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GRAPH-THEORETIC PROPERTIES

OF DYNAMIC NONLINEAR NETWORKS1*

++

Leon 0. Chua and Douglas N. Green

ABSTRACT

Graph-theoretic concepts are used to deduce properties of nonlineai.

networks and properties of nonlinear resistive n-ports. The basic result

is that if the ports of an n-port form no loops and form no cutsets, then

the port voltages and currents are linear functions of the internal

voltages and currents only; i.e., no other external port voltage or pott
current is involved. This result is very general in the sense that it is

independent of the constitutive relations of the internal n-port elements.

It is also a rather subtle result because it forms the basis of a large

number of network and n-port theorems. For example, in examining the

closure properties of n-ports, this result is used to show that if the

resistors of an n-port are passive or strictly increasing, or eventually

strictly passive, etc., then the n-port also has the property. Many of

these conclusions remain valid when the n-port contains independent

voltage and current sources.

Two extensions of this main result are presented. First, using the

constitutive relations of the resistors, graph-theoretic conditions are

given such that the resistor voltages and currents are functions of the

port voltages and currents of a resistive n-port. Second, in a network

containing capacitors, inductors, resistors, and sources, graph-theoretic

conditions are given such that the voltage and current waveforms of the

capacitors and inductors are functions of the resistor and source voltage

and current waveforms.

Dynamic nonlinear networks containing capacitors, inductors, resistors,

and sources such that there are loops of capacitors, or cutsets of inductors

are shown to be equivalent to networks without such loops or cutsets.

Explicit analytical expressions are given for specifying the constitutive

relations of the elements of the equivalent circuit. This result allows

the generalization of many previous results in nonlinear networks which

exclude capacitor loops and inductor cutsets.
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N00039-75-C-0034 and the National Science Foundation Grant GK 32236X1.
++

Department of Electrical Engineering and Computer Sciences and the
Electronics Research Laboratory, University of California, Berkeley
California 94720.



I. Introduction

Much of the use of graph theory in network analysis has been in

the area of linear networks [l]-[3]. When applied to nonlinear net

works, graph theory has been used mainly in the formulation of network

equations [4]-[6] and, to a limited extent, in analyzing the behavior

of the solutions of these equations [7]-[ll]. In this paper, we will

use graph-theoretic concepts to deduce in a qualitative way the various

properties of dynamic nonlinear networks, and of nonlinear n-ports. This

will involve examination of the graph of the network or n-port, and

examination of the individual circuit elements. We will not solve, or

form the network or n-port equations.

This paper is the first of a seriesof three dealing with nonlinear

dynamic networks. The two other papers are [12], "A Qualitative Analysis

of the Behavior of Dynamic Nonlinear Networks: Stability of Autonomous

Networks," and [13], "A Qualitative Analysis of the Behavior of Dynamic

Nonlinear Networks: Steady-State Solutions of Nonautonomous Networks."

The mathematical methods of these two papers coupled with the graph-

theoretic results given here will lead to an understanding of the

behavior of dynamic nonlinear networks. In particular, we will answer

questions of the following type: Let o\| be a dynamic nonlinear network.

Under what condition may we conclude that all network voltage and current

waveforms are bounded, or (eventually) uniformly bounded? If ^\l contains

T-pe.riodic sources, when is there a T-pei iodic solution of ^flj , or a

subharmoiiic solution of ^>\f ? If ^A\ contains conwtant independent
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voltage and current sources, when does J\\ have a unique, globally asymp

totically stable operating point? When<JM has time-varying independent

sources, under what conditions does <J\j have a unique steady-state solu

tion (in the same sense as in linear networks)? In this case, do the

transients decay exponentially? While answers to some of these questions

have been published for various classes of nonlinear differential

equations [14]-[16], they are strictly mathematical in nature and often

contain conditions which are either too strong or impractical when

applied to circuits. The main feature of our results is that most, of

the theorems are couched in graph- and circuit-theoretic terms so that

they can be easily verified by examining only the network topology and

the elements* constitutive relations. The graph-theoretic properties

to be presented in this paper are crucial to the derivation of these

results.

In Sec. II, we present the model of the dynamic, nonlinear network

vjvl. We view (Jv as a resistive n -port N containing resistors and

sources; the capacitors and inductors are attached to the ports of N.

The concepts of passive and increasing resistors are extended and ex

panded to definitions of a large class of properties of functions. We

will examine network J\] and n -port N with respect to these properties.

Previous mathematical and graph-theoretic results which will be employed

in developing our results are presented. Especially useful is the

Colored Arc Corollary; this is a special version of the Colored Arc

Theorem [17].

In Sec. Ill, we discuss the "closure" properties of an n -port N

which contains nonlinear resistors. For example, if the resistors of
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N are passive, strictly-increasing, or eventually strictly-passive

(Def. 2), conditions are given so that N has these properties. The

primary condition comes from Theorem 2 — there is no cutset and no

loop formed by the ports. In Sec. IV, we examine the manner in whii-.h

these properties of N are affected when independent sources are attached,

In Sec. V, the capacitors and inductors are attached to the ports

of N to form network cAl. We show that the condition "there are no

loops of capacitors and no cutsets of inductors" which is often stated

as hypothesis in the literature on nonlinear networks is not necessary;

these loops and cutsets may be deleted without changing the voltages

and currents of the elements of (_AJ. We also give an extension of

Theorem 2.

II. The Dynamic Nonlinear Network; Properties of Functions

The nonlinear, dynamic network oM is shown in Fig. 1. It contains

nG (possibly coupled) one-port capacitors, and n (possibly coupled)
1 nr nTone-port inductors. Let v., ln, a G JR C and vT , iT , <(>€ JR denote

~L» ~U Kj ~L *"L '"L

respectively the capacitor voltages, currents, charges, and the inductor

voltages, currents and fluxes. The constitutive relations of a voltage-

controlled capacitor and a current-controlled inductor are given

respectively by:

9C = W

(1)

There is no loss of generality in our choice of this network model,
since any multi-port or multi-terminal capacitor (resp., inductor) can
always be modeled as a system of "coupled" one-port capacitors (resp.,
inductors). Observe also that an (n+1)-terminal element can always be
modeled as a "grounded" n-port.
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where f s R°C - RC and f • fl"1 +JR\ Define the n-vectors
U P

^p^C*0!? ^the subscriPt "p" denotes a "port variable")

(2)

then (1) becomes

z = f (x ) (3)
~P -P -P w;

T T T
£p(*) = f?c^*^' ~L^*^ (where the superscript "T" denotes transpose).

We view the capacitors and inductors of rAf as attached to an n -
P

port N which contains (nonlinear) one-port resistors, (nonlinear) multi-

2
port resistors, and independent voltage and current sources — see

n

Fig. 1. The vectors v ,i ,x ,y G jR p of Eq. (2) are the port
~p ~p ~p ~p ^ r

variables of N as well as the capacitor and inductor variables.

o

N also contains controlled voltage and current sources in the following
sense: we assume every controlled source of N is represented by
"coupling" within multi-port resistors. For example, although tran
sistors, FET, and operational amplifiers are multi-terminal elements
which are often modeled using controlled sources, they can also be
represented as multi-port resistors. Hence, a transistor can be
characterized by the constitutive relation
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Assume resistor R of N is an n -port resistor. Its voltage and
n

current are, respectively, vR, iR G K a. In defining its constitutive

relations (when it exists) we assume that for each port of the n -port
a

resistor either the port voltage or the port current is an independent

resistor variable, and the remaining port variable is a dependent re-
n

sistor variable. Let xR, yR GR denote respectively the independent

and dependent resistor vectors. The constitutive relation is therefore

*R " ?R(XR} W

Let m^ be the number of resistors of N, and let n be the number of

all internal resistor ports of N (m =n if, and only if, all resistors
K K

are two-terminal elements). The composite resistor vectors are
n

YR» iR e JK representing respectively all internal resistor voltages

and currents. Let the in resistors be described by their constitutive

relations gR(*), 8R(*),....g^XO. and let xR, yR €J? Rdenote, respec
tively, the independent and dependent resistor vectors, then

?R = §R(?R) (5)

is the composite resistor constitutive relation, where

gR(-) A[g^T(-), g|T(.). •• ,g«l), •• ,g^(.)lT

n

Let u e JR b denote the voltages of the independent voltage

Moreover, the function gR(") has the various properties which we in

vest igatr in this paper. For example, when gD(*) comes from the Ebers-

Moll equation of ;i si Iiron transistor, then fi.,(') is a strictly-passive,

(• -il iIIeomorpli ism mapping IK* onto IK*" |IK|.
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sources and the currents of independent current sources. The con

stitutive relation of the "overall resistor" n -port N, when it exists,
P

is

xP = -yv^s* (6)
n +n n

where g (•»•): JR. P ""* JR. P, or if there are no independent sources

?p • •%%•> <7>

n n

where g (•): JR p -• JR . We will used both forms of g (•) in the
*p ~p

sequel, and in every case we will make explicit (if necessary) which

equation is being used.

Remarks: 1. Eq. (7) can represent N containing constant sources.

See Theorem 8, Fig. 9.

2. Eqs. (6) and (7) have a negative sign because the

port currents (in Fig. 1) are directed away from the ports on "voltage-

driven" (i.e., capacitor) ports, and the port voltages are reversed on

the "current-driven" (i.e., inductor) ports. These reference directions

and polarities are chosen so that they are consistent with those

assigned to capacitors and inductors.

Using (3) with (6) and (7), we can write the differential equation

describing vjvl. Note that — z (t)=z (t)=y (t), and assume the function
dt ~p ~p ~p
3

f (•) in (3) is invertible. Corresponding to (6) and (7) we have

We can rewrite (3) as xp = hp(zp) for some function of hp(«). This
would avoid using the inverse of fp(») in (8). However^ (3) is the
appropriate form to present Theorem 11; this theorem deals with loops
of capacitors and cutsets of inductors. The function h (•) is used in
[12] and [13]. ~P
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-P ="Sp(?P"1(5p)'-s) (8a)

and

h =~hV1(?p}) <8b)

The graph theory principles we use in this paper are Kirchoff's

Current and Voltage Laws (KCL, KVL) [3], Tellegen's Theorem [3], and

the following special case of the Colored Arc Theorem [17] which we

call the:

Colored Arc Corollary: Let b be a branch of a (not necessarily

connected) graph (j. Partition the remaining branches of Q into two

arbitrary sets: Set A and Set C. Then, branch b forms a loop exclusively

with branches of Set A if, and only if, it does not form a cutset ex

clusively with branches of Set C.

We will be using the Colored Arc Corollary extensively, and it is

instructive to discuss the following example of its use. This is also

an illustration of a direct way to prove the Colored Arc Corollary

without resorting to the Colored Arc Theorem.

Let "fe) be an°de °f graph Q* where k1 2branches are attached at
node n@. See Fig. 2.

For each branch bJ, j = l,...,k, let Set AJ denote all branches

not attached to rw, and let Set CJ denote all branches attached to n^
UP '(g)

except b" . Now, bJ forms a cutset exclusively with branches of set CJ.

From the Colored Arc Corollary, we conclude bJ does not form a loop

exclusively with branches of Set AJ. Indeed, this must be true since

any loop involving b must also include some other branch attached to

•tsar
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There are two important properties of resistors which are of

interest to us:

Def. 1: [19] Let R be an n-port resistor with voltage v_ £ JRn,
"•R

and current i £ iR

(i) R is a passive resistor if, and only if, for all admissible

pairs (yR,iR),

¥r - ° <9a>

(ii) R is an increasing (or incrementally passive) resistor if, and

only if, for all admissible pairs (v ,i )' and (v_.,iD)"
~R ""R ~R ~R

[?R "^R^R "i«l i° <»>>

The passive and increasing concepts of resistors may be applied and

extended as properties of functions. In the following, we use both h(»)

and h to represent a function.

Def. 2: The function h: JRn +jRn is

(i) passive with respect to x_ £ JK if, and only if, for all x € JRn

(x-X())Th(x) >0 (10)

(ii) strictly passive with respect to x. ^ H if, and only if, (10)

is true and the left side is positive for all x ^ xn

(iii) eventually strictly passive with respect to x, ^ K if, and
0

5only if, there exists k > 0 so that for all llxil > kn

4
Resistor R may be a physical (n+l)-terrainal element, or an n-port
containing lumped (resistive) elements.

The norm II •II we use in this paper is the Euclidean norm, llx II =
19 n 9 1 /9 ""^

[(x ) +...+(x ) ] .Of course, the following results remain valid for

any choice of norm in JK .
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(x-xQ) h(x) > 0 (11)

Remark: If x = 0, we say simply that h is passive, strictly

passive, or eventually strictly passive. Also, note in (i) and (ii)

that [h(») continuous] =• [hOO = 0].

Def. 3: [20] Let D C jRn be convex. The function h: Rn+ Jf? is

(i) increasing on D if, and only if, for all x',x" G D

(?,-x")T(h(x')-h(x")) >0 (12)

(ii) strictly increasing on D if, and only if, the left side of

(12) is positive for all x1 f x"

(iii) uniformly increasing on D if, and only if, there exists y > 0

such that for all x1, x" € D

(x»-x")T(h(x')-h(x")) > yOx'-x'MI2 (13)

There are two more definitions which are of interest:

Def. 4: [21] For any integer u >_ 0, h: Jl?n +jRn is a CM-diffeo

morphism on JRn (or is a CM-diffeomorphic function on jRn) if, and

only if, h is injective on jRn, and the functions h,h are Cy. Fur

thermore, h is a Cy-diffeomorphism mapping K" onto Jr?n if, and only

if, h is a C -diffeomorphism and h is surjective.

Def 5: [11] The ^-function h: lRn+Jr?n is a state function if,
3h(x) rt-jn

and only if, its Jacobian -,~ ~ is symmetric for all x^K .
t)X

The following theorem summarizes the important facets of these

tlel'ini Iion:;. 11 :; prool , loj-.eLher with ;i discussion, is given in Ihe
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Appendix.

Theorem A :

A-l. [20] The ^-function h: Rn + jRn is
/ x .on Zh(x)
(i) increasing in K if, and only if, -~- ~ - is positive—semi-

definite for all x6f?

(ii) strictly increasing on JRn if ~'~* is positive-definite for
3x

all x e JRn.

(iii) uniformly increasing on a\ if, and only if, for some X > 0,

f3h(x) I „-,_
X" XI is positive definite for all x £ H* , where 1 is the

nxn identity matrix.

A-2. [21] For any integer y > 1, h: Rn •* Rn is a Cy-diffeo-

morphism mapping jf? onto IR if, and only if, the Cy-function h has a

nonsingular Jacobian everywhere on R , and limllh(x) II = +«>.
tlx||-*» " ~

A-3. (i) If h: Jci •> JK is continuous and strictly increasing

on IK , it is a C -diffeomorphism (also called a homeomorphism) on K. .

(ii) for any integer y_>°» if h: Rn -* Kn is a cp-uniformly-

increasing function on JK , it is a C -diffeomorphism mapping K onto

fin.

A-4. If the ^-function h: jRn + Rn is either

(a) uniformly increasing on JR

or else

(b) a C -strictly-increasing diffeomorphic state function mapping

«n onto R"

6A ^ ipnxn . . .
A <= ^ is positive semi-definite (resp., positive definite) if,

T
and only if, x Ax > 0 (resp., >0) for all x f 0.
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then h is eventually strictly passive, and

lim 1 T. , x
IxII-hx. TCT x ^(x) = + ~ (1A)

While we are interested in the properties of n -ports and the

functions g (•) in (6) and (7), at times we will use the following

theorem which guarantees that Eqs. (6) and (7) exist:

Theorem B: [4], [5] Let n-port N contain resistors, and independent

voltage and current sources. For any integer u _> 0, (6) describing

N exists, and g (•,•) is a CP-function if
~P

(i) There is no loop formed exclusively by voltage-driven ports of

N and independent voltage sources. There is no cutset formed exclusively

by current-driven ports of N and independent current sources.

(ii) Each resistor of N is described by its constitutive relation (4),
n

where gR(*) is a C -strictly-increasing diffeomorphism mapping JR onto
n

JR for each a = l,2,...,m_.

III. Properties of Resistive n -Portsc — p

Let N of Fig. 1 be an n -port containing resistors only; it is

described by (7). We shall prescribe conditions under which N has the

properties of Defs. 1, 2 and 3. In the following section, we see how

the addition of independent sources affects these properties. We begin

with

Theoreml 1: Let N be a resistive
V

port described by (7); namely,

?p = -*n<Xn>~p ~p
. Both of the following statements are true:

(i) If each internal resistor R01 is a passive resistor, then g (•)

is passive.

(ii) If each imternal resistor R is an increasing resistor, then
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g (•) is increasing.

Remarks: 1. in the proof we show that the hypothesis "each

internal resistor is passive or increasing" implies that N is passive or

increasing using Def. 1, or, equivalently, when each resistor is described

by its constitutive relation, we show that the hypothesis "g (•) is pas.
~R

sive or increasing" implies that gp is passive or increasing using Def. 2.
2. The conclusion that N is passive if (i) is true, or

N is increasing if (ii) is true, holds even if no equation of the form

(7) is valid, or if there is no equation of the form (4) describing the
resistors.

Proofc (i) we will show g (.) is passive.

First,

T T T
Xn8n(xJ = ~Xny = -V 1 ,~p~p ~p -pip ~p~p' V x

~P
(15)

where the last inequality comes from the fact that for each port k,

k - 1,...,n, vi = x y .
p p p p'p

Next, using Tellegen's Theorem

or

T. T
v l + v i„ = 0
~p~p ~R~R

T. T
"v l = v„i„
~p~p ~R~R

V (v ,i )
~P -P

~P ~P

n

where yR,iR GR represent the resistor voltages and currents.

(16a)

(16b)

Now,for each n-port resistor R(\ the function g£(.) is passive,
by hypothesis, (or, if £(.) does not exist, Ra is passive via Def. 1;
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this does not affect the following conclusion); hence

(v«)T(i«) =(x«)T(x«) =(4)T(g(4)) >0, Vfij\ (17a)
and

\h±°< J'A (17b)

Combining (15), (16b), and (17b), we obtain

5p5p<V =-Ypip =v£iR 20, Vxp (18)

(ii) The proof that g (•) is increasing when the resistors are

increasing is similar conceptually to the proof above. The notation,
n

however, is more involved. First, for any x1 and x" *= JR. p
~P ~P

[?p - ?P'lTf!P<5P> - 8p^>] - %>\w +%)\<*;)

- (?p)Tip(;p) - (5p)Tsp(;;)

- - %h'„-(*•/?; +(?;)Ty; +(xp)Ty- d9)

Now, for each port k, k = l,2,...,n , whether port k is voltage-driven

or current driven,

(xpTCyJ)" +&J>"<yJ)' -<vj)'<ij)» +(vj)-(ij)' (20)

Using (15), (19) and (20), we obtain

lx' - x"]T[g (xM -g (x")] =- [v» - v"]T[i* - i"] (21)
P ~P WP ~P ~P ~P ~p ~p ~p -p
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v •'

Next, using Tellegen's Theorem, since (~P J,I~P J satisfy KVL, and

/i V Ii V Vr/ V~r/ 'fy 1,(. ) satisfy KCL, we get the following four equations of the

form (16b):

Thus

Cyp)T(ip) =(yR)TaR>

(yp>T(ip-) =<yJ>T(}£>

<yp'>T(ip> =<YR)T(iR>

%)TV? =<3>T<i£>

(22)

-iyp - y^]T[i; - ±«] =[v- - vR]T[iR - iR] (23)

Finally, for each n-port resistor Ra, the function g!J(0 is

cl a.

increasing (or, if g„(») does not exist, R is increasing via Def. 1;
K

this does not alter the following conclusion); hence for any (v^i?)'

and (v-.,^)", we have
•"K "*K

[(y«)' -(y£)"]T[(i£)' -(i<*)"] =[(x<*)» -(x«)"]T[(yg)' -(yg)"] >0
(24)

where we obtain the inequality of (24) in the same way we obtain

(21). It follows from (24) that for all (v_,i_)' and (vw,i_)", we
~R~R **R""K

have

K- -k1'' Vk -Ik' ° <")
n

Combining (21), (23) and (25), we obtain for all x1, x" G R P

•15-



[?P - 7piTv# - ip(-P>] i ° " <26>

Theorem 1 is used in [12] and [13] to derive a number of important

properties of dynamic nonlinear networks. For example, it is shown in

[12] that if strictly increasing capacitors and inductors are attached to

the ports of a passive n -port N resulting in a network ^Jll described by

(8), then all voltage and current waveforms of the network are bounded.

If g (•) has some of the other properties of Def. 2, we can obtain

the following even more useful results [12]: If we attach strictly

increasing capacitors and inductors to n -port N described by (7), then

for the resulting network J\\ described by (8):

(i) if g (•) is strictly passive, all current and voltage wave

forms go to 0 as t + °°.

(ii) if g (•) is strictly increasing, the network has a (unique)

globally asymptotically stable equilibrium point.

(iii) ifLAJ is described by (6) and g (•,u ) is eventually strictly
n ~p ~b

passive for all u £ JK , then for any set of bounded, continuous

sources, all voltage and current waveforms are eventually uniformly

bounded.

In addition, if the sources are T-periodic (i.e., periodic with period

T), lAI has a T-periodic set of voltage and current waveforms [13]. The

additional "strictly" hypothesis motivates the following conjecture:

Conjecture 1: If the resistor functions g"(.) of resistive
—R

n-port N are strictly passive (resp., strictly increasing, eventually

This means that there exists k > 0 so that for any set of voltage and
current waveforms (v(t),i(t)) of N there exists tn > 0 such that
/,,/«-\\n ~ 0/¥(t)\| <_ k, V t _> t .
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strictly passive) then g (•) describing N in (7) is strictly passive

(resp., strictly increasing, eventually strictly passive).

We will show that this conjecture is false with the help of the

three-port counterexample in Fig. 3.

Remarks: 1. This counterexample would work just as well if the re

sistors are nonlinear; e.g., we replace linear resistor R1 with a
v/v

diode described by i = I (e -1).
s

2. We will show that the three-port containing strictly

passive internal resistors is not strictly passive. In the same way, it

follows that the three-port is not strictly increasing and is not

eventually strictly passive although the internal resistors have these

properties.

Suppose ports 1 and 2 are voltage-driven and port 3 is current-driven,
then

and

-§p«V

F + F

p7

hi

R-

-1

1 x 1
F2 + FJR;

The function gp(«) is not strictly passive. Indeed, if we choose
1 _ 2 _ 3

vp " vp - °» and xp " I0' where IQ is any constant, then

v

~P
l =

~P

-li

-17-

(27)

(28)

(29)



and Xp?p^Xp) = 0# Hence> this three-port is not strictly passive. In

order to uncover the conditions under which an n-port containing

strictly passive resistor is itself strictly passive, let us derive

first the following results:

Theorem 2a: Let N be a resistive n -port with internal resistor

~R * € R Rvoltages and currents [ ~.
2n viR

e JK . Assume there is no loop and no cutset formed exclusively
\ *-/ ~~~~ 2n x2n
by the ports. Then there is a matrix P G R p whose elements are

, and port voltages and currents

+1, -1, and 0, and each row of P has at least one non-zero element, so

that for every admissible j.p Jand every corresponding [.

to-GJ]
and for

k a IIpII > o

(30)

Kurt lii-rmoro, for every pair of admissible port variables (.' J and (~P

Hid for every corresponding pair of resistor variables

. ] and I . > we have

(31)

(32)

where IIpII is the matrix norm of P induced by the Euclidean vector norm,

we have

Vl- I\1r/
(33a)
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and

V V v \"

GJ-ftJ
Remark: Equation (30) expresses the important property that each

external port variable of N is linearly dependent on the internal

variables of N. This property is far from obvious because in general,

each port voltage (resp., current) will form loops (resp., cutsets) with

b°th internal resistors as well as other external ports, Furthermore,

this conclusion is very general in the sense that

1. It is not necessary that the resistors be described by con

stitutive relations such as (4). So, for example, there may be more

than one possible resistor current vector i_ for a resistor voltage
~R

vector yR. Similarly, it is not necessary that N have a constitutive

relation of the form (7).

2. Equation (30) is independent of the constitutive relation of

the internal elements. In fact, (30) represents any N with arbitrary

resistors so long as the graph Q of Ndoes not change.

3. There can be more than one J"± Jcorresponding to an admissible (~
~R' -P,

4. As will be seen in the proof, the matrix P in (30) is not
YR\ /v

necessarily unique. However, the linear mapping (. )i->- (~p )prescribed

in (30) is unique. That is, for any other matrix P such that an equation
Hof the form (30) is true, [P-P] ( . )= 0.
*R,

When the resistors are described by their constitutive relations
(XSR(«) in (4), and Nis described by gp(.) in (7), we have the following

cxLonsion of Theorem 2a:
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Theorem 2b: Let N be a resistive n -port described by (7) where

the resistors of N are described by (4). Assume there is no loop and

there is no cutset formed exclusively by the ports. Then there is a
n x2n

matrix E^ G JK p whose elements are +1, -1, and 0, and each row of
P^ has at least one non-zero element so that for every admissible

n

independent port vector x G JR P and for every corre

independent and dependent internal resistor variables

have

variables I 1.1 ), we have:

fcj "& * % =^

and for

\ Jk II?!II > 0

we have

and

lx II < k
-p - 1

XR

yR

x' - x"U < V
-p -p - 1

^ ej?n*, we

*R

(34)

Furthermore, for every pair of independent port variables x* x" and
-p* ~p

every corresponding pair of independent and dependent internal resistor

'*]
yR

ii •

R ~R (35)

(36)

(37a)

(37b)

Moreover, when each resistor function gj(») is continuous, we have
~R
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lim Hx II = + «> (j8a)
llx Hx» "K
-P

that is, for every 3 > 0, there exists 3 > 0 so that

HIXpll > 3 ] => [llxR[| > 3X] (38b)

/~RRemark: Again in this theorem, there can be more than one [
\Xr

corresponding to x .

Proof of Theorem 2a '•

If we show (30), we are through, for then (31) and (33a) follow

directly. The constant k in (32) is positive since every row of P has

a non-zero element. Equation (33b) is also immediate since (30) is a

linear equation. Let port j be any port, j = l,...,n . It forms no

loop with the other ports, so via the Colored Arc Corollary (choose

set A to be the set of port branches not including port j, and choose

set C to be the set of internal resistor branches) we conclude that it

forms a cutset exclusively with the resistors. It follows from KCL

i (plxnRthat there exists a row vector p. G K containing elements +1, -1,

and 0, such that

iJp "P} •JR <39a>

Row vector p. must contain a non-zero element, for otherwise port j

forms a self-cutset, violating our hypothesis. Similarly, port j forms

no cutset with the other ports. From the Colored Arc Corollary, we

roncludo that It forms a loop exclusively with resistors. If follows
lxn

from KVI. thai lhero exists a row vector p. G Jk_ containing elements
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+1, -1, and 0, such that

v

(39b)

where, as with p. above, p. has a non-zero element. Since (39) is

true for all j = l,...,n , we formulate P in (30) with the row
p

vectors p , pV, j = 1,2,...,n . M
-J -J p

Proof of Theorem 2b:

The vector [ p)may be obtained by simply reordering the vec-

tor I FI. Similarly, I jmay be obtained by reordering! . ). Thus,
VP/ W VR/

by deleting one-half of the rows of P in (30) and by rearranging the

columns of P, we obtain P in (34). Then, (35), (36) and (37) follow

from (34) in the same way that (31), (32) and (33) come from (30). We

have only to show (38). Assume (38b) is false; then there exists §_ > 0

such that for every 3 > 0 there exist x G JR. and x G K such that

< 3,lx II > 82 ; 11x^1 < (40)

Since every gt)(«) is continuous, the composite function gT>(») [yD =
—K ~R I"R

Sr^V jis continuous, and the continuous function

yRH = llgR(.) (41)

attains a maximum denoted by 6 > 0 on the compact set {xD: IIx II < B-, )
————— ~ K ~ K 1

Thus, from (40) and (37a),

l*RD*«V
V 2 =llxRll2 +IlyRll2i (Pi>2 +^>2

*J2 5. k? (OO2 + (:s)2 (42)
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which is a contradiction of (40) for arbitrarily large \\ 0. *

Example: A fourth resistor is attached to the three-port of

Fig. 3 (see Fig. 4). The ports of this three port form no loops and

form no cutsets. Hence from Theorem 2 we conclude that an equation of

the form (30) exists. Indeed, we have

10000000

01000000

00100000

0 0 0 0-1001

0 0 0 0 0-101

0 0 0 0 0 0-11

(43)

Moreover, as we shall show following Theorem 5, gp(.) for this network
is strictly passive and strictly increasing.

The converse of Theorem 2 is also true. That is, if there is a

loop or cutset formed exclusively by the ports, then equation (30) is not

true, and the remainder of the conclusions also do not hold. Indeed,

as illustrated by the three-port of Fig. 3, if there is aloop of ports,

there can be a"loop current" of the loop of ports which is not reflected

in the resistor voltages and currents. To make this more explicit, we
have

Theorems Let Nbe aresistive np-port. Assume there is aloop
nnd/or ;i cutseL Conned exclusively by the ports of N. Then there is a

/y V /v \"pair of port vectors [£j,tfj,and apair of correspondlng internal
resistor vectors (jA .(A Lhthat
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A -M

but

\V lip/ (44b>
Moreover, for any port j

(i) (v^y * (vp" (45)

only if port j is in a cutset of ports. Furthermore, if port j and

port k are in this cutset and in no other cutset of ports, then

(vj)» -(vV =+[(VJ)» -(vj)"] (46)

where the sign on the right side of (46) is plus if, and only if, port

j and port k are similarly directed in the cutset.

(ii) (ipV #Up" (47)

only if port j is in a loop of ports. Furthermore, if port j and port

k are in this loop and each is in no other loop of ports, then

(i3). _ (iJ).. =± [(ik}. _ (1k)H] (48)

where the sign on the right side of (48) is plus if, and only if, port

j and port k are similarly directed in the loop.

Remark: The expression on the left side of (48) can be interpreted

as the "loop current" of the loop of ports. We require that ports j and

k be in only one cutset of ports in (46) and in only one loop of ports in

(48). Otherwise there might be more than one "cutset voltage" or "loop

current" involved.
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Proof; Assume there is a loop of ports (if there is no such loop,

but there is a cutset of ports, the proof is conceptually identical).
lxn /v V 2n

We represent this loop by the row vector b. G JK p. For any (7P )GR P
Ar\ i02nR \~P/and corresponding!. jG JR. 9 the vector

SW&h
is also an admissible port vector for any T ^ 0, since KCL and KVL

satisfied. Furthermore, it has (. J as the corresponding resistor
w

vector. So (44a) is true.

The proof that (45) is true only if port j is in a cutset of ports,

and that (47) is true only if port j is in a loop of ports, is precisely

the same as the derivation of (30) in the proof of Theorem 2a.

We next show (46); the proof of (48) is identical. We apply the

Colored Arc Corollary twice: First, since port j forms a cutset of

ports, it does not form a loop with resistors. Second, since port j

does not form a cutset of ports excluding port k, it forms a loop with

port k and the resistors. This is possible if, and only if, port j

and port k together form a loop with resistor. Then, from KVL and

the fact that all internal resistor voltages are the same (v* = v") we
~R ~R

see that (46) is true. *

We next examine conditions for the inverse of Theorem 2, i.e.,

conditions for which

loop and no cutset of resistors, then we can write

are

conditions for the inverse of Theorem 2, i.e.,

(. Iis a function of j pj. Now, if there is no
v w

i: •'<£>
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2n x 2n

where PG JR P has elements +1, -1, and 0. This equation is de

rived in the same way (30) is derived. Indeed, if we reverse the role

of resistor and port, (30) becomes (50). However, in many n -ports
P

the number of resistors is large compared to the number of ports, so

the condition "the resistors form no loops and form no cutsets" is

prohibitively strong. Also, we can use the constitutive relations of

the resistors to obtain a better result. First, we examine a network

where (30) does not have an inverse (see Fig. 5).

In this network, for

R

i
RK i

we have

1

-2

v'l"

VR
(51)

(52)

In the following theorem, we present acondition so that (~RJis a
function of /.M. in presenting this theorem, it is convenient to view
all resistors as one-port resistors possibly coupled to other one-port
resistors. We make this concept of coupling explicit as follows:

Def^_6: Assume all resistor functions g£(.) of Nare differentiable,
In viewing all resistors as one-ports, we say that resistor kis coupled
to resistor j if, and only if, -i ) 0.

9x«

Theorem,4: l.et the constitutive relation of each Inl^rnarresUtoT"

»• Nhe .» CM-I um-lion r1^.), where „ I. Then there is a (^"-function
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h^ such that for every admissable port vector! . land corresponding

internal resistor vector ( . )we have

(53)

if the following condition is satisfied:

Let the resistors of N be modeled as coupled one-ports. Let 2 be

any set of resistors so that any resistor in 2 forms a loop and/or

forms a cutset exclusively with other resistors of 2. At least one of

the following statements is true:

(a) There is aresistor RJ in 2 which forms a loop exclusively

with resistors of 2 but does not form a cutset exclusively with

the resistors of 2 . Its independent variable is its voltage, and no

resistor of 2 is coupled to it.

(b) There is a resistor RJ in 2 which forms a cutset exclusively

with resistors of 2 but does not form a loop exclusively with resistors

of j. Its independent variable is its current, and no resistor of 2

is coupled to it.

Remark: The condition of this theorem can be verified by inspec-

8
Since other resistors may be coupled to R , its constitutive relation

may depend on more than one independent variable; namely y^ =
i R

J / 1 n ....
gRUR, ,2^ R^ condition (a) requires x* = v^, y^ = i;J, and that

_ i R R R R

8yR kfor each k = 1,2,...,il, k ^ j, —r t 0 only if resistor variable x^ is

9xR
that of a resistor not in 2. In the special case when RJ is an
"uncoupled" two-terminal resistor, condition (a) is equivalent to

requiring that RJ is a voltage-controlled resistor. A dual statement
applies to condition (b).
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tion (for example, the network of Fig. 5 violates the theorem because

neither resistor is voltage-controlled). The following example illustrates

the use and proof of the theorem. See also Corollary 1 for a stronger

though more succinct condition.

Example; We will derive hN of (53) for the two-port of

Fig. 6. In the two-port N of Fig. 6, assume resistor R1 is current con

trolled (vR =gR(iR)j and resistor R4 is voltage-controlled M =g4(v4)).
We shall derive h^.) of (53); define set 2X ={R1^2^3,^}. Here,
every resistor of Q1 forms aloop and/or forms acutset exclusively

with resistors of Q±. Now, resistor R1 is acurrent-controlled re
sistor which does not form a loop with resistors in 2 (condition (b)).

It follows from the Colored Arc Corollary that R1 must form a cutset

with the ports. Indeed, port 1and R1 form acutset, and

4="*J JVR =4^ (54)
Next, let 22 ={R2,R3,R4}. Every resistor in 22 forms aloop with
resistors of 2r The voltage-controlled resistor R4 does not form a
cutset with resistors in 22 (condition (a)), and, from the Colored
Arc Corollary, it follows that R4 forms aloop with the ports. Indeed,

4
port 2 and R form a loop, and

4 2 .4 4, 2
VR = VP ; XR =W (55)

Now, resistors R2 and R3 each form aloop and acutset exclusively with
the ports and with resistors R1 and R4. Using KVL and KCL
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2 1
V — v — V

R P Rj_
3 1 1.4

v = v — v + vR p VR VR

.2 .1 .4 , .2
i_= -l +i+i
R p R p

.3 .4 .2

XR = -\ ~ \

Combining these three equations, we obtain

Mr-

i?

w
\

W-K>
1 - gR(-il) + V2
p R p p

-•il

-ip + gR(v2) + ±2

(56)

(57)

Remark: The continuity of h (.) in (57) is identical to the

1 4continuity of gR(0 and gR(«). Also, for this example, it is not
2 3

necessary to describe R and R by constitutive relations.

Proof of Theorem 4: Let 2-, be the (maximal) set of resistors so

that a resistor is in S-. if, and only if, it is in a loop and/or in

a cutset formed exclusively with other resistors of N. (In the pre-

vious example, 2, = {R ,R ,R ,R } contained all the resistors of N.)

Let 2i be the resistors not in 21• Each resistor in Q? does not

form a loop and does not form a cutset exclusively with resistors; thus

from the Colored Arc Corollary, each resistor in 2? forms a loop and

forms a cutset exclusively with the ports. Using KCL and KVL we con-
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elude that the voltage and current of every resistor in gc is a

C- (actually, C00-) function of the port voltages and currents.

Assume resistor R1 GQ± satisfies (a) of the theorem (if (b) is
satisfied as in the example, the proof is identical). Using the

Colored Arc Corollary, it forms a loop exclusively with the ports and

resistors in fi*. Its voltage therefore is aC^-function of voltages
of the ports and voltages of resistors in 2^; that is, its voltage
is aCy-function of the port voltages. Since only resistors in 2°
can be coupled to resistor R1, its current is in general aCy-function

of its voltage, and of voltages and currents of resistors in gc.

Thus, the voltage and current of resistor R1efi1 is aC^-function of
port voltages and currents.

Let -»2 - ox be the set of resistors of N so that a resistor is
0 •£

m j,2 it, and only if, it forms a loop and/or cutset with resistors

excluding resistor R1. Let ,Q£ d,0^ be the remaining resistors of N.
Any resistor other than R1 in Q* and not in gc forms &̂ ^ ^ ^^

a cutset exclusively with the ports, the resistors in 2?» and R1.

Thus, the voltage and current of every resistor in 2o is a Cy-function

of port voltages and currents.

Assume resistor R G 22 satisfies (b) of the theorem. Using the
dual of the analysis of R G 2-. above, we conclude that the voltage and

current of R G J> is a C -function of port voltages and currents.

We proceed in this way, forming 23 £ 22> 24 £ Qy etc. Each
set 2: contains at least one element less than 2.,- The number of

•J 3 1

resistors is finite, so there is an integer £ > 1, n >£,(£= 2 in
- p -

the example) so that 2„ contains no elements. Then, every resistor
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