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NONLINEAR DIAKOPTICS1

L. 0. Chua and L. K. Chen

ABSTRACT

The concept of diakoptic analysis is derived rigorously using only

elementary circuit-theoretic ideas. It is shown that all the published

versions of diakoptic analysis including the dual concept of codiakoptic

analysis and the generalized concept of multi-stage diakoptic analysis

are no more than special cases of a much simpler, yet more general, method

called generalized hybrid analysis to be derived in this paper. This

identification of diakoptic analysis with generalized hybrid analysis allows

a direct generalization to the analysis of large-scale nonlinear resistive

network by tearing the network into several small subnetworks and then

analyzing each subnetwork separately. Since the subnetworks are uncoupled,

this method of analysis is particularly suited for parallel computation

where several small computers are used concurrently instead of one much

larger computer.
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The authors are with the Department of Electrical Engineering and
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1. Introduction

The concept of diakoptic analysis was originally conceived by Kron

more than two decades ago [1]. The significance of this concept, however,

has not been widely appreciated mainly because Kron's original writings

[1 - 3] were vague and extremely difficult to understand.1 Branin [4],

Baty [5], Brameller [6] and Happ [7,8] were among the few who appreciated

Kron's work and attempted to clarify the concept. Others, such as Roth [9],

Amari [10] and Wang [11] had responded to Kron's appeal [2] and attempted

to derive diakoptic analysis rigorously using concepts from algebraic

topology. In spite of all these efforts, however, the exact domain of

applicability of diakoptic analysis remains unknown. Indeed, since almost

all published works [1 - 14] on diakoptic analysis had been exclusively

addressed to linear networks, it is not even clear whether the concept is

applicable to nonlinear networks. Our objectives in this paper are twofold.

First, we will derive diakoptic analysis via a very simple circuit-theoretic

approach and show rigorously that it is no more than a special case of the

generalized hybrid analysis to be derived in Section 4. In fact, we will

show in the Appendix that all published variants of diakoptic analysis

Even Kron himself implied that many of his results are intuitive and
appealed to mathematicians for rigorous justifications [2].

2
These references are listed in chronological order. However, many of Happ's
earlier works actually predate the reference cited here.

3
A simple derivation of a modified form of diakoptic analysis using only
concepts from linear algebra was given recently by Wu in a seminar at
Berkeley. An earlier version of Wufs derivation will appear in [12]. Our
derivation is based on the familiar concept of equivalent circuits in
contrast to Wu's derivation which is based strictly on linear algebraic
manipulations.

4
Any method of analyzing resistive networks which involves solving a
system of linear or nonlinear algebraic equations involving both voltage
and current variables will be referred to in this paper as hybrid analysis.
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including the dual "codiakoptic analysis" and the generalized "multi-stage

diakoptic analysis" proposed by Onodera [13,14], as well as the more recent

"modified nodal method" by Ho, Ruehli and Brennen [15], and the "linear

algebraic elimination method" by Wu [12] are also special cases of the

generalized hybrid analysis.

Having established the generality and simplicity of the generalized

hybrid analysis in Section 4, our second objective is to generalize

diakoptic analysis to large-scale nonlinear resistive networks in Section 5.

Not only is diakoptic analysis directly applicable to nonlinear resistive

networks, but it is also possible to formulate the problem in such a way

that each stage of the Newton-Raphson iteration is equivalent to that of

solving a linearized resistive network by hybrid analysis. In other words,

each nonlinear resistor can be linearized at the branch level, thereby

obviating the expensive process of numerically evaluating the Jacobian

matrix associated with the Newton-Raphson method.

In order to motivate the concept of an "open loop" and its "associated

generator" to be introduced in Section 2, it is perhaps instructive to give

first a somewhat intuitive explanation of what diakoptic analysis entails.

The clues to finding the "domain of applicability" as well as for uncovering

the many "subtle" points that needed justification will surface from this

brief introduction.

Let N be a network containing two-terminal elements and let Nn be

a subset of branches of N henceforth called the torn branches whose

removal will separate N into "m" separable subnetworks Nn,N0,...,N as
12 m

A graph is separable if it is disconnected or hinged [16]. Although
the following derivation of diakoptic analysis is illustrated with dis
connected subnetworks, our results are valid also for hinged subnetworks.
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shown in Fig. 1(a). Observe that those "connection branches" N„ , C w
0-k 0

which share a common node with subnetwork N (e.g., in Fig. 1(a),

N0_l = {^(N^), b2(N1),...,b (N-)} )must necessarily form a cutset.

Suppose for the moment that the current solution waveform of each

connection branch is given a priori , then we can apply the current source

substitution theorem [17] and replace each connection branch by a current

source whose terminal current is prescribed to be identical to its solution

waveform, as shown in Fig. 1(b), without affecting the original solution of

the remaining branches. Since the connection branches in Nrt , are all
0-k

current sources, the network in Fig. 1(b) can be transformed into the

"hinged" network shown in Fig. 1(c) without affecting the original solutions.

Since each group N of substituted current sources form a cutset, one

Q

source is clearly redundant and may be replaced by a short circuit. The

"separated" network shown in Fig. 1(d) remains equivalent to the original

network N in the sense that the solution waveforms of corresponding branches

are identical. Hence the solution of N can be found by solving the component

subnetworks separately provided that each current source waveform I.(N.)
3 k

is given a_ priori. Unfortunately, this hypothetical situation seldom occurs

in practice and the waveforms characterizing each substituted current source

must be treated as a variable for the time being. The basic concept of

diakoptic analysis is to transform each subnetwork N, into an equivalent

b^(N^) denotes the branch b^ in subnetwork N^. Similar notations will be
used in the sequel.

We assume throughout this paper that the network under consideration has
a unique solution for all time t.

8
Observe that each separated node n/^Nand its associated internal node

nV-\ coalesced into a single node in Fig. 1(d).
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9
acyclic subnetwork Nfc containing the original set of nodes while

eq

preserving the identity of the substituted current sources. This may be

achieved (in section 3) by removing all links with respect to some tree

inside Nfc while replacing the tree branches with "coupled branches" (see

Fig. 1(e)). Since, except for the deleted branches, the topology

remains unchanged, we will prove that the earlier transformation steps in

going from Fig. 1(a) to Fig. 1(d) can be reversed. Eventually, an equivalent

interconnected network N (Fig. 1(f)) can be obtained upon replacing the
eq

substituted current sources by their original branches. Since each equivalent

subnetwork N contains no loops, the equivalent interconnected network N
eq eq

is a greatly simplified network which can be analyzed efficiently by

conventional loop analysis. A rigorous derivation of diakoptic analysis

based on the above equivalent network transformation technique will be

presented in Section 3.

2. Concept of an Open Loop and its Associated Generator

Let ?J be a directed graph with "n" nodes and "b" branches, and let

') be a tree of lj and ^l its associated cotree (i.e., complement of the

tree). Elements of TJ and J. will henceforth be called twigs and links,

respectively. For reasons that will be obvious soon, we will augment Q

with (n-1) external branches which also form a tree 9T, henceforth called
g

agenerator tree, of Q. For example, consider the graph Q shown in

Fig. 2(a) with n=4 and b= 6. Let tJ = {4,5,6} and i£ = {1,2,3} be a

9
A graph is acyclic if it contains no loops.

This will be referred to in Section 3 as the fundamental-tree case.

"... • . ,U>rniiiH>loj',Lc.s not defined in this paper can be found in [16] or [18].
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prescribed tree and cotree. We can augment Q with several distinct

generator trees having n-1 = 3 external branches. For example, we can

pick the augmented tree (J = {4!,5,,6'} (dotted branches) shown in

Fig. 2(b). Observe that this particular augmented tree forms a node-to-

datum "star-tree" structure and will henceforth be referred to as the

node-to-datum generator tree. Another tree that we will often encounter

in the sequel is obtained by adding an oppositely directed branch in

parallel with each twig of the given tree (J as shown in Fig. 2(c). This

particular choice of 9J will henceforth be referred to as the fundamental

generator tree. For complete generality, however, we will allow the

augmented tree r) to be arbitrarily chosen, such as the dotted branches

shown in Fig. 2(d).

Using the above notation, we can now define an open loop of Q with

respect to any generator tree rj to be any set of branches of Q which
g ^

form a closed loop with a branch, henceforth called the associated open

loop generator, of rj . For example, the sets of branches {1,3}, {3,4,5},

{5,6}, {2} all form closed loop with augmented branch 4' of the node-to-

datum generator tree in Fig. 2(b). They are, therefore, open loops induced

by the same generator 4'. Out of the many possible open loops induced by

the same generator, we will often choose the unique open loop consisting

exclusively of twigs (of the prescribed tree .J ) and call it a fundamental

open loop. Hence, {5,6}, {4,6} and {6} are the three fundamental open loops

induced by the open loop generators 41, 5' and 61, respectively, in Fig. 2(b).

12
An open loop is referred to elsewhere [1 - 9] as an open path with no

mention whatsoever of its associated generator. We introduce the idea
of an open loop and its associated generator in order that the concept
of codiakoptics may be derived in a dual manner as shown in Appendix C.
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Similarly, {4}, {5} and {6} are the fundamental open loops induced by

the open loop generators 4', 5» and 6', respectively, in Fig. 2(c). From

now on, we will assign a positive orientation to each open loop to be that

induced by its generator. The orientation and branches of an open loop

can be precisely represented by a lxb row vector p. For example, several

open loops induced by the node-to-datum generator tree branches in Fig. 2(b)
are represented by:

branches in original graph (j

12 3 4 5 6

fundamental open loop
induced by 4' = (o 0 0 0 1 -1 ) A p ,
fundamental open loop
induced by 5* =(0 0 0 1 0 -1 ) 4 p
fundamental open loop
induced by 6f = (0 0 0 0 0 -1 ) A p

•~ ~6
open loop induced by4'=(0 0 -1 -1 1 0 ^ A £

== ZLf

open loop induced by 51 = ( 1 1 0 0 0 0 ) A J t
open loop induced by 6' = ( 1 1 0-1 0 0 ) A p

It is important to observe that the elements of the lxb open loop row vector

belong exclusively to the original graph Q. Observe also that the set of

all open loops of [J does not form a vector space. In fact, the difference

between two open loops does not necessarily give rise to another open loop,

e.g.,

Pa' " Pa» = ( 0 0 1 1 0 -1 ) A z,

where z^ ±s actually a closed loop! This observation turns out to be a

basic property of open loops as shown by the following lemma.

Lemma 1 The difference between any two distinct open loop vectors induced

by the same generator is always a closed loop.
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Proof; Let p and p, be any two distinct open loops of vj induced by the

same augmented generator g. Define an augmented graph [j A {j u {g} and

three l*(b+l) augmented vectors as follows:

branches in Cj augmented branch g

Fa A ( Pa . 0 )

?b ^ ( fb • ° }
¥.4(0 , 1 )

By the definition of an open loop, z A p + g and z, A p, + g are both '
-.a la ° _b .b r

closed loops. The observation that the difference between two distinct

closed loops is another closed loop yields

fa " fb = (?a + !} " (?b + ?> " ?a " ?b ^ f

where z is a closed loop in vj. Let z be the lxb row vector containing the

first b components of z, then since z does not contain the augmented branch

g, z is a closed loop of the original graph y. Hence, we have

p - p, = z
Ta Cb

where z is a closed loop of fj. •

It follows from Lemma 1 that an arbitrary collection of open loop

vectors need not be linearly independent. The following important lemma

shows us how to construct a maximal set of linearly independent open loop

vectors.

Lemma 2. Let \J be a connected graph with "n" nodes and "b" branches and

let rj be any augmented generator tree. Then any collection of (n-1) open

loops induced by the (n-1) distinct open loop generators in ~J are linearly

independent.

Proof: See Appendix A.
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In view of Lemma 2, it makes sense to define a full-ranked (n-l)xb

matrix T, henceforth called the open loop matrix, where each element T
ij

is defined as follows:

T.. = 1, if open loop i contains branch j and has the same

orientation as branch j;

= -1, if open loop i contains branch j but has opposite

orientation as branch j;

= 0, if open loop i does not contain branch j.

Observe that the number of columns in T is equal to the number of branches

of (J . In the special case where all open loops are chosen to be fundamental

open loops, the associated matrix will be called the fundamental open loop

matrix and denoted by T, without the "hat". An important property of the

fundamental open loop matrix T is given by:

Lemma 3. If the columns of the fundamental open loop matrix T are ordered

such that the links appear before the twigs, i.e., T = [Tcp Try], where Tq)

denotes the first (b-n+1) columns representing links in !xl and To* denotes

the remaining (n-1) columns representing twigs in ^J, then Tq) = Ocf and

TO" is an (n-l)x(n-l) nonsingular matrix.

Proof: By definition, the branches in a fundamental open loop consists *

exclusively of twigs in rj, hence, Tq) = 0q). Moreover, it follows from

Lemma 2 that the (n-1) fundamental open loops are linearly independent,

hence, Trv is nonsingular. B

The significance of the open loop matrix f is summarized by the

following main result of this section:

TAe.°.rem 1- Let U be a connected graph with "n" nodes and "b" branches
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and let J denote an augmented generator tree. Then there exists a
"I O

unique coboundary matrix Q, henceforth called the associated coboundary

matrix, such that

Q Tc = lc^ (1)

where f is any open loop matrix induced by the (n-1) distinct open loop

generators in J
&•

Proof: Let <J be any tree of the given graph Cj. From Lemma 1, the

difference between an arbitrary open loop p and a fundamental open loop

p. is a loop z., provided that both p and p. are induced by the same

generator. Let f be an arbitrary open loop matrix induced by <J and let
©

T be the fundamental open loop matrix induced by J . Since each row vector
8

of f - T defines a loop, we can always decompose an arbitrary open loop

14
matrix T as the sum of a fundamental open loop matrix T and some loop matrix

B; namely,

T = T + B (2)

It follows from Eq. (2) and Tellegen's theorem [16] that, if Q is any co-

boundary matrix, then

QT^Qt' + QB^QT1 (3)

A coboundary (resp., cycle) matrix § (resp., B) is a generalized cutset
(resp., loop) matrix whose rows represent linear combinations of fundamental
cutsets (resp., loops) [18]. Hence, any coboundary (resp., cycle) matrix
Q (resp., B) may be decomposed into §=PqQ (resp., B= PfiB) where
Q(resp., B) is a fundamental cutset (resp.^ loop) matrix and Pq (resp., PB)
is some nonsingular transformation matrix.

14Note that the row vectors of the (n-l)xb matrix Bis, in general, linearly
dependent.
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From Lemma 3, T is given by

T=[?C£ Jcj] (4)

where Tq. is an (n-l)x(n-l) nonsingular matrix. If we choose 6 = P Q,

where Q = [Q^n lq] is the fundamental cutset matrix and

PQ A(jEj.)"1
then it follows from Eqs. (3) - (5) that^

9f =?Q 9f =Ucf1 [Qcp lef %

T3T
Hence, the coboundary matrix

Q=PQ Q A(l£~) XQ

(Trj)_1(T^.) =1~

(5)

(6)

satisfies the property of Theorem 1. It remains to prove that the co-

boundary matrix Q is uniquely defined (i.e., it is independent of the

choice of the tree r) chosen in Eq. (6)). Suppose we choose another tree

rj and obtain a different coboundary matrix QT such that

(7)9f f =lrj

By definition, any row of a coboundary matrix can be expressed as a linear

combination of the rows of the fundamental cutset matrix Q with respect to

the tree rj . Hence, there exists a nonsingular matrix P' such that

§' =?q 9* Equations (2), (4) and (7) imply that
- X

Q'T = Q'T = ?q f9,j| JrjJ
0

a

%
= ?q Try « i7y (8)

therefore, we have

*Q =(%)_1 " ?Q (9)
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Hence Q* = Q and the associated coboundary matrix is unique and depends

only on the augmented generator tree J .
S

15
The following corollary gives us the algorithm for constructing

the unique coboundary matrix associated with a prescribed augmented

generator tree <J :
S

Corollary. Algorithm for constructing Q.

Let y be a connected graph with "n" nodes and "b" branches and let

(J be an augmented generator tree of cJ. Then the unique coboundary matrix
8 - -.—, —

Q associated with W can be constructed as follows:
^ rfg

Step 1. Choose any tree ~J of c/.

Step 2. Construct the (n-l)x b fundamental open loop matrix T = [Oq) T^-d

induced by (j .
S

Step 3. Construct the (n-l)xb fundamental cutset matrix Q of 5J with

respect to (J.

Step 4. Obtain § from

Q- Vcf"1 9 (6)

3. Derivation of Diakoptic Analysis

We are now ready to return to the separated subnetworks N_,N-,N2,..

...,N in Fig. 1(d) and pick up the pieces. It suffices to consider the
m

first subnetwork N- since the same derivations apply to the remaining

subnetworks N«,N0,...,N .
z 3 m

Recall that the branch connecting node n^-v and node nU is a short
® '®

circuit; hence nodes n^and n^-scan be coalesced into a single node as
© ©

In the literature [1,2,3,7,8], the associated coboundary matrix is found

[fl
by inverting a nonsingular matrix fi A I„|» where B is some cycle matrix.
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shown in Fig. 3(a). In other words, the external current sources do not

generate any new node in subnetwork N . If we let "n" and "b" denote

respectively the number of nodes and branches inside N (i.e., not counting

the external current sources), then it follows from Fig. 3(a) that the

number of external current sources associated with N is less than or equal

to (n-1). There is no loss of generality, however, to assume that there

are exactly (n-1) linearly independent external current sources associated

with N^ since we can always introduce additional "zero-valued" current

sources, if necessary, without affecting the original solutions of N as

shown in Figs. 3(b) or 3(c). Observe that since these (n-1) external current

sources are linearly independent (i.e., they can be individually specified

without violating KCL) and since N is a connected network with "n" nodes,

these (n-1) external current sources must necessarily form a tree of N .

Our first step in deriving diakoptic analysis is to choose this tree to be

the augmented generator tree >J introduced in the preceding section. If a

zero-valued current source is introduced between each of the remaining nodes

and the datum node (Fig. 3(b)), the resulting generator tree assumes a

star-tree structure and corresponds, therefore, to the node-to-datum case

(Fig. 2(b)). For complete generality, we will allow the set of (n-1)

external current sources to assume any configuration (such as that shown

in Fig. 3(c)) so long as they form a tree of N .

Our next step in the derivation of diakoptic analysis is to apply the

i-shift theorem [17] and shift each of the (n-1) external current sources

around any open loop induced by the current source acting as the associated

We assumed here that each node is associated with at most one external
current source. When this is not the case, we can always combine the current
sources into the same node as one single current source.
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open loop generator. After this is done, the original set of external

current sources became open circuits. Each of the shifted current sources

is now in parallel with an internal branch of N-, which we assume to be a

composite branch as shown in Fig. 4(a). Observe that an external current

source i will be shifted in parallel with an internal composite branch

Sj
k whenever the open loop induced by i contains branch k (Fig. 4(b)).

Sj
Hence, after all external current sources have been shifted, each composite

branch k may have up to (n-1) external current sources connected in

17
parallel (Fig, 4(c)). The next step of our derivation will be to combine

all those shifted current sources in parallel with the composite branch k

by an equivalent external source j' (Fig. 4(d)). We will show that the

properties of the open loop matrix presented in the preceding section can

be used to implement the above sequence of external source transformations

in an algebraic form which automatically "monitors" the direction of each

shifted current source. However, before we do this, let us pause to

consider a specific example in order that the reader may form a concrete

picture of the ensuing development.

Consider the network graph N shown in Fig. 5(a), where each branch

is assumed to represent a composite branch (Fig. 4(a)). Let the set {5,6}

denote the torn branches Nn whose removal results in the two separated

subnetworks N = {1,2,3,4} and N2 = {7,8,9,10}. Replacing each branch in

N by its equivalent current source (Fig. 5(b)), we obtain the equivalent

hinged network shown in Fig. 5(c). This network can be separated into the

two equivalent subnetworks N- and N„ shown in Fig. 5(d). Since each pair

17It must be emphasized that although the current sources in Fig. 3(c) are
shown all pointed in the same direction, this need not be the case in
general.
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A

of current sources form a cutset, the current source I,(t) = -I (t) can be
6 5

replaced by a short circuit, thereby coalescing nodes n^with nUsin N
© © 1

and n^with nV^in N2 (Figs. 5(e) and (f), resp.). Let us now focus our
attention on subnetwork ^ which has n=4 nodes and b=4 branches. Since

we have only one external current source i = L but n-1 = 3, we will
sx 5

introduce two additional "zero-valued" current sources i =0 and i =0
S2 s3

so that the three sources form an augmented tree rj of N . For this
8 1

example, let us choose to connect these sources in a node-to-datum star-

tree structure as shown in Fig. 5(g) (a similar augmentation on N will

give the star-tree structure shown in Fig. 5(h)). Our next step is to apply

the i-shift theorem and shift each external current source in parallel

with the internal branches of ^ in order that it may be combined with the

composite branches. We can achieve this goal by shifting each external

source i around any open loop induced by i . For example, we can shift i
J J 1

around open loop {1,2,3}, i around open loop {1,3,4} and i around open
2 s3

loop {3,4} (Fig. 5(i)). Two or more shifted sources which are in parallel

with each other can be combined as one source j', j1, j' and j1 (Fig. 5(j)).

Notice that the objective of this transformation is to get rid of the source

ls which is not across a branch of ^ (Fig. 5(g)). The choice of the open

loops in Fig. 5(i) was, therefore, unnecessarily complicated and was done

only for the sake of generality. We could have accomplished the same

objective by choosing a simpler set of open loops. For example, we could

shift i around open loop {4}, i around open loop {2} and i around open
1 S2 s3

loop {1,2} (Figs. 5(k) and 5(1)). Clearly, there are in general many

different open loops that can be chosen. However, one surprising result

that will be proved shortly with the help of Theorem 1 is that one choice

•15-



of open loops is as good as another in so far as the subsequent analysis

is concerned.

If we combine each equivalent shifted current source j' (Fig. 5(1))

with the original composite branch, we would obtain the modified subnet

work N' as shown in Fig. 5(m), where each branch in N' represents an

augmented composite branch (Fig. 4(d)). In other words, after going through

all these transformations, we end up with a subnetwork Nj which is identical

to the original subnetwork N- except for an augmented current source j£

in parallel with each of the original composite branches.

Returning now to the general case of the modified subnetwork N^,

let us state a lemma which relate the "combined shifted" current source

vector j1 A [i\, J^-.-.Jv]11 with the "unshifted" current source vector

i A [i , i ,...i ]' :
~8 = sl s2 Vl

Lemma 4. Let f be any open loop matrix induced by the (n-1) external current

sources acting as the open loop generators and let jf denote the "combined

shifted" current source vector, then

j» = Tfc i (10)
d ~s

Proof: Follows immediately from i-shift theorem and the definition of

an open loop. ™

Our next step in the derivation of diakoptic analysis is to carry

out a coboundary analysis (i.e., a generalized cutset analysis) [18] of

the modified subnetwork N'. Using the notation associated with the

augmented composite branch shown in Fig. 4(d), the KCL equation becomes

QIt=QI-Qj, = 0 (ID
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where

V A

Vl

V2

I'

b

. I A , and j' A

and Q is any coboundary matrix. But

where

I = i-j=Gv-j=GV + Ge-j

i A

i2 j2

, j A , V A

" vl~ ei

V2 e2

•
, e Az

•

Vb %
l_ —1 \ -J

(12)

(13)

(14)

and G is the bxb branch conductance matrix of N1. The composite voltage

vector V can, in turn, be expressed via the following coboundary trans-

18
formation [18]:

V = Q V (15)

where V is an (n-l)xl vector, called the generalized voltage coordinate

19
vector. Substitute Eqs. (10), (13) and (15) into Eq. (11) and we get

^Q^Y +§<?e - V " (9 ?C) is =? (16)
Now suppose we choose Q to be the unique coboundary matrix associated with

the augmented generator tree 9T made up of the (n-1) unshifted external
o

18
This is a generalized form of "node transformation" and is equivalent

to KV1, equations.

L9
The precise interpretation of the generalized voltage coordinate vector

will be given shortly in Lemma 5.
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current sources, then it follows from Theorem 1 that QT = 1 and Eq. (16)

reduces to

(QGQ^V + Q(Ge - j) - i =0 (17)

The generalized voltage coordinate vector V can now be interpreted as

follows:

Lemma_5. The generalized voltage coordinate vector V in Eq. (17) is equal

to the negative of the (n-l)*l voltage vector V associated with the (n-1)

CT 21
external current sources in the augmented generator tree <J , namely,

V = -V (18)
~s

where V A [V , V ,...,V ]'. (19)
~s Sl S2 Sn-1

Proof: It follows from Eqs. (1) and (15) that

V = (T Q )V = T V = -V (20)
- ~ ~ - - ~s

Lemma 5 will now provide us with the key to transform the modified

subnetwork N* into an equivalent "acylic" network N- . Observe that
eq

Eq. (17) can be recast as follows:

V = R (j + i ) = -V (21)
~eq ~ -a -s

where R A (Q G qV1 (22)
~eq -- - - -

and j A Q(j - Ge) (23)

20The remarkable thing about Eq. (17) is that we have managed to recover
the external current source vector i intact, after all these manipulations!

~s

91
We assume the associated reference convention [16] throughout this paper.
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Now suppose we construct an acyclic network N by simply adding a
eq

current source j (i.e., the kth component of j) and a coupled linear

resistor defined by the kth row of R in parallel with each external current

source i of the generator tree 71 (Figs. 6(a) and (b)), then it follows
k 8

from Eq. (18) that the network equation describing N is precisely given
eq

by Eq. (21)! For example, corresponding to the star-tree generator of

Fig» 5(g) (which is redrawn for convenience in Fig. 6(c)), we construct the

network ^ shown in Fig. 6(d). It follows from the above observation that
eq

the subnetwork ^ in Fig. 5(g) and the acyclic "coupled" subnetwork N
eq

in Fig. 6(d) are equivalent in the sense that they have identical governing

equations. Applying the same transformation procedure to subnetwork N

(Fig. 5(h)), we obtain the equivalent acyclic network N shown in
eq

Fig. 6(e). Now recall that i = i =0 (Fig. 5(g)) and i = i =0
S2 S3 s5 s6

(Fig. 5(h)). Hence, the two equivalent networks N. and N„ (Figs. 6(d)
eq eq

and (e), resp.) can be redrawn as in Fig. 6(f). We can now reverse the

steps implemented earlier in going from Fig. 5(a) to Figs. 5(e) and (f) and

apply the sequence of equivalent "inverse" transformations shown in Figs.

6(g) and (h) to obtain the equivalent interconnected network N shown in
— eq

Fig. 6(i). Observe that this equivalent interconnected network N contains
eq

only one loop. In the general case, the resulting equivalent interconnected

network N will contain as many loops as there are in the original torn

network NQ (Fig. 1(a)).

Note that the equivalent interconnected network N can be characterized
eq

by a "coupled" branch impedance matrix (Eq. (21)). Hence, we can analyze this

network by the classical loop analysis method (or by any convenient cycle

analysis [18]). Tf we let V denote the composite voltage vector of the torn
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branches Nn and order these branches first, then the KVL equation for

the equivalent interconnected network N is given by

B V A [B B ]
-eq ~eq = ~o -a

V
-o

V

= 0 (24)

22
where B is the fundamental loop matrix (with respect to any tree of

-eq

N ) of N , B and B are the submatrices corresponding to the partition
eq eq' ~o ~a

of the torn branches and the acyclic coupled branches, respectively, and

23
V denotes the branch voltage vector of the coupled resistors in N .

Now, carrying out the usual loop analysis, we write

V=v-e«Ri-e»RI+Ri-ert
-O -O -O ~0 "O -o ~o ~o ~o *o ~o

-=RBtI+Rj-e (25)
~o ~o ~o ~o ~o ~o

where v , e , i and I are defined as in Fig. 4(d), R^ and I denote the
~o -o ~o -o ~o ~o

branch resistance matrix and the link currect vector of Nq, respectively.

Substituting Eq. (25) into Eq. (24), we obtain

(B R B*)! + B (R j - e )+ BQV = 0 (26)
~o -o ~o -o -o ~o ~o ~o ~a~

Observe that Eq. (26) is the classical loop analysis equation [16]

of the equivalent interconnected network N , provided V is given and

considered as sources. The branch voltage vector V, in turn, must satisfy

the associated coboundary analysis equation (Eq. (17)) derived earlier for

22We assume that any tree of Neq contain all the acyclic coupled branches
as twigs.

23We abuse our notation slightly here since ^, as defined later in Eq. (29),
is actually made up of the collection of vectors defined in Eq. (21) for
the m acyclic subnetworks N. , N« ,... ,Nm .

eq eq eq
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a single subnetwork ]& . We will once again abuse our notation slightly

by using the same Eq. (17) to denote the associated coboundary analysis

of the "m" separate subnetworks N ,N ,...,N , provided the coboundary

matrix Q and the branch conductance matrix G are defined by:

9<V

Q A

Q(N2)

Q(N )
m

> G A

G(N1)

G(N2)

G(N )
m

(28)

where Q(N, ) and G(N ) denote respectively the unique associated coboundary

matrix and the branch conductance matrix of subnetwork N . Similarly, the

vectors e, j, i and V are defined as follows:

e A

e(N1)

e(N2)

5(V

j A
J(N2)

W

i A
~s r

w

i (N )
~s m

and V A

y(N1)

V(N2)

m

(29)

Now, recall that i is the current vector of the torn branches N ,
s o-k

connecting subnetwork N to N . This current vector is uniquely determined

by the link current vector f of N . Hence, there exists some matrix
-o o

24
C such that

i = C I
-s - ~o

Substitute Eq. (30) into Eq. (17) and we have

(Q G Q^V + Q(Ge - j) - C I = 0

(30)

(31)

24 t
Actually, £he matrices C and Ba are related by C = Ba, as will be shown

in the next section.
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x

Eqs. (31) and (26) can now be combined into a single matrix equation

A' At
QGQ -C

B B R B*
-a ~o~o~o

y

i
~o

sc

Q (j - Ge)

B (e - R j )
~o ~o ~o~oy

(32)

The process of formulating and solving Eq. (32) is called diakoptic

analysis by Kron [1-3]. The main advantage of this analysis is that

through a judicious choice of the torn network N , the matrix (B^B^) will

have a relatively small dimension. The matrix (QGQ ) has a large dimension

but it is in block diagonal form in view of Eq. (28). Hence, the structure

of the "sparse portion" of Eq. (32) assumes the computationally desirable

block diagonal form shown in Fig. 7. So far, our derivation assumes no

coupling among the resistors just for simplicity. It should now be clear

that the entire derivation remains valid so long as couplings are restricted

to among branches within the same subnetwork (as required by the nonzero

structure of G defined in Eq. (28)).

Observe that Eq. (32) is independent of the choice of the open loops

(recall the two choices made in Figs. 5(i) and (k)) for shifting the (n-1)

external current sources. This is because the key identity QT = 1

given by Theorem 1 remains valid for any choice of the open loop matrix T,

so long as Q is chosen to be the unique coboundary matrix defined in Eq. (6)

This coboundary matrix is determined as soon as the augmented "current

source" generator tree <J is prescribed (see corollary to Theorem 1). In

fact, the next two lemmas show that Q can be obtained by inspection for two

particular choices of <J .

Lemma 6. The unique coboundary matrix Q associated with each subnetwork

N, for the node-to-datum case (i.e., when <J is chosen to be a node-to-
Hc g
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datum star-tree) is simply the reduced incidence matrix (relative to the

same datum node) of subnetwork N . Moreover, the generalized voltage
A

coordinate vector V is simply equal to the node-to-datum voltage vector V .
- __ __ „n

Proof. Since the current reference direction of each external current

source in the star-tree rj is assigned leaving the datum node (see Figs.

2(b) and 5(g)), it follows that the (n-l)xl voltage vector V associated
~s

with the current sources is

V = -V (33)
~s ~n VJJ'

where V denotes the standard node-to-datum voltage vector of subnetwork

Nfc. Substituting Eq. (33) into Eq. (18), we obtain

V = V
~n

Eq. (15) then becomes

v=9L Yn (34)

Since V is the b*l composite branch voltage vector of N , it is also

given by V= A* V [16]. Hence, Q=A. •

It follows from Lemma 6 that the associated coboundary analysis

(defined by Eq. (31)) for the node-to-datum case is simply the classical

nodal analysis. Since the node admittance matrix AGA is known to be

extremely sparse [18,19], from the computational efficiency point of view,

the augmented current source generator tree for each subnetwork N. should

be chosen to be a node-to-datum star-tree.

kcmroj=L_7- Let J be any tree of the graph U of subnetwork N and let the

augment ed KeiH'r.itor tree )f beI he fundamental generator tree with respect

L°_ '.' (i.e., each generator branch is in parallel but oppositely oriented

with a twig in rj as shown in Fig. 2(c)), then the unique associated
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\

coboundary matrix Q is simply the fundamental cutset matrix Q with respect

to J. Moreover, the generalized voltage coordinate vector V is simply

equal to the twig voltage vector Vr-p

Proof. For the fundamental generator tree (J , the fundamental open loop
g

matrix induced by rj is simply T = [Oqq lrr]. Hence the associated non-

singular submatrix T^ is simply the identity matrix. It follows from

Eq. (6) that Q=Q and V= yep. •

4. Relationship Between Diakoptic and Hybrid Analysis

Various forms of hybrid analysis have been reported in the literature

[19 - 22]. Our first task in this section is to derive a generalized form

of hybrid analysis which includes all existing forms as special cases.

Following this, we will prove rigorously that diakoptic analysis is also a

special case.

Let Q be the graph of a linear resistive network N, let J denote

some tree of y and let 9l denote its associated cotree. Partition the

tree J into two arbitrary sets cX and <J„ such that <J = <J, u <J2.

Let Sl1 denote any subset of the cotree ^l which forms loops exclusively

with branches in iJL and let Su denote the remaining branches such that

HI =iS.1 uSL}2. If we relabel the branches in the order SE^, S£2, 7J1
and 75*)* then the fundamental loop matrix B and the fundamental cutset

matrix Q with respect to u are given respectively by

The subsets <jL and u9 need not be connected and each component there
fore represents a forest of vj.

26 t
The relation BQ =0 [16] was used in describing Q.
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B =

Q -

54! Si'.

-^ 9^ !C£1CJ1 Oc^g^

?S£2^1 }^2 ?^1 ?^2^2

•?q> cr "Bcp cr icr cr Ocr t
^i«Ji ~~*-2(^i ",Ji(^i "'-^I'-h.

t t

°q) cr _Bq) cr °crcT' Wo1
-LX<J2 "^-2^2 ~'^2'^1 ~'>'2,-'2

(35)

(36)

where 1 and 0 denote respectively the unit and zero matrix of dimension

[XJ x|XJ and |x|x|y|. Similarly, B and Q denote respectively some

submatrix of B and 0 of dimension |x|<|y|. It is important to observe

LhaL the upper rlghL-hand corner submatrix of B is equal to 0, i) r-r because,

by construction, branches in !x|_ form loops only with branches 7} .

Using the composite branch notation shown in Fig. 4(a), KVL and KCL

equations assume the following form:

Yep + ?q> cr Ycr = 9co

Yq> + !cp cr Ycr + *a> cr Ycr
-0.2 ^2^1 '^1 Sl2'-^2 ' j2

•!c|) cr kp " !cp cr Jq) + Jcr
^l'^l ^1 '4-2,-,l ^-2 '^1

•?q) cr kp + lef ° 9cr
-4.2 ' J2 "~^-2 ' *2 ' *2

(37)

(38)

(39)

(40)

27
We use the notation X to denote the number of elements in the set X.
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where iv<Zf >YcQ >YCf >YCf }and ijq) »JcP »Jcr 'JCT } denote the composite
voltage and current vectors of the branches in y.-, y.«, ~J* and J ,

respectively. Let

%.

^
= ?i

y3i 9cr q> ?cr cr

(41)

denote the branch conductance matrix of branches in y._ U J and let

v^

S£: %

y9;

= «2

Kr,

£q> cp ?cp cr
^L2^*2 -3-2(J2

*$<& ^2

-^
(42)

-^

denote the branch resistance matrix of branches In St, U ijL- Using the

relations v » V+ e and i_ = I + j (see Fig. 4(a)), we obtain from
**A ~A ~ A " A ~A —A

Eqs. (39), (41) and (37) the following equation:

:*h&x *3$h

( I ^
-B

h y9i +
L?91J

B," Im = 0,*cp cr icp " ycr
^-2^1 ^-2 ^1

Eq. (43) can be rewritten in the more compact form

<9i?i9i> Ycj^ +QiCgifi " h> " "g^ ?S£2 =?9i

where

Siil-^cj^c;^]. ?14 ?^i and j1 A

^1

-26-
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Since g1 can be obtained from Q upon deleting all columns corresponding

to branches in J_2 U r]^ and by deleting the last \7f \ rows, it can be

interpreted as the fundamental cutset matrix of the subnetwork^ made up

of branches in £1^ UrJr with all branches in ££ U7f replaced by open
circuits.

Applying the same manipulation to Eqs. (40), (42) and (38), we

obtain the dual equation

where

(?2?2?2) Jc£ +h(hh " ?2} +?c£ cr Ycr =9e£

?2A[lc£2C£2!^cr].e2A ?se2
and j0 A

~2 =

^2

(46)

(47)

Since B„ can be obtained from B upon deleting all columns corresponding

to branches in'^ U7}^ and by deleting the first |SL|rows, it can be
interpreted as the fundamental loop matrix of the subnetworklAl made up

of branches in ^2 Ujj ,with all branches in H U7} replaced by short
circuits.

Eqs. (44) and (46) constitute asystem of \7J\ + \$£7\ hybrid

equations with |rJ1| voltage variables in Vq> and \i£.?\ current variables

in I^n . They may be combined into a single matrix equation

r— —i j— —j |— _,

?i?i?i "%ri y3i ?i(Ji - ?i?i>

!q> cr ?2?2?2t ^ ?2(?2 " ?2J2)
'— —' '— —' 1— —1

-27-
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Equation (48) represents one form of hybrid analysis [19,20]. We

will now derive a generalized form of hybrid analysis by defining the

generalized voltage and current vectors

*atA3?Qy9i
(49)

(50)-!& 4~B ?CP-2 " **2

where T is any 17f± IxITfi Inonsingular matrix and Tfi is any ISljI*!^'
nonsingular matrix. Observe that each element of the generalized voltage

a

vector V>y is simply an algebraic sum of composite twig voltages, and
~3i
Lemenl

sum of composite link currents.

Premultiply Eq. (44) by (Tq)"1 and Eq. (46) by (t£)~ ,and combine
the resulting equations with Eqs. (49) and (50), we obtain

each element of the generalized current vector Iw) is simply an algebraic

where

A A "f"

9i?A •c' %1

9, =

B« =

C =

A A f*

Ja

(Tq)"1 9x apq gx

(Tb>_1 ?2 A?B ?2

(?b)_1 ?c£291 <V_1

9iQi - ?i?i>

?2(S2 " W

= P« B^b ^cji *Q

(51)

(52)

(53)

(54)

Equation (51) will henceforth be referred to as the generalized hybrid

equation.

Our next objective is to show that the diakoptic analysis derived
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earlier in Eq. (32) is no more than a special case of Eq. (51) with a

particular choice of the two transformation matrices T and T ! This
~Q ~B

can be shown by first identifying N_ = ^P_ U rj and N U n U.. .U n =
0 2 2 12 m

3.-L U U^» where NQ is the "torn branches" and N,k=l,2,...,m, is the
kth separated subnetwork defined in Fig. 1. For simplicity, we will

assume throughout the following proof that m = 1 (i.e., N = S£ u 9T ),

since the generalization to the m > 1 case follows trivially - mutatis

mutandis.

Consider first the case of diakoptic analysis where the augmented

current source generator TJ is chosen to be the fundamental tree with

respect to <J. Then it follows from Lemma 7 that the unique associated

coboundary matrix Q in Eq. (32) is precisely the fundamental cutset matrix

Q^^ of subnetwork N =}J. U rj with respect to the tree 7) . Hence Q can

be obtained simply from the fundamental cutset matrix Q in Eq. (36) of the

complete network upon deleting those columns corresponding to the branches

in !J-2 U rJ2 and by deleting the last \7) |rows. It follows from Eq. (45)

that

q = Q- = [-B~p rr icrcr] (55)
?1 %^ ^si

Now let us return to our earlier derivation of diakoptic analysis and

rewrite Eq. (11) with the help of Eqs. (10) and (1) as

QI - Qj' = QI - i = 0 (56)
s

Substituting Eq. (55) for Q in Eq. (56) and observing that I =

we obtain
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-Bg? cy Jc£ +Jcr -*s =9cj- (57)

Comparing Eq. (57) with Eq. (39) and recalling that ig corresponds to the

original set of substituted current sources connecting subnetwork N.^ to

Nft, it follows that the effect accounted for by i is precisely given by
0 ~s

-1. =?^l ^ • (58>
Since N =921 u^» we can examine the terms in Eq. (17) with the

help of Eq. (45) and identify e= e^ j =^ and G= G^. Moreover, it

follows from Lemma 7 that V = Vq» . If we substitute Eqs. (55) and (58)

along with the preceding identities, we would obtain Eq. (44).

In order to identify Eq. (26) of the equivalent interconnected

network N of diakoptic analysis with Eq. (46) of hybrid analysis, we need
eq

to make the following observation. Since 7) is chosen to be the fundamental
8

tree in this case, the linear graph associated with N is precisely those

branches in 7$ Un =<rX Un - 7J. UgP U 7f Hence the fundamental
g o 1 o 1 2 2

loop matrix B of N can be obtained from Eq. (35) upon deleting the first
* -eq eq

|££.| columns and the first ISlJ rows, namely,

=*2 A ^2

B
-eq =fe2S£2 *£$x %£fi2] (59)

If we reorder the columns of B so that the branches in NQ =J-2 U rj^

are grouped together, we obtain

^ ^2 ^1 ^^"o ^l'%

?e, -N2c£2 ?c£2c;2 ^2cfj A[ ?2 HfeffJ (60)
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where B is defined earlier in Eq. (47). Since

in Eq. (24), we can identify

B is also defined earlier
~eq

?0 = ?2 (61)

?a = Ba>cp cr (62)

If we substitute Eqs. (61) and (62) into Eq. (26) and identify R = R-,

j_ = j , e = e« and I = Iqq , we would obtain Eq. (46). Hence, we have
2

proved that the above form of diakoptic analysis is indeed a special case

of the generalized hybrid analysis (Eq. (51)) with unit transformation

matrices T^ = l<~r r-r and T_ = 1,-XQ *&& aM -xb ~^2c£2-
Let us now prove the general case where the "augmented-current-source"

generator tree \J may be arbitrarily chosen. To facilitate the identifi

cation of Eq. (17) with the first equation of Eq. (51), let us first

A

substitute Eq. (6) for the unique associated coboundary matrix Q into

Eq. (56) and obtain

(%M~?fei }m LJ9iJ
- i .= 0

~s 9i
(63)

where T^cris the nonsingular submatrix of the fundamental open loop matrix

t -1
T. If we premultiply Eq. (39) by (Try) , we obtain

-^i

L-^.

t \-l „t

%)" [-4^1 ~^J w "(%)" %XX ^2 =?^t W)

Tt Follows From F.qs. (63) and (64) that the external current source vector

i which accounts for the effect of the currents from the branches connecting
-s

N to N is simply given by:
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J8 =^Cf'1 ?C£ CJ ?C£ <65>

Since N_ = Sl_ U ,T we can identify G = G,, e = e, and j = i, in
1 1 1 J - -V ~1 ~ ~1

Eq. (17). Substituting Eqs. (6), (65) and the above identities into

Eq. (17), we obtain

(Tcr)"1 B^nq 1^ =0^ (66)

Observe that Eq. (66) is precisely the first equation of Eq. (51) if we

identify

Tq "% (67)

TB=lc£2 (68)

*3i 4v^ • %%x • y (69)

Hence, we have proved that the "diakoptic" Eq. (17) is a special case of

the first equation of the generalized hybrid equation (51). It remains

for us to identify Eq. (31) with the second equation in Eq. (51).

Since the "augmented-current-source" generator tree U in this case

may be arbitrarily chosen, the equivalent interconnected network N is

given by N = 7J u NA = 9J U Sl_U ^ Observe that although 71
° J eq ^g 0 J% 2 2 g

connects all nodes of N. = SgL- U J it need not be a subgraph of N_

since some branches of rj may not be connected in parallel with branches

of N (See Fig. 5(g), for example). The fundamental loop matrix of N

with respect to the new tree i) U rj is given by
8 *•
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B

~eq , _.,_ — «*g -^2^2

^2 % %

=fe2S£2 ?££2a »cpgi] (70)
If we reorder the columns of B so that the branches in N = ^ U TT

-eq 0 ^2 u2

are grouped together, we obtain

S£2 ST2 3Tg %^xj2 =n0 cr

B

-2^g

g

[HS& HVz ?%%]"i ?2 -UsrJ (71)
where B is defined earlier in Eq. (47). Note that B is earlier defined

i. ~eq

in Eq. (24), hence we can identify

?0 = ?2 (72)

5a "?cj)Cj.g (73)

Our next step will be to state the following lemma which expresses

?cp Cf' in terms of ?^p cr '•
*• % 2 1

Lemma 8. The l^t2lx|(r) |submatrix Bq) r-r of the fundamental loop matrix

°f Neq =^g U^2 U^2 with resPect co the tree ^X U^ is related to
the |y.Jx| J_ | submatrix of the fundamental loop matrix of N = u U

± L eq 1

2U 2 with resPect to the tree ^ u 7J~ by

?Sf29g =*$£& fcj (74)

Froof. See Appendix N.

Tf we substitute Eqs. (67)-(69) and (72)-(74) into Eq. (26) and

identify RQ = R2, jQ = j^ eQ = e2 and i = Ln ,we would obtain the
~_12
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second equation of Eq. (51). Hence, we have proved that any form of

diakoptic equation (Eq. (32)) is indeed a special case of the generalized

diakoptic equation (Eq. (51)) with T = Tcr and T = lrO cO • This

important result can be summarized as follows:

Theorem 2. There exists a one-to-one correspondence that equates any

form of diakoptic analysis (as given by Eq. (32)) involving variables

Y an(* ?p to a sPecial case of generalized hybrid analysis (as given by

Eq. (51)) involving variables Vry> = Tq» Vry- and Iqj - I^p •

Now that we have proved diakoptic analysis is a special case of

generalized hybrid analysis, there is no point pursuing any further the

algorithm derived in the preceding section since hybrid analysis is much

simpler to implement in practice. From the computational efficiency point

of view, we will choose 7j to be the node-to-datum case so that
S

where T^- represents the "node-to-datum" open loops with branches restricted

to any tree of u\L = 9l 'U yT and where V denotes the "node-to-datum"
111 -n

voltage vector.

Observe that since 9.- u uL = N. U N U.. .U n , a datum node must
1112 m

be assigned to each subnetwork N. and the vector V will consist of the
k ~n

union of the node-to-datum voltage vectors of the m subnetworks. With this

choice of J , the coboundary matrix Q- in Eq. (51) is just the direct sum

of the reduced incidence matrix A(Nn), A(N0)...,A(N ) of the individual
l - L m

subnetworks N_, N2,...,N ; namely,
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9i-

A(N )

A(N2)
0

0 A(N )
m

A A

The corresponding hybrid equation is then given by

Wl -C'
-n h(h - ?i«i)

hhh L^"2J ?2(!2 " ?2^2)

(78)

(79)

where G± is defined earlier in Eq. (28). An efficient algorithm for

constructing the matrices A^ ?2 and C in Eq. (79) as well as some special

cases [8,12,15], including the tableau implementation, of Eqs. (51) and (79)
are given in Appendix E.

We close this section by pointing out that if, instead of fi£ U 9T
2 9*

we choose NQ =^ U r^ as the torn branches, and interpret Eq. (46)

before Eq. (44), then the resulting hybrid analysis will be shown in

Appendix C to be the codiakoptic analysis as proposed by Onodera [13].

Moreover, a further generalization by Onodera [14] - the so-called multi

stage diakopjtjLc_analys^ - will also be shown in Appendix D to be no more

than another special case of our generalized hybrid analysis.

5* Nonlinear Diakoptic Analysis and Solution Algorithm

So far we have proved rigorously that diakoptic analysis of linear

resistive networks is but a special case of generalized hybrid analysis.

To extend diakoptic analysis to large scale nonlinear resistive networks,

it suffices to formulate an efficient algorithm for implementing a

generalized hybrid analysis of nonlinear resistive networks.

Let Ndenote a nonlinear resistive network and let Q be its associated

graph, where each branch of Q represents a"composite branch" as shown
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in Fig. 8(a). Partition the branches of Q into two subgraphs Q and

ycc> where C)vc denotes all branches that are voltage-controlled (Fig.

8(b)) and Cj denotes all branches that are current-controlled (Fig. 8

(c)). LetrJ be a tree henceforth called ahybrid tree of Q chosen

in such a way that it contains as many Q (i.e., voltage-controlled)

branches as possible. Denote the Q branches in u by 9T,, and the
v-/vc 1

remaining Cj branches, which must necessarily form loops with branches

in J1 ,by SL^. Branches of Cj which are not already in Sl1 'U 7f* must

necessarily be current-controlled branches and therefore belong to Q .

Denote the Cjcc branches in 7) by 7] and the remaining Q branches by

y»2. For this particular choice of the "hybrid tree" 75, the fundamental

loop matrix B and the fundamental cutset matrix Q with respect to 7j would

assume the same block structure as in Eqs. (35) and (36), respectively.

Besides, the constitutive relations of the branches can be represented by

the following two nonlinear vector equations:

28
A composite branch is said to be voltage-controlled (resp., current-

controlled) if the nonlinear resistor in the composite branch is voltage-
controlled, i.e., ik = g^Ov^) (resp., current-controlled, i.e., vk = ^(i^)),
where the nonlinear function gfc(-) (resp., rk(«)) denotes the vk-ik curve
of the kth resistor. In the case where the nonlinear function is one-to-
one and onto (as In Fig. 8(d)), the associated composite branch can be
classified as either voltage-controlled or current-controlled, depending
on whether it is more advantageous to include it as an element of Qvc
or Qcc
29 cr

In Section 4, the choice of the tree iJ for the linear case is much
simpler than our choice here. This is because each linear resistor is
both voltage-controlled and current controlled and hence Eqs. (80) and
(81) are well defined under all possible choices of the hybrid tree.
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±c

= §1 (80)

%.

H
= r (81)

L^2J

To simplify our notation in the following derivation, we shall assume

that -1^ U tj^ contains only one connected component. The same result, of

course, applies to the more general case where U!_ U rT contains several

separable components. If we define Qr §1, yq> ,B^ Iy, ,C, e^ etc.
in the same way as we defined them in the preceding section30, and follow

the same procedure leading to Eq. (51), we would obtain the following

generalized nonlinear hybrid equations:

:t -9ili °<9i Y^ +?!> -9 Jcj;2 -§! h -o

^ +hl2 ' (?2 ^ +J2) -?2 ?2 "?c V,

(82)

where "°" denotes the "composition" operation. Observe that if N is a

linear resistive network, then the nonlinear vector function g..(-) reduces

C° ?1^1^ = ?lYl» where 9i is the associated branch conductance matrix, and

the nonlinear vector function r^-) reduces to r^) =?2 V Where R2 is
the associated branch resistance matrix. In this case, Eq. (82) clearly

reduces to Eq. (51). Notice that Eq. (82) remains valid if two or more

nonlinear resistors belonging to it^ U7^ are "coupled" with each other —

30
See Eqs. (45), (47), (49), (50), (52), (53) and (54).
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such as the Ebers-Moll equation of a transistor. The same observation

applies to all resistors belonging to §l« U J

Although Eq. (82) can be solved by any efficient algorithm for

finding solution to nonlinear algebraic equations, we will propose a

Newton-Raphson iteration scheme such that each stage of the iteration is

equivalent to that of solving an associated linearized resistive network

N1, having the same topology as N, by the generalized hybrid analysis.

Once this goal is achieved, highly efficient sparse matrix techniques for

solving linear algebraic equations may be brought to bear on the linearized

network N'.

Let us first recast Eq. (82) into a single vector equation:

<a»

Vrr
~r^l

^

9i 5i ° {9iYq* +~i} " ^la>5 ^ Sih
= 0

C V,
«t

-*3i
+ B0r0 • {B^Icn + j0} - B0e

~2~2 v§£ •a "TZ2

Applying the Newton-Raphson algorithm, we obtain
-1

9U\
fr11

T11

^7

Yq*

?n+l

Hi,

If we define

G.. 4

T11

^iCy^

a*i

m I
hi )

d

_

_ ^-2_

nA-trai

*W<3^i
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(83)

(84)

(85)



and

?2 A

ar2(i2)

3*2 .nA-t-n n ,.
V?2? if2+J2

then the Jacobian matrix in Eq. (84) can be rewritten as follows:

"§i?i§i -?
Y9t

n

Jii!,

n~ t ~ t

9i9i9i "c

n~t

S B2?2?2

£h(
Vrv

)
d

T11

Premultiplying both sides of Eq. (85) by this Jacobian matrix and making

use of Eq. (85), we obtain

0n+l

?n+l.

n~ t *•*-

9i?i?i -?'

? ?2?2?2

'̂ 1

Tn

*• a nA t

9 ?2?2?2

-m

~n

T11

Q1<Q^Vn ~t:n t-n .tcin?i?i?i^ " c '^2 - 9iSi • «£Yrr|- +?i> +? J^ +9^

?% ?2?2?2l"4 "% "?2J2 ' (§2^ +:!2> +*2?2
^ n n ~ n *

9i?i<3 - h> " 9X£ +9^!

?2?2(J2 - J2> - ?2^2 + ?2?2

9iQi - ?i?i>

V-e2 " ?2-J2)
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where

Y? A§1% +er *i ASi<y?>' £ 4?2?c£ +22' ^ ^ *2(#

.n A . .n n n n . n .n . . .n

3i *• J~i " iv ?1 4 ~ei " Yi» ~e2 4 ?2 ~ Y2' ^2 4 J2 ~ *2

(88)

(89)

Hence, each stage of the above Newton-Raphson iteration scheme can be

rewritten as

" nAt ~t

9i?i9i "?

~ A n^ t

S ?2?2?I
-n+1

=

* z .n „n nN

9l(3l " ?!?!>

a / n „n.n.

?2(?2 " R2j~2>

(90)

where the vectors j-, e-, etc. are defined via Eqs. (88) and (89).

Comparing Eq. (90) with Eq. (51), we conclude that each stage of

the Newton-Raphson iteration of Eq. (83) is equivalent to that of solving

a linearized resistive network N having the same topology as N but

with updated branch conductance matrix G-, branch resistance matrix FL,

.n , .n , n , n
current source vectors j and j_, voltage source vectors e. and e„ as

defined by Eqs. (85), (86), (88) and (89) by generalized hybrid

31analysis. It is important to observe that instead of evaluating the

large Jacobian matrix J(«) of the nonlinear vector function3^(0 directly

by numerical differentiation, we first linearize each nonlinear resistor

and characterize the resistors in U... U , ) by an incremental conductance

This linearized resistive network Nn is also known as a "companion
model"[23] and as a "discretized circuit model" [19].
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matrix ?i (Eq. (85)) and the resistors in S£ U 7J by an incremental

resistance matrix R^ (Eq. (86)).32 The Jacobian matrix is then obtained
from Eq. (87). In other words, our algorithm calls for linearizing the

resistors at the branch level. Of course, after each iteration, the

matrices and vectors defined in Eqs. (85), (86), (88) and (89) must be up-

dated to account for the change in the operating point

«n ?12

A

9i?& -?t_

fn Hn
"22 c

n" t

?2?2?2

Substituting Eq. (91) into Eq. (90), we obtain

In
11

»21

12

22

vn+1Yq-
'h

sn
~1

-n+l

^•2
sn
?2

Yqr

-1-2 J

In the general case where SI. U rj consists of several separable

components, the submatrix QjGJqJ in Eq. (90) assumes the same block diagonal
structure as in Fig. 7. Hence, it remains for us to devise an efficient

nlgorithm for solving Eq. (90) which takes full advantage of this highly

desirable sparse structure.

We shall proceed by first defining the standard LU-decomposition

method [19] and, then, by utilizing the block diagonal structure of Eq. (90),

we shall define an efficient solution algorithm for Eq. (82).

For convenience, let us define a matrix Hn as

(91)

(92)

32
The matrices Gj and Rn are diagonal matrices if the resistors are

uncoupled. However, if some resistors are coupled to each other, or if
N contains linear or nonlinear controlled sources, then G? and Rn will
contain off diagonal elements.
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where

?1 A$i(h "&?> and ?2 A?2<?2 -

Let us LU-factorize the matrix H , then

h11 Hn
"ll ?12

?21 ?22

til ?12

Ln Ln
-21 -22

un U*
1:11 "12

?21 ?^2

$& (93)

Ln Un Ln U11
hl?12

n n n n n n

-21?11 hl?12 + t22?22

(94)

where L^ and L^ are lower triangular matrices, IT? and u" are unit upper

triangular matrices. From Eq. (94), we can identify the following relations

?11 " ^llSll

„n n n

?12 hl?12

n n nn
?21 birii

?22 -^2 + iSzfn

(95)

(96)

(97)

(98)

,n
Given H , these relations will be used later on to find the matrices

-li* 5?ii* etc*

Substituting Eq. (94) into Eq. (92), we obtain

$1 S12

Ln Ln
-21 -22

un &
vn+1
Y9*l ~i

?21 &
-n+1

sn_~2_

Defining the intermediate variables

n+1

V11

n+1

°21

12

un
-22

vn+1

-n+1

-42-
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and substituting Eq. (100) into Eq. (99), we obtain

Lnhi

Ln
-21

?12

Ln
-22

n+1
x

n+1
y

=

sn
h

sn
~2

(101)

Hence, Eq. (99) can be solved via two simple substitutions - forward sub

stitution via Eq. (101) and backward substitution via Eq. (100). In

particular, Eq. (101) can be rewritten in the form

Tn n+1 n

hi 7 = h

Tn n+1 n n n+1
L- ? " ?2 " L21 7J22

(102)

(103)

to emphasize the "forward substitution procedure." Similarly, Eq. (100)

can be rewritten in the form

„n ;n+l

y221<£

U?. V,

2

n+1

11 :q.

n+1

(104)

n+1
= x

Tn -n+1
(105)

to emphasize the "backward substitution procedure."

Observe that since the matrix H^ (as in Fig. 7) has ablock diagonal

structure, the associated factorized matrices L^ and U* will also have

the same block diagonal structure. In other words, the LU-factorization of

all blocks of Hn can be done simultaneously. Besides, Eqs. (102) and (105)

each will contain a set of "uncoupled" blocks of equations.

The preceding observations can now be used to devise the following

olT'y.'J^.1!'-. ll°IlV.n_e/.1.r_ AJilKojLtjic. algorithms:
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Assume &L U J consist of "m" separable subnetworks N,,N„,....N .
x •*• 12m

Step 0. "0 -0Initialization: Given I^p and V^ CN }. F-inH t-npoln^-f^ai

matrices ^(N^,), C(Nfc) and j$2, k=1,2,...,m. Set n=0.

Step 1. Construct ^(N^ A§1(Nk) G* Q*(Nk) and LU-factorize H^CN )
into L^Oy U^(Nk), k=1,2,...,m.

Step 2. Obtain U^2(Nk) and L^V by solving Eqs. (96) and (97),

respectively, where H^2(Nk) A"5*0^) and H21<Nk) AC(N ), k=1,
^ y • • • 9ID•

Step 3.
n+1

Obtain x (N.) by forward substitution via Eq. (102), k = 1,2,

... ,m.

Step 4. Compute Dn(Nk) A^(N^ pJ2<Nk> and f(\) 4L2i<Nk> ?n+1<Nk>'
k — i,^,...,m.

Step 5.
m

Construct H^ A?2?£?2 and comPute P* =?22 "" 2 Pn(Nk>>
m k=l

So AS^- J]sn(N.).
"L ~z k=r K

Step 6. LU-factorize Dn into Lo2U22#

Step 7. Obtain y by forward substitution via L00 y = S«.

Step 8.
-n+1Obtain I^-j) by backward substitution via Eq. (104).

Step 9. Compute S^(Nk) Axn+1(Nfc) -U*2(Nk) I^1, k=l,2,...,m.

Step 10.
~n+1 ti —n+1Obtain Vry (Nfc) by backward substitution via ^(N^.) fbt (\) =

S.(N, ), k = l,2,...,m.

Step 11.
-n+1 -n+1Termination: If Irh and Vry converge, stop! Otherwise, set

n = n+1, update G-, R2, j.., j0, e- and §2, and go to Step 1.

Remarks. (i) Steps 1,2,3,4,9 and 10 each involves "m" decoupled computa-
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tions and this can be carried out by parallel computation on "m" small

computers simultaneously. (ii) Steps 2,3,7,8 and 10 each involves only

simple substitutions. (iii) Steps 1 and 6, i.e., the LU-factorizations,

are the only time consuming steps. However, if we choose the node-to-

datum case as in Eq. (79), each block H^CN^ A^(N )G?(N )A^(N )is

then guaranteed to be very sparse and easy to construct, where A (N ) is

the reduced incidence matrix of N . Hence, the available sparse matrix

techniques [19] can make Step 1 very efficient. (iv) The matrix Dn is

obtained through matrix multiplications and additions and is, in general,

a "full" matrix (i.e., it contains mostly nonzero elements). Hence, to

improve the efficiency of our algorithm, it is desirable to make the

dimension of D (i.e., the dimension of H _) as small as possible. In

other words, we want to minimize the number of torn branches.

6. Concluding Remark

33
We have shown that all published versions of diakoptic analysis

can be derived via a sequence of equivalent circuit transformations involving

only such basic circuit-theoretic concepts as the substitution theorem, the

source-shifting theorem and the properties of open loops.

This analysis always consists of three stages. The first stage

involves the choice of the torn branches N_. No efficient algorithm is

known for choosing an optimal set of torn branches [24-26] and the current

state of art is such that this step must be implemented on an ad hoc basis.

The second stage involves an "appropriate" form of coboundary analysis on

each separable subnetwork Nn,N0,...,N (The most efficient overall choice
l i. m

remains to be the node-to-datum case). The third stage involves a standard

33
Our derivation of diakoptic analysis is completely general and should

include any future versions as special cases.
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loop analysis on an equivalent interconnected network N which combines

"m" coupled but acyclic equivalent subnetworks N- , N0 ,. .., N with
eq eq eq

the torn branches Nn. This cumbersome three-stage formulation process has

been shown to be a special case of the much simpler generalized hybrid

analysis. It follows immediately from this derivation that the concept of

diakoptic analysis is applicable to both linear and nonlinear large-scale

resistive networks.

An efficient algorithm for solving the generalized nonlinear hybrid

equation is included in this paper. Two special features of this algorithm

is that it deals with the associated linearized circuit model and the non-

linearities appear only at the branch level.

Finally, we must conclude, if somewhat disappointingly, that inspite

of its important applications in the analysis of large-scale networks,

34
diakoptic analysis does not represent a new concept in circuit theory.

Neither does it represents a new mathematical idea. It is hoped that this

conclusion will forever put to rest the misleading impression that diakoptic

analysis is a profound concept that can be derived only by using advanced

algebraic-topological techniques.

However, full credit should be given to Kron for being the first to
choose both voltages and currents as independent variables. As such,
his approach can be considered as the forerunner of our generalized
hybrid analysis [10], [21].
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Appendix A. Proof of Lemma 2

We shall first derive two important relations and then proceed with

the proof. Given a connected graph Cj with "n" nodes and "b" branches,

and a generator tree <"J of (J , let us consider the augmented graph

(j 4 flu q . Observe that it is a connected graph with "n" nodes and

"b+n-1" branches. Define A to be the (n-l)x(b+n-1) reduced incidence

matrix of the augmented graph Q with respect to an arbitrary datum node.

If the columns of the reduced incidence matrix A are ordered such that the
~a

original branches (i.e., those branches in (j) appear before the augmented
<—v

branches (i.e., those branches in r) ), then A can be partitioned as
g ~a

A = [A A 1, where A denotes the first b columns representing branches in

J and A denotes the remaining (n-1) columns representing branches in rj.

Since the branches of r) corresponds to a tree of the augmented graph Q ,

the submatrix A is nonsingular.

Let each open loop and its associated generator be denoted by a b*l

.. 36 -t , , 1N , 37
vector p and an (n-l)xl unit vector g., respectively. It follows from

-1 ~i r^*-*

the definition of an open loop that the (b+n-1)xl vector

a closed loop in the augmented graph (I . From Tellegen's theorem [16],
—* a

we know that any pair of vectors representing respectively a cutset and

a loop are orthogonal to each other. In other words, we have the

relation

n

g.
•- ~i

represents

35
Observe that the submatrix A corresponds to the reduced incidence matrix

of the original graph (j •

Recall that p1 was defined in Section 2 as a row vector. Therefore, we
use the transpose here to conform with our earlier notation.

37
A unit vector has all zero entries except a "1" in the i-th entry.
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[A A 1

~t

Pi

!i

-t= A p± + Ag± = 0 , i = l,2,...,n-l

Eq. (106) can be rearranged as

A P, = -A g. , i = l,2,...,n-l
- ~-L ~g ~1

(106)

(107)

which will be used in the following proof.

Now that we have shown A to be nonsingular and have established
~g

Eq. (107), let us suppose that the (n-1) open loops p\, p„,...,p , are
-1 ~2 ~n-l

38
linearly dependent , then there exists a set of real numbers a_, a«,...,

n-1

an-l G P* not a13- zero, such that £ a. p. = 0. Then

n-1 n-1 n-1 n-1

A(£ a± i\) = £ a.(A pj) =-£ a±(A g±) =-A (£ a± g±) =0 (108)
i=l i=l i=l 8 i=l

Since the only nonzero entry in g. is a "1", it follows that

n-1

£&2C «± 8i = [«!• a2,...,an_1]t (109)

Hence, if we denote the i-th column of A by (A ). and substitute Eq. (109)~g J v~g'i M

into Eq. (108), we would then obtain

n-1 n-1

V £ ai 8±> -*«?-£ ai(Vi • ?gi=l
(110)

i=l

since the (n-1)x(n-1) matrix A is nonsingular, the columns of A are

linearly independent, i.e., }* a. (A ). = 0 if, and only if, a, = a„ = ...=

38
We assume, for convenience, that the concept of linear independence is

defined with respect to the "field" of real numbers iR..
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n-1

%_! = 0. It follows from Eqs. (108) and (110) that £ a. p* = 0 if,
i=l 1 "1 ~

and only if, cc^ = a^ = ... = a , = 0, which contradicts our earlier

assumption. Hence, the open loops p£, p!j,... ,pt_ are indeed linearly
independent.
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Appendix B. Proof of Lemma 8

It suffices to prove that B^p ^ ^rrf= Bcp <T • Before we proceed
--12 (Jg ~<J -̂ L2~^1

to give the formal proof, let us consider an example first for the sake

of clarity. Figure 9 shows a typical graph y with branches partitioned

into four sets St^, ££2, r^ and 9f2 where 9^ ={1,2}, S£2 ={3,4,5,6},
rJ1 ={7,8,9,10,11,12}, 9J2 ={13,14,15,16,17}. Also shown is an augmented
generator tree (in dotted line) QT = {a,b,c,d,e,f} connecting all nodes

of ^ =^ uCfv
Consider a typical branch of ^L., e.g., link 6 and observe that the

fundamental loop generated by link 6 is given by twigs {17,14,7,8,9,10,11,15}

with respect to the tree T) U tJ and by twigs {17,14,b,c,f,15} with

respect to the tree TJ U rj . If we let row r, denote the row of Brn ry
g 2 6 ~^*-2^1

and B^-p ^ corresponding to link 6, then row r of B^p rv> anc* B^p qp
z g z i z g

is given respectively by

7 8 9 10 11 12

Row r, of Br/} rr = I 1 -1 1 1-1 0 ]•6 " *£2<3i

-a -b -c -d -e -f

= [
-2'^g

Row r, of Brn rr = [ 0 -1 -1 0 0 -1 ]
6 ~^L?~Jo

39Now suppose we express each branch "-k" in B^n or* in terms of the

40 2 8
associated unique fundamental open loop, namely,

7 8 9 10 11 12

Branch -b [ -1 1 -1 -1 1 1 ], fundamental open loop of b

39
Recall that the reference direction of branches of the equivalent acyclic

subnetwork is opposite to those of the generator tree rjo- Since a,b,...,f
represent branches of rjg, we must choose -a,-b,...,-f to represent the
branches of the equivalent acyclic subnetwork.

By this we mean that both branch "-k" and the corresponding unique
fundamental open loop have the same initial and final nodes.
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Branch -c [ 0 0 1 1 -1 -1 ], fundamental open loop of

Branch -f [ 0 0 -1 -1 1 0 ], fundamental open loop of f

Observe that if we add the negative of these three row vectors together,

we would obtain row rfi of Bcp ry . But the above operation upon applying

to all rows of BB^p r-f is equivalent to
-2'Jg

-a -b -c -d -e -f

Row r of Bcp 0»
~~L2~Jg

~1 -1 0 0 0 6~

Row r of Bcp r-f>
~12 <h

1 0 1 -1 0 0

Row r of B^p 0.
-J-2-Jg

0 0 0 1 0 i

Row r6 of B. ry 0 -1 -1 0 0 -l

7 8 9 10 11 12

1 0 0 0 0 0

0 1 -1 -1 0 0

0 0 0 0 1 0

1 -1 11-1 0

7 8 9 10 11 12

0 1-1-111

-11-1-111

0 0 1 1-1-1

0 0 1 10 0

0 0-1 0 0 0

0 0-1-110

Row r of B^ D

r*of H^Ii
Row r of Bcp cr>

-4.2'Jl

Row r, of Br0 o°
6 ^2^1

Row

-a

-b

-c

-d

-e

-f

In matrix form, we have Brp ~ Tq>= Bcp q- ,where Tq- is the nonsingular

submatrix of the fundamental open loop T with respect to the tree rj .

Hence, we have shown via an example that Lemma 8 holds.

We can now formalize the above algorithm to an arbitrary graph \\

and observe that each row of B^p r-r defines a path of branches in J.

Let the path corresponding to row j of B
^ q'

have end nodes from n

to n ^ . Since row j of Bq) r^ and row j of B2 A [lrfl q) Bcp rr ] form
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a closed loop, row j of B2 must correspond to a path of branches in

~*-2 U 2 fr°m node n(§) to node nr\ * Observe that row j of B„ and row

1 °f Jcp cr also from a closed loop, and hence row j of Brp q= must

correspond to a path of branches in rj from node nnto node n^ . Now

observe that each row j of Tq* expresses apath of branches in rj that

has same end nodes as branch j of TJ . Hence, row i of Brn r-r 1r^> is
g ^^g ~y

a linear combination of those fundamental open loops induced by branches

in g °f r°W ^ °f ?Cp q * Tne resulting branches must necessarily form
g f-y.

a path from node n.-. to node n^ . Since r) is a tree, there exists a

unique path with fixed end nodes n ^ and n/7x . Hence, row j of Brn rr
® ® ~stydi

and row j of Brn rr Trr must coincide and we have BrO CT

H^ %• 2" -
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Appendix C. Codiakoptic Analysis

We shall proceed to derive codiakoptic analysis via the same

equivalent circuit approach. Although our derivation is again completely

general, a specific example will be used to illustrate some of the "subtle"

points in each step of the equivalent transformations.

Given a network N, let Nn be a subset of branches henceforth called

41 42
the (codiakoptic) torn branches such that when they are contracted ,

the original network is reduced to "m" separable subnetworks N.,N„,...,N .

In Fig. 10(a), each branch is assumed to represent a composite branch

(Fig. 4(a)). Let the set of branches {7,8,9,10} denote the torn branches

N_ whose contraction results in the two separated subnetworks N1 = {1,2,

3,4,5,6} and N2 = {11,12,13,14,15,16}.

Assuming the voltage solution waveform of each "connection branch"

of N (from Fig. 10(a), we have N = (7) and N = (10)) is given a

priori, we can apply the voltage source substitution theorem and replace

each connection branch of N~, by its equivalent voltage source (Fig. 10(b)).

Since the substituted voltage sources summarize the "outside" influence

upon each subnetwork, the original network N can be separated into (k+1)

parts without affecting the solutions of the original network (Fig. 10(c)).

Let us now focus our attention on subnetwork N. which has "n" nodes

and "b" branches (counting the substituted voltage sources as short circuits),

41
In order to differentiate the terminologies used in this section from

those used in deriving diakoptic analysis, the adjective "codiakoptic" should
really precede every terminology in this section. However, to avoid excessive
repetitions, we will omit this adjective and simply caution the reader to
interpret each terminology and concept in this appendix as "dual" to those
introduced in Section 3.

42
A branch is said to be contracted if it is deleted with its two end nodes

coalesced into one node.
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and its associated linear graph Q(N ) is shown in Fig. 10(d). Since the

graph y(N^) has (b-n+1) linearly independent loops, we know that the

substituted voltage sources can be summarized by (b-n+1) "modified"

substituted voltage sources, each associated with a loop. In the cases

where there are less than (b-n+1) substituted voltage sources, our "dual"

procedure calls for inserting additional zero-valued voltage sources (i.e.,

short circuits) by a "plier-type entry" with the links of Q(N_). For

example, in Fig. 10(e), y(N.,) has two linearly independent loops but

only one substituted voltage source. Hence, a zero-valued voltage source

is inserted with link "1" in Fig. 10(f), and an augmented graph Q (N-)
EL JL

(counting each voltage source as a branch) is obtained as shown in Fig.

10(g). Observe that the augmented graph Q (N-) contains "b+1" nodes,
">-^a j.

"2b-n+l" branches and "b-n+1" linearly independent loops. Since the number

43
of links and the number of substituted voltage sources in the augmented

graph y (N..) are identical, we can always select the set of (b-n+1)
a l

substituted voltage sources to form a cotree of y (N-), henceforth denoted

by the generator cotree Sf . For example, in Fig. 10(g), S£ = {l1, 2M.
g g

Now, we can define a contracted cutset of Cj with respect to any

generator cotree SO. to be any set of branches of y which form a cutset
g

with a branch, henceforth called the associated contracted cutset generator,

of ii . For example, the sets of branches {5}, {1,4} and {2,4} all form
©

cutsets with the augmented branch lf in Fig. 10(g). They are, therefore,

contracted cutsets induced by the same generator 1'.

43
The number of links is equal to the number of linearly independent

loops.
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Following a dual procedure used in deriving diakoptic analysis, we

have the following lemma:

Lemma 9. Let (j(resp., (j ) be a connected graph with "n" nodes and "b"

branches (resp., "b+1" nodes and "2b-n+l" branches) and let ^1 be any
o

augmented generator cotree of 'j. Then any collection of (b-n+1) contracted

cutsets induced by the (b-n+1) distinct contracted cutset generators in d_
g

are linearly independent.

ln view of Lemma 9, we can define a (b-n+1) x b contracted cutset

matrix K as follows:

K.. = 1, if contracted cutset i contains branch j and has the same

orientation as branch j;

= -1, if contracted cutset i contains branch j but has opposite

orientation as branch j;

= 0, if contracted cutset i does not contain branch j.

Theorem 3. Let (j(resp., (\ ) be a connected graph with "n" nodes and "b"

branches (resp., "b+1" nodes and "2b-n+l" branches) and let ^J. denote any
o

augmented generator cotree of (j. Then there exists a unique cycle matrix

B, henceforth called the associated cycle matrix, such the

&if =l^j. (Ill)

Having established the basic property of contracted cutsets as in

Theorem 3, let us focus our attention on the augmented subnetwork (see

Fig. 10(f)) which now contains (b-n+1) substituted voltage sources

(including zero-valued voltage sources). Our next step is to apply the

v-shift theorem and shift each substituted voltage source in series with

the internal branches of N in order that it may be combined with the

original composite branches. We can achieve this goal by shifting each
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substituted voltage source e across any contracted cutset induced by
Sj

es * ^ we com^ine a^ tne shifted voltage sources in series with each
j

original composite branch and denote it by e', we would obtain a modified

subnetwork Nj^ having the same topology as Q(N.) (see Fig. 10(d)), where

each branch in N| represents an augmented composite branch as shown in

Fig. 10(h). In order to find an algebraic expression for e' in terms of

the e fs let us define the "combined shifted" voltage source vector
3 t

e* A [e*, e*,...,eJ] and the "unshifted" voltage source vector e A

t -
[e , e ,...,e ] . If we let K be any contracted cutset matrix
Sl S2 sb-n+l

induced by the (b-n+1) substituted voltage sources acting as the contracted

cutset generators, then

e' = K* e . (112)
~s

Let us now carry out an "associated" cycle analysis of the modified

subnetwork N|. Using the notations associated with the augmented composite

branch shown in Fig. 10(h) and Eqs. (Ill) and (112), we have the following

sequence of equations:

A A A A A f-A AAf-

0 = BVf = BV - Be' = B(RB I + Rj - e) - BK e

= BRB^i + B(Rj - e) - e (113)
~~~ ~ ~ ~~ ~ ~s

where I is an (b-n+1) x 1 vector, called the generalized current coordinate

vector. Observe that the generalized current coordinate vector I is equal

to the negative of the (b-n+1) x l current vector I through the (b-n+1)

substituted voltage sources in the augmented generator cotree bj. , i.e.,

A cycle analysis is a generalized loop analysis [18]. By an "associated"
cycle analysis, we mean the cycle analysis with respect to the unique
associated cycle matrix as defined in Theorem 3.
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I = -I . This relation will now provide us with the key to transform the
~s

modified subnetwork N' into an equivalent "self-loop" network H^ .
eq

Observe that Eq. (113) can be rewritten as

I = G (e + e ) = -I (114)
~eq - ~s ~s

where G = (BRB11)"1 (115)
~eq

and

e A B(e - R j) (116)

Now suppose we construct a self-loop network N by connecting a voltage
eq

source e (i.e., the k-th component of e) and a coupled linear resistor

defined by the k-th row of G in series with each substituted voltage
J -eq

e of the generator cotree !ii (Fig. 10(i)). Observe that the network
sk 8
equation describing N is precisely given by Eq. (114)! For our example

eq

(Fig. 10(f)), the "coupled" self-loop network N.. is shown in Fig. 10(j).
eq

It follows from the above observation that the subnetwork N. in Fig. 10(f)

and the "coupled" self-loop subnetwork N. in Fig. 10(j) are equivalent
eq

in the sense that they have identical governing equations. Applying the

same transformation procedure to subnetwork N (Fig. 10(c)), we obtain the

equivalent "coupled" self-loop subnetwork N~ shown in Fig. 10(k).
eq

We can now reverse the steps implemented earlier in going from

Fig. 10(a) to Fig. 10(c) and apply the sequence of equivalent "inverse"

transformations shown in Figs. 10(1) and (m) to obtain the equivalent inter

connect ed network N shown in Fig. 10(n). Observe that this equivalent

interconnected network N contains very few nodes. Besides, branches
eq

of N are characterized by a "coupled" branch conductance matrix (Eq.

(115)). Hence, we can analyze this network by the standard nodal analysis
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(or by any convenient coboundary analysis).

If we let I_ denote the composite current vector of the torn branches

NQ and order these branches before the self-loop branches, then the reduced

incidence matrix of N can be partitioned as

A = [A A, ]
~eq ~o ~bJ

45
And the familiar nodal equation can be derived as

0 = A I A [A AJ
~eq ~eq =•'-" ~o ~1>J

I
~o

= A I +A I + A, I
-O -O ~D ~

tvA= (AGA)V + A (G e - jn) + A. I = 0
~o~o~o ~o ~o ~o~o ~o ~b ~

(117)

(118)

where G , V , e and 1 denote the branch conductance matrix, the node-to-
~o ~o' ~o ~o

datum voltage vector, the branch voltage source vector and the branch

current source vector of N , respectively.

Recall that e is the voltage vector of the torn branches N . This
~s o

voltage vector can be uniquely determined by the node-to-datum vector V

46
of N . Hence, there exists some matrix C1 such that

o

e = C V
~s - -o

(119)

Substituting Eq. (119) into Eq. (113) and together with Eq. (118), we

obtain the following block equation:

k G At A,
~0~0~0 ~D

-C1 BRB

V
~o

I

=

A (j - G e )
~o ~o ~o~o

(120)

45We abuse our notation slightly here since I actually represents the
composite of the generalize current coordinate vector of subnetworks
N3, N2,...,N .

4ft ^Actually, C' = a£.
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where

B =

B(N1)
0

B(N2)
•

<•

0 B(Nk)

, R =

R(NX)

R(N2)
(121)

R(Nk)

and where B(N.) and R(N.) denote respectively the unique associated cycle

matrix and the branch resistance matrix of subnetwork N, .
k

The process of formulating and solving Eq. (120) is called

47
codiakoptic analysis by Onodera [13]. It offers the same desirable

block structure (as shown in Fig. 10(o)) as in diakoptic analysis (see

Fig. 7). However, since there exists no cycle analysis dual to that of

the computationally efficient nodal analysis, co-diakoptic analysis offers

no computational advantage over diakoptic analysis.

We will close this section with the following important theorem:

Theorem 4. There exists a one-to-one correspondence that equates any form

of codiakoptic analysis (as given by Eq. (120)) involving variables V and

I to a special case of the generalized hybrid analysis (as given by Eq. (51))

involving variables V>-t- and I, n .vor' ana i^n

4 7
Onodera <l id not derive, but did "sketch", Eq. (120)
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Appendix D. Mult-Stage Diakoptic Analysis

48
The concept of multi-stage diakoptic analysis consists essentially

of a repetitive application of both diakoptic and codiakoptic analyses.

Our objective in this section is to show that this approach is also a

special case of generalized hybrid analysis. Before we start the derivation,

however, recall that diakoptic (resp., codiakoptic) analysis always consists

of three stages: (i) choose a set of torn branches so as to "tear" the

network into "m" subnetworks; (ii) apply an "appropriate" form of coboundary

(resp., cycle) analysis on each subnetwork; (iii) apply a conventional loop

(resp., nodal) analysis on the diakoptic (resp., codiakoptic) equivalent

49
interconnected network. The basic idea of multi-stage diakoptic analysis

is to modify the diakoptic analysis at stage (iii) such that, instead of

applying a conventional loop analysis, we apply a codiakoptic analysis on

the diakoptic equivalent interconnected network. This process can be

further extended if, at stage (iii) of the codiakoptic analysis as applied

to the diakoptic equivalent interconnected network, we apply still another

diakoptic analysis on the codiakoptic equivalent interconnected network.

This algorithm can obviously be extended to any number of "stages" by

alternating between a diakoptic and a codiakoptic analysis, each stage

involving a smaller interconnected network.

For simplicity, we will derive only the two-stage (or double) diakoptic

48
In this section, we will derive the version of multi-stage diakoptic

analysis as proposed by Onodera [14]. Other slightly different versions
[4,7] can also be easily shown as special cases of generalized hybrid
analysis.

As we have pointed out earlier, we can actually apply any "convenient"
form of cycle (resp., coboundary) analysis on the equivalent interconnected
network.
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•, • 50 „
analysis. Furthermore, we will choose the "fundamental generator tree"

version of diakoptic analysis since the other methods follow similarly.

Let us partition the branches of the original network N into six

subsets -1^, ~L2, ,4.^, rj^t r) and rj with respect to a given tree 7]

satisfying the following two conditions: (i) we can apply diakoptic

analysis on Nwith il^ U9^ U^ U7}' as the diakoptic torn branches;
(ii) we can apply codiakoptic analysis on the diakoptic equivalent inter

connected network N (notice that for the fundamental generator tree case,

Neq ="jl U^-2 U?i2 U^3 U^3> with ^3 U^3 " the codiakoptic torn
branches.

From Section 4, we know that the fundamental loops generated by links

(XL1) of the diakoptic subnetworks CJl U7] )do not contain twigs (7)' U TJ)

of the diakoptic torn network (U^ U7^ U^ U7}'). We also know from
Appendix C that the fundamental cutsets generated by twigs {7\ U 7} )0f

the codiakoptic subnetworks (r^ U^ U9^) do not contain links (& )of
the codiakoptic torn network (^ UTfj. Now, if we partition the fundamental
loop matrix B and the fundamental cutset matrix Q with respect to the tree

' ) as follows:

50...
lo extend our derivation to more than two stages, it is convenient to

choose the fundamental generator tree for each diakoptic analysis, and the
fundamental generator cotree for each codiakoptic analysis. The fundamental
generator cotree version of codiakoptic analysis is implemented by taking
each branch of the augmented contracted cutset generator cotreeJ to be
in series, but oppositely directed, with a link of the original nltwork.
The associated cycle matrix for this fundamental generator cotree is simply
the fundamental loop matrix.

51Asimple variation that takes asubset of r]^ together with ^i\ U ^]L as
the codiakoptic torn branches can also be easily shown to be a special case
of generalized hybrid analysis.
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B =

Q =

_se1 s£2 ^ ^ % c;3
Jkp cp ?cp cp °cp cp Bcp cr BcP cr Bcp cr

~Ll~Ll ^l^ ^-l^ ~^-l'Jl ~^-l'^2 "^-l'^

9u' cp kp ^p 9«.p vp ?cp cr ?.p cr ?cp cr
-^*-2^Li -4-2-^2 ,_J-2~1-3 ,~J-2'-'l -^-2'^2 ^-2'^3

9cp cp 9cp cp icp cp *cp rr *qq cr *<zo cr
-4-3"J-i -4.3<-J-2 ,J-3'J-3 ^-3'^1 ^-3 '^2 '^-S l-^3

t t t
"?cp cf ~?cp cr -?cp cr }cr cr 9cr cr 9cr cr

^i<Jl ^3-2^1 ^-3^1 ^1^1 ^1^2 ^1^3

?cp cr "?cp cr ~BcP cr 9crcr Icror 9<cccr
rrJLi ^J2 "^-2 ^2 -"J-3 ^2 (^2 '^1 K-*2 (-'2 ^2 (^3

t t t
?cp cr -?cp cr -?q) cr 9crcf 9<crcr ^crcr
-J-l'J3 -4-2 'J3 ^-3 (~^3 (^3(^1 '^3'^2 ^3^3

then it follows from the observation that the fundamental loops generated

by -JL do not contain branches in «"J« and <~K that the submatrices B^p rr

and B,n ,—r are zero matrices. Similarly, it follows from the observation

that the fundamental cutsets generated by rj_ U CJ9 do not contain branches

in !xl that the submatrices -B^n r-*> and -B(-n rr are also zero matrices.
J ~^3rJl "^3^2

Hence, the fundamental loop matrix B and the fundamental cutset matrix Q

associated with the two-stage diakoptic analysis must possess the following

structure:

^1 ^2 ^"3 ^1 ^2 J3

^^ ?<^2 ?^3 ^1 ?^2 ?^3

%£& H^SE, ?^3 H^l ?C^2 ^3 (124>

?S£3££i ?^2 H£3^3 ?^1 ^3^2 ?^3

-B
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•?Ci>C

0?

0.-
m

If we define

-»CPC?s£2^ ^3^ ^91 e^ ?girr3

?cP cr 9cp cr Pcrcr Jcrcr 9crcr
~J-2 ^2 ~*-3(J2 {^2{J\ 'J2'J2 ^2 ^3

t t

?cp cr -?cp cr 9cr^T[' °crcr 1crcr
^-2(J3 ^3,J3 Kh'}\ J3 ,J2 ,J3'J3

-Bt

-B,

(125)

9iAhVii ^iJ'^MH^ H^I,?3M"?^ -^3] (125)
then, by combining KCL and KVL equations together with the following branch

relations:

h = SiYr ^2 = ?2~V h = ^3

we would obtain the following two-stage diakoptic equation:

[~9i5i?I -5a>2^ 9^
--i^i ?2?2?2' ScjM^

[^1 "^ ?3?3?3

Y3i

-*-2

Vrv

_ ~h_

=

9iQi - ?i?i>

?2(?2 " *lW

h<h - ?3?3>

Equation (128) ran be rearranged as

9i(:i9i

0, i) q|- 93?3^3

-B

-?H^3
B„R BCB, 0

'^a h^3 *2*2 2

Vq-
' ,J1

Yq-

-^

9i(Ji " Pi?i>

93(J3 " ?3?3>

?2(?2 " ?2V

(127)

(128)

(129)

Observe tbat Eq. (129) has exactly the same form as Eq. (48). Hence, by
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rearranging the equations associated with the two-stage diakoptic analysis,

we would obtain once again a system of hybrid equations representing a

special case of our generalized hybrid analysis.
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Appendix E. Topological Matrices in Eq. (79)

Hybrid analysis in the form of Eq. (48) has not been widely used in

computer-aided analysis because there is no efficient method for obtaining

the topological matrices involved [27]; namely, the submatrices Q , B? and

?Cp CT * This objection, however, can be overcome by choosing the node-

to-datum version of our generalized hybrid analysis; namely, Eq. (79). Our

objective in this section is to present efficient algorithms for constructing

the three matrices A^ B2 and C needed to form Eq. (79).

We shall start with the matrix A . Recall that A as defined in

Hq. (78) is a "composite" matrix containing the reduced incidence matrices

of the separable subnetworks oT-Jvl made up of branches in J! U Tj with

all branches in U-2 U ,-j replaced by open circuits. Observe that A can

be generated as soon as the separable components of lAI are identified. In

this regard, observe that the highly efficient Tarjan's "depth-first back

tracking search" algorithm [28] can be used to identify all separable

components of cjll^ in linear time and storage. Hence, the matrix A can

be obtained efficiently.

The matrix B2 as defined in Eq. (47) is the fundamental loop matrix of

JM2, made up of branches in !xL U fj with all branches in SjP U 7]' replaced

by short circuits. The following lemma will provide us with an efficient

method for obtaining B :

iieJ™1La_AQ- Given a graph (j with reduced incidence matrix A, a tree 7] and

the node-to-datum fundamental open loop matrix T . If the columns of the

reduced incidence matrix A, the node-to-datum fundamental open loop matrix T*

and the fundamental loop matrix B with respect to 7) are ordered such that

Separable components are called biconnected components by Tarjan [28].
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the links appear before the twigs, i.e., A = [AqQ ^crf» ? = tPcp Tcrf

t *and B= [l<-_n B^], then B^ = -AqQ Try .

9sProof: Let the fundamental cutset matrix Q with respect to <J be ordered

in the same manner, i.e., Q = [Qw) lrr] • We can express A in terms of Q

via a nonsingular transformation matrix P as

[^£ *tf - ?QI9^ kj] - [?Q9c£ ?Q] (130)

Therefore, we can identify from Eq. (130) that

P~ = A
?q-*3F

(131)

Substituting Eq. (131) into Eq. (130) and premultiplying both sides of

-1
Eq. (130) by Arr, we obtain

[A-^ACJ, lcj5 - [Q^ Ig]
and, in particular,

9c£ =fcf*c£
From Theorem 1 and Lemma 6, we have

.t

ACT*)' =[Ag, Acjj St£

%>fc
Eq. (134) can be rewritten as

-1 * t

* vt

ttfttf =^

From Tellegen's theorem B and Q can be related by

9cj--9c£
Combining Eqs. (136), (133) and (135), we obtain
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(133)

(134)

(135)
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?CJ= -^CjAc£)t =-A^Aq^ =-a£j) T^y g

Let us make the following observations regarding the subnetwork ^aL :

(i) the reduced incidence matrix A(J\L) of o/VL can be obtained from the

reduced incidence matrix A of the original netv/ork N simply by contracting

all branches in bdL U <J-; (ii) a tree <J ofcJVL can be found via Tarjan's

"depth-first back-tracking search" algorithm; (iii) the node-to-datum

fundamental open loop matrix T (lAL) of (Jv| can be obtained easily from the

reduced incidence matrix A(JV) ); (iv) the elements of T^C-Al,) are either

-1, 0or 1. Hence, in view of Lemma 10, B AB(_AL) = [lcOCAU B^(lAL)]

can be found by simple additions and subtractions of elements of A(^p(o'\L) •

in other words, B_ can be obtained efficiently.

The matrix C as defined in liq. (54) for the "node-to-datum" case

(where P = 1) is given by

S-SC^ ?Q <»7)

Instead of finding C through Eq. (137), however, we shall make use of a

special property of the node-to-datum case. From Eqs. (79) and (32), we

have the identity

C = B. (138)
... a

Substituting Kq. (73) into Kq. (138), we obtain

C = \{)r~r (139)
"-l2'Jg

Recall that Bw) ^ is a submatrix (corresponding to the columns of branches
"a2rJg

in (J ) of the fundamental loop matrix B of the equivalent interconnected
g ~eq

network N . It follows from the special structure of the node-to-datum
eq
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equivalent interconnected network N (e.g., Fig. 6(i)) that the (i,j)-th

element of the matrix Bcn rr can be easily determined from the following
~^2rJg

interpretation:

(?C.p CT ^Nk^ii =1 (resP-» "!)» if fundamental loop i ofcA) enters
-2<Jg

(resp., leaves) the nondatum node j of subnetworks N :
k

= 0, otherwise.

Hence, using this interpretation and Eq. (139), we can obtain C efficiently.

Let us examine next some special cases where the submatrices A1, B„

and C are even more readily available. Suppose that the branches of $£ U rT

span all nodes of the original network N and suppose that a common datum

node for each separable subnetwork of Su U "X is available. Then <J„

becomes an empty set and all torn branches belong to ^L, each of which

generates a fundamental loop, i.e., B_ = l^n • If we partition the reduced

incidence matrix A of the original network into the form

C140)

* tthen we can identify A- = Aqq y rr » C = -A^p and Eq. (79) reduces to

A-

^^^^^•^i -S£.=*2 ~'J1

-A
-ss. *£, JS£,

(141)
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This equations corresponds to Happ's radially attached case [8], as well

53
as to Wu's earlier formulation [12]. If we further restrict the torn

branches to be branches containing voltage sources only, i.e., R^n = 0 -,)

and no other independent sources exists, then Eq. (141) reduces further to

rH U^ H "^ *C£x Ug Acj, Wr-T-

^2
=

9cr
,Ji

~*2

-A.
S£ Hi.

(142)

This equation corresponds to the modified nodal analysis approach proposed

in [15].

To implement the generalized hybrid equation in the tableau form

[19,29], we simply rearrange Eqs. (37)-(42), (49), (50) (52) and (53) in

the following order:

1 %Wk
1

1

-%)i i
•SsfiSfc "k^Si i

•%A -kr&i i

"%2a.'2 "£a?2^ i
*-*

^J2^2 "^2^2

"&%29i *%* A
iftttr» & Atea2^2

*% 2a,
5

ot ?* %,
-r

°a2

A* ~kti*%2&*t1*%&&fa
±91 -iai^cf^^^gji
1% •%*%2a2ia2*%29ii^
1% -fl5*BqsMft*feiS6fe4
ft* 501

i*J 2a2

53
To derive the generalized cases of Wu's formulation, we need only add

some "open-circuited" and "short-circuited" branches at "appropriate"
loeations.

54
For simplicity, all zero submatrices of the tableau matrix in Eqs.

(143) and (144) are not shown.
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Observe that if we perform Gaussian Elimination along the diagonal of

Eq. (143), the last two equations will indeed become Eq. (51). For the

node-to-datum case of the generalized hybrid equation, the preceding

tableau matrix assumes the following simplified form:

h -1

-h J

h

•£

?2 ~

Yi

*t h

h =

V-2

e' V
~n

>_

°i

°2

~h + ?1?1

"?2 + ?2^2

-°^
°~%

(144)

Observe that if we perform Gaussian Elimination along the diagonal of

Eq. (144), the last two equations will become Eq. (79).
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(d) one current source in each cutset is

replaced with a short circuit

(e) the equivalent acyclic subnetworks (f) the equivalent interconnected network Neq

Fig. 1(d),(e),(f). A sequence of equivalent transformations.



(a)tree °J= {4,5,6} (b) node-to-datum generator tree

%- {4',5',6'}

(c)fundamental generator tree (d)arbitrary generator tree

V{4',5',6'} V{4\5',6'}

Fig. 2. A graph and several augmented generator trees.
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(a) subnetwork with an "incomplete" set of
current sources

(b) node-to-datum case

(c) arbitrary case

is,=-I|(N,)

is=-I,(N,)

Fig. 3. An illustration of the addition of "zero-valued"
current sources to subnetwork N^ to obtain a set
of (n-1) external current sources.



(a) the original composite
branch
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*8

original
composite
branch

(b) a shifted current source is. in parallel
with the original composite branch

original
_vk | composite

branch
ek

(c ) up to (n-1) shifted current sources may appear across the
original composite branch k* a,/J, ...,0 € jl, 2, ... ,n-lj

(d)the augmented composite branch

-1 . .1

1k=1k~ik

xk = 'k"Jk
Vk =vk-ek

Fig. 4. A composite branch and its associated augmented
composite branch.
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VSk0i

(a) a single generator

vk,0'.

(c) node-to-datum generator tree

^^(Req)k|n-,

^JReq)k2 —
^^-(Req)kl~~^
(Req)|d( £(Rea)x eq'" J

\Req)f2
\

eq'22

\
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y 6

eq'n-l,n-l

(b) equivalent acyclic network
(fW|,n-l

U =0

's,= l5

(d) N
eq

Fig. 6(a), (b), (c), (d), (e)

U_=0

(e) N2
eq

A sequence of "inverse" transformation
stages for deriving the equivalent
interconnected network N

eq.



(9)

(h)

(i) Neq

Fig. 6(f), (g), (h), (i). A sequence of "inverse" transformation
stages for deriving the equivalent
interconnected network N .

eq



Fig. 7. The bordered block triangular
matrix structure characterizing
diakoptic analysis.

K
k

0 vk

©«k

(a) a nonlinear composite branch

U«

(b) voltage-controlled characteristic
of a tunnel diode

(c) current-controlled characteristic (d) a v-i curve that is both voltage-
of a gas discharge tube controlled and current-controlled

Fig. 8. The constitutive relationship of a
nonlinear resistor.

Nj^jUtf, N0S<£2U^2

Fig. 9. An illustration of Lemma 8, where ii^ = {1,2},
^-2 = {3,4,5,6}, 9)i = {7,8,9,10,11,12},
7}2 = {13,14,15.16.17} and CJg = {a,b,c,d,e,f,}
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(a) the original network N

(b) voltage source substitution theorem
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(c) separation of the network

(d)(}(N,)lb=6tn=5,b-n+l=2 (e) N,

4<> 2)vvt

(f)inserting a zero-valued
voltage source

(g) the augmented graph (J0(N,)

v;

(h) an augmented composite branch

Fig. 10(a), (b), (c), (d), (e), (f), (g), (h). The equivalent
transformations in

deriving codiakoptic
analysis.
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structure characterizing codiakoptic analysis

Fig. 10(i), (j), (k), (1), (m), (n), (o). The equivalent transformations
in deriving codiakoptic
analysis.


	Copyright notice 1975
	ERL-495 (1 of 2)
	ERL-495 (2 of 2)

