£~~= 1~ (8)
AT AT =R 19 1y Py Ty = 1y

therefore, we have

By = (I - g (9



Hence Q' = Q and the associated coboundary matrix is unique and depends
only on the augmented generator tree ‘ETg. [ |
The following corollary gives us the algorithm15 for constructing

the unique coboundary matrix associated with a prescribed augmented

generator tree ca;:

Corollary. Algorithm for constructing 0.

Let E} be a connected graph with '"n" nodes and "b" branches and let

49

be an augmented generator tree of €3. Then the unique coboundary matrix

6 assoclated with ?J; can be constructed as follows:

x

Step 1. Choose any tree gj’of 53.

Step 2. Construct the (n-1)x b fundamental open loop matrix T = [ng ?QJJ
induced by ?fg.

Step 3. Construct the (n-1)xb fundamental cutset matrix Q of {3 with
respect to U.

Step 4. Obtain § from

A t -1
Q= (Tcp = Q . , (6)
3. Derivation of Diakoptic Analysis

We are now ready to return to the separated subnetworks NO’NI’NZ"'
"”Nm in Fig. 1(d) and ﬁick up the pieces. It suffices to consider the

first subnetwork N. since the same derivations apply to the remaining

1
subnetworks NZ’NB""’Nm'

Recall that the branch connecting node n<:)and node n&:>is a short

circuit; hence nodes n(:>and nt:>can be coalesced into a single node as

lsln the literature [1,2,3,7,8], the associated coboundary matrix is found

T
by inverting a nonsingular matrix Q Q:IA], where B is some cycle matrix.
B

b e et

-12-
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shown in Fig. 3(a). 1In other words, the external current sources do not
generate any new node in subnetwork Nl' If Qe let "n" and "b" denote
respectively the number of nodes and branches inside Nl (i.e., not counting
the external current sources), then it follows from Fig. 3(a) that the
number of external current sources associated with N1 is less than or equal
to (n-l).16 There is no loss of generality, however, to assume that there
are exactly (n-1) linearly independent external current sources associated
with N1 since we can always introduce additional "zero-valued" current
sources, if necessary, without affecting the original solutions of N1 as
shown in Figs. 3(b) or 3(c). Observe that since these (n-1) external current
sources are linearly independent (i.e., they can be individually specified
without violating KCL) and since N1 is a connected network with "n" nodes,

these (n-1) external current sources must necessarily form a tree of Nl.

Our first step in deriving diakoptic analysis is to choose this tree to be

the augmented generator tree ﬁj; introduced in the preceding section. If a
zero-valued current source is introduced between each of the remaining nodes
and the datum node (Fig. 3(b)); the resulting generator tree assumes a
star-tree structure and corresponds, therefore, to the node-to-datum case
(Fig. 2(b)). For complete generality, we will allow the set of (n-1)

external current sources to assume any configuration (such as that shown

in Fig. 3(c)) so long as they form a tree of Nl.

Our next step in the derivation of diakoptic analysis is to apply the

i-shift theorem [17] and shift each of the (n-1) external current sources

around any open loop induced by the current source acting as the associated

6 .. . .

We assumed here that each node is associated with at most one external
current source. When this is not the case, we can always combine the current
sources into the same node as one single current source.

-13-



open loop generator. After this is done, the original set of external

current sources became open circuits. Each of the shifted current sources

is now in parallel with an internal branch of Nl, which we assume to be a

composite branch as shown in Fig. 4(a). Observe that an external current

source is will be shifted in parallel with an internal composite branch

3
k whenever the open loop induced by is contains branch k (Fig. 4(b)).

Hence, after all external current souries have been shifted, each composite
branch k may have up to (n-1l) external current sources connected in
parallel (Fig. 4(c)).17 The next step of our derivation will be to combine
all those shifted current sources in parallel with the composite branch k
by an equivalent external source ji (Fig. 4(d)). ﬁe will show that the
properties of the open loop matrix presented in the preceding section can
be used to implement the above sequence of external source transformations
in an algebraic form which automatically "monitors" the direction of each
shifted current source. However, before we do this, let us pause to
consider a specific example in order that the reader may form a concrete
picture of the ensuing development.

Consider the network graph N shown in Fig. 5(a), where each branch
is assumed to represent a composite branch (Fig. 4(a)). Let the set {5,6}
denote the torﬁ branches NO whose removal results in the two separated
subnetworks N, = {1,2,3,4} and N, = {7,8,9,10}. Replacing each branch in

1

No by its equivalent current source (Fig. 5(b)), we obtain the equivalent

hinged network shown in Fig. 5(c). This network can be separated into the

two equivalent subnetworks Nl and N2 shown in Fig. 5(d). Since each pair

17It must be emphasized that although the current sources in Fig. 3(c) are
shown all pointed in the same direction, this need not be the case in
general.

14—
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of current sources férm a cutset, the current source IG(t) = —Is(t) can be

replaced by a short circuit, thereby coalescing nodes n,~ with n'- in N
"™ @™ M

. [} . .

and nw1th n1n N2 (Figs. 5(e) and (f), resp.). Let us now focus our

attention on subnetwork N1 which has n=4 nodes and b=4 branches. Since

we have only one external current source is = 15 but n-1 = 3, we will

1

introduce two additional "zero-valued" current sources is = 0 and is

2 3

1° For this

]

0
'so that the three sources form an augmented tree ;]; of N
example, let us choose to connect these sources in a node-to-datum star-
tree structure as shown in Tig. 5(g) (a similar augmentation on N2 will

give the star-tree structure shown in Fig. 5(h)). Our next step is to apply
the i-shift theorem and shift each external current source in parallel

with the internal branches of Nl in order that it may be combined with the
composite branches. We can achieve this goal by shifting each external
source is. around any open loop induced by is.' For example, we can Shiftisi
around open loop {1,2,3}, isz around open loog {1,3,4} and is3 around open
loop {3,4} (Fig. 5(i)). Two or more shifted sources which are in parallel

with each other can be combined as one source j!, ji, i) and j] (Fig. 5(3)).
1° 72 3 4

Notice that the objective of this transformation is to get rid of the source

is which is not across a branch of N1 (Fig. 5(g)). The choice of the open
3

loops in Fig. 5(i) was, thereforé, unnecessarily complicated and was done

only for the sake of generality. We could have accomplished the same
objective by choosing a simpler set of open loops. For example, we could
shift isl around open loop {4}, iSz around open loop {2} and is3 around open
loop {1,2} (Figs. 5(k) and 5(1)). Clearly, there are in general many

different open loops that can be chosen. However, one surprising result

that will be proved shortly with the help of Theorem 1 is that one choice

-15-



of open loops is as good as another in so far as the subsequent analysis

is concerned..

If we combine each equivalent shifted current source ji (Fig. 5(1))
with the original composite branch, we would obtain the modified subnet- ®

work Ni as shown in Fig. 5(m), where each branch in Ni represents an

' augmented composite branch (Fig. 4(d)). In other words, after going through

all these transformations, we end up with a subnetwork Ni which is identical

to the original subnetwork N. except for an augmented current source jL

1

in parallel with each of the original composite branches.
Returning now to the general case of the modified subnetwork N,
let us state a lemma which relate the "combined shifted" current source

vector j' A [ji, jé,...,jé]t with the "unshifted" current source vector

: t
i é [i ] i 90 .1 ] 2
8 Sl 82 _Sn"].

Lemma 4. Let ? be any open loop matrix induced by the (n-1) external current

sources acting as the open loop generators and let j' denote the "combined

shifted" current source vector, then

3>

P T t '
k| i (10)

Proof: Follows immediately from i-shift theorem and the definition of
an open loop. a
Our next step in the derivation of diakoptic analysis is to carry

out a coboundary analysis (i.e., a generalized cutset analysis) [18] of

the modified subnetwork Ni. Using the notation associated with the

augmented composite branch shown in Fig. 4(d), the KCL equation becomes

QI'=QI-Q3"=0 1)

-16-
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\ O |
where I1 I1 iy
1 T )
L ) 33
I' A . ,» LA . , and j' A | . (12)
1’ I N
| b | ° | °
and 6 is any coboundary matrix. But
I=1-3=0CGr-3=06V+Ge-j (13)
her i i i [ 5] B \Y ] B ]
wnere 1 N 1 €1
1 P V2 )
ia . > J AL . » VAL - |, ed | . (14)
1y Ip Yy ebJ

and G is the bxb branch conductance matrix of Ni. The composite voltage

vector V can, in turn, be expressed via the following coboundary trans-
formation18 [18]:

t

v=207 (s)

O

where ? is an (n-1)x1 vector, called the generalized voltage coordinate

vector.19 Substitute Egs. (10), (13) and (15) into Eq. (11) and we get

QEQHV +QGe - ) - Q@ H 1 =0 (16)

Now suppose we choose Q to be the unique coboundary matrix associated with

the augmented generator tree gj; made up of the (n-1) unshifted external

8 s . . . .
This is a generalized form of "node transformation' and is equivalent
to KVI. equations.

19, . . . . .
lhe precise interpretation of the generalized voltage coordinate vector
will be given shortly in Lemma 5.

-17-



current sources, then it follows from Theorem 1 that @ft =1 and Eq. (16)

~

reduces to20
AI\tA ~
QAT + d(Ge - ) -1 =0 (a”)
The generalized voltage coordinate vector ? can now be interpreted as

follows:

Lemma 5. The generalized voltage coordinate vector ? in Eq. (17) is equal

to the negative of the (n-1)x1 voltage vector Ys associated with the (n-1)

external current sources in the augmented generator tree gj;,ZI namely,

= -V (18)
~s

13>

t
where V AV, ,V ,...,V | (19)
~8 s’ '8y | s -1

Proof: It follows from Eqs. (1) and (15) that

T= G =1y, @0
=
Lemma 5 will now provide us with the key to transform the modified
subnetwork Ni into an equivalent "acylic" network Ny q. Observe that
e

Eq. (17) can be recast as follows:

R INCILE RIS A (21)
where Roq 2 @¢dhHt (22)
and §A08G -6 (23)
20

The remarkable thing about Eq. (17) is that we have managed to recover
the external current source vector }s intact, after all these manipulations!

21We assume the associated reference convention [16] throughout this paper.
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Now suppose we construct an acyclic network Nl by simply adding a

- eq
current source jk (i.e., the kth component of j) and a coupled linear

resistor defined by the kth row of Beq in parallel with each external current

source is of the generator tree c]g (Figs. 6(a) and (b)), then it follows
k.
from Eq. (18) that the network equation describing Nl is precisely given
eq
by Eq. (21)! For example, corresponding to the star-tree generator of

Fig. 5(g) (which is redrawn for convenience in Fig. 6(c)), we construct the

network Nl shown in Fig. 6(d). It follows from the above observation that
eq
the subnetwork N1 in Fig. 5(g) and the acyclic "coupled" subnetwork N
eq
in Fig. 6(d) are equivalent in the sense that they have identical governing

equations. Applying the same transformation procedure to subnetwork N2

(Fig5 5(h)), we obtain the equivalent acyclic network N2 shown in
eq
Fig. 6(e). Now recall thati =1 =0 (Fig. 5(g)) and i =i =0
52 83 ®s5 6
(Fig. 5(h)). Hence, the two equivalent networks N1 and N2 (Figs. 6(d)
eq eq
and (e), resp.) can be redrawn as in Fig. 6(f). We can now reverse the

steps implemented carlier in going from Fig. 5(a) to Figs. 5(e) and (f) and
apply the sequence of equivalent "inverse" transformations shown in Figs.

6(g) and (h) to obtain the equivalent interconnected network Neq shown in

Fig. 6(i). Observe that this equivalent interconnected network Neq contains
ohly one loop. In the general case, the resulting equivalent interconnected
network Neq will contain as many loops as there are in the original torn
network NO (Fig. 1(a)).

Note that the equivalent interconnected network Neq can be characterized

by a "coupled" branch impedance matrix (Eq- (21)). Hence, we can analyze this

network by the classical loop analysis method (or by any convenient cycle

analysis [18]). Tf we let YO denote the composite voltage vector of the torn

-19-



branches No and order these branches first, then the KVL equation for

the equivalent interconnected network Neq is given by

Beq Yeq & 18 Bal| .| = @ 24)

> 6<

where geq is the fundamental loop matrix (with respect to any tree22 of
Neq) of Neq’ §o and ?a are the submatrices corresponding to the partition
of the torn branches and the acyclic coupled branches, respectively, and
23

? denotes the branch voltage vector of the coupled resistors in Neq'

Now, carrying out the usual loop analysis, we write

Vo™ % " %", -%" B ItR il "%
=R BT +R 3§ -e (25)
S0 “0 ~o ' <0 20 -0

where Vo &5 éo and Io are defined as in Fig. 4(d), 50 and io denote the
branch resistance matrix and the link currect vector of No’ respectively.

Substituting Eq. (25) into Eq. (24), we obtain
t. 2 l~=
B, B BT, + BoR, 4, = 2 + B.¥ = 0 (26)

Observe that Eq. (26) is the classical loop analysis equation [16]
of the equivalent interconnected network Neq’ provided ? is given and
considered as sources. The branch voltage vector ?, in turn, must satisfy

the associated coboundary analysis equation (Eq. (17)) derived earlier for

22We assume that any tree of Neq contain all the acyclic coupled branches
as twigs.

23We abuse our notation slightly here since ?, as defined later in Eq. (29),
is actually made up of the collection of vectors defined in Eq. (21) for
the m acyclic subnetworks Nl R N2 ,...,Nm .

eq eq eq

-20-



L

a single subnetwork N..

1

We will once again abuse our notation slightly

by using the same Eq. (17) to denote the associated coboundary analysis

of the

matrix

O

"m" separate subnetworks Nl’NZ""’Nm’ provided the coboundary

Q)

qaiy

Q)

0

0

G(Nl) 0

?

G(N,)

.
.

c(N )

@ and the branch conductance matrix G are defined by:

(28)

where é(Nk) and Q(NP) denote respectively the unique associated coboundary

matrix and the branch conductance matrix of subnetwork N .

Similarly, the

k
vectors e, j, és and Y are defined as follows:
e(N) J) 1 () v(N,)
e(N,) i(N,) i (N,) ) V(N,)
en| T 2 jal T2 igal® 2 anaval| D ? (29)
e(N) |, im) |, i (N) N
L - - - | _ | _

Now, recall that is is the current vector of the torn branches N _
connecting subnetwork N

by the link current vector Io

C such that24

k

to N .
o

~

of N .
o

Hence,

o-k

This current vector is uniquely determined

there exists some matrix

i,=¢Cc1I/ (30)
Substitute Eq. (30) into Eq. (17) and we have
@edHT+a@e - -ci =0 (31)

9
“QActually, the matrices C and B, are related by C = Bg, as will be shown
in the next section.

-21-



Eqs. (31) and (26) can now be combined into a single matrix equation

~ At P A
QGQ ~C v Q (J - Ge)
¢ . = (32)
B BRB I B(e -RJ3)
~a ~0~0~0 ~0 ~ ~0 ~020

The process of formulating and solving Eq. (32) is called diakoptic
analysis by Kron [1 - 3]. The main advantage of this analysis is that
through a judicious choice of the torn network No’ the matrix (§o§°§§) will
have a relatively small dimension. The matrix (Qgﬁt) has a large dimension

-~

but it is in block diagonal form in view of Eq. (28). Hence, the structure

of the "sparse portion" of Eq. (32) assumes the computationally desirable
block diagonal form shown in Fig. 7. So far, our derivation assumes no
coupling among the resistors just for simplicity. It should now be clear

that the entire derivation remains valid so long as couplings are restricted

to among branches within the same subnetwork (as required by the nonzero

structure of G defined in Eq. (28)).

Observe that Eq. (32) is independent of the choice of the open loops
(recall the two choices made in Figs. 5(i) and (k)) for shifting the (n-1)
external current sources. This is because the key idegtity —_— §?t = } —_—
given by Theorgm 1 remains valid for any choice of the open loop matrix i,

8o long as § is chosen to be the unique coboundary matrix defined in Eq. (6).
This coboundary matrix is determined as soon as the augmented "current
source' generator tree qj; is prescribed (see corollary to Theorem 1). 1In
fact, the next two lemmas show that § can be obtained by inspectioﬁ for two
particular choices of ?J;.

Lemma 6. The unique coboundary matrix Q associated with each subnetwork

N, for the node-to-datum case (i.e., when g]; is chosen to be a node-to-

-22-



datum star—tree)vis simply the reduced incidence matrix (relative to the

same datum node) of subnetwork N.. Moreover, the generalized voltage
. N

coordinate vector V is simply equal to the node-to-datum voltage vector Yn'

Proof. Since the current reference direction of each external current
source in the star-tree gj; is assigned leaving the datum node (see Figs.
2(b) and 5(g)), it follows that the (n-1)xl voltage vector YS associated

with the current sources is

v =Y, (33)

where Yn denotes the standard node-to-datum voltage vector of subnetwork

N Substituting Eq. (33) into Eq. (18), we obtain

K

Eq. (15) then becomes

V=20 Yn (34)
Since V is the bxl composite branch voltage vector of Nk’ it is also
given by V = ét Yn [16]. Hence, @ = A. ||

It follows from Lemma 6 that the associated coboundary analysis
(defined by Eq. (31)) for the node-to-datum case is simply the classical

nodal analysis. Since the node admittance matrix AGAt is known to be

~ o~

extremely sparse [18,19], from the computational efficiency point of view,
the augmented current source generator tree for each subnetwork Nk should
be chosen to be a node-to-datum star-tree.

Lemma 7. let T} be any tree of the graph (], of subnetwork Nk and let the
Lemma J et 'J be any 1 Ihe g OF subnetwork N, and ‘et the

LQ<Z! (i.c., cach generator branch is in parallel but oppositely oriented

with a twig in Q] as shown in Fig. 2(c)), then the unique associated
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coboundary matrix Q is simply the fundamental cutset matrix Q with respect

to E]i Moreover, the generalized voltage coordinate vector ? is simply

equal to the twig voltage vector Véjm

Proof. For the fundamental generator tree %};, the fundamental open loop
matrix induced by ;]; is simply T = [QEQ }Gjﬂ' Hence the associated non-
singular submatrix ?gj’is simply the i&entity matrix. It follows from

Eq. (6) that Q = Q and ¥ = Yy u

4. Relationship Between Diakoptic and Hybrid Analysis

Various forms of hybrid analysis have been reported in the literature
[19 - 22]. Our first task in this section is to derive a generalized form
of hybrid analysis which includes all existing forms as special cases.
Following this, we will prove rigorously that diakoptic analysis is also a
special case.

Let (3 be the graph of a linear resistive network N, let %]’denote
some tree of Q} and let &f denote its associated cotree. Partition the

tree‘Er into two arbitrary sets gj; and %]; such that gj:= QJ; L,%];.ZS

Let %21 denote any subset of the cotree 22 which forms loops exclusively

with branches in gj: and let ggz denote the remaining branches such that

SQ = &fl L’Efz. If we relabel the branches in the order 221’ 222, %}l

and 95 then the fundamental loop matrix B and the fundamental cutset

matrix Q with resbect to %joare given respectively by26

25The subsets %J; and Q]; need not be connected and each component there-

fore represents a forest of (3.

26The relation §gt =0 [16] was used in describing Q.
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p o -t
1 ”12 le ’JZ

B
351)1':{’1 9(1‘)1&92 ]}’C’qul 9&,(31?]’2

0c 1c Bcp o Bep
129-21 &fzggz ”ﬂqu ~4»2/‘72
[_Bt t
-Bcrp -B 1 0 »
-Shh ~9fqu 'qlql ~’,3)’1,CJZ
Q= (36)

oE,q» -B.:l)q 0oy ooy
T~y 72 T~y Jy ~'2,':]1 ~¢]2’.~]2J

where }XX and QXY denote respectively the unit and zero matrix of dimension

|X|X|X| and |X|X|Y|.27 Similarly, B, and QXY denote respectively some

~XY
submatrix of B and 0 of dimension |X “ Y|. Tt is important to observe
that the upper right-hand corncer submatrix of B is equal to 0, ¢ —~¢ because,

172
) .
by construction, branches in Eil form loops only with branches ?]1.

Using the composite branch notation shown in Fig. 4(a), KVL and KCL

equations assume the following form:
Vep + Be V~- =0 37
~§~‘31 “L’—‘qul ”91 ~Si)1 7
V-p + B- vV, + B N = 0. (38)
~—‘i)z ”33291 “ql ~g£2‘Cj2 qz “592

t t
“Bipe~ Icp =Bipme Icp + I~ = (39)
~&Plrjl Nk‘a ~K)erl ~§£2 ~;J1 y

|
o
=t
8

t
-B  Icp + I~y = O~ (40)
~kV2@]2 NKsZ ~§12 ~¢]2

7We use the notation |X| to denote the number of elements in the set X.
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h v V vV V d {1 Icp,I I d h i
where {~%Q1,~S£2,~9;.,~q2}an {~%e1,~%e2,~81,~%} enote the composite

voltage and current vectors of the branches in Sfl, <, ;31 and 9

respectively. Let

] [l I3 1T
}S'Ql ~‘C’91 9591%91 g.lq]_ "%91

= 91 A (41)
i v, G G N
L"gl L”ql B 9 T9Dd L:CJ;.
denote the branch conductance matrix of branches in Sfl U %]1 and let
B ] . ] [ . ]
v- i R - R T
“12 ”9-92 "%infz ~£€2'J2 “ig-)z
= BZ A (42)
i R - R
LY‘?]’Z ~(Jz “%392 CJE(JZ :9;
denote the branch resistance matrix of branches in SQ v %I’. Using the
relations Ve = V and ix I + Jx (see Fig. 4(a)), we obtain from
Eqs. (39), (41) and (37) the following equation:
-B
¢ ‘ ~SffETi 9281 2281
-B- 1 G v + - -
l:~>i’.1q1 "qlg]] -1 1 “ql . 3
“hth I *Th
t
B- I =0 (43)
‘iequ ~C~Pz ”CJ1
Eq. (43) can be rewritten in the more compact form
t t
G Vv + G - ) -B I =0 (44)
@69 Yoy * 0 (Ge ~ ) - gy I, T T,
where SEQ é
0 A By Igpcypls ey a| ey a = 4s)
- T~V TJ1Y1 T e ~ j :
- 1
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Since Q1 can be obtained from Q upon deleting all columns corresponding

to branches in sz v gj; and by deleting the last l;j;| rows, it can be

interpreted as the fundamental cutset matrix of the subnetworkgj“l made up

of branches in &fl U ¢]l,with all branches in %QQ U ;j; replaced by open
&

circuits.
Applying the same manipulation to Egs. (40), (42) and (38), we

obtain the dual equation

(B,R.BS) I, + B, (R j, - e.) + B - Ve = 0 (46)
-2-2-2" ~f, T r2t2de T 5 ~9£2’,~']1 - ~>_£2 .

where

B, A[1 B ] gg£5 d JSQZ
8 < an
~2 = *ﬂzﬁz "%elez ’ ’ gCJ" j

J2 "T}z

o>

47

QL

N
i
.

I\
i

Since §2 can be obtained from B upon deleting all columns corresponding
. : _f ‘
to branches in ifl L’gjl and by deleting the first |&11| rows, it can be

interpreted as the fundamental loop matrix of the subnetworkd\]2 made up

) ' - ~
of branches in iiz F{E]Q, with all branches in iﬂl U Fjl replaced by short

circuits.
Eqs. (44) and (46) constitute a system of |§];| + iSle hybrid
equations with |§j;| voltage variables in YC}’ and |292| current variables
71

in IEQ . They may be combined into a single matrix equation
T2

[ ocof e | [ 1 [ h
919191 -ggfszi Y;]l 91(31 - 9191)
= (48)
t
B ) —~ B R B Iop B, (e, - R,j,)
"tizrjl ~2~2~2J ~s 2 ~2°22 ~2=2
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Equation (48) represents one form of hybrid analysis [19,20]. We

will now derive a generalized form of hybrid analysis by defining the

generalized voltage and current vectors

~

Ygi AT, Ygl (49)
Icp AT, Ic (50)
-, 2 -3 =) ‘

where T is any |€31|X|€]1| nonsingular matrix and T, is any |EQZIXI§£2|

nonsingular matrix. Observe that each element of the generalized voltage
vector §§31 is simp;y an algebraic sum of composite twig voltages, and
each element of the generalized current vector }SQZ is simply an algebraic
sum of composite link currents.

Premultiply Eq. (44) by (?5)-1 and Eq. (46) by (T;)-l, and combine

the resulting equations with Eqs. (49) and (50), we obtain

[~ At - £ 1T+ 1 [a ]
G -C \'/ (j, - G,e
%Y : T, 9, - 68y
= (51)
-~ -~ At ~ ~ .
¢ B,R,B, .].:S,.Q ?2(92 - Ry,
| 4L L _
~ t.-1
where 9, = (T ~ 9 é=§Q Q, (52)
8. =(H s apr B (53)
5, = 22 838 2
A t\-1 -1 t
¢ =(¢H s (t) =P B P (54)
- S SR -8 ~)7J; =0

Equation (51) will henceforth be referred to as the generalized hybrid

equation.

Our next objective is to show that the diakoptic analysis derived
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earlier in Eq. (32) is no more than a special case of Eq. (51) with a

particular choice of the two transformation matrices T
~Q
can be shown by first identifying NO = 282 LJ;]; and Nl U N2 u...v N =

k=1,2,...,m, is the

and ?B! This

%fl_u %]i, where N, is the "torn branches" and Nk’
kth separated subnetwork defined in Fig. 1. For simplicity, we will
assume throughout the following proof that m = 1 (i.e., Nl = Sfl U %}1),
since the generalization to the m > 1 case follows trivially - mutatis
mutandis.

Consider first the case of diakoptic analysis where the augmented
current source generator gj; is chosen to be the fundamental tree with
respect to gji Then it follows from Lemma 7 that the unique associated
coboundary matrix Q in Eq. (32) is precisely the fundamental cutset matrix

~

. - Z
91 of subnetwork Nl = ifl U rJl with respect to the tree C];. Hence Q can
be obtained simply from the fundamental cutset matrix Q in Eq. (36) of the
complete network upon deleting those columns corresponding to the branches

in Efz v g]é and by deleting the last |§J;| rows. It follows from Eq. (45)

that‘

A t
= = -B- o 1 (55)
Q=9 = [-E q_)lg e [1]

Now let us return to our earlier derivation of diakoptic analysis and

rewrite Eq. (11) with the help of Eqs. (10) and (1) as

T -9j"=Qr-1 =0 (56)
) , Lep

Substituting Eq. (55) for Q in Eq. (56) and observing that I = 1,
> - I~
-7y

we obtain
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. .
-B - I + I -1 =0 57
- 19"1 "Sfl "ql "8 "ql <7

Comparing Eq. (57) with Eq. (39) and recalling that }S corresponds to the
original set of substituted current sources connecting subnetwork Nl to

No, it follows that the effect accounted for by }s is precisely given by

(1]

= . 58
s ]}5;929’1 Ige2 o

Since N1,= Efl U 1> Ve can examine the terms in Eq. (17) with the

Moreover, it

help of Eq. (45) and identify e = e i= jl and G = 91.
follows from Lemma 7 that ? = !ET . If we substitute Eqs. (55) and (58)
1

along with the preceding identities, we would obtain Eq. (44).
In order to identify Eq. (26) of the equivalent interconnected

network Neq of diakoptic analysis with Eq. (46) of hybrid analysis, we need
to make the following observation. Since Gj; is chosen to be the fundamental
tree in this case, the linear graph associated with Neq is precisely those

branches in J UN_ = J, Un_ = TJ. ud u %J.. Hence the fundamental
) g o 1 o 1 2 2
loop matrix §eq of Neq can be obtained from Eq. (35) upon deleting the first

IEfll columns and the first |§£1| rows, namely,
\ g2 ql Y,
= 59
' i, 0T, 4T *

If we reorder the columns of Beq so that the branches in No = %Qz LJQJ;

are grouped together, we obtain

£, T, Ty P, T, =n, T - ('-Tg

- o e, alel % g oy, ) o0
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where.§ is defined earlier in Eq. (47). Since §eq is also defined earlier

in Eq. (24), we can identify

?0 = ?2 (61)

B =B,y ~p (62)
"ii r]l

~a 2‘-

If we substitute Eqs. (61) and (62) into Eq. (26) and identify BO = 32’
Ig=3y 857 8 and }0 = }Efz, we would obtain Eq. (46). Hence, we have
proved that the above form of diakoptic analysis is indeed a special case
of the generalized hybrid analysis (Eq. (51)) with unit transformation

matrices ?Q = }gj;gj; and ?B = }SiESié.

Let us now prove the general case where the '"augmented-current-source'

generatdr tree ?3; may be arbitrarily chosen. To facilitate the identifi-
cation of Eq. (17) with the first equation of Eq. (51), let us first
substitute Eq. (6) for the unique associated coboundary matrix § into

Eq. (56) and obtain

1 'y, '

t \- t

T -B -1 -i =0 (63)
(~€j) [ "Ei&gjl ~§J}%]i T ~s "§31

where TCj’iS the nonsingular submatrix of the fundamental open loop matrix
(

T. If we premultiply Eq. (39) by (t%jé_l, we obtain

I;gl
B

(57 [, a5 s, ey - 0,

=

Tt follows from Rqs. (63) and (64) that the external current source vector
iS which accounts for the effect of the currents from the branches connecting

Nl to NO is simply given by:
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t -1 _t
= (T
'j'.s (~9¢) ?gqu 'I'EQZ (63)

S

]
o

Since Nl = 291 U 9};, we can identify G = G and j = j1 in

1’
Eq. (17). Substituting Eqs. (6), (65) and the above identities into

Eq. (17), we obtain

(('g%o)‘l 9,) 91((1.%«)‘1 Q)" T+ ((tg?_:ﬁ'l Q) (Ge, - 3p) -

t -1 _t '
T B I =0 66
e XS s A

Observe that Eq. (66) is precisely the first equation of Eq. (51) if we

identify

T =T ‘ 67
o1 (67)

. 4
B~ 1Y | (68)

1>

(69)

Ve AT Ve = TpVmp =
I, A T, " T,

Hence, we have proved that the "diakoptic" Eq. (17) is a special case of
the first equation of the generalized hybrid equation (51). It remains
for us to identify Eq. (31) with the second equation in Eq. (51).

Since the "augmented-current-source" generator tree %]; in this case
may be arbitrarily chosen, the equivalent interconnected network Neq is
given by Neq = QJ; v N, = GJ; b’g£2 U %];. Observe that although %J;
connects all nodes of Nl = ng v Qj“, it need not be a subgraph of Nl .
since some branches of gj; may not be connected in parallel with branches
of N1 (See Fig. 5(g), for example). The fundamental loop matrix of Neq

with respect to the new tree qjé U ?]é is given by
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g, 9, 9

g
§eq ) [}%QZEQZ 59’92808 9&929"2] | (70)

If we reorder the columns of Eeq so that the branches in NO = sz U %];

are grouped together, we obtain

<, T T LHVT vy D

g
W g, g, gl n rgg] oo

where §2 is defined earlier in Eq. (47). Note that geq is earlier defined

in Eq. (24), hence we can identify

By = B, - (72)
B =8B ' 73
B “&[)Z(Jg (73)

Our next step will be to state the following lemma which expresses

B » in t f R ne
‘Efzgjé in terms o ~§82¢]1

Lemma 8. The ISQ IXIQJ'I submatrix B of the fundamental loop matrix
Loms § 2", *9,7,

of Neq = Qj; V) %fz U ?]; with respect to the tree %]; v ?J; is related to

the |S£ZIX[€]1| submatrix of the fundamental loop matrix of Neq = Qj; U

sz v ?J; with respect to the tree %}1 U ?]; by

-1
Bepoy =Bepey T 74)
~H—2(‘3g 27]1 J

Proof. See Appendix B.
I'f we substitute Bqs. (67)-(69) and (72)—(74)'into Eq. (26) and

identify BO = 32, Jg = 22, go = e, and }0 = Iifz’ we would obtain the
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second equation of Eq. (51). Hence, we have proved that any form of
diakoptic equation (Eq. (32)) is indeed a special case of the generalized
diakoptic equation (Eq. (51)) with T. = T~rand T, = 1 . This

1 ~Q ~r;f ~B "%92292
important result can be summarized as follows:

Theorem 2. There exists a one-to-one correspondence that equates any

form of diakoptic analysis (as given by Eq. (32)) involving variables

? and ic_to a special case of generalized hybrid analysis (as given by

Eq. (51)) involving variables ﬁgj’ = QEI)WET and igf = I§£ .
e N N S . ]

Now that we have proved diakoptic analysis is a special case of
generalized hybrid analysis, there is no point pursuing any further the
algorithm derived in the preceding section since hybrid analysis is much
simpler to implement in practice. From the computational efficiency point

of view, we will choose ?3; to be the node-to-datum case so that

"~

=T V = T~V =V 77
R a

T

where @errepresents the "node-to-datum" open loops with branches restricted

to any tree ochUi = %QI'U QJ;, and where V  denotes the "node-to-datum"

voltage vector.

Observe that since Sfl v %J; = N1 L‘Nz U...h’Nm, a datum node must
be assigned to each subnetwork Nk and the vecgor Yn will consist of the
union of the node-tb—datum voltage vectors of the m subnetworks. With this
choice of %]1, the coboundary matrix @1 in Eq. (51) is just the direct sum
of the reduced incidence matrix é(Nl), é(NZ)...,é(Nm) of the individual

subnetworks Nl, N2”"’Nm; namely,

34—
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[ acr)
! 0
. A(N,)
91 = . . é ~A1 (78)
0 A0%),
The corresponding hybrid equation is then given by

t ~t «

519151 -C Ya 51(31 = Giep)
= (79)

- t .
¢ ByRy8, YL [B2(e T Ry

where 91 is defined earlier in Eq. (28). An efficient algorithm for
constructing the matrices él’ §2 and § in Eq. (79) as well as some special
cases [8,12,15], including the tableau implementation, of Eqs. (51) and (79)
are given in Appendix E.

We close this section by pointing out that if, instead of Ef U éjp
we choose NO Af v rj. as the torn branches, and interpret Eq. (46)
before Eq. (44), then the resulting hybrid analysis will be shown in

Appendix C to be the codiakoptic analysis as proposed by Onodera [13].

Moreover, a further generalization by Onodera [14] - the so-called multi-

stage diakoptic analysis - will also be shown in Appendix D to be no more

than another special case of our generalized hybrid analysis.

5. Nonlinear Diakoptic Analysis and Solution Algorithm

So far we have proved rigorously that diakoptic analysis of linear

resistive networks is but a special case of generalized hybrid analysis.

To extend diakoptic analysis to large scale nonlinear resistive networks,

it suffices to formulate an efficient algorithm for implementing a
generalized hybrid analysis of nonlinear resistive networks.
Let N denote a nonlinear resistive network and let g} be its associated

graph, where each branch of (3 represents a ''composite branch" as shown
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in Fig. 8(a). Partition the branches of g} into two subgraphs gjvc and
| g}cc, where gzvc denotes all branches that are voltage-controlled (Fig.

8(b)) and gzcc denotes all branches that are current-controlled (Fig. 8
(c)).28 LetGJabe a tree — henceforth called a hybrid tree — of g} chosen
in such a way that it contains as many gzvc (i.e., voltage-controlled)
branches as possible. Denote the gjvc branches in g]’by %jl, and the

remaining gzvc branches, which must necessarily form loops with branches

in %]’

1

necessarily be current-controlled branches and therefore belong to g}

s by %fl. Branches of (3 which are not already in gfl'U %j; must

cc’
Denote the gjcc branches in gj)by cj'

2
29 of the "hybrid tree" %]: the fundamental

and the remaining g}cc branches by
%£2° For this particular choice
loop matrix B and the fundamental cutset matrix Q with respect to 7J would

assume the same block structure as in Eqs. (35) and (36), respectively.

Besides, the constitutive relations of the branches can be represented by

the following two nonlinear vector equations:

28A composite branch is said to be voltage-controlled (resp., current-—
controlled) if the nonlinear resistor in the composite branch is voltage-
controlled, i.e., iy = gk (Vi) (resp., current-controlled, i.e., vy = (i),
where the nonlinear function gk(+) (resp., ry(-)) denotes the V-1 curve

of the kth resistor. 1In the case where the nonlinear function is one-to-
one and onto (as in Fig. 8(d)), the associated composite branch can be
classified as either voltage-controlled or current-controlled, depending

on whether it is more advantageous to include it as an element of gjvc

291n Section 4, the choice of the tree ©J for the linear case is much
simpler than our choice here. This is because each linear resistor is
both voltage-controlled and current controlled and hence Egs. (80) and
(81) are well defined under all possible choices of the hybrid tree.
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_ - -
i v,

¥ Sf]_ ¥ ,&el
- 51( ) (80)

L. s L -
B E
%y, Ly,

=5 ( ) (81)

Dl [

To simplify our notation in the following derivation, we shall assume
NVRT} i
that 1 U T 1 contains only one connected component. The same result, of
i | vhere S U 7. -

course, applies to the more general case where 1 U i 1 contains several
separable components. If we define 91, 91’ Y;j;, §2, Iifz, C, gl, etc.
in the same way as we defined them in the preceding section30, and follow
the same procedure leading to Eq. (51), we would obtain the following

generalized nonlinear hybrid equations:

-~ ~

-~ r\tA At

Qg ° (Q; Ve +e) =C I,y -Q. 4. =0
%181 Q J(-]“l Sl S ~%_Q2 Q ip =0
(82)

~ ~ ~ At -~ ~
A o . 3 - =
¢ Y'f.jl B,r, (92 }51)2 + 35 B, e, 0

where "°" denotes the "composition" operation. Observe that if N is a
linear resistive network, then the nonlinear vector function gl(-) reduces
to gl(yl) = 91Y1’ where 91 is the associated branch conductance matrix, and
the nonlinear vector function 52(') reduces to 52(}2) = 82 }2, where BZ is
the associated branch resistance matrix. In this case, Eq. (82) clearly

reduces to Eq. (51). Notice that Eq. (82) remains valid if two or more

. . . Uy
nonlinear resistors belonging to &11 U le are "coupled" with each other ---

Osee kas. (45), (47), (49), (50), (52), (53) and (54).
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such as the Ebers-Moll equation of a transistor. The same observation
applies to all resistors belonéing to sz v ?];.

Although Eq. (82) can be solved by any efficient algorithm for
finding solution to nonlinear algebraic equations, we will propose a
Newton-Raphson iteration scheme such that each stage of the iteratiom is
equivalent to that of solving an associated linearized resistive network
N', having the same topology as N, by the generalized hybrid analysis.

Once this goal is achieved, highly efficient sparse matrix techmiques for

solving linéar algebraic equations may be brought to bear on the linearized

network N'.

Let us first recast Eq. (82) into a single vector equation:

e - —
~

A atS A
: ° + - 1
%y, % & o ¥y * o) ¢t g, "%
2 4 =0 (83)
i C VUV~ + B B8ti-p + 3.} - B.e
_~§_Pz_ - ~<J’1 I g? 3ot = Bye 2_

Applying the Newton-Raphson algorithm, we obtain
— —-1

¥y
n+1 _;‘,n a‘}} ( . 1 ) 2
n X Ve
h| | iy %,
- - 2 CH\|:n (84)
gntl i G Icp
&122 *&iz "'(':]]_ ' >2

3
~ ~n
Icp f
| -y 1|
0
~S£2
If we define
agl(‘ll)
n A (85)
~l =
ayl
mM-tan
= v > o
v Q.]_.,gl €
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and

BPAEPY
Ry A ——— (86)
a1,

MNAstan .
i,=B,1 sz"'-]z

then the Jacobian matrix in Eq. (84) can be rewritten as follows:

G~ 5. gt At
H I, %% ¢
ngi - L
J( o ) A —— - (87)
I-n {,
~\
J.Z 5 :?)‘1 .
I C B.R"B
B _~§fz_ 1 L ¢ ?252?2_

Premultiplying both sides of Eq. (85) by this Jacobian matrix and making

use of Eq. (85), we obtain

~ nat t -~ nat ~t N
96,9 ¢ 969 -c Vey )
- 71

¢ B.RUAE ¢ B ogPat igg

2 222222 ~2-2-2 ~-2
s noten sten " Atan ~tan AL
QG OV~ - C1T y -~ Qg o (VR +e) +CI +4q,j
f1-151-% 1 N “112 121 ~1~(J1 g | b ~ﬁ12 211

s | ~tzn ~ - ~tn A
CV—~c+ B,R BT () - CV~ - B,r, o (B,I-) + j.) + B.e
Jl ~2~2~2~512 ~~-J1 ~252 2~512 22 222

n, n ~ .n -
1°1 ) ~ Qi + 9y

s pll,.N N ¢ 5
| B2R = 3p) - Byyy * By

n
2(~2 ~232
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n Atsan n n n , ata . n .1
Q. Vey + e, i A g (v.), i) AB I g + 3, v, A, (1) (88)
-1 ~1~§31 1’ 212 81Y17 2 B ~2~§£2 12 ~2 2°~2

<
i

n n n n .n . .
148 Vv he -V, A, -1 (89)

de
[~ ]
>

. n
3y - e

Hence, each stage of the above Newton-Raphson iteration scheme can be

rewritten as

[ A n~t ~t ] ~An+1 T B n n n ]
Q,G.Q -C \ Q, (3, - )
S171%1 ~ | ~CJ’1 11 0 191
= (90)
A A nat an+l o n n.n
c B,R,B, Igf B,(e, - Ry3,)
. U I 2 - - -

?2’ etc. are defined via Eqs. (88) and (89).

Comparing Eq. (90) with Eq. (51), we conclude that each stage of

where the vectors j?,

the Newton-Raphson iteration of Eq. (83) is equivalent to that of solving

a linearized resistive network N* —— having the same topology as N but

with updated branch conductance matrix 9?, branch resistance matrix Bn,
n

current source vectors éi and é;, voltage source vectors g; and e, as
defined by Eqs. (85), (86), (88) and (89) — by generalized hybrid
analysis.31 It is important to observe that instead of evaluating the
large Jacobian matrix g(») of the nonlinear vector function%}#(-) directly

by numerical differentiation, we first linearize each nonlinear resistor

) (o g .
and characterize the resistors in 11] v ;Jl by an incremental conductance

31This linearized resistive network Nn is also known as a
model1"[23] and as a "discretized circuit model" [19].

"companion
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matrix g; (Eq. (85)) and the resistors in SYZ U ;]2 by an incremental

resistance matrix g; (Eq. (86)).32 The Jacobian matrix is then obtained

from Eq. (87). 1In other words, our algorithm calls for‘linearizing the

resistors at the branch level. Of course, after each iteration, the

matrices and vectors defined in Egs. (85), (86), (88) and (89) must be up-

~

dated to account for the change in the operating point [ii{l] .
-

)

In the general case where Efl U gj; consists of several separable
components, the submatrix §l§2§§ in Eq. (90) assumes the same block diagonal
structure as in Fig. 7. Hence, it remains for us to devise an efficient
algorithm for solving Lq. (90) which takes full advantage of this highly
desirable sparse structure.

We shail proceed by first defining the standard LU~-decomposition
method [19] and, then, by utilizing the block diagonal structure of Eq. (90),
we shall define an efficient solution algorithm for Eq. (82).

. . . n
For convenience, let us define a matrix H' as

. 4 _
n n ~ n-t ~t
B, 969y ¢
H A (91)
n n o ~ nat
fa1 By | C BBy

Substituting Eq. (91) into Eq. (90), we obtain

n n ~n+1 n
H ;
211 glz Y¢]1 §1
n n in+} ) n 2
~ O ]

uncoupled. However, if some resistors are coupled to eacg other, or if
N contains linear or nonlinear controlled sources, then G and R} will
contain off diagonal elements.

2 . . . . .
The matrices G and R} are diagonal matrices if the resistors are
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where

514 9,7 - Fep and 85 4 By(eh - K1)
Let us LU;factorize the matrix gn, then
B Eo| [t % | W W L%
51 Hy ] In Loa|| %1 % ] Ui
where Pgl and %22 are

triangular matrices.

(93)

n
L1190,

(94)

n n.n
Lo1¥12 + Lyl

~22~22
\

lower triangular matrices, Ugl and ng are unit upper

From Eq. (94), we can identify the following relations:

Hp = L9y
iy = 1100
Hyp = LpyU01
Hyy = LpyUiy + LUz

(95)

(96)

97)

(98)

Given gn, these relations will be used later on to find the matrices

O s

L1» Uppo ete

Substituting Eq. (94) into Eq. (92), we obtain

n n
Lin %2 | %2
n n

Lyp Toa| | %2

n ~n+1 n

ul, | | V8 E
~n+l =

Un IC Sn

~22 2 ~2

Defining the intermediate variables

n+l n
X 912
n+l n
y 922

42~

(99)

(100)



and substituting Eq. (100) into Eq. (99), we obtain

n n+l n
Ly 9 X 5
= (101)
n n n+l n
L Y y 59

llence, Eq. (99) can be solved via two simple substitutions - forward sub-

stitution via Eq. (101) and backward substitution via Eq. (100). 1In

particular, Eq. (101) can be rewritten in the form

n o+l _ n

Inx =58 (102)
n ntl _ _n n n+l

Lpp ¥ =85y~ Ly x (103)

to emphasize the "forward substitution procedure." Similarly, Eq. (100)

can be rewritten in the form

n 2n+l n+l

Upy I =¥ (104)
©22 In ) J

n ~nt+l n+l n n+l
U, Vo = X -u,, I (105)
<11 N(jl < ~12 ~\‘2

to emphasize the "backward substitution procedure."

Observe that since the matrix §?1 (as in Fig. 7) has a block diagonal
Structure, the associated factorized matrices 921 and 9?1 will also have
the same block diagonal structure. 1In other words, the LU-factorization of
all blocks of Egl can be done simultaneously. Besides, Eqs. (102) and (105)
each will contain a set of "uncoupled" blocks of equations.

The preceding observations can now be used to devise the following

clficient nonlinear diakoptic algorithms:
. T PR e S S ot - e e AT T TN
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Assume Sfl L’QJ; consist of "m'" separable subnetworks Nl,N ,...,Nm.

Step 0.

Initialization: Given igg and ngv(Nk). Find topological
2 -

matrices §1(Nk), §(Nk) and ?2, k=1,2,...,m. Set n=0.

Step 1. o d n ot - n
ep 1. Construct @ll(Nk) é=91(Nk) 91 gl(Nk) and LU-factorize gll(Nk)
n
into L) (N) UL (N, k = 1,2,...,m.
Step 2. Obtain y‘l‘z(Nk) and g’z‘l(Nk) by solving Eqs. (96) and (97),
n ~t n ~ _
respectively, where ylz(Nk) A -C (Nk) and §21(Nk) é=§(Nk)’ k=1,
2,...,m.
Step 3. Obtain §n+1(Nk) by forward substitution via Eq. (102), k = 1,2,
LI ,m. ’
n n n n n n+l
Step 4. Compute D (Nk)ig QZl(Nk) ylz(Nk) and S (Nk),g ~21(Nk) X (Nk)’
k=1,2,...,m
n S st AN R n
Step 5. Construct A B.R®B' and compute D AHY - 2: D (N, ),
222 “22 = ¥272°2 = S22 7 & P Tk
an n n
S, As) - Y st(w).
"2 202 7 & Uk
Step 6. LU-factorize @n into g;2U22°
Step 7. Obtain ¥n+1 by forward substitution via sz ¥n+1 = §§.
Step 8. Obtain igﬁl by backward substitution via Eq. (104).
2
an n+l n ~n+l _
Step 9. Compute §1(Nk) 4 x (Nk) - glz(Nk) 19127 k=1,2,...,m.
~ntl n ~n+l -
Step 10. Obtain ngi(Nk) by backward substitution via gll(Nk) ngl (Nk)
él(Nk)’ k=1,2,...,m.
Step 11. Termination: If ig§1 and 0n+1 converge, stop! Otherwise, set
e qi
_ n .,n .m .n N n
n = n+l, update 91’ 32, 31’ ipr & and > and go to Step 1.
Remarks. (i) Steps 1,2,3,4,9 and 10 each involves "m" decoupled computa-

Y-




tions and this can be carried out by parallel computation on "m" small

computers simultaneously. (ii) Steps 2,3,7,8 and 10 each involves only
simple substitutions. (iii) Steps 1 and 6, i.e., the LU-factorizations,
are the only time consuming steps. However, if we choose the node-to-

datum case as in Eq. (79), each block @?I(Nk) A él(Nk) g;(Nk) é;(Nk) is
then guaranteed to be very sparse and easy to construct, where él(Nk) is
the reduced incidence matrix of N,. Hence, the available sparse matrix

k

techniques [19] can make Step 1 very efficient. (iv) The matrix ﬁn is

obtained through matrix multiplications and additions and is, in general,
a "full" matrix (i.e., it contains mostly nonzero elements). Hence, to
improve the efficiency of our algorithm, it is desirable to make the

dimension of D" (i.e., the dimension of : b ) as small as possible. In

~22

other words, we want to minimize the number of torn branches.

6. Concluding Remark

We have shown that all published versions33 of diakoptic analysis
can be derived via a sequence of equivalent circuit transformations involving

only such basic circuit-theoretic concepts as the substitution theorem, the

source-shifting theorem and the properties of open loops.

This analysis always consists of three stages. The first stage
involves the choice of the torn branches No. No efficient algorithm is
known for choosing an optimal set of torn branches [24-26] and the current
state of art is such that this step must be implemented on an ad hoc basis.

The second stage involves an "appropriate" form of coboundary analysis on

each separable subnetwork N ...,Nm (The most efficient overall choice

1’N2’

remains to be the node-to-datum case). The third stage involves a standard

BJOur derivation of diakoptic analysis is completely general and should
include any future versions as special cases.

-45-



loop analysis on an equivalent interconnected network Neq which combines

"m" coupled but acyclic equivalent subnetworks N LN, el Nm with

eq eq eq
the torn branches NO. This cumbersome three-stage formulation process has

been shown to be a special case of the much simpler generalized hybrid

analysis. It follows immediately from this derivatibn that the concept of
diakoptic analysis is applicable to both linear and nonlinear large-scale
resistive networks.

An efficient algorithm for solving the generalized nonlinear hybrid
equation is included in this paper. Two special features of this algorithm

is that it deals with the associated linearized circuit model and the non-

linearities appear only at the branch level.

Einally, we must conclude, if somewhat disappointingly, that inspite
of its important applications in the analysis of large-scale networks,
diakoptic analysis does not represent a new concept in circuit theory.
Neither does it represents a new mathematical idea. It is hoped that this
conclusion will forever put to rest the misleading impression that diakoptic
analysis is a profound concept that can be derived only by using advancgd

algebraic-topological techniques.

3['However, full credit should be given to Kron for being the first to
choose both voltages and currents as independent variables. As such,
his approach can be considered as the forerunner of our generalized
hybrid analysis [10]}, [21].
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Appendix A. Proof of Lemma 2

We shall first derive two important relations and then proceed with
the proof. Given a connected graph {} with "n" nodes and "b" branches,
and a generator tree cj; of (} ,» let us consider the augmented graph

. mn_n

(} 4 gz‘J C}’. Observe that it is a connected graph with ''n" nodes and
a = . Jg

"b+n-1" branches. Define éa to be the (n-1)x(b+n-1) reduced incidence

matrix of the augmented graph (33 with respect to an arbitrary datum node.
If the columns of the reduced incidence matrix éa are ordered such that the
original branches (i.e., those branches in (j) appear before the augmented
branches (i.e;, those branches in ¢]é), then éa can be partitioned as

éa = [é ég], where A denotes the first b columns representing branches in

(] and égdenotes the remaining (n-1) columns representing branches in ?];_35

Since the branches of Gjé corresponds to a tree of the augmented graph <3a’
the submatrix ég is nonsingular.

Let each open loop and its associated generator be denoted by a bxl
vector36 §§ and an (n-1)x1 unit vector37 8> respectively. A%t follows from
the definition of an open loop that the (b+n-1)x1 vector zl represents
a closed loop in the augmented gr;ph (]a' From Tellegen's ;;eorem [16],

we know that any pair of vectors representing respectively a cutset and
a loop are orthogonal to each other. 1In other words, we have the

relation

5Observe that the submgtrix A corresponds to the reduced incidence matrix
of the original graph ().

36Recall that éi was defined in Section 2 as a row vector. Therefore, we
use the transpose here to conform with our earlier notation.

37A unit vector has all zero entries except a "1" in the i-th entry.
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]
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t
i + A g = 0, i=1,2,...,n-1 (106)

2
0

09

e

Eq. (106) can be rearranged as

~t
Ap;=-A g , i=1,2,...,n1 - 07)

~g 21

which will be used in the following proof.
Now that we have shown ég to be nonsingular and have established
Eq. (107), let us suppose that the (n-1) open loops @;, ﬁ;,...,éi_l are:

linearly dependent38, then there exists a set of real numbers o

l, Qz,...,
-n-1 ~t
@ 1 € E{, not all zero, such that ;éi a; p;j = 0. Then
A( o, py) = o, (Ap;) =-2, o (A g)=-A( o, g.) =0 (108)
- =1 i=i =1 i~ i i=1 itig 21 -8 {3 i?2i ~
Since the only nonzero entry in g4 is a "1", it follows that
n-1 ‘ ¢
g A Z a, g; = [czl, 02,...,an_1] (109)
i=1

Hence, if we denote the i-th column of A.g by (Ag)i and substitute Eq. (109)

into Eq. (108), we would then obtain

n-1 n-1
ég(gl o; 85) = A, 8= gl a;(Bg); =0 (110)

since the (n-1)x(n-1) matrix ég is nonsingular, the columns of ég are

linearly independent, i.e., ?;i ai(ég)i = 9 if, and only if, 4y =0y = ...=

38We assume, for convenience, that the concept of linear independence is
defined with respect to the "field" of real numbers IR,



n-1

@,y = 0. It follows from Eqs. (108) and (110) that ). «, {:; = 0 if,
i=1 - ”
and only if, a, = az = ,.. = an;l = 0, which contradicts our earlier

~

assumption. Hence, the open loops ﬁ;, ﬁ;,...,pﬁ_l.are indeed linearly

independentf



Appendix B. Proof of Lemma 8

It suffices to prove that §££2§]; ?§3’= ?szg}l. Before we proceed
to give the formal proof, let us consider an example first for the sake
of clarity. Figure 9 shows a typical graph Q} with branches partitioned
into four sets Sgl’ SEZ’ ;]1 and ?}; where Egl = {1,2}, SQZ = {3,4,5,6},
?]1 ={7,8,9,10,11,12}, GJ; = {13,14,15,16,17}. Also shown is an augmented
generator tree (in dotted line) %J; = {a,b,c,d,e,f} connecting all nodes
of N1 = 291 LJ§31.

Consider a typical branch of sz, e.g., link 6 and observe that the
fundamental loop generated by link 6 is given by twigs {17,14,7,8,9,10,11,15}
with respect to the tree GJ; U g]; and by twigs {17,14,b,c,f,15} with

respect to the tree gjn U ?]q. If we let row r, denote the row of B
g 2 6 - 2%)1
and B corresponding to link 6, then row r, of B- and B~
”512%]; P & ’ 6 “ﬁfzgjl ~§£2€j;

is given respectively by
7 8 9 10 11 12
Row r, of B =[ 1 -1 1 1 -1 0 1
2P <

-a -b -¢ -d -e -f
Rowr, of Bcppr =01 0 -1 -1 0 0 -1 ]

_k|l39

ilow suppose we express each branch " in §§£ Cj’ in terms of the
2“g

associated unique fundamental open loop,40 namely,
7 8 9 1011 12
Branch -b [ -1 1 -1 -1 1 1 ], fundamental open loop of b

39Recall that the reference direction of branches of the equivalent acyclic
subnetwork is opposite to those of the generator tree ;I’. Since a,b,...,f
represent branches of ¥ g» We must choose -a,-b,...,-f t0 represent the
branches of the equivalent acyclic subnetwork.

4OBy this we mean that both branch "-k" and the corresponding unique
fundamental open loop have the same initial and final nodes.

B-1



Branch -¢ [ 0 0 1 1 -1 -1 ], fundamental open loop of c
Branch -f [ 0 0-1-1 1 0 ], fundamental open loop of f

Observe that if we add the negative of these three row vectors together,
we would obtain row r, of Bc > . But the above operation upon applying
6 ) i2(51

to all rows of B-p cja is equivalent to
2 Jg

8 9 10 11 12

_ _
2 b - —d —e —f 01 -1 -1 1 1| -a
Rowr,of By~ [1 -1 0 0 0 0] -1 1 -1 -1 1 1| -b
3 ~;sz-jg
Rowr, of B.pe~ |1 0 1-1 0 0 00 1 1-1-1] -c
~C _
b ’iZC]g .
Rowr. of Bp~ |0 0 0 1 0 1 00 1 100/ -4
5 ‘:12 vng
Row r, of By~ |0 -1-1 0 0 -1 00 -1 00 0] -e
6 ;Lz,jg | _
00 -1 -1 1 0| -f
L o

7 8 91011 12
[1 0 0 0 0 0] Rowr. of B
~:f2?]i

0 1-1-1 0 O Row r, of B-p
= 4 "512¢]1

0 0 0 0 1 O | Rowr, of By —~p
“,7

1 -1 1 1-1 o_J Row rg of Bep oy
— 271

In matrix form, we have B-y ~ T~-= B- where T—~- is the nonsingular
’ ~§;‘-2qg "('“T ~ifqu’ ~7J .
submatrix of the fundamental open loop T with respect to the tree rJl.
ltence, we have shown via an example that Lemma 8 holds.
We can now formalize the above algorithm to an arbitrary graph (J
1

-
and observe that each row of §>B Cj- defines a path of branches in fJ .
271 ‘

Let the path corresponding to row j of gif C]' have end nodes from nc)
2'71

to n . Since row j of B- + and row j of B, A [1-p - B- -] form
® 5 TR A N 0,73,

B-2



a closed loop, row j of ]}2 must correspond to a path of branches in
P u .
,iz 9; from node n® to node n@ . Observe that row j -of B2 and row
j of B also from a closed loop, and hence row j of B must
4, T, ’ -0, T,
correspond to a path of branches in 9]’ from node n@ to node n @ . Now
observe that each row j of TC_T expresses a path of branches in ql that
~
has same end nodes as Branch j of 7). Hence, row j of B T—~r is
3 of T Mence, xov 3 of By oy Ty

a linear combination of those fundamental open loops induced by branches
in ¥) of row j of B

T, of rov 3 of 3¢

2

(_T . The resulting branches must necessarily form
‘ g ,
a path from node n@ to node n . Since gl is a tree, there exists a

unique path with fixed end nodes n@ and n . Hence, row j of B:e (ja
1

and row J of BEQ (J' rja must coincide and we have Bie fj’
271

6T, T ]
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Appendix C. Codiakoptic Analysis

We shall proceed to derive codiakoptic analysis via the same
equivalent circuit approach. Although our derivation is again completely
general, a specific example will be used to illustrate some of the "subtle"
points in each step of the equivalent transformations.

Given a network N, let N. be a subset of branches —— henceforth called

0
the (codiakoptic) torn branches41 —— such that when they are contracted42,

the original network is reduced to "m" separable subnetworks Nl’Nz"”’Nm‘

In Fig. 10(a), each branch is assumed to represent a composite branch
(Fig. 4(a)). Let the set of branches {7,8,9,10} denote the torn branches

N_. whose contraction results in the two separated subnetworks N, = {1,2,

0
3,4,5,6} and N

1

9 = {11,12,13,14,15,16}.

Assuming the voltage solution waveform of each '"connection branch"

of

L (from Fig. 10(a), we have N = {7} and N = {10})) is given a

0-1 0-2

priori, we can apply the voltage source substitution theorem and replacc

each connection branch of NO—k by its equivalent voltage source (Fig. 10(b)).

Since the substituted voltage sources summarize the "outside" influence
upon each subnetwork, the original network N can be separated into (k+1)

parts without affecting the solutions of the original network (Fig. 10(c)).

Let us now focus our attention on subnetwork N1 which has "n" nodes

and "b" branches (counting the substituted voltage sources as short circuits),

41In order to differentiate the terminologies used in this section from
those used in deriving diakoptic analysis, the adjective 'codiakoptic'" should
really precede every terminology in this section. However, to avoid excessive
repetitions, we will omit this adjective and simply caution the reader to
interpret cach terminology and concept in this appendix as "dual' to those
introduced in Section 3.
42 . s i .

A branch is said to be contracted if it is deleted with its two end nodes
coalesced into one node.



and its associated linear graph g}(Nl) is shown in Fig. 10(d). Since the
graph gz(Nl) has (b-nt+l) linearly independent loops, we know that the
substituted voltage sources can be summarized by (b-n+l) "modified"
substituted voltage sources, each associated with a loop. In the cases
where there are less than (b-nt+l) substituted voltage soufces, our '"dual"

procedure calls for inserting additional zero-valued voltage sources (i.e.,

short circuits) by a "plier-type entry" with the links of g}(Nl). For
example, in Fig. 10(e), gj(Nl) has two linearly independent loops but

only one substituted voltage source. Hence, a zero-valued voltage source
is inserted with link "1" in Fig. 10(f), and an augmented graph gja(Nl)
(counting each voltage source as a branch) is obtained as shown in Fig.
10(g). Observe that the augmented graph gza(Nl) contains "b+1" nodes,
"2b-n+1" branches and "b-n+l" linearly independent loops. Since the number

of 1inks43

and the number of substituted voltage sources in the augmented
graph (]a(nl) are identical, we can always select the set of (b-n+l)
substituted voltage sources to form a cotree of (3a(Nl)’ henceforth denoted

by the generator cotree Efg. For example, in Fig. 10(g), Efg = {1', 2'}.

Now, we can define a contracted cutset of g} with respect to any

generator cotree ng to be any set of branches of (} which form a cutset

with a branch, henceforth called the associated contracted cutset generator,

of ifg. For example, the sets of branches {5}, {1,4} and {2,4} all form
cutsets with the augmented branch 1' in Fig. 10(g). They are, therefore,

contracted cutsets induced by the same generator 1'.

43The number of links is equal to the number of linearly independent
loops.
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Following a dual procedure used in deriving diakoptic analysis, we
have the following lemma:
Lemma 9. Let gj(resp., (]a) be a connected graph with 'n'" nodes and '"b"
branches (resp., "b+1" nodes and "2b-n+1" branches) and let iﬁg be any
augmented generator cotree of (}. Then any collection of (b-n+l) contracted
cutsets induced by the (b-n+l) distinct contracted cutset generators in Efg
are linearly independent.

In view of Lemma 9, we can define a (b-n+l) x b contracted cutset

matrix g as follows:

~

13 = 1, if contracted cutset i contains branch j and has the same

orientation as branch j;

-1, if contracted cutset i contains branch j but has opposite
orientation as branch j;

= 0, if contracted cutset i does not contain branch j.
Theorem 3. Let (}(resp.,(}a) be a connected graph with "n" nodes and "b"
branches (resp., "b+1" nodes and "2b-n+l1" branches) and let Efg denote any
augmented generator cotree of (}. Then the;e exists a unique cycle matrix

N

B, henceforth called the associated cycle matrix, such the

Xeh)

R = 1 p. (111)

Having established the basic property of contracted cutsets as in

Theorem 3, let us focus our attention on the augmented subnetwork (see
Fig. 10(f)) which now contains (b-n+l) substituted voltage sources
(including zero-valued voltage sources). Our next step is to apply the

v-shift theorem and shift each substituted voltage source in series with

the internal branches of Nl in order that it may be combined with the

original composite branches. We can achieve this poal by shifting each
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substituted voltage source e, across any contracted cutset induced by

3

e, - If we combine all the shifted voltage sources in series with each

J
original composite branch and denote it by eé, we would obtain a modified

subnetwork N! having the same topology as (B(Nl) (see Fig. 10(d)), where

1
each branch in Ni represents an augmented composite branch as shown in
Fig. 10(h). 1In order to find an algebraic expression for eé in terms of

the e, 's let us define the "combined shifted" voltage source vector
S
g'<é [ei, eé,...,eé]t and the "unshifted" voltage source vector gs:g

[eS s € see.,€ ]t. If we let K be any contracted cutset matrix
s s 2
1 2 b-n+1
induced by the (b-nt+l) substituted voltage sources acting as the contracted

cutset generators, then

t
e, - (112)

LR

e' =

Let us now carry out an 'associated" cycle analysis44 of the modified

subnetwork Ni. Using the notations associated with the augmented composite

branch shown in Fig. 10(h) and Eqs. (111) and (112), we have the following

sequence of equatioms:

0=8Y' =BV -Be =B@ET+Rj-e) - B e
= BRE°L + BRj - o) - ¢, (113)

where i is an (b-nt+l) x 1 vector, called the generalized current coordinate

vector. Observe that the generalized current coordinate vector i is equal

to the negative of the (b-nt+l) X 1 current vector }S through the (b-n+l)

substituted voltage sources in the augmented generator cotree ﬁfg, i.e.,

44A cycle analysis is a generalized loop analysis [18]. By an '"associated"
cycle analysis, we mean the cycle analysis with respect to the unique
associated cycle matrix as defined in Theorem 3.
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I =-I. This relation will now provide us with the key to transform the

modified subnetwork Ni into an equivalent "self-loop' network Ny

eq
Observe that Eq. (113) can be rewritten as
I=G6 (e+e)=-I (114)
~ ~eq '~ ~s ~s )
aat -1

where 9eq = (?R? ) 1 (115)
and

e & Ble-RY) (116)

Now suppose we construct a self-loop network N1 by connecting a voltage
- A eq
source e, (i.e., the k-th component of e) and a coupled linear resistor

defined by the k-th row of geq in series with each substituted voltage

es of the generator cotree Si; (Fig. 10(i)). Observe that the network
k

equation describing N is precisely given by Eq. (114)! For our example

1

eq

(Fig. 10(f)), the "coupled" self-loop network Ny is shown in Fig. 10(j).
eq

It follows from the above observation that the subnetwork N1 in Fig. 10(f)

and the "coupled" self-loop subnetwork N1 in Fig. 10(j) are equivalent
in the sense that they have identical gov:gning equations. Applying the
same transformation procedure to subnetwork N2 (Fig. iO(c)), we obtain the
equivalent "coupled" self-loop subnetwork N2 shown in Fig. 10(k).

We can now reverse the steps implementzg earlier in going from

Fig. 10(a) to Fig. 10(c) and apply the sequence of equivalent "inverse"

transformations shown in Figs. 10(1) and (m) to obtain the equivalent inter-

connected network Neq shown in Fig. 10(n). Observe that this equivalent

interconnected network Neq contains very few nodes. Besides, branches

of i\l(‘q are characterized by a "coupled" branch conductance matrix (Eq.

(LL5)). Hénce, we can analyze this network by the standard nodal analysis



(or by any convenient coboundary analysis).
If we let I, denote the composite current vector of the torn branches
N0 and order these branches before the self-loop branches, then the reduced

incidence matrix of Neq can be partitioned as

Al | (117)
And the familiar nodal equation can be derived a345
I .
0=A Afa, AT =1 +4a 1
~ ~eq eq Ab i ~0 ~o éb ~
= (ébg at )V + A (G e, 30) + éb I=0 (118)

where 90’ ?o’ R and Jo denote the branch conductance matrix, the node-to-
datum voltage vector, the branch voltage source vector and the branch
current source vector of No’ respectively.

Recall that e, is the voltage vector of the torn branches No. This
voltage vector can be uniquely determined by the néde-to—datum vector ?o

of No' Hence, there exists some matrix C' such that46

~

e =C'V (119)
~s <~ -~o

Substituting Eq. (119) into Eq. (113) and together with Eq. (118), we

obtain the following block equation:

t o .
B84, & Yo 8o = %%
= (120)
S i B(e - R §)

45We abuse our notation slightly here since I actually represents the
composite of the generalize current coordinate vector of subnetworks
Ny, NZ""’Nm'

46Actually, C= éﬁ.



where

= — _ —
B(N,) R(N,)
- 0 - 0
B(N.) - R(N,)
B = T R = S (121)
0 B(N, ) 0 R(N,)
. pu— L pu—

and where ﬁ(Nj) and B(Nj) denote respectively the unique associated cycle
matrix and the branch resistance matrix of subnetwork Nk.
The process of formulating and solving Eq. (120) is called

codiakoptic analysis by Onodera47 [13]. It offers the same desirable

block structure (as shown in Fig. 10(o)) as in diakoptic analysis (see

Fig. 7). However, since there exists no cycle analysis dual to that of

the computationally efficient nodal analysis, co-diakoptic analysis offers

no computational advantage over diakoptic analysis.

We will close this section with the following important theorem:

Theorem 4. There exists a one-to-one correspondence that equates any form

of codiakoptic analysis (as given by Eq. (120)) involving variables ?0 and

I to a special case of the generalized hybrid analysis (as given by Eq. (51))

involving variables th' and i&f .
g | T2

47 T
Mnodera did not derive, but did "sketch"”, Eq. (120).



Appendix D. Mult-Stage Diakoptic Analysis

The concept of multi-stage diakoptic analysis48 consists essentially
of a repetitive application of both diakoptic and codiakoptic analyses.
Our objective in this section is to show that this approach is also a
special case of geﬁeralized hybrid analysis. Before we start the derivationm,
however, recall thét diakoptic (resp., codiakoptic) analysis always consists
of three stages: (i) choose a set of torn branches so as to "tear" the
network into "m'" subnetworks; (ii) apply an "appropriate" form of coboundary
(resp., cycle) analysis on each subnetwork; (iii) apply a conventional lo;p
(resp., nodal) analysis on the diakoptic (resp., codiakoptic) equivalent

49 The basic idea of multi-stage diakoptic analysis

interconnected network.
is to modify the diakoptic analysis at stage (iii) such that, instead of
applying a conventional loop analysis, we apply a codiakoptic analysis on
the diakoptic equivalent interconnected network. This process can be
further extended if, at stage (iii) of the codiakoptic analysis as applied
to the diakoptic equivalent interconnected network, we apply still another
diakoptic analysis on the codiakoptic equivalent interconnected network.
This algorithm can obviously be extended to any number of "stages" by
alternating between a diakoptic and a codiakoptic analysis, each stage

involving a smaller interconnected network.

For simplicity, we will derive only the two-stage (or double) diakoptic

48In this section, we will derive the version of multi-stage diakoptic
analysis as proposed by Onodera [14]. Other slightly different versions
[4,7] can also be easily shown as special cases of generalized hybrid
analysis.

49As we have pointed out earlier, we can actually apply any "convenient"
form of cycle (resp., coboundary) analysis on the equivalent intercomnected

network.
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Qpalysis.SO Furthermore, we will choose the "fundamental generator tree"
version of diakoptic analysis since the other methods follow similarly.

Let us partition the branches of the original network N into six

subsets iﬁl’ EEZ’ EQB’ gji, GU; and ;j; with respect to a given treegj’

satisfying the following two conditions: (i) we can apply diakoptic
analysis on N with EBZ U QJ; U 533 v :]é as the diakoptic torn branches;
(ii) we can apply codiakoptic analysis on the diakoptic equivalent inter-
connected network Neq (notice that for the fundamental generator tree case,
Neq = /‘Jl U EJ‘)Z U (772 U Si)3 U q3) with 5]33 U C]3 as the codiakoptic torn
branches.51

From Section 4, we know that the fundamental loops generated by links
(Lfl) of the diakoptic subnetworks (ifl U c];) do not contain twigs (cjé U 7j;)
of the diakoptic torn network (ifz U ﬁ]é U i£3 U Cjé)‘ We also know from
Appendix C that the fundamental cutsets genefated by twigs (?Ji U cjé) of
the codiakoptic subnetworks (gJi v 292 v g];) do not contain links (223) of
the codiakoptic torn network (£f3 U ;];). Now, if we partition the fundamental

loop matrix B and the fundamental cutset matrix Q with respect to the tree

-~

—

fJ as follows:

50, . L .
To extend our derivation to more than two stages, it is convenient to

choose the fundamental gencrator tree for cach diakoptic analysis, and the
fundamental generator cotree for each codiakoptic analysis. The fundamental
generator cotree version of codiakoptic analysis is implemented by taking
each branch of the augmented contracted cutset generator cotree;f to be

in series, but oppositely directed, with a link of the original network.

The associated cycle matrix for this fundamental generator cotree is simply
the fundamental loop matrix.

s ) -
51A simple variation that takes a subset of le together with i13 U 'J3 as
the codiakoptic torn branches can also be easily shown to be a special case
of generalized hybrid analysis.
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(123)

then it follows from the observation that the fundamental loops generated

o oy - '
by ;i do not contain branches in 'J and 7J that the submatrices Bc
1 2 3 ~~££;]}

and Bif (]- are zero matrices. Similarly, it follows from the observation
T~1+73

~ .
that the fundamental cutsets generated by rjl v sz do not contain branches

in ﬁf that the submatrices —BE and —Bt are also zero matrices.
7,
3 ”§£3q1 ”%93 Jy

Hence, the fundamental loop matrix B and the fundamental cutset matrix g

associated with the two-stage diakoptic analysis must possess the following

structure:

<p C

€9 L,
1 0cpcp O

g S R S PN
B = 0 1 C 0c )
) "t H,

0 0-0 .- 1.9 .-
~§‘€3£ﬂ1 ~§~‘331‘32 ~§£35133

7,

20,53,
Bp, 7,
%97,

I,

0 .
°0 T,
B ,
“E‘ngz
0 R

~%£§€Té

C

%,
0

- 1?};

B .

- S;Bz’rf)g

by o,

(124)



gt gt ot 1 0 0
0T, T 2T T, T, C9T,
t
Q = 0- -B- 0- 0 S| - 0 (125)
; 0, 0T, T, ST ThT, T,
t t

0f B Al R o R o e S oy
= R O SRS Y S N0 M NS I3 NI B

If we define

k;[)1 ,.]1 2 CTz SJ-)3 CT_%
R ) R e, R s [, ] 0
then, by combining KCL and KVL equations together with the following branch

relations:

il = Cvyr vy, = Ro1,, 13 = 93Y3 (127)
we would obtain the following two-stage diakoptic equation:
T —
t t t _\
Q,6.,Q B¢ 0cp - Ve Q, (i, - Gie))
1171 SSUNS S Iy 3 B B B |
t
B () ~ B,R.B B I- = | B,(e, - R,j.) (128)
“£.7);  F2-2e2 ~912§_]°3 ﬂ_z ~2872 T S22
s M 0 s R S s} Q335 = G3¢3)
30 T3 T ] I R
Equation (128) can be rearranged as
PP L t 111 T u
0,6G,0Q 0"y —~ -B 0 —~r Ver Q,(j, - C,e.)
S1-151 00 S AN RO, 1'=1 0 J101
: t t
0 o~ Q,G,0Q -B:- Ve~ =l (3, - G.e,) (129)
Sf5), 0 U333 NSRRI =343 7 7373
t
B~ B. o —~( B.R.B I, B,(e, - R.j.)
N LA P N VAT P S R R L, L~2 S2 7 Todo
L . R - —

Observe that Eq. (129) has exactly the same form as Eq. (48). Hence, by
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rearranging the equations associated with the two-stage ‘diakoptic analysis,
we would obtain once again a system of hybrid equations representing a

special case of our generalized hybrid analysis.

"
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Appendix E. Topoldgical Matrices in Eq. (79)

Hybrid anélysis in the form of Eq. (48) has not been widely used in
computer-aided analysis because there is no efficient method for obtaining
the topological matrices involved [27]; namely, the submatricesvgl, ?2 and
B¢ ;]=. This objection, however, can be overcome by choosing the node-
to-gatim version of our generalized hybrid analysis; namely, Eq. (79). Our
objective in this section is to present efficient algorithms for constructing
the three matrices 61,

We shall start with the matrix A

?2 and é needed to form Eq. (79).

1 Recall that él as defined in

Fq. (78) is a "“composite" matrix containing the reduced incidence matrices

" R ) o .
of the separable subnetworks oF;Ah, made up of branches in ¢11 v (jl with

~
all branches in sz U sz replaced by open circuits. Observe that A, can

1

be generated as soon as the separable components of(JA&— are identified. 1In
this regard, observe that the highly efficient Tarjan's "depth-first back-
tracking search" algorithm [28] can be used to identify all separable

. . . 2 .
components Of(uA& in linear time and storage.5 Hence, the matrix 61 can

be obtained efficiently.

The matrix B, as defined in Eq. (47) is the fundamental loop matrix of

U

N (\ » —
vAg, made up of branches in Efz v Q&lwith all branches in &f 1

1 replaced

by short circuits. The following lemma will provide us with an efficient
method for obtaining @2:
3 ~
Lemma 10. Given a graph (J with reduced incidence matrix A, a tree fJ and
: *
the node-to-datum fundamental open loop matrix T . If the columns of the

*
reduced incidence matrix A, the node-to-datum fundamental open loop matrix T

and the fundamental loop matrix B with respect to §]=are ordered such that

e —
5"Separable components are called biconnected components by Tarjan [28].



*
the links appear before the twigs, i.e., A = [6943 égjﬂ, T = [QEQ géjﬂ

and B = [1cp Bcyl, then Bop= -éic;e ??{)"

Proof: Let the fundamental cutset matrix Q with respect to %]’be ordered

in the same manner, i.e., Q = [QEQ 1cji. We can express A in terms of Q
. 3 <6 = A

via a nonsingular transformation matrix P_ as

~Q
hep 2z = Rol8y Iyl ~ ey Fo!

Therefore, we can identify from Eq. (130) that

Po = Ay

(130)

(131)

Substituting Eq. (131) into Eq. (130) and premultiplying both sides of

Eq. (130) by é%%g we obtain

WZyacp 1l = 19y 1cy]

and, in particular,

-1
9cp = Ay A

From Theorem 1 and Lemma 6, we have

2T = gy 4y gy

Eq. (134) can be rewritten as

-1

Al = (1t
- -CJ

0
"gf * ot _

From Tellegen's theorem B and Q can be related by

l-”g]' = ‘QE_Q

Combining Egs. (136), (133) and (135), we obtain
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(133)

(134)

(135)

(136)
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Let us make the following observations regarding the subnetwork;,&&:
(i) the reduced incidence matrix é(,kg) ofgjuz can be obtained from the
reduced incidence matrix A of the original network N simply by contracting
all branches in Efl v ;]’; (ii) a tree gjgof<dkg can be found via Tarjan's
"depth-first back-tracking search" algorithm; (iii) the node-to-datum
fundamental open loop matrix y*@,k£) of<,AE can be obtained easily from the
reduced incidence matrix é@,&é); (iv) the elements of g;jﬁ,kg) are either
-1, 0 or 1. Hence, in view of Lemma 10, ?2 A ?Q,AE) = [}QJQJAE) g?jﬁ,kg)]
can be found by simple additions and subtractions of elements of QEQQJAE).
In other words, B2 can be obtained efficiently.
The matrix C as defined in Eq. (54) for the "node-to-datum'" case
(where ?B = 1) is given by
¢ = 3¢p o P (137)
SHxel] :
Instead of finding @ through Eq. (137), however, we shall make use of a
special property of the node-to-datum case. From Eqs. (79) and (32), we

have the identity

C = Pa (138)

Substituting Eq. (73) into Eq. (138), we obtain

C =B —~ (139)
v “ifzfjg

Recall that QEQ r]’ is a submatrix (corresponding to the columns of branches
=Ly Tg

in ;J;) of the fundamental loop matrix Eeq of the equivalent interconnected

network Neq' It follows from the special structure of the node-to-datum
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equivalent interconnected network Neq (e.g., Fig. 6(i)) that the (i,j)-th

element of the matrix ggfzgj; can be easily determined from the following

interpretation:

(§515€]é(Nk))ij = 1 (resp., -1), if fundamental loop i ofLJUZ enters

(resp., leaves) the nondatum node j of subnetworks Nk;
= 0, otherwise.

Hence, using this interpretation and Eq. (139), we can obtain @ efficiently.
Let us examine next some speciallcases where the submatrices él’ §2

and @ are even more readily available. Suppose that the branches of %fl U ?j;

span ail nodes of the original network N and suppose that a common datuﬁ

node for each separable subnetwork of Sgl‘J ?]; is available. Then gj;

becomes an empty set and all torn branches belong to EQZ’ each of which

generates a fundamental loop, i.e., B2 = IEQ . If we partition the reduced
N T2

incidence matrix A of the original network into the form
v
g, vy 4,
A= [A Acp ] (140)
~ ~ U P
L ug, A

. N ¢
then we can identify A, = A C=-A and Eq. (79) reduces to
b A ugy £,

— — e

B t
- _ v
éfﬁ& LJ?T} 951& LJ%]} égi& L,§31 6513 ~?31

t
-A ) Lo
"%Qz BS‘-2_ _,"512__
A (i G ) |
: - G e
A U, Yy, VT, TS VY, o, VY,
: (141)

géﬁz i BE532 JS‘-ez
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D. 3*119'1

feg e
S35, S99,

fea,

This equations corresponds to Happ's radially attached case [8], as well
as Lo Wu's carlier fnrmulat10n53 [12]. 1f we further restrict the torn
branches Lo be branches containing voltage sources only, i.e., Rif =0-p,
T2 "ﬁz
and no other independent sources exists, then Eq. (141) reduces further to
[_A G-p At A ] r\Ar ] Fo ]
2P USSP U ST AP U > Moy )
= (142)

Y, ] N

t

Y, O

2

This equation corresponds to the modified nodal analysis approach proposed

in [15].
To implement the generalized hybrid equation in the tableau form
[19,29], we simply rearrange Eqs. (37)-(42), (49), (50) (52) and (53) in

the following order:54

— r—!g" -1 — QQI -~
: g g, %,
1 Tl Ly, 0g,
<Rt
%o, L lg, 7,
1 . -
1 Ly 39, *Sp 2 + bp oy ey (143)
1 I :
-~ lin 431§§Eh3¥%ﬁ"§3¥3§21
- -R 1 - j j
ﬂg& 2 "%QEE s Y ; ”sﬁ *”333?¥ﬁ1’53¥33€5
e Rog; L v, ~23, *Regw e, + Rl
g ey h vg, 0,

!L fg%&ﬁﬂ _J LS; an _J

53 . . .

To derive the generalized cases of Wu's formulation, we need only add
some "open-circuited" and "short-circuited" branches at "appropriate"
locations.

54For simplicity, all zero submatrices of the tableau matrix in Egs.
(143) and (144) are not shown.
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Observe that if we perform Gaussian Elimination along the diagonal of

Eq. (143), the last two equations will indeed become Eq. (51).

For the

node-to-datum case of the generalized hybrid equation, the preceding

tableau matrix assumes the following simplified form:

— . 1 r
1 '51 Yl
t
1 ']}2 Iz
'91 .]: .].:]_
"32 ..:!' Y2
I\t ~
é]_ —9 Yn
B, C 1
gy - ~S£2
T o S, —

9

0,

N tHa

-e, ¥+ R,3,
0
~CJ1
0
~§£2

(144)

Observe that if we perform Gaussian Elimination along the diagonal of

Eq. (144), the last two equations will become Eq. (79).

»
N
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(d) one current source in each cut setl is {e) the equivalent acyclic subnetworks (f) the equivalent inferconnected network Neq
replaced with g short circuit

Fig. 1(d),(e),(f). A sequence of equivalent transformations.



(c) fundamental generator tree

Ty = {4'5'6'}

(d) arbitrary generator tree

Jo= {4',5',6'} 7,:{2",5',6'}

Fig. 2.

A graph and several augmented generator trees.

(b) node-to-datum generator free

lé ~
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(a) subnetwork with an “incomplete” set of
current sources

O iS|=-I|(Nl)

(c) arbitrary case

Fig. 3. An illustration of the addition of 'zero-valued"
current sources to subnetwork Nl to obtain a set
of (n-1) external current sources.
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~ (a) the original composite (b) a shifted current source ig. in paraliel
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(c) up to (n-1) shifted current sources may appear across the
original composite branch k: ¢, f8,...,6 € {l,z,....n-l}

§ .

B I, |
A Iy = Ty
j'CD @, Vi 1 Iy =iy
k N € €k Vi = vk —€y
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(d) the augmented composite branch

Fig. 4. A composite branch and its associated augmented
composite branch.
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"(o) a single generator (c) node-to-datum generator tree
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o \ o / &
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(b) equivalent acyclic network
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&

(d) N|eq | (e) Nzeq

Fig. 6(a), (b), (c), (d), (e). A sequence of "inverse" transformation
stages for deriving the equivalent
interconnected network Ne



(i)

Fig. 6(f), (g), (h), (i). A sequence of "{nverse" transformation
stages for deriving the equivalent

interconnected network Neq'

as



O\
NN\

%

N

7
22770

} Fig. 7. The bordered block triangular
matrix structure characterizing
diakoptic analysis.
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(b) voltage - controlled characteristic

(a) e nonlinear composite branch of o tunnel diode

iy Iy

{c) current -controlled characteristic (d) a v-i curve that is both voltage-
of a gas discharge tube controlled and current —controlled

Fig. 8. The constitutive relationship of a
nonlinear resistor.

ro it

Fig. 9. An illustration of Lemma 8, where Efl = {1,2},
=Ly = (3,4,5,6), TJ; = {7,8,9,10,11,12),
TJ2 = {13,14,15.16.17} and GJ, = {a,b,c,d,e, €,
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(h) on augmented composite branch

Fig. 10(a), (b), (c), (d), (e), (£), (g), (h). The equivalent
transformations in

deriving codiakoptic
analysis.
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(n) the equivalent interconnected network Neq
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(o) the bordered block triangular matrix
structure characterizing codiakoptic analysis
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Fig. 10(1), (), (k), (1), (m), (n), (0). The equivalent transformations
in deriving codiakoptic
analysis.
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