

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN AUGMENTED TRANSITION NETWORK INTERPRETER

by

Rowland R. Johnson

Memorandum No, ERL«M511

7 March 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN AUGMENTED TRANSITION NETWORK INTERPRETER*

Rowland R. Johnson

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California at Berkeley

March 1975

Abstract

This paper discusses the Augmented Transition Network model which

is a formalism for natural language analysis. It also explains the use

of a system that implements ATNs by interpreting programs written in a

language called ATNL.

We consider Transformational Grammars and the difficulties encoun

tered when using them for sentential analysis. The aspects of the ATN

model which are designed to overcome these difficulties are discussed.

Next the syntax and semantics of ATNL are discussed in detail and several

examples are given. Finally we discuss an ATNL program that is the

implementation of an ATN.

t
Research sponsored by Naval Electronic Systems Command Contract
N00039-75-C-0034.

I. Introduction

The report herein describes the use and operation of a system which

will implement an Augmented Transition Network. A programming language,

called ATNL, is presented that can be used to express an ATN. The main

purpose of the ATN formalism is to provide a framework that is both

suggestive and convenient for developing sentential analysis procedures.

Typically a user, such as a linguist, conceives a procedure for sentential

analysis based on the ATN formalism. This procedure is then coded, using

ATNL, and presented to the system which iterates on 1) reading a sentence;

2) analyzing it by interpreting the ATNL program; and 3) printing the

results. Thus, the system, which is written in UTEX LISP1.9, consists

mainly of an interpreter for ATNL programs.

Section II presents a general theory of ATN's which is covered in

Woods [1]. Transformational grammars, as they relate to ATNs, are

discussed. This section is intended mainly for the user who is unfamiliar

with ATNs. Section III is a detailed account of the syntax and semantics

of ATNL. Several examples of ATNL statements are given to illustrate

these aspects. Finally in Section IV an ATNL program is discussed.

This program is an implementation of the ATN in Woods [1].

II. Theory of ATNs

Sentential analysis is done for a variety of reasons, such as ques

tion answering or automatic translation. In general a representation of

the meaning of the sentence must somehow be obtained. In addition this

representationshould be in a canonical form so as to facilitate processing

by other components of the system. An ATN does just this, it produces

from a sentence the canonical representation of the meaning of that sentence.

- 2

The ATN formalism is based on the Transformational Grammar model of

Natural Language. The TG model was introduced, by Chomsky [2], as a

formalism for describing the generation of sentences. The inception of

the TG model represented a large step in the development of linguistic

concepts. As an example TGs are able to account for the systematic rela

tionship that exists between the active and passive forms of the same

sentence. Theoretically, TGs have the power of a Turing machine. How

ever for all the power and sophistication the TG model had it could not

feasibly be used to systematically analyze sentences. The ATN formalism

allows one to incorporate TG principles in a procedure for sentential

analysis.

Basically a TG y consists of a base component G and a trans

formational component T. Generation of a sentence starts with G pro

ducing the so-called "deep structure" which is the canonical representa

tion of the meaning of the sentence. Next T transforms the deep struc

ture into the "surface structure," part of which is the generated sentence.

In general several surface structures can be derived from the same deep

structure. The linguistic counterpart of this is the paraphrase concept.

For example "The cat ate the mouse" and "The mouse was eaten by the cat"

are paraphrases of each other. In the TG model the surface structures

of these sentences are derived from the same deep structure. The

difference is in the way that T produces the surface structures.

Specifically a TG 9 is a tuple (G,t) where G is a context free

grammar and t = {t ,t2,...,t, } is a set of transformations. Each T.

can be considered to be a partial function whose domain and range are

sets of trees.

We make the following notational conventions:

- 3 -

T.(t) A the tree which results from applying transformation T. to
1 = 1

the tree t, if T. can be applied to t.

T(G) A set of trees produced by G; i.e. the set of deep struc

tures in ~j .

x. «t. n, •••.T. (t) A t. (•••(t. (t. (t)))*")
xl x2 H *N = *N i2 Xl

F(t) A string composed of terminals of tree t read from left to

right; i.e. the frontier of t.

Formally a sentence is generated by y as follows:

1) the deep structure tQ e T(G) is produced by G.

2) the surface structure t is obtained by applying the sequence

\'\'-—\ to v ^ h'W'
3) the sentence is just F(0

•\(to>

Example 1 Passive Transformation

There are many types of TGs and the example presented here should

not be regarded as "the" way to do a passive transformation. Rather this

example attempts to convey the general idea of a transformation.

We start with a deep structure that is a representation of the

concept "cat ate mouse".

DET N

THE CAT

- 4 -

Past

PRED PHR

AUX VP

TNS NP

EAT DET N

THE MOUSE

First the subject and object are interchanged

DET

THE

Past EAT DET N

THE CAT

Next "BY" is inserted in front of the original subject

DET

THE

Past EAT PREP NP

BY DET

THE MOUSE

Finally the verb is changed to the passive form

- 5 -

DET

THE

EATEN PREP NP

BY DET N

THE MOUSE

As we can see "The mouse was eaten by the cat" is just the terminal nodes

of the tree.

As noted above the TG model does not provide for an analysis proce

dure. Stated formally, given a sentence S we want to find a tn e T(G)

such that S=F(t. -t. •••t. (t)). There were several attempts at
11 x2 ^ u

sentential analysis prior to the ATN model that were based on the TG

model. Generally they fall into two classes, the first of which is

loosely termed "analysis by synthesis." This method attempts to guess

a deep structure and then apply sequences of transformations until one

is found that yields the sentence in question. Although many heuristics

could be employed the resulting procedures were grossly inefficient and

tended to be ad hoc. The second method attempted to determine an inverse

sequence of transformations which would result in the deep structure.

That is, for a given sentence S ;1) find a surface structure t„ such

that S = F(t) and 2) find an inverse sequence t' ,t' ,...,t' such
*N *N-1 H

that t! -t!

S h-i u~° °
Ti ^0^ = fc0 £ T^G)* step *•) is not a trivial matter

since the surface structures are themselves characterized by the generation

- 6 -

process. Even if a practical solution to step 1) were developed, step 2)

presents a more serious obstacle. The problem here is that for a given

tree usually only one transformation will apply. However there may, be

several inverse transformations that can be applied. In general at each

step of the search for this sequence we must consider all of the inverse

transformations that can be applied. Thus in determining the inverse

sequence the amount of resources that are consumed tends to grow exponen

tially in the number of inverse transformations required.

ATNs are an extension of Recursive Transition Networks which are

similar to a Top Down Parser for a context free grammar. It will be

convenient and more lucid to present RTNs and then extend them to ATNs.

Basically an RTN is a directed graph in which the nodes are called states.

A connected set of states along with the arcs incident upon them is called

a sub-network. The organization of these sub-networks account for the

phrase structure of a language. The easiest way to understand the notion

of an RTN and how one operates is by way of an example.

Example 2

"THE RED BARN COLLAPSED". Starting in state S, Q1 is PUSH-ed

onto the PDS and control goes to state NP. "THE" is a determiner and

control goes to Q,. "RED" is an adjective and control goes to Q,.

"BARN" is a noun and control goes to Q_, 0_ is a final state so Q-

- 7 -

is POP-ed off the PDS and control goes to Q-, etc.

We make the convention that an RTN always has a state S which is

the unique start state. There are two types of arcs; lexical category

arcs such as aux or det, and recursion arcs such as NP. The lexical cate

gory arcs are used to test for words which belong to the specified

lexical category. Recursion arcs must be labeled with state names and

are used to recursively call sub-networks. As we will see the arc labels

are actually predicates that are used to recognize constituents of the

sentence. Finally some states are called final states, such as Q^, Q5

and Q-.

The operation of an RTN makes use of a Push Down Store and a register,

called *, that contains individual words of the sentence. The task is

to find a path through the network subject to the tests imposed by the

arcs. The RTN is started at state S with * containing the first

word of the sentence. In general we are in some state Q with several

arcs emanating from Q. The arcs are considered one at a time according

to the following schema:

1) If the arc label is a lexical category and * contains a word

of that category then traverse the arc and place the next word

of the sentence in *. The RTN is then said to be in the

state at the end of the arc.

2) If the arc is a recursion arc then place the state at the end

of the arc on the PDS and transfer control to the state speci

fied by the arc.

3) If Q is a final state and all arcs have been tried then

remove the state on top of the PDS and transfer control to it.

As we can see 2) and 3) result in a sequence of actions that are

- 8 -

much like invoking a subroutine in an ALGOL-like language. In fact this

sub-network calling may be recursive since any state name within the

RTN may be used to label a recursion arc.

Each recursive call sets up a new lower level of computation corres

ponding to a search for a path through the called sub-network. The search

for this path may in turn encounter more recursion arcs which causes

recursive calls to other sub-networks. This lower level computation

terminates by either finding such a path or determining one does not

exist. In the former case the recursion arc which called the sub-network

is traversed and in the latter it is not. Thus the traversal of a recur

sion arc occurs when the corresponding embedded phrase is recognized.

Now to find a complete path through the net we must, in general,

try many sequences of arc traversals. This involves backtracking which

is the process that occurs when all arcs from a non-final state have

been tried and none can be traversed. There are two cases; either this

state had control transferred to it by a recursive call or by an arc

incident upon it. In either case control is transferred to the state that

previously had control. This state in turn tries its next arc.

Finally, the RTN terminates when a final state in the S sub

network is reached and * is empty. That is, the string of lexical

categories described by the path matches the string of lexical categories

obtained from the words in the sentence. In effect the RTN has recog

nized the S phrase which is just the sentence itself.

An ATN is an RTN with a register space provided for each level of

computation. In addition the arcs may now have actions that test and

manipulate this register space. These actions may also directly or

indirectly control the order in which the arcs are traversed. In

general the registers contain linguistic structures that are the results

- 9 -

of structure building actions on previously traversed arcs.

The advantages of this extension can be fully appreciated only by

inspection of an example, such as the one in the appendix. However, the

main advantage is that the deep structure can be created, modified, and

kept in the register space while doing the surface structure parsing.

Because of this an inverse transformational component is not required.

Decisions can be made about the sentence structure which are easily

changed. As an example consider the sentence "The mouse was eaten by

the cat." Initially we may decide that "The mouse," since it is at the

beginning of the sentence, is the subject. However the verb phrase "was

eaten by" tells us this is a passive sentence. Accordingly we now know

that what we decided was the subject is actually the object. Also we

know that what follows the verb will be the subject, instead of the

object.

Another advantage of the ATN formalism is that it is more natural

and convenient to use. Part of this is because the operation of an ATN

is closer to that of a human understanding a sentence. Also the struc

ture building actions on the arcs can be quite powerful and sophisticated

as we will see in the next section.

III. Syntax and Semantics of ATNL

The deck setup for using the system may be found in the appendix.

There are two things the user must supply in order to use the system.

They are the DICTIONARY and the ATNL program itself. As we will see

these are both just a set of S-expressions. There are two objectives

of this section. One is to define the syntax of these S-expressions

and the other is to explain the semantics of ATNL.

- 10 -

DICTIONARY

The DICTIONARY provides information about words in sentences to be

analyzed. It should be noted that the DICTIONARY can contain more than

just syntactic information, such as semantic information.

The syntax for the DICTIONARY is given in Fig. 1. As is shown,

<DICTIONARY> ::= <DICTENTRY>+

<DICTENTRY> ::= (<Word>(<CATEGORYLIST>)<FEATURELIST>)

:= <Wordcategory><CATEGORYLIST>

<FEATURELIST>

<UNARYFEATURE>

= {<UNARYFEATURE>|<BINARYFEATURE>}+
:= <FEATURENAME>

<BINARYFEATURE> ::= (<FEATURENAME><FEATUREVALUE>)

<FEATURENAME> i

<FEATUREVALUE>

<Wordcategory>

= lisp atom

:= lisp list

:= lisp atom

<Word> ::= lisp atom

Figure 1. Syntax for the DICTIONARY

two things are specified for each word in the DICTIONARY. <CATEGORYLIST>

specifies a set of syntactic categories to which the word can belong,

such as V, ADJ, N, etc. <FEATURELIST> specifies a set of features

that the word can have. As an example consider the dictionary entry

for the word BELIEVED.

(BELIEVED (V) PPRT (TENSE PAST) (FORMOF BELIEVE)) (1)

Here <CATEGORYLIST> is just (V) and <FEATURELIST> is composed of

the <UNARYFEATURE> PPRT followed by the <BINARYFEATURE>s (TENSE PAST)

and (FORMOF BELIEVE).

As we will see in the discussion on ATNL semantics these two lists

provide information by which the ATN analyzes sentences.

- 11 -

ATNL

The syntax for ATNL is given in Fig. 2. When a state is entered

each of its arcs are tried, in order, until a successful one is found,

<ATN> ::= <STATE>+

<STATE> ::= (<Statename><ARC>+)
<ARC> ::= ({<TEST>|<ACTION>}+)
<TEST> ::= (CAT<Category>)|<FORM>

<ACTION> ::= (PUSH<Statename>) |(POP<FORM>) |

(SETR<Register><FORM>)|(TO<Statename>)|

(SENDR<Register><FORM>)|(TRACEON)|

(LIFTR<Register><FORM>)|(TRACEOFF)|

(JUMP<Statename>)|

<Any Lisp S-expression>

<FORM> ::= *|(GETR<Register>) |

(GETF<FEATURENAME><WordSpec>)|

(BUILDQ<TreePattern><Register>)|

<Any Lisp S-expression>

<Statename>

<Register> :

<Category>

<WordSpec>
see text

<TreePattern>

:= lisp atom

= lisp atom

= lisp atom

Figure 2. Syntax for ATNL

An arc is tried by interpreting, in order, the <ACTION>s and <TEST>s

on the arc. Each. <ACTION> and <TEST> returns a value of either T

or NIL. If an <ACTION> or <TEST> returns the value NIL the arc

fails and the next arc is tried. An arc is successful when all of its

<ACTION>s and <TEST>s have been interpreted and have returned the

value T.

The semantics of the individual <ACTION>s and <TEST>s are as

- 12 -

follows:

(CAT<Category>) — This function looks in the DICTIONARY for the

word that is currently in the * register. When it is found the

<CATEGORYLIST> is inspected to see if one of its elements matches

<CATEGORY>. If such an element exists T is returned, otherwise NIL

is returned.

(PUSH<Statename>) and (POP<FORM>) — These are the <ACTION>s by

which the recursion mechanism is invoked. PUSH suspends interpretation

at the present level and starts interpretation one level down in the

state specified by <Statename>. At some point we want to terminate

this lower level processing which we do with a POP. When POP is inter

preted <FORM> is evaluated and its value is placed in the * register

in the next higher level. Processing then resumes with the <ACTION>

or <TEST> following PUSH.

(SETR<Register><FORM>) — <FORM> is evaluated and its value is

placed in the register specified by <Register>. The * register

cannot be set as it is a special register. However there really isn't

any reason to want to change the contents of the * register. If the

register specified by <Register> does not exist it is created. This

is in fact the way in which registers come to be.

(SENDR<Register><FORM>) — Same as SETR except the register is set

at the next level down.

(LIFTR<Register><FORM>) — Same as SETR except the register is set

at the next level up.

- 13 -

(TO<Statename>) and (JUMP<Statename>) — These <ACTION>s transfer

control to the state specified by <Statename>. When TO is interpreted

* is reset to contain the next input word. However with <JUMP>

* is not reset.

(TRACEON) and (TRACEOFF) — These are the debugging facilities that

allow the ATNL programmer to monitor state transitions. After TRACEON

and before TRACEOFF is interpreted all state transitions are printed.

Each TRACEON and TRACEOFF pertains only to the subnetwork it occurs in.

(GETR<Register>) — Returns the contents of the register specified

by <Register>. If such a register does not exist the value returned is

NIL.

(GETF<FEATURENAME><WordSpec>) — This function allows us to obtain

features of words from the DICTIONARY. It should be noted that this GETF

is different from the one found in Woods. <WordSpec> specifies a word

in the DICTIONARY to be looked up. Next the <FEATURELIST> is inspected

to see if it has the particular feature specified by <FEATURENAME>. If

there is no such feature or there is no such word in the DICTIONARY the

value NIL is returned. In the case that <FEATURENAME> matches a

<UNARYFEATURE> the value T is returned. Finally if <FEATURENAME>

matches a <BINARYFEATURE> then <FEATUREVALUE> is returned. As an

example consider the <DICTENTRY> specified by 1).

(GETF PPRT (QUOTE BELIEVED)) yields T.

(GETF TENSE *) yields PAST if the * register contains BELIEVED.

Suppose the V register contains EAT and

(EAT (V) (TENSE PRES) TRANS) is a <DICTENTRY>.

- 14 -

Then (GETF TRANS (GETR V)) would yield T.

Usually we want to obtain features of the current input word. To

do this just set <WordSpec> = *. Howevei since <WordSpec> is evaluated

we can let it be any Lisp S-expression, <ACTION> or <FORM> as the

preceding example shows.

* — As mentioned earlier this <FORM> specifies a register.

Usually it will contain the current input word. However directly after

a successful PUSH the * register will contain the result of the lower

level computation.

(BUILDQ<TreePattemXRegister>*) — BUILDQ is used to build the

tree structures that express the analysis of a sentence. <TreePattern>

specifies a tree that may contain special nodes labeled +. The operation

of BUILDQ is to substitute the contents of registers (specified by

<Register>*) for these nodes marked +. The tree is searched depth-first

and the first + encountered is replaced by the first register in

<Register>*; the second + by the second register in <Register>*, etc.

Consider the following example: Suppose the register contents are

TYPE : Q

AUX : DID

V : COLLAPSE

SUBJ : (NP(DET THE)(ADJ RED) (N BARN)), which is just the tree

DET

THE RED BARN

We want to evaluate the <FORM>

- 15 -

(BUILDQ (S + + +(VP +)) TYPE SUBJ AUX V)

Here we have <TreePattern> = (S + + +(VP +)) which is the tree

+ + + VP

I
+

The value of this <FORM> then is

(S Q (NP(DET THE)(ADJ RED)(N BARN)) DID (VP COLLAPSE))

which is just the tree

DET ADJ N COLLAPSE

THE RED BARN

<Any Lisp S-expression> — Since this is an interpreter under the

LISP system we can have any S-expression for an <ACTION> or <FORM>.

IV. An ATNL Program

The ATN found in section 8 of Woods [1] has been programmed in ATNL.

This program and analyses of sentences done by it can be found in the

Appendix. In this section we will attempt to point out the differences

in the languages and how they can be resolved.

16 -

10 NP 13 12 "BY1

Figure 3. Transition Network from Section 8 of Woods [1]

In our comparison we will consider only a few arcs. For the convenience

of the reader Table 1 lists the commands on these arcs.

ARC 4 : (CAT V T)

(SETR V *)

(SETR TNS (GETF TENSE))

ARC 5 : (CAT V (AND (GETF PPRT)

(EQ (GETR V)(QUOTE BE))))

(HOLD (GETR SUBJ))

(SETR SUBJ (BUILDQ (NP (PRO SOMEONE))))

(SETR AGFLAG T)

(SETR V *)

ARC 7 : (PUSH NP (TRANS (GETR V)))

(SETR OBJ *)

ARC 8 : (VIRTUAL PUSH NP (TRANS (GETR V))

(SETR OBJ *)

ARC 9 : (AND (EQ * (QUOTE BY))(GETR AGFLAG))

(SETR AGFLAG NIL)

Table 1. Arcs 4, 5, 7, 8 and 9 of Woods* ATN

We can observe several differences by considering arc 4. In ATNL

Arc 4 looks like

- 17 -

(CAT V)

(SETR V (GETF FORMOF *))

(SETR TNS (GETF TENSE *))

The first difference is that CAT takes just one argument. Secondly it

would seem that the function SETR in Woods' system does special pro

cessing when it comes to syntactic catetory registers. In his example

whenever (SETR V *) is interpreted the V register ends up with the

root form of the verb. However, in ATNL we must specify (GETF FORMOF *)

to get the root form of the word in *. As was mentioned earlier GETF

is different than the one in Woods' system. The reason for this is

shown by arcs 7 and 9 in which the special functions TRANS and S-TRANS

are used. TRANS and S-TRANS are after all just features of words and

the number of these special functions might be quite large in a sophis

ticated ATN. In Woods' system GETF applies only to the word in * but

we desire to test features of other words as well. In ATNL this dilemma

is resolved by having a second argument for GETF which specifies the

word whose feature we are testing.

In Woods' language there is a special register called HOLD. However

in ATNL we can just simulate the effect of the HOLD register. On

arc 5 we have (SETR HOLD(GETR SUBJ)) as opposed to (HOLD(GETR SUBJ)).

In ATNL we have no "virtual" arcs and they must also be simulated.

Accordingly on arc 8 we have (NOT(EQ(GETR HOLD)NIL)) to make sure the

HOLD register contains something; (SETR OBJ(GETR HOLD)) as opposed to

(SETR OBJ *); and finally we have (SETR HOLD NIL) to empty the HOLD

register. In Woods' system the HOLD register must be empty in order

that a POP be executed. In ATNL we have (NOT(GETR HOLD)) preceding a

POP to accomplish this; as in states Q3, Q4, and Q6.

- 18 -

From the differences pointed out above we can see that ATNL is more

primitive than the language of Woods' system. However ATNL is just as

powerful and it can be argued that it is more flexible. In addition

ATNL has debugging facilities to aid the ATNL programmer. Also it should

be noted that the two programs are logically the same. That is, the

approach from the linguistic point of view is the same.

Summary

The ATN model is a sophisticated and convenient method for sentential

analysis. It allows one to use TG principles for sentential analysis in

a way that circumvents the serious disadvantages of TGs.

The discussion of ATNs has served as a basis for a detailed account

of the use and operation of the system. Finally we have illustrated the

use of the system by the implementation of an ATN of moderate size.

Acknowledgment

The author wishes to express his gratitude to his research adviser,

Professor Lotfi A. Zadeh, for his guidance. Thanks are also due to

Professor M.H. O'Malley and Colin McMaster for their helpful suggestions.

- 19 -

REFERENCES

1. Woods, W. A., "Transition Network Grammars for Natural Language

Analysis," Comm. ACM, Vol. 13, No. 10, pp. 591-606.

2. Chomsky, N., Aspects of the Theory of Syntax, MIT Press, Cambridge,

Mass., 1965.

-20-

APPENDIX

A. DECK SETUP

The deck setup for using the interpreter is shown in Fig. Al.

Both the Dictionary and the ATNL program are each a set of S-Expressions

{ (FINIS)

SENTENCES TO BE ANALYZED

((FINIS)

ATNL PROGRAM

f (FINIS)

DICTIONARY

Fig. Al. Deck Setup

as defined in Section III. Comments can occur anywhere within the

DICTIONARY and ATNL program and are delimited by the equal sign (=). The

sentences to be analyzed are treated as LISP lists and must be enclosed

in parentheses.

B. EXAMPLE OF ATNL PROGRAM

The following pages show the output of the system for the ATNL

equivalent of Wood's ATN.

<ATE (V) (VOICE ACTIVEMTENSE PAST)(FORMOF EAT))

(BARN (N) <N))

(8EEN (V) P°RT (FORMOc BE))

(RELIEVE (V) TRANS S-TRANS)

(BELIEVED (V) PPRT (TENSE PAST)(FORMOF BELIEVE))

(CAT (N) ())

(COLLAPSE (V) (TENSE PRES))

(COLLAPSED (V) (FORMOF COLLAPSE)(TENSE PAST))

(DID (AUX) ())

(EAT (V) (TENSE PRFSITRANS)

(EATEN (V) (VOICE PASSIVE)(FORMOF EAT)(TENSE PAST))

(HAVE (V) PPRT UNTENSED)

(JOHN (NPP) NIL)

(MARY (NPR) NIL)

(MOUSE (N) () >

(RED (AOJ) ())

(SHOOT (V) TRANS)

(SHOT (V) PPRT (FORMOF SHOOT))

(THE (DET) ())

(TO (PREP) NIL)

(WAS (V)(TENSE PAST) (FORMOF 8F))

(F I NI S)

STATES

(S

(Ql

(02

(TRACEON))

ARC!

IF THERE IS AN AUXILLARY THEN PUT IT IN THE AUX REGISTER AND

SET SENTENCE TYPE TO QUESTION. =

(CAT AUX)

(SETR V *)

(SETR TNS (GETF TENSE *))

(SETR TYPE (QUOTE Q))

(TO 01))

A R C 2

IF THERE IS A NOUN PHRASE THEN PUT IT IN THE SUBJECT

REGISTER AND SET SENTENCE TYPE TO DECLARATIVE. =

(PUSH NP)

(SFTR SUBJ *)

(SETR TYPE (QUOTE DCD)

(JUMP Q2)))

A R C 3

LOOK FOR A NOUN PHRASE HERE AND TENTATIVELY ASSIGN IT AS THE

SUBJECT OF THE SENTENCE. =

(PUSH NP)

(SETP SUBJ *)

(JUMP Q3))

A R C 4

THE VERB FOUND HERE IS ASSUMED TO BE THE MAIN VERB OF THE

(Q3

SFNTENCE. =

(CAT v)

(SFTP. V (GFTF FORMOF *))

(SETR TNS (GETF TENSE *))

(TO 03)))

A R C S

* CONTAINS A VFRB THAT IS A PAST PARTICIPLE. THIS ALONG

THE FACT THAT THE TENTATIVE VERB IS *BE* INDICATES THE

PASSIVE CONSTRUCTION. ACCORDINGLY THE OLD TENTATIVE SUBJECT

IS PUT IN THE HOLD REGISTER AND THE SUBJECT IS RESET TO THE

INDEFINITE *SOMEOME*. ALSO THE AGFLAG IS SET WHICH INDICATES

THAT A SUBSEQUENT AGENT INTRODUCED BY THE PREPOSITION *BY*

(AS ON ARC R) MAY SPECIFY THE SUBJECT. =

(CAT V)

(AND (GETF PPPT #)(EG (GETP V)(QUOTE BE)))

(SETR HOLD (GET" SUBJ))

(SETR SUBJ (RUILOO (N=> (PRO SOMEONE))))

(SETR AGFLAG T)

(SFTR V (GETF FOPMTF *))

(TO 03)>

ARC 6

* CONTAINS A VERB THAT IS A PAST PARTICIPLE. THIS ALONG WITH

THE FACT THAT THE TENTATIVE VERB IS *HAVE* INDICATES THE
PERFECT TENSE. ACCORDINGLY THE TNS REGISTER IS SET AND THE

VERB IS ASSUMED TO BE THE WORD IN *. =

.(CAT V)

(AND (GETF PPRT *)(EQ (GETR V) (QUOTE HAVE)))

(SETR TNS (LIST (GETR TNS)(QUOTE PERFECT)))

(SETR V (GETF FORMOF *))

(TO 03))

ARC 7

THF V REGISTER CONTAINS A TRANSITIVF VERB AND PEQUIRES AN
ORJFCT. TF A NOUN PHRASE IS PRFSFNT THCN IT IS TENTATIVELY
ASSTGNFD AS THE OFJFCT OF THE VFPB. =

(GFTF TRANS (GETR V)>

(PUSH NP)

(SFTR OBJ *)

(JUMP 04))

A P C 8

AS ON ARC ^ WE REQUIRE AN OBJECT FOP THE TRANSITIVE VERB. IN
THIS CASE, HOWFVER, THE HOLD REGISTER IS INS°ECTED TO SEE IF
TT CONTAINS ANYTHING. IF IT DOES THEN THOSE CONTENTS ARE
TFNTATTVELY ASSIGNED AS THE OBJECT OF THE VERB. THE HOLD
REGISTER IS THEN CLEARED, REFLECTING THE FACT THAT ITS

CONTENTS HAVE BFEN USED. =

(NOT (FO (GETR HOLD) NIL))

(<;i ir hmns (Gr tr v))

(SFTR ORJ (GFTR HOLD))

(SETP HOLD NIL)

(JUMP 04))

(Q4

(Q5

(06

AT THIS POINT ARCS 5,6,7 AND 8 HAVE FAILED. THE ONLY THING
LEFT TO DO IS TO PERFORM A POP ANO RETURN TO THE NEXT HIGHEST
LEVEL. WE MUST, HOWEVER, BE SURE THE HOLD REGISTER DOES NOT
CONTAIN ANYTHING. IF IT OID THIS WOULD MEAN A CONSTITUENT CAN
NOT BE ACCOUNTED FOR. =

(NOT (GETR HOLD))

(POP (BUILDQ (S + * (TNS «-)(VP(V *)))
TYPE SUBJ TNS V))))

= A R C 9

BY INDICATES AN AGENT WILL PROBABLY FOLLOW. THIS AGENT WILL
BE IN THE FORM OF A NOUN PHRASE WHICH WILL BE ANALYZED BY A
RECURSIVE CALL ON ARC 13. FIRST WE CHECK AGFLAG TO SEE IF AN
AGENT IS NEEDED BY A STRUCTURE. =

((EQ * (QUOTE BY))

(GETR AGFLAG)

(SETR AGFLAG NIL)

(TO 07))

= ARC 10

THE WORO *T0# TELLS US THAT THE OBJECT OF THE VERB IS A
NOMTNALIZED SENTENCE. THIS EMBEDDED CLAUSE WILL BE
ANALYZED BY A RECURSIVE CALL ON ARC 11. WHAT WAS PREVIOUSLY
THOUGHT TO BE THE OBJECT IS REALLY THE SU8JECT OF THE
NOMTNALIZED SENTENCE. ACCORDINGLY THE SUBJ REGISTER OF THE
LOWER LEVEL COMPUTATION IS SET (BY USING SENDR) TO CONTAIN
THE OLD OBJECT. LIKEWISE THF TNS ANO TYPE REGISTERS OF THE

LOWER LEVEL COMPUTATION ARE SET. =

((EQ * (QUOTE TO))

(GETF S-TRANS (GETR V))

(SENDR SUBJ (GETR OBJ))

(SENDR TNS (GETR TNS))

(SENDR TYPE (QUOTE DCL))

(TO 05))

= ARCS 9 AND 10 HAVE FAILED SO A POP IS PERFORMED AFTER CHECKING
THE HOLD REGISTER, AS IN STATE Q3. =

((NOT (GETR HOLD))

(P0° (BUILDQ (S «- «• (TNS «•)(VP(V ♦>+.))
TYPE SUBJ TNS V OBJ))))

A R C 1 1

IF A VERB PHRASE IS FOUND IT IS ASSUMED TO BE THE OBJECT. =

(PUSH VP)

(SETR OBJ *)

(JUMP 06)))

A R C 1 2

BY INTRODUCES THE SUBJECT OF THE ACTION WHICH WILL BE

(07

(VP

(NP

(08

ANALYZED BY ARC ARC 13. =

((EQ * (QUOTE BY))

(TO Q7))

((NOT (GETR HOLD))

(POP (BUILDQ (S ♦ + (TNS +)(VP(V +) +))

TYPE SUBJ TNS V OBJ)1>)

A R C 1 3

WE ARRIVE AT THIS STATE LOOKING FOR A NOUN PHRASE TO BE THE

SUBJECT. ACCORDINGLY A PUSH TO NP IS PERFORMED AND THE RESULTS,

IF THE PUSH WAS SUCCESSFUL, ARE PUT IN THE SUBJ REGISTER. =

(PUSH NP)

(SFTR SUBJ *)

(JUMP Q6)))

(TRACEON))

ARC 14

THIS IS THE INITIAL STATE OF THE VERB PHRASE SUBNETWORK. THIS

SUBNETWORK ACCEPTS ONLY VERB PHRASES THAT BEGIN WITH A

STANDARD UNTENSED FORM OF A VERB. -

(CAT V)

(GETF UNTENSED *)

(SETR V *)

(TO Q3)))

(TRACEON))

THIS IS THE INITIAL STATE OF THE NOUN PHRASE SUBNETWORK. TWO

TYPES OF NOUN PHRASES ARE CONSIDERED, THOSE THAT BEGIN WITH A

DETERMINER AND THOSE THAT CONSIST OF A PROPER NOUN. =

(CAT DET)

(SETR DET *)

(TO Q8))

(CAT MPR)

(SETR NOR *)

(TO 010)))

A DETERMINER IS FOLLOWED BY THE NOUN IT DETERMINES. HOWEVER

THERE MAY BE AN INTERVENING ADJECTIVE TO MODIFY THE NOUN. IF

SUCH AN ADJECTIVE IS PRESENT IT IS PROCESSED BEFORE THE NOUN

IS PROCESSED. =

(TAT AOJ)

(SETR ADJ *)

(TO 09))

(CAT N)

(SETR N *)

(TO Q9)))

(Q9

= RETURN THE RESULTS VIA POP. =

(POP (BUILDQ (NP(DET + MADJ +)(N +))

DET AD J M))))

(010

= THIS NOUN PHRASE IS JUST A PROPER NOUN AND THE RESULTS ARE

RETURNED VIA POP. =

((POP (BUILDQ (NP(NPP +))

NPP))))

(FINIS)

INPUT SENTENCE

(JOHN WAS BELIEVED TO HAVE BEEN SHOT)

(TRACE ON IN STATE S)

WITH REGS

(* JOHN)

(PUSHING TO NP SUBNETWORK)

WITH REGS

(* JOHN)

(TRACE ON IN STATE NP)

WITH REGS

(* JOHN)

(LEAVING STATE N° AND FNTERING STATE QIO)
WITH REGS

(NPR . JOHN)

(* WAS)

(RETURNING FROM PUSH TO NP SUBNETWORK)
WITH REGS

(* (NP (NPR JOHN)))

(LEAVING STATE S AND ENTERING STATE 02)
WITH REGS

(SUBJ NP (NPR JOHN))

(TYPE . DCL)

(* WAS)

(LEAVING STATE Q2 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (NPR JOHN))

(TYPE • DCL)

(V • BE)

(TNS • PAST)

(* BELIEVED)

(LEAVING STATE Q3 ANO ENTERING STATE Q3)
WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V . BELIEVF)

(TNS . PAST)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* TO)

(PUSHING TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V • BELIEVE)

(TNS . PAST)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* TO)

(TRACE ON IN STATE NP)

WITH REGS

(* TO)

(RETURNING FROM PUSH TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V . BELIEVE)

(TNS • PAST)

(HOLD NP (NPR JOHN))

(AGFLAG . *T*)

(* TO)

(LEAVING STATE 03 AND ENTERING STATE Q4)

W ITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE . DCL)

(V . BELIEVF)

(TNS • PAST)

(HOLD)

(AGFLAG . *T*)

(OBJ NP (NPR JOHN))

(* TO)

(LEAVING STATE 04 AND ENTERING STATE Q5)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V • BELIEVE)

(TNS • PAST)

(HOLD)

(AGFLAG • *T*>

(OBJ NP (NPR JOHN))

(* HAVE)

(PUSHING TO VP SUBNETWORK)

WITH REGS

(SUBJ NO (PRO SOMEONE))

(TYPE • DCL)

(V . BELIEVF)

(TNS . PAST)

(HOLD)

(AGFLAG • *T*)

(OBJ NP (NPP JOHN))

(* HAVE)

(TRACE ON IN STATE VP)

WITH REGS

(SUBJ NP (NPR JOHN))

(TNS • PAST)

(TYPE . DCL)

(* HAVE)

(LEAVING STATE VP AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (NPR JOHN))

(TNS • PAST)

(TYPE • DCL)

(V • HAVE)

(* BEEN)

(LEAVING STATE 03 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (NPR JOHN))

(TNS PAST PERFECT)

(TYPE . DCL)

(V • 8E)

(* SHOT)

(LEAVING STATE Q3 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE • DCL)

(V • SHOOT)

(HOLD NP (NPR JOHN))

(AGFLAG • *T«)

(* (NIL •))

(PUSHING TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFFCT)

(TYPE - DCL)

(V • SHOOT)

(HOLD NP (NPR JOHN))

(AGFLAG o *T*)

(* (NIL .))

(TRACE ON IN STATE NP)

WITH REGS

(* (NIL «))

(RETURNING FROM PUSH TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE . DCL)

(V . SHOOT)

(HOLD NP (NPR JOHN))

(AGFLAG • *T«)

(* (NIL .))

(LEAVING STATE Q3 AND FNTERING STATE Q4)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE . OCL)

(V » SHOOT)

(HOLD)

(AGFLAG • *T«)

(OBJ NP (NPR JOHN))

(* (NIL •))

(RETURNING FROM PUSH TO VP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE o DCL)

(V • BELIEVF)

(TNS o PAST)

(HOLD)

(AGFLAG . *T«)

(OBJ NP (NPR JOHN))

(* (S DCL (NP (PRO SOMEONE)) (TNS (PAST PERFECT)) (VP (V SHOOT) (NP (NPR JOHN)))))

(LEAVING STATE Q5 AND ENTERING STATF Q6)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE . OCL)

(V • BELIEVE)

(TNS . PAST)

(HOLD)

(AGFLAG • *T*)

(OBJ S DCL (NP (PRO SOMEONE)) (TNS (PAST PERFECT)) (VP (V SHOOT) (NP (NPR JOHN))))

(* (NIL .))

RETURNEO REG

(S DCL (NP (PRO SOMEONE))(TNS PASTMVP (V BELIEVE) muniniil
(S DCL (NP (PRO SOMEONE) >(TJiS_ (PAST PJERFECTUTVE (V SHOOT)(NP (NPR„JOH»U)) » I)

INPUT SENTENCE

(JOHN WAS BELIEVED TO HAVE BEEN SHOT BY MARY)

(TRACE ON IN STATE S)

WTTH REGS

(* JOHN)

(PUSHING TO NP SUBNETWORK)

WITH REGS

(* JOHN)

(TRACE ON IN STATE NP)

WITH REGS

(* JOHN)

(LEAVING STATE NP AND ENTERING STATE QIO)

WITH REGS

(NPR • JOHN)

(* WAS)

(RETURNING FROM PUSH TO NP SUBNETWORK)

WITH REGS

(* (NP (NPR JOHN)))

(LEAVING STATE S AND ENTERING STATE Q2)

WITH REGS

(SUBJ NP (NPR JOHN))

(TYPE . DCL)

(* WAS)

(LEAVING STATE Q2 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (NPR JOHN))

(TYPE • DCL)

(V • 8E)

(TNS • PAST)

(# BELIEVED)

(LEAVING STATE 03 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V • BELIEVE)

(TNS • PAST)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* TO)

(PUSHING TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V • BELIEVE)

(TNS • OAST)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* TO)

(TRACE ON IN STATE NP)'

WITH REGS

(* TO)

(RETURNING FROM PUSH TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V . BELIEVE)

(TNS • PAST)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* TO)

(LEAVING STATE Q3 ANO ENTERING STATE 04)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V . BELIEVE)

(TNS o PAST)

(HOLD)

(AGFLAG . *T*)

(OBJ NP (NPR JOHN))

(* TO)

(LEAVING STATE Q4 ANO ENTERING STATE 05)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V . BELIEVE)

(TNS . PAST)

(HOLD)

(AGFLAG . *T*)

(OBJ NP (NPR JOHN))

(* HAVE)

(PUSHING TO VP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V • BELIEVE)

(TNS • PAST)

(HOLD)

(AGFLAG . *T*)

(OBJ NP (NPR JOHN))

(* HAVE)

(TRACE ON IN STATE VP)

WITH REGS

(SUBJ NP (NPR JOHN))

(TNS • PAST)

(TYPE • DCL)

(* HAVE)

(LEAVING STATE VP ANO ENTERING STATE 03)

WITH REGS

(SUBJ NP (NPR JOHN))

(TNS • PAST)

(TYPE • DCL)

(V • HAVE)

(* BEEN)

(LEAVING STATE Q3 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NO (NPR JOHN))

(TNS PAST OERFFCT)

(TYPE • OCL)

(V • BE)

(* SHOT)

(LEAVING STATE Q3 AND ENTERING STATE Q3)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE • DCL)

(V • SHOOT)

(HOLD NP (NPR JOHN))

(AGELAG • *T*)

(* BY)

(PUSHING TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE • DCL)

(V . SHOOT)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* BY)

(TRACE ON IN STATE NP)

WITH REGS

(* BY)

(RETURNING FROM PUSH TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PEPFFCT)

(TYPE • DCL)

(V • SHOOT)

(HOLD NP (NPR JOHN))

(AGFLAG • *T*)

(* BY)

(LEAVING STATE 03 AND ENTERING STATE Q4)
WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE • DCL)

(V . SHOOT)

(HOLD)

(AGFLAG • *T*)

(OBJ NP (NPR JOHN))

(* BY)

(LEAVING STATE Q4 ANO ENTERING STATE Q7)
'WITH REGS '••

(SUBJ NP (PRO SOMEONE))

(TNS PAST PERFECT)

(TYPE • DCL)

(V » SHOOT)

(HOLD)

(AGFLAG)

(OBJ NP (NPR JOHN))

(* MARY)

(PUSHING TO NP SUBNETWORK)

WITH REGS

(SUBJ NP (PRO SOMEONE))

(TNS PAST PEPFFCT)

(TYPE • DCL)

(V • SHOOT)

(HOLD)

(AGFLAG)

(OBJ NP (NPR JOHN))

(* MARY)

(TRACE ON IN STATE NP)

WITH REGS

(* MARY)

(LEAVING STATE NP AND ENTERING STATE QIO)
WITH REGS

(NPR . MARY)

(* (NIL .))

£ RETURNING FROM PUSH TO NP SUBNETWORK)
WITH REGS

(SUBJ NP (PRO SOMEONE))

<TNS PAST PERFECT)

(TYPE • DCL)

(V • SHOOT)

(HOLD)

(AGFLAG)

(PRJ NP (NPR JOHN))

(* (NP (NPR MARY)))

(LEAVING STATE 07 ANO ENTERING STATE Q6)

WITH REGS

(SUBJ NP (NPR MARY))

(TNS PAST PERFECT)
(TYPE # DCL)

(V . SHOOT)

(HOLD)

(AGFLAG)

(OBJ NP (NPR JOHN))

(* (NIL •))

(RETURNING FROM PUSH TO VP SUBNETWORK)
WITH REGS

(SUBJ NP (PRO SOMEONE))

(TYPE • DCL)

(V • BELIEVE)

(TNS • PAST)

(HOLD)

(AGFLAG • *T*)

(OBJ NP (NPR JOHN))

(* (S DCL (NP (NPR MARY)) (TNS (PAST PERFECT)) (VP (V SHOOT) (NP (NPR JOHN)))))

(LEAVING STATE 05 AND ENTERING STATE Q6)
WITH REGS

(SUBJ NP (

(TYPE • DC

(V • BELIE

(TNS • PAS

(HOLD)

(AGFLAG •

(OBJ S DCL

(* (NIL .

pro someone))

:d

:ve)

T)

*T*J

(NP (NPR MARY)) (TNS (PAST PERFECT)) (VP (V SHOOT) (NP (NPR JOHN))))
))

RETURNED REG

(S DCL (NP (PRO SOMEONE))(TNS PASTMVP IV BELIEVE)
ISPCL {NP (NPR MARVniTNS (PAST PERFECT))(VP (V SHOOT) (NPC NPR JOHNMJU

TTSBtr

(

	Copyright notice 1975
	ERL-511

