

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EFFICIENT EVALUATION OF EXPRESSIONS IN A RELATIONAL ALGEBRA

by

Robert M. Pecherer

Memorandum No. ERL-M510

19 February 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EFFICIENT EVALUATION OF EXPRESSIONS IN A RELATIONAL ALGEBRA

Robert M. Pecherer
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

(415) 454-5427

£££ an algebraic expression into an equivalent expression that is inherently "quicker" to evaluate.

I. INTRODUCTION

In a relational data base system, the user logically
views large quantities of formatted data as stored
in time-varying, finite relations of assorted de
grees. Updates to and retrievals from his collection
of data are often specified in a descriptive, non
procedural language such as DSL-ALPHA [1], SEQUEL
[21, SQUARE [3], DAMAS [4], or QUEL [5]. The
physical representation of user relations and pro
cedural solutions to non-procedural user requests
are the main problem of the system designer, and as
yet, efficient implementation techniques are largely
unexplored. The presence of multiple users, multiple
views and security and integrity constraints com
plicate the problem and are not discussed. Here,
we consider only the formation of response relations
(retrievals), so that the time-varying nature of
the data base is ignored.

At present, there are three main approaches to the
decomposition of non-procedural retrievals:

(1) Iterative decomposition by tuple subsitution [5].
In the retrieval statement, the tuples of one
relation are substituted to produce one or more
simpler statements with data values replacing
variables. By repeated application, all varia
bles are removed and the statements can be
directly processed.. This approach is further
discussed in 14, 5, 6].

(2) Translation to an algebraic expression employing
relational operators on the data base relations.
By Implementing the operators, the expression is
evaluated to produce the response relation.
This suggestion is pursued in [7, 8].

(3) Compilation to a set of procedures in a hier
archical or network-oriented language. This
approach is followed in DIAM [9].

The first method has been implemented in the INGRES
[5. 6] project at Berkeley. The third approach has
been proposed by Senko [9] and by Tsichritzis [10].
The feasibility of the second approach has been
demonstrated with a translator from the non-proce
dural language ALPHA to a relational algebra by
Codd [7], and an APL implementation of this algebra
by Palermo [8]. This paper investigates efficiency
considerations for the second approach, building on
Palermo [8]. Results are applicable to algebraic ex
pressions generated by the Codd Reduction Algorithm
(CRA) [7] and to algebraic expressions in general.
The reader is assumed to be familiar with [7], espe
cially the CRA and the retrieval language ALPHA.

We are concerned here with 2 factors:

(1) efficient implementation procedures for the
operators of a relational algebra, and

(ii) translation of algebraic expressions to
equivalent algebraic expressions which are
inherently "quicker" to evaluate.

The paper is divided into 4 sections. The first
introduces definitions and terminology, and describes
the relational algebra whose implementation we study
here. The second discusses techniques for the effi
cient implementation of this algebra; results are
presented for arbitrary algebraic expressions and for
the class of expressions produced by the CRA. The
third describes a number of efficiency results obtain
able by translation to equivalent expressions, and
the last section offers a summary and conclusion.

II. DEFINITIONS AND.TERMINOLOGY FOR A RELATIONAL
ALGEGRA

*The definitions and terminology are similar to Codd
[1, 7, 11, 12]. The relational algebra defined here
Is derived from [7]., but employs fewer, more powerful
operators; the differences will be noted.

Relations

A domain D is set; a domain is simple if its members
,are not themselves sets. Let D^,...^ be domains.
A relation R over D ,....D^ is a subset of the
Cartesian Product D.*. ,xD and is said to be an

n

m-nary relation or relation of degree n. The members
of R are called n-tuples or simply tuples. If r is
an n-tuple, r[i] designates the ith domain value or
1th attribute of r, for 1 £ i£ n. If A = a^.-.a^
is a list of integers such that 1 <. a. ± n for

j - l,...,k, then A is a domain identifying list for
any n-nary relation, and r[A] designates the k-tuple
(r[a.],...,r[ak]). If r is an n-tuple and s an m-
tuple, r~sdesignates the n+m-tuple (r[lj,...r[n],s[l],
...,s[m]). A relation is first-normal or normal if
each of its domains is simple. All relations con
sidered here are assumed to be normal. In the sequel,
deg(R) denotes the degree of relation R; the size of
a relation is the number of tuples it contains.

A Relational Algebra

Any relational algebra consists of operators which
map relations or pairs of relations to relations, and
a set of relations closed under the operators. The
following definitions apply only to normal relations.
Note that tuple attributes are identified by position.

Definition (2.1) Let L be a domain identifying list
for relation R. The projection wT(R) is defined
by: L
*L(R) - £r[L]: r€ r}, .

Definition (2.2) Let R and S be relations of degree
n and m respectively. The product R*S is a set
of n+m-tuj>les defined by:
R*S - {rs: r € r A s e s}.

Definition (2.3) Let R and S be relations, and r
and 8 tuple variables for R and S respectively.
Let f be a 0-1 function specified as a Boolean
combination of terms of the form

x9y

where 8 is one of {», ?*, <, _<, >, >_}, and each x
and y is an arithmetic expression involving tuple
attributes r[i] and s[j], simple functions (such
as log, sin, etc.) of attributes, and constants.
The join R[f]S is the set of tuples in R*S for
which the function f is equal to "1." e.g.,
R[f]S = {rs: rSRAs^sA f(r,s) = 1}.

In (2.3), the symbols "r" and "s" always refer to the
(left and right operands respectively in the binary
join; this is simply a syntactic convenience.

Definition (2.4) Let R be a relation, r a tuple
variable for R, and g a Boolean function such as
"f" in join, but referencing only attributes of r.
The restriction R[g] is the set of tuples in R
for which g is equal to "1."
R[gJ - (r: r S RAg(r) - 1}.

Definition (2.5) Let R and S be relations of degree
n and m respectively; let.A and B be domain iden
tifying lists for Rand S respectively, both of
length k<n and both without repetition. Let A" be
a domain identifying list for. R complementary to A
and in increasing order (viz. n-5, A-1,4,3 then
A-2,5). The division R[A*B]S designates a subset
of n-k-tuples in ^r(J0 as follows:

R[A*B]S - {r[A"]: r e rAVs Gs]r' €r

•• [r[A"] - r*[A"]Ar'[A] - s[B]]}

Imore revealing definition and numerous examples of
Uvlsion are given in [7]; a minor difference is that
Ln our definition, when S is vacuous, R[A*B]S = tt—(Rl
ihereas in Codd's, R[A>B]S is the empty relation. A
:hird possibility is to make division by a vacuous
relation undefined. Our definition is more consist-
snt with the intended correspondence between division
Ln the algebra and testing for universal quantifica
tion in a first-order predicate calculus (see [7, 8]
cor a discussion). For our purposes, algebraic
expressions are assumed to be over non-empty
relations, so that the difference in definition Is
pf no concern.

tempering the above definitions to Codd's Relational
Algebra [7], projection and product are identical,
is Is division when the divisor relation is non-empty.
?or join and restriction, Codd's notation is such
:hat the only Boolean functions allowed are conjunc
tions of e-comparisons of attribute values, with all
>8 the same. Our definitions are motivated by the
>elief that the relations of an Implemented system
till reside in a slow secondary memory, and the in
put of tuples from R and S to form R[f]S (or from
just R to form R[g]) is expected to be more time-
consuming than application of the function f (or g).
$o that the retrieval of (say)

OPs: r.G RAs S's A (r[l]-s[l] V r[2]^s[2])}
may be expected to proceed morejguickly by evaluating^

R[r[l] - s[l] Vr[2] * s[2]]S

than.by evaluating

Rfr[l] - sfl]]S and R[r[2] * s[2]]S

and forming their union. A similar argument applies
for restriction. *—'

Codd*8 algebra includes the set operations of union,
intersection and relative complement; the following
identities indicate that the latter 2 are not
fnecessary:

(2.6) RnS- ffi,..-.tn.(R[r[l] = s[l]A...
A r[n] - s[n]]S)

(2.7) R \S = (R[r[l] t s[l]v.. .Vr[n] ^ s[n]]S)

[n+l,...,2n*l,...,n]S

where deg(R) = deg(S) = n and S is non-empty

iUnlon cannot be obtained from the other operators
[since it produces relations with domains which are
^supersets of the operand relation domains, and none
jof the other operators can achieve this. Allowing
{disjunctions in the definitions of the Boolean
.functions "f" and "g" (for join and restriction)
'eliminates the primary need for union. If the union
jof two compatible relations must be formed, we pre
sume this to take place external to the algebra;
'implementation of union will not be discussed.

The .five operators defined here are not a minimal set
since

(2.8) R*S = R[r[l] = s[l] v r[l] * s[l]]S, and
(2.9) R[g] = ir n(R[r[l] - s[l]A...

A r[n] - s[n] A g]R)
where deg(R) «= n.

Wo computational advantage is indicated by eliminating
product and restriction operators, and in fact, imple
mentation of restriction of a relation by a projection
.of a join of the relation with itself is probably a
poor idea.

In the next section, a storage framework for relations
and time approximations for evaluation of the opera
tors are Introduced. A fast way to perform division
lis derived, and a very fast evaluation technique for
an important class of algebraic expressions is
demonstrated.

III. EFFICIENCY IN THE IMPLEMENTATION OF RELATIONAL
OPERATORS

In this section, we proceed as if our only goal is
the evaluation of syntactically correct expressions
Bn the relational algebra over a fixed set of stored
Uata base relations R ,... ,R of size n. n .

Pip
Correct evaluation of each operator requires examina
tion of every tuple of each operand relation, however,
since a relation is a set with no specified order
properties, the order in which tuples are examined is
of no logical consequence to the result. For the
evaluation of certain operators, the retrieval order
of tuples in the operand relation(s) can affect the
time required. To demonstrate this, we make the
following assumptions:

|(3.1) All relations (data base, intermediate, result)
are maintained in a slow secondary memory as
tables of tuples; the order in which they are
stored is the only order in which they can be
retrieved.

(3.2) All tuples of a relation are encoded in a
fixed-length field. The time required to
retrieve every tuple of a single relation is
proportional to its size.

(3.3) Application of Boolean functions to tuples is
performed in primary memory by a single
processor in an amount of time which is in

significant compared to the input time for
the operand relations or the output time for
the result.

We are concerned with the relative efficiency of
evaluating the operators for different retrieval
orders. We approximate the amount of time required
as a function of the size of the operands. When the
time is specified as "0(f(n))," this indicates that
the actual time T(n) is proportional to f(n),' or
equivalently,

(3.4) lim T(n)/f(n) = K
n-*»

where K is a proportionality constant (nonzero).

The evaluation of R^g] requires time 0(n) since
every tuple of R± must be retrieved for testing with
g. The evaluation of R^R. requires time 0(n *n)
since n *n. tuples must be output. We assume that

evaluation of R±[f]R also requires time 0(n *n)
since every tuple of Ri*R. must be formed and tested
by f. These values are independent of the retrieval
order of the operand relations except for certain
simple Boolean functions which do not concern us here.
We are concerned with projection and division, for
which different (known) storage orders require dif
ferent evaluation times.

The evaluation of ^(R^ (when L is not a permutation
or1 the sequence "l,...deg(R)") is complicated by the
fact that the result is a set without duplicate
tuples. If it is known that R. is sorted on the

domains of L, all tuples r in R with the same value

of r[L] appear sequentially when R. is retrieved.

The storage of duplicate tuples can be avoided with
comparisons between consecutively retrieved tuples
(not by scanning all previously stored tuples), so
In this case, 1IL(Ri) can be evaluated in time 0(n).
The best method we have found for evaluating tt (R)

Lt X

when R^ is unsorted is by a simultaneous sort-and-
Jhrbject procedure that eliminates domains not in L
and duplicate tuple values. This method is dominated
by the sorting time which we take to be 0(n log n)

(see Knuth T13], pp. 361-376). Under the given
assumptions, we have that:

(3.5) wL(R±) can be evaluated in time 0(n.) if each
subset of K± with the same projection r[L] is
consecutively retrievable.

The amount of time to evaluate R [A*B]R depends not

only on n^ and n,, but also on the size of the result;
In the following derivation, we assume n. >_ n., and
that s[B] assumes n distinct values as s ranges over
Rj. J

From the definition, we have that for each r in R :

(3.6) r"[A] e R±[AiB]Rj ~Vs GRj 3 r' <= R±[riK)
- r'[X]Ar'[A] - a[B]]

(3.7) r[A] <* R^AfBjRj ~3 s G RA/r* S R±[r[S]
* r»[A-]Vr'[A] + s[B]]

To verify the condition on the right hand side (rhs)
of- (3.6) requires time n *0(n) since there are n.

tuples ln R , and it requires time 0(n) to find r'

In R . To verify the condition on the rhs of (3.7)

requires time 0(n) since every tuple of R must be

checked. If m is the size of the result, m is
bounded from below by 0 and above by n./n. since

for each t in the result, there must be n. tuples

zV'",Zn* ln Ri with ^W = ••• = zn P] = t, and
these tuples cannot satisfy the necessary condition
for any other t' in R [A*B]R.. This yields the time
approximation: J

(3.9) m*n *0(n±) + (n -m)*0(n)
for the total evaluation, which is 0(n) over the

range of m.' Clever programming can produce smaller
values for K in (3.4) for division, but the 0(n2)

approximation is valid.

When it is known that R is sorted on"5, A and R on

B, then for each t in R^AiBjR , (at least) n con
secutively retrievable tuples in R will have zfS] =

t, and within this subset, the n tuples that satis

fy the role of r' in the rhs of (3.6) will appear in
the same order as the n. tuples of R . The fol

lowing example illustrates this:

(3.9) Example: Ri[2,3*l,2]R
(unsorted R , R)

R± 1 2 3
A X 1

C Z 3

B Z 3

CXI

A Z 1

A Z* 3

B X 2

B Z 1

(R± sorted on 1,2,3; R sorted on 1,2)

Ri I 1 1
A X 1

A Z 1

A Z 3

B X 2

B Z 1

B Z 3

CXI

C Z 3

"j I I
Z 3

X 1

X 1

Having achieved this arrangement of the operand
relations, evaluation of R.[A*B]R can be performed

with a sequential scan of R since no tuple of R

has to be compared to more than one tuple of R .

The cost of sorting both R and R is 0(n log.n)

since n. ^ n , and since the division can then be

performed in 0(n), the total time is 0(n log.n),

which is superior to 0(n) for unordered R and R .

For an arbitrary algebraic expression, this technique
and the sort-project technique for projection guar
antee that any projection or division can be
evaluated in time O(nlog.n) where n is the size of

the projected or divided relation. And under the
given assumptions, we also have that:

(3.10) R1[A'B]R can be evaluated in 0(n) if each
subset of R with the same projection r[A]

Is consecutively retrievable, and the tuples
of each subset are retrievable in the same
order as the tuples of R .

For an important class of algebraic expressions
involving projections and divisions, the conditions
in (3.5) and (3.10) can be achieved in the inter
mediate results of evaluation at no extra cost. The
Codd Reduction Algorithm (CRA) generates the class
from a restricted set of ALPHA expressions (see [7]
for details of the CRA and ALPHA); the general form
is:

(3.11) V<Wl("-Cfch,((?l*-'-*efcK1)l8l)'--))
in which G (X) is either the projection

ffi « <X>

or the division

X[mfcfj+l....,mIefj+1 *l,....deg(Rfcfj)]Rlcfj
where m± » degO^) + ... + deg(R).
We refer to such expressions as "CRA-expressions."
Suppose the evaluation is performed by producing
Tn,...,T ,W where:
U q

f0-<v-,v-*w«j
Ti - <wv

When g is identically true, T. » R*...*R^ for
1- 0,...,q; each G produces T + =R* .•*RfcH ,
fro,a Tq-j " Ri**-**RkH-j* If T0 is generated as
(R1*..;*Rk)*(Rfcfl*(Rk+2*(...(Rfc^))), then for every
t€Tj *• Ri*****Rfc+q_1» the subset t*^ appears
sequentially in TQ, so the conditions in (3.5) are
met; if R_ is unaltered, the conditions in (3.10)

are also met. G can then be applied to Tn in
time proportional to its size. If R. is un

altered and the tuples of T. are stored in the order

that the tuples of T are sequentially scanned, T

meets the conditions also, so again, G. . can be
k+q—1

applied ln time proportional to the size of T..

Repeating the procedure for G ,f-»G,^,,' each
K+q—J. ict-1

such projection or division can proceed in time
proportional to the size of the operand. When g is

any Boolean function, the same argument applies to
subsets of R *...*R. ,.. ,,R *...*^ , so that

again, the projections and divisions proceed quickly.
Only for the last projection "W a rr (T)" can the
condition in (3.5) fail. L q

The Importance of this technique is that 0(n) pro
cedures for every -division and projection (except the
last) are available without any rearrangement of the
data base relations. The CRA-expressions can
represent complex queries over many relations; rapid
evaluation is critical to the performance of the
entire system.

IV. EFFICIENCY BY TRANSLATION TO AN EQUIVALENT
EXPRESSION

Complex queries to an information retrieval system
are so time-consuming that even if they represent a
small fraction of the total queries, their effect
could seriously degrade the response time for simpler
requests. Examination of the general CRA-expression

(4.D VW'"<W(V Vq>[8,) ...))

indicates 2 reasons why complex queries require so
much time:

(I) The product relation R *...*^ is ex
ceedingly large, perhaps too large to be
stored in secondary memory.

(II) The restriction "g" and each projection and
division require at least a sequential scan
of every tuple left by the application of the
previously applied operators.

The previous section discussed operator implementa
tion; in this section, properties of the operators
are exploited to produce equivalent expressions
which reduce the size of the product space and
eliminate certain projections and divisions. The
translation of an expression to a more easily eval
uated expression is expected to proceed mechanically,
but guided by-accumulated statistics on the data base
relations and previous evaluations, and possibly with
user interaction. This work was stimulated by
Palermo [8].

Palermo [8] has shown that in♦(4.1),

(4.2) For 1 <_ 1 <_ k, any domain of R not referenced

in "L" or "g" can be projected out prior to
evaluation without affecting the result.

(4.3) For k < i £ k + q, any domain of R not

referenced in "g" can similarly be projected
out provided G. is a projection and not a
division.

This allows us to rewrite (4.1) as

(4.4) v (G^l(...G^Or^)*..... (Rk+q)) lg1)
...))

where each projection wL (R^ eliminates domains
in R^ in accordance with (4.2) and (4.3), and L*,
G' and g' are derived from L, G and g in (4.1)

to reflect the altered positions of the relevant
domains. The new expression (4.4) requires less
space to evaluate, but the time to perform projec
tions indicates that this transformation should be
used cautiously.

A more Immediate result is obtained from the fol
lowing identities in which deg(R) - n, deg(R.) - m
and deg(R_) » q: 1 2

(4.5) (r^ ^eR^CR^rje^Ig]}

"'l »(,1 JW«n

"V..,n((VVR3)f8l)-
(4.6) {v r^R^Vr^R^Gygjj

- (((R1*R2*R3)[g])[n+m+l,...,n+m+q

*l....qjR3)fn+l,...,n+m *l„...fm]R2
- ((R1*R2*R3)[g])[n+l rrturfq

'*1 m+q](R2*R3).
For CRA-expressions involving sequences of 2 or
more consecutive projections (divisions), each such
sequence can be replaced with a single projection
(division). Although the divisor relation is larger,
the size of the dividend relation is the controlling
factor; this translation should be performed when
ever possible.

The remainder of this section is concerned with
replacing products with joins and relations with
restricted relations. The results are directed
towards limiting the growth of the restricted
product which appears in every CRA-expression:

(4.7) V-*W«1
However, they also apply to arbitrary algebraic
expressions.

Consider the following expression in which deg(R) »
3 for 1 « 1,2,3: * i

(4.8) (R1*R2*R3)[r[l] - 5A r[3] - r[4] A r[6] < r[7]

Ar[5] * r[6] A r[3] + r[6j „ r[9j]#

The terms "r[l] = 5" and "r[5] + r[6]" each Involve
attributes from a single operand relation, hence we
can rewrite (4.8) as

(4.9) ((Rl[r[l] =5])*(R2[r[2] +r[3]])*R3)
[r[3] - r[4] A r[6] _< r[7]

Ar[3] + r[6] = r[9]]..

In (4.7), the terms "r[3] = r[4]" and r[6] < r[7]"
can be eliminated by replacing the product operator
with joins. Notice that to avoid ambiguity, extra
parenthesization is required:

(4.10) (((Rx[r[i] - 5])[r[3] - s[l]j

(R^r^] ^r[3]]))[r[6] <s[l]]R3)
[r[3] + r[6] - r[9]].

The final term "r[3] + r[6] - r[9]" can be incor
porated into the second join operator. To illustrate
the magnitude of time saved, suppose that equality
joins and restrictions reduce the size of the result
by 90Z, inequalities by 10Z and all others by 50Z
If n± la the size of R±f the following table gives
expected values for the number of times a Boolean
function is applied to a tuple or tuple pair in the
above expressions:

Expression

(4.8)

(4.9)

(4.10) n1+n2+'09(!li*n2)+-009(rii*n2*n3)
If nx - n2 - n3 - 100, (4.9) offers a 90Z reduction;
for (4.10) it is almost 99%.

A further set of improvements is obtainable with
rearrangements of the operands. For example, under
the assumptions made, the expression

(4fll) (Rj*R2*R3)[r[l] * r[4]Ar[6] »» r[7]
Ar[2] - r[8]].

should be evaluated as

(4'12) W1.2,3,7,8.9.4,5.6((Vr[2) °s[211V
frll] * s[l] A s[3] + r[4]]R2)

Expected g of tuple tests

nl*n2*n3 -
n1+n2+.09(n1*n2*n3)

rather than

(4.13) (R^rll] * s[l]]R2)[r[6] * s[l]

Ar{2] - s[2]]R3
since the equality join "r[2] = s[2]" in (4.12) is
presumed to be more restrictive than the inequality
join "r[l] * s[l]» in (4.13), and the projection is
merely a permutation.

An algorithm has been developed which converts an
arbitrary restricted product to an equivalent ex
pression using products, joins and restrictions that is
optimal with respect to expected amount of work.
Details will appear in a forthcoming report.

V. CONCLUSION

This paper has addressed the problem of eval
uating expressions in a relational algebra over
relations in a data base. Procedural considerations
for the operators produced a more rapid evaluation
schema for division than might otherwise be achieved.
For an important class of expressions (the CRA-
expressions) , it was shown that 0(n) procedures for
projections and divisions were achievable when the
Intermediate results were maintained in certain
orders in their actual stored representations.
Finally, techniques were demonstrated for translating
,certain commonly occurring algebraic expressions to
equivalent expressions that are in some sense "easiei"
to evaluate.

When the retrieval of response relations in a non
procedural, descriptive language is performed by
translating the retrieval statements into a relational
algebra for evaluation, properties of the algebra can
be exploited to produce the response relations more
rapidly than might be expected. It is hoped that
this paper sheds some light on this approach.

ACKNOWLEDGEMENT

Research sponsored by Naval Electronic Systems Com
mand Contract NOOO39-75-C-0034.

BIBLIOGRAPHY

[1] Codd, E. F., "A Data Base Sublanguage Founded on
the Relational Calculus," Proc. 1971 ACM
SIGFIDET Workshop on Data Description, Access
and Control, San Diego, Nov. 1971.

[2] Chamberlin, D. D. and R. F. Boyce, "SEQUEL: A
Structural English Query Language," IBM
Research Laboratory, San Jose, CA

[3] Boyce, R. F., D. D. Chamberlin, M« M. Hammer
and W. F. King, "Specifying Queries as Rela
tional Expressions: SQUARE," IBM Technical
Report RJ 1291, October 1973.

[4] Rothnie, J. B., "The Design of Generalized
Data.Management Systems," Ph.D. Dissertation,
Dept. of Civil Engineering, MIT, Septe oer
1972.

[5] McDonald, N., M. Stonebraker and E. Wong,
"Preliminary Design of INGRES," ERL, Univ.
Calif., Berkeley, Memo 0ERL-M435, April 1974.

[6] Stonebraker, M. and E. Wong, "INGRES-A Rela
tional Data Base System," ERL, Univ. of Calif.,
Berkeley, Memo 0ERL-M472, November 1974.

[7] Codd, E. F., "Relational Completeness of Data
Base Sublanguages," Courant Computer Science
Symposium 6, May 1972.

[8] Palermo, F. P., "A Data Base Search Problem,"
IBM Technical Report RJ 1072, July 1972.

[9] Senko, M. E., E. B. Altman, M. M. Astrahan and
P. L. Fehder, "Data Structures and Accessing
in Data-Base Systems," IBM Systems Journal,
Vol. 12, No. 1, 1973.

[10] 'T8ichritzis, D., "A Network Framework for Re
lation Implementation," Proc. of the IFIPS
TC-2 Working Conference on Data Definition
Language, January 1975.

[11] Codd, E. F., J,A Relational Model of Data for
Large Shared Data Banks," CACM, Vol: 13, No. 6,
June 1970.

[12] Codd, E. F., "Seven Steps to Rendezvous with
the Casual User," IBM Research, San Jose, CA,
RJ 1333, January 1974.

'[13] Knuth, D. E., The Art of Computer Programming,
Volume 3, Sorting and Searching, Addison-Wesley,

1973.

	Copyright notice 1975
	ERL-510

