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ABSTRACT

A broad generalization of memristors a recently postulated

circuit element to an interesting class of nonlinear dynamical systems

called memristive systems is introduced. These systems are unconventional

in the sense that while they behave like resistive devices, they can be

endowed with a rather exotic variety of dynamic characteristics. While pos

sessing memory and exhibiting small-signal inductive or capacitive effects,

they are incapable of energy discharge and they introduce no phase shift

between the input and output waveforms. This zero-crossing property gives

rise to a Lissajous figure which always passes through the origin. Mem

ristive systems are hysteretic in the sense that their Lissajous figures

vary with the excitation frequency. At very low frequencies, memristive

systems are indistinguishable from nonlinear resistors while at extremely

high frequencies, they reduce to linear resistors. These anomalous

properties have misled and prevented the identification of many memristive

devices and systems including the thermistor, the Hodgkin-Huxley

membrane circuit model, and the discharge tubes.

Generic properties of memristive systems are derived and a canonic

dynamical system model is presented along with an explicit algorithm for

identifying the model parameters and functions.
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I. INTRODUCTION

The memristor has been postulated recently as the fourth basic

circuit element [1]. This element behaves like a linear resistor with

memory but exhibits many interesting nonlinear characteristics. These

unconventional properties have led to the successful modeling of a number

of physical devices and systems [1-4]. Notwithstanding these applications,

however, there remains an even broader class of physical devices and systems

whose characteristics resemble those of the memristor and yet cannot be

realistically modeled by this element. The reason being that the mem

ristor is only a special case of a much more general class of dynamical

systems henceforth called memristive systems defined by

x = f(x, u, t)

y = g(x, u, t)u
(1)

where u and y denote the input and output of the system and x denotes

the state of the system. The function f : Rn x R x R -> Rn is a

continuous n-dimensional vector function and g:l£ x R x R •> R is a

continuous scalar function. It is assumed that the state equation in (1)

has a unique solution for any initial state x G R . The output equation

in (1) is such that the output y is equal to the product between the input

u and the scalar function g. This special structure of the read-out map

is what distinguishes a memristive system from an arbitrary dynamical

system [5]; namely, the output y is zero whenever the input u is zero,

regardless of the state x which incorporates the memory effect. This

The extension of this definition to the multi-port case is straight
forward. Hence, only the one-port case will be discussed in this paper.
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zero-crossing property manifests itself vividly in the form of a Lissajous

figure which always passes through the origin.

2
An nth-order current-controlled memristive one-port is represented

by

x = f(x, i, t)

" ~ " (2)

v = R(x, i, t)i

and an nth-order voltage-controlled memristive one-port is represented by

x = f(x, v, t)
~ ~ ~ (3)

i = G(x, v, t)v

where v and i denote the port voltage and current, respectively. The

functions f, R or G are similarly defined as f, g in (1). In the special

3
case when the one-port is time-invariant and R(resp. G) is not an explicit

function of i(resp. v) we have

x = f(x, i) (resp., x = f(x, v))

(4)

v = R(x)i (resp., i = G(x)v)

To motivate the significance of memristive systems, we pause to present

some examples of physical devices which should be modeled as memristive

one-ports, but which have so far been improperly identified.

Example 1. Thermistor

Thermistors have been widely used as a linear resistor whose resistance

varies with the ambient temperature [6]. In particular, a negative-1em-

2
The number n denotes the dimension of the state space of the dynamical

system.

3
The dynamical system (1) is said to be time-invariant if both f and g
are not explicit functions of time t.
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perature coefficient thermistor is characterized by [7]

I -61''v = Ro(Tq) expleft -iHli 4 R(T)i (5)

4
where 6 is the material constant , T is the absolute body temperature of

the thermistor and T is the ambient temperature in degrees Kelvin. The

constant R (T ) denotes the cold temperature resistance at T = T . The

instantaneous temperature T, however, is known to be a function of the

power dissipated in the thermistor and is governed by the heat transfer

equation

p(t) =v(t) i(t) =6(T -Tq) +C^ (6)

where C is the heat capacitance and <5 is the dissipation constant of the

thermistor which is defined as the ratio of a change in the power dissi

pation to the resultant change in the body temperature. Substituting

Eq. (5) into Eq. (6) and by rearranging terms, we obtain

£ -.-|ch0)+-v--p. .
o

[3(t'T")]i2 Af<T» i) (7)
We observe from Eqs. (5) and (7) that a thermistor is in fact not a

memoryless temperature-dependent linear resistor as is usually assumed

to be the case but rather a first-order time-invariant current-controlled

memristive one-port.

Example 2. Ionic Systems

The celebrated Hodgkin-Huxleykcircuit model [8] of the nerve axon

4
Although $ increases slightly with increasing temperature, it may be

approximated by a constant over the temperature range of interest.

Strictly speaking, <5 is not a true constant, but varies slightly with
both T and T-T . However, for simplicity, 6 is assumed to be constant here.

-3-



membrane is shown in Fig. 1. Hodgkin and Huxley described the Potassium

channel conductance g and the Sodium channel conductance g^ as time-

varying conductances whose variations are functions of the solutions of

first-order differential equations. The Potassium channel is described

by

^ =^ n4 vK AGK(n) vR

• °-01(vK+EK+10) , ni„ /W
n = r?—j-p .in\ /im i (1-n) - 0.125 explexptCv^F^+W/lO]-]

A f(n, vR)

(8)

/VK+EK\

where g^ and EL, are constants. The sodium channel is described by

*Ma =%a m3 hvNa AGNa(m« h)vNa

m=expUv^-E^^/lO]-! (1-m> " k"» V—18 >* m

Afi<W (9)

h=0.07 exppf^) (1-h) -exp[(VNa_^a+30)/lom h

4 f2.0>. vNa)

where g^ and E are constants. It follows from Eqs. (8) and (9) that

since the time-varying conductances can not be specified as an a priori

function of time, they are actually memristive systems. In particular,

the Potassium channel of the Hodgkin-Huxley model should be identified as

a first-order time-invariant voltage-controlled memristive one-port and

the Sodium channel should be identified as a second-order time-

invariant voltage-controlled memristive one-port.
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Example 3. Discharge Tubes

Francis [9] described the behaviors of discharge-tubes by

n = a i v - 3n (10.a)

v = - i A R(n)i (10.b)
n —

where a, 3 and F are constants depending on the dimensions of the tubes

and the gas fillings. The variable n denotes the electron density of the

tubes. Substituting Eq. (10.b) into Eq. (lO.a) we obtain

n =— i2 - 3 A f(n, i) (10.c)
n n —

It follows from Eqs. (10.b) and (10.c) that the discharge tube should also

be modeled as a first-order time-invariant current-controlled memristive

one-port. It is unfortunate that while researchers have long regarded

such discharge tubes as neon bulbs and fluorescent lamps as dynamic devices,

they have failed to recognize their memristive properties.

II. GENERIC PROPERTIES OF MEMRISTIVE ONE-PORTS

Since many memristive devices have been incorrectly classified, our

next objective will be to derive the generic properties which clearly

distinguish a memristive device from other systems. For simplicity, we

6
will restrict our study to current-controlled memristive one-ports.

Property 1 (Passivity Criterion)

Let a current-controlled memristive one-port be time-invariant and

let its nonlinear function R(«) associated with the read-out map satisfy the

The same property obviously apply to the "dual" voltage-controlled case.

This criterion can be easily extended to the time-varying case.
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constraint R(x, i) = 0 only if 1=0. Then the one-port is passive if,

and only if, R(x, i) >_ 0 for any admissible input current i(t), for all

t 1 t i where t is chosen such that x(t ) = x , where x is the state

of minimum energy storage [10].

Proof; If R(x, i) > 0, then

J v(t) i(x) dx =f r(x(t), i(x)j i2(x) dx >_ 0for all t>_
o to

and hence the one-port is passive. We prove the necessity part

by contradiction. First, suppose that the one-port is passive and

R(x ,i ) < 0 for some i £ R. Then by the continuity of the

of the function R in R , there exists an open neighborhood

B [(x*, i ), 6] of (x*, i)6 Rn+1 in which R(x, i) < 0. Hence
O •• O " O "•

there exists an input waveform i(#) such that i(t ) = i and
o o

I v(t) i(x) dx <0 for all t€ (t , t.), where t- depends on
o

B and i(*)» But this contradicts the assumption that the one-

"k

port is passive and R(x , i ) _> 0 for any admissible i £ R.

Suppose next that R(x ,i)<0for some (xA, i.) ^ R1

t
o

ft je
where x. 7s x . Then we can draw a "connecting" arc r from (x , i )

to (xA, i ) such that the open arc (excluding the two end points)

does not intersect the hyperplane i=0. Since R(x , i ) >^ 0 and

R(x., i ) < 0 by assumption, and since the function R is continuous

in (x, i), there exists a point (x_, i^) at which R(x«, i_) = 0.

However, this contradicts the assumption that R(x, i) = 0 only

if i=0, and hence R(x, i) >^ 0 for passivity to hold •

Property 2 (No Energy Discharge Property)

If a current-controlled memristive one-port satisfies the hypothesis
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of Property 1, then the instantaneous power entering the one-port is

always nonnegative.

Proof: By hypothesis, R(x, i) ^ 0 for any admissible signal pair (v, i),

and hence the instantaneous power entering the one-port (i.e.,

p(t) = v(t) i(t)) is always nonnegative. *

Remark: Except for pathological cases, it is always possible to extract

stored energy from a passive RLC one-port by simply connecting a

load across it. However, for the case of a memristive one-port

which satisfies Property 1, such energy discharge is never possible,

To emphasize this unique property, we label it the "no energy

discharge property."

Property 3 (DC Characteristics)

A time-invariant current-controlled memristive one-port under dc

operation is equivalent to a time-invariant current-controlled nonlinear

resistor if f(x, I) = 0 has a unique solution x = X(I) such that for each

value of I £ IR, the equilibrium point x = X(I) is globally asymptotically

stable [11].

o

Proof: Substituting x = X(I) into the output equation in (2) , we obtain

V=r(x(I), ih AV(I). Since X(I) is globally asymptotically
stable, each value of dc input current I gives a stable, hence

measurable, dc voltage V. Hence the function V(I) can be inter

preted as the V-I curve of a time-invariant nonlinear resistor. *

Remark: In practical analysis, Property 3 is still valid under low

frequency periodic operation so long as the period of the excita-

g

Strictly speaking we are referring to the time-invariant version of
representation (2).
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tion is much larger than the settling time of the associated

transient response.

To illustrate the significance of Property 3, the dc

characteristics of a thermistor with 3 = 3460 °K, 6 = 0.1 mW/°C,

Tq = 298 °K and RQ(T ) = 8000 ft are derived from Eqs. (5) and (7)

and are shown in Fig. 2 for 0 <_ I <_ 12.5 mA. Notice that only

the curve in the first quadrant is shown since the dc character

istic is symmetrical with respect to the origin. Such dc V-I

characteristics are often supplied by thermistor manufacturers

with the steady state temperature specified along the curve.

Property 3 can now be used to interpret the use of this curve and

its limitations; namely, the dc thermistor V-I curve is useful

only if the thermistor is to be operated under dc or slowly-

varying input signals. Observe that the fact that a time-invariant

memristive one-port under dc operation behaves just like a nonlinear

resistor is one reason why so many memristive devices have been

improperly identified as nonlinear resistors!

The dc characteristic curve of the Potassium channel (with

_ 2
g = 36 my/cm and EL^ = 12 mV) of the Hodgkin-Huxley model described

by Eq. (8) is shown in Fig. 3. Similarly, a typical dc V-I curve

of discharge tubes is shown in Fig. 4. Again, only the first-

quadrant V-I curve is shown since it is symmetrical with respect

to the origin. Observe that all these dc characteristic curves

pass through the origin as they should.

Property 4 (Double-Valued Lissajous Figure Property)

A current-controlled memristive one-port under periodic opera-
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9
tion with i(t) = I cos o)t always gives rise to a v-i Lissajous figure

whose voltage v is at most a cjouble-valued function of i.

Proof: In the representation (2), the state equation has a unique periodic

solution x(t) for all t _> t for some initial state x , by assump

tion. Hence, for any value of the current i £ [-1,1], there

correspond at most twp distinct values of v. *

Remark: This property is illustrated in Fig. 5. Observe that the Lissajous

figure in Fig. 5(b) cannot correspond to that of a current-controlled

memristive one-port, because at i = ip, there correspond more than

two distinct values of v.

Property 5 (Symmetric Lissajous Figure Property)

If the read-out map of a time-invariant current-controlled memristive

one-port is such that R(x,i) «= R(x,-i), then the v-i Lissajous figure

corresponding to the input current i(t) = I cos tot is open (i.e., not a

closed loop) whenever the state x(t) is periodic of the same period as

that of the input i(t) and is halfwave symmetric. Moreover, it is odd

symmetric with respect to the origin whenever the state x(t) is periodic

of the same period as that of i(t) and is quarterwave symmetric.

Proof: If both x(t) and i(t) are halfwave symmetric, then it follows from

the output equation v = R(x,i)i that

9
A one-port is said to be in periodic operation when its response is
periodic with the same period as that of the input.

A periodic waveform x(t) of period T is said to be halfwave symmetric if

kT kT Tx(t +— )=x(-t + 2~ ) for k=l, 2 for all t€ [0, -|], and quarterwave

symmetric if x(t + — ) = x(-t + — ) for k=l, 3 for all t <= [0, ±].
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v(t +f) =R(x(t +|), i(t +|)) i(t +|)

=R(x(-t +|), i(-t +|)j i(-t +|)

=v(-t +|) for all tG[0, |]

where T is the period of both x(t) and i(t). Hence the v-i curve

does not form a closed loop and 'is open. If x(t) is quarterwave

symmetric, then since i(t + t) - -i(-t + j) for all t € [0, j]

when i(t) = I cos o>t, we obtain

v(t +f) =R(x(t +|), i(t +|)) i(t +|)

=-R(x(-t +|), i(-t +|)) i(-t +|)

«-v(-t +-|) for all te [0, j].

3T 3TSimilarly, we can show that v(t + -r—) = -v(-t + 7—) for all

T
t £ [0, v]. Hence, the v-i curve is odd symmetric with respect

to the origin. •

Property 6 (Limiting Linear Characteristics)

If a time-invariant current-controlled memristive one-port described

by Eq. (4) is bounded-input bounded-state (b.i.b.s.) stable , then under

periodic operation it degenerates into a linear time-invariant resistor as

the excitation frequency increases toward infinity.

Proof: It suffices to show that the state vector x(t) -*- x where x is
~ ~o ~o

some constant vector in R , as the excitation frequency w •> ».

A dynamical system (4) is said to be b.i.b.s. stable if for all tQ, for
all initial states x0 and for all bounded inputs i, . , the state
trajectory x(«) is bounded. °'
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It follows from the b.i.b.s. stability and the continuity of the

function f in Eq. (4) that for any bounded input i(t), f(x,i) can

be written as

f(x,i) -a + -£ eikwt a. (11)
~° k=-N ~K

#0

where N is some integer and the vectors a and a. belong to the
• ~o ~k

space $ of n-tuples of complex numbers. Note that the vectors

a and a, are bounded. From Eqs. (4) and (11) we obtain

x(t) =x(tQ) +ff(x(x), i(x)jdx
'o

rt / N
= x + /a + T

~° Jt P k=-N
° X k^O

ikwx \ ,e a, Jdx

M ikwt iku)t
N o

= x + a (t-t ) + Y, jt^-Z a. (12)
~o -o o , « iku) ~k

k=-N

k^O

Since x(t) is periodic and bounded by assumption, Eq. (12) implies

a = 0 and as w •+ «, the state x(t) ->• x . •
~o - ~o

Remark: When the memristive one-port is under periodic operation, different

initial states x will have to be chosen for different excitation
~o

frequencies. However, the state x(t) still approaches some constant

vector as the excitation frequency increases toward infinity. This

property is illustrated in Fig. 6, where a family of Lissajous

figures is shown shrinking to a straight line as o> •+ ».

Property 7 (Small-Signal AC Characteristics)

If a time-invariant current-controlled memristive one-port is globally
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asymptotically stable for all dc input current I, then its small-signal

equivalent circuit about the dc operating point is as shown in Fig. 7.

Proof: Let the input current i(t) be such that

i(t) « I + 6i(t), where sup |«i(t)| « |l|
telR

(13)

and let a time-invariant current-controlled memristive one-port

be characterized by

x = f(x,i)

v = R(x,i)i A h(x,i)
(14)

If we linearize Eq. (14) about (X,I), where X is the solution of

f(x,I) = 0, we obtain

6x =

9f(X,I) 3J(X,I)
5x + 6i A A(X,I)6x + b(X,I)6i

6i A c(X,I)6x + d(X,I)6i6v =

9x

3h(X,I)

3x

where

A(X,I) =

b(X,I)

6x +

3i

3h(X,I)

9f1(X,I)
9x,

3f2(X,I)

3x1

9f2(X,I)
3x1

3f (X,I) 3f (X,I)
n ~ n -

3x, 3x,

Zf^X,!) 3f2(X,I)
3i 3i

-12-

^^(J.!)
3x

n

3f2(X,I)
3x

n

3f (X,I)
n -

3x
n

3fn(X,I)"l
' 31 J

(15)

(16)

(17)

(18)



f3h(X,I) 3h(X,I) 3h(X,I)

S«'« "[-1^ 3^- •••-i^- I (19)
3hQC,I)

and d(X,I) = —r-. (20)
ol

Taking Laplace transform of both sides of Eqs. (14) and (15) with

6x(0) = 0, we obtain

s'AX(s) = A(X,I) AX(s)"+ b(X,I)AI(s) (21)

AV(s) = c(X,I) AX(s) + d(X,I) AI(s) (22)

Solving for AX(s) from Eq. (21), we obtain

AX(s) = [si - MX,!)]"1 b(X,I) AI(s) (23)

where 1 denotes an identity matrix of order n.

Substituting Eq. (23) into Eq. (22), we obtain

AV(s) = {c(X,I)[sl - MX.I)]"1 b(X,I) + d(X,I)}Al(s) (24)

It follows from Eq. (24) that the small-signal impedance for a time-

invariant current-controlled memristive one-port is given by

WW AV(s) Atr t, +gj ^ +h S""2 +• • •+6n-l 8* gn
zq(s) AH(i) " d(?.« +TT £TT ^T~ 7 ~~

x s + a, s +a_s + ... + a , s + a
12 n-1 n

where a , 3. are functions of (X,I) € R x R. Equation (25) can be

rewritten into the form of a continued fraction expansion

Zn(s) = d(X,I) +— - (26)
x 1

sC.+

8C2 +

-13-
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where again C. and R. are functions of (X,I). The circuit in

Fig. (7) follows from Eq. (26) upon setting R (X,I) = d(X,I) •

Remark 1; For the case of time-invariant current-controlled memristive

one-port described by Eq. (4), the associated small-signal equiv

alent circuit is as shown in Fig. 8. Observe that Fig. 8 is

obtained from Fig. 7 upon replacing R (X,I) by R (X), R.(X,I) by

I R.(X,I) and C.(X,I) by C.(X,I)/I. When the biasing current

1=0, the small-signal input impedance Z (s) reduces to that of

a linear resistor R (X) and is therefore purely dissipative for

R (X) > 0.
o ~

Remark 2: As the excitation frequency of the small signal 6i(t) approaches

zero, the small-signal impedance ZQ(s) in Fig. 8 degenerates into

ZQ(s) =Rq(X) +1Q E V^'V (27)

the small-signal impedance in Eq. (27) corresponds to the slope

of the dc current at I = L. The value R (X) represents the dc

resistance at I a I and is equal to the small-signal impedance

Z (s) as the excitation frequency increases toward infinity.

The frequency dependence of the small-signal Lissajous

figures about the operating point I = IQ is depicted in Fig. 9.

This behavior has been observed in many physical devices and

12
systems, including thermistors and ionic systems [12].

Remark 3: The small-signal equivalent circuits for the thermistor and

12Mauro [12] was so perplexed and mystified by these unconventional
behaviors that he collectively referred to these elements as an anomalous
impedance!
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the Potassium channel of the Hodgkin-Huxley model are shown in

Figs. 10 and 11. In Fig. 10, ^ £2ctPR(T) 'wher® a4"\ <°

and P = VI. Since C- is negative, the thermistor is inductive

under small-signal operation. In Fig. 11, the small-signal K

admittance Y (s) of the Potassium channel can be shown to be

inductive for V > 0 and capacitlve for V < 0.

Property 8 (Local Passivity Criteria)

A first-order time-invariant current-controlled memristive one-port

described by Eq. (4) is locally passive with respect to an operating

point I = I if, and only if,

i) ^^ 1 o

ii) R(X) > 0 and«<

3f(X,I) 3R(X)

vtv\ >> 91 3x . 3f(X,I) , _
R(X) - 3f(X,I) When —*^— * °

3x

aiaa sssql x y 0 when zt&n m0
3i 3x 3x

• x •

Proof: The small-signal impedance of a first-order time-invariant

current-controlled memristive one-port described by Eq. (4) is

3f(X,I) 3R(X) j

Vs) =R(x) + 9i afoLp ™
S ~ 3x

In order for Z (s) to be the impedance of a passive one-port, it

is necessary and sufficient that Z (s) be positive real. The

conditions given in Eq. (28) follow directly from the well-known

pr criteria [13]. •

Remark: The Potassium channel of the Hodgkin-Huxley model violates the

•15-

(28)



second criterion (with i replaced by v) at V = 10 mV and hence

is locally active at this operating point. This is verified by

the fact that in Fig. 3 the slope of the V-I curve at V = 10 mV

is negative. For the case of the thermistor described by Eqs. (5)

and (7), the second criterion is also violated at I = 1.5 mA, and

hence the thermistor is also locally active at this operating

point. Observe that the slope of the V-I curve at I = 1.5 mA is

negative, which is consistent with the local activity of the

thermistor.

General Remarks on the Generic Properties

The properties derived above can be used not only to identify those

memristive devices and systems which have so far eluded a correct identi

fication, but also to suggest potential applications. For example, the

local activity of the thermistor and the Potassium channel of the Hodgkin-

Huxley model has important practical significance. Indeed, the two-

thermistor circuit shown in Fig. 12 has been designed to function as an

ultra-low frequency oscillator by biasing the thermistors in their locally

active regions [14]. It is also well known that the Hodgkin-Huxley model

is locally active and hence is capable of firing nerve impulses. Many more

examples abound which possess the generic properties of memristive

systems [12].

There are good reasons to believe that many physical and biological

systems should be modeled as memristive one-ports. To identify such

devices and systems, we look for the following properties of the one-port

(JV) under investigation:

i) The dc characteristic curve of -J\i passes through the origin.
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ii) The v-i Lissajous figures corresponding to any periodic

excitation having a zero mean value always pass through the

origin.

iii) The one-port (JVI behaves as a linear resistor as the excitation

13
frequency to increases toward infinity.

iv) For a memristive one-port lM which admits the representation (4),

its small-signal impedance degenerates into a pure resistor

under zero bias, but becomes either inductive or capacitive

depending on the operating point.

v) The order of the small-signal impedance (or admittance) is

invariant with respect to the dc biasing current (or voltage).

III. A CANONICAL MODEL FOR MEMRISTIVE ONE-PORTS

Once a device or system has been identified as memristive, the next

task will be to find a suitable mathematical model describing its behavior.

Our objective in this section is to present a canonical model which will

correctly mimic the steady state response, of memristive one-ports to the

following class of input "testing signals":

1. DC or slowly-varying waveforms.

2. Sinusoidal signals of arbitrary amplitudes and frequencies.

3. Sinusoidal signals of arbitrary amplitudes and frequencies

superimposed on top of a dc bias.

We will denote the above class of input testing signals by

C\} A (u(t) A A + A cos wt | (t,w) € R x [!,«,)} (30)

13T* „ t . .
If a one-port is not b.i.b.s. stable, then it is possible that the mem

ristive one-port does not behave as a linear resistor as to increase toward
infinity. This situation, however, is highly pathological.
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where (A ,A) G R x R , R ^ [0,»). The constants A and A represent

the dc component and the amplitude of the sinusoidal component of the

input testing signals, respectively. Observe that the lower bound on the

frequency range in Eq. (30) is not a stringent restriction since in

practical applications we can always normalize any given set of nonzero

frequencies so that the lowest frequency becomes unity. In Eq. (30), the

value of A is set equal to zero for dc operation, while the value of A

is set equal to zero for sinusoidal excitations. When the one-port is

operating in the small signal mode, A will be set equal to a small positive

number and A will be set equal to some biasing value. These testing

signals are chosen mainly because they are the ones most commonly used

in laboratory tests. Although our model is derived to yield exact

simulations only for these testing signals, the fact that our model also

possesses all the generic properties presented in the preceding section

suggests that it should also give reasonably realistic simulations for

arbitrary testing signals.

Our main assumption in the following derivation is that the system

response y(t) tends to a unique steady state for each input u(t) £ -U

such that the function p(t) A y(t)/u(t) tends to a periodic waveform of

14
the same period as that of the input u(t) in steady state. Observe

that each input testing signal u(t) €Qj is uniquely specified by

three numbers, namely; A , A and w. Hence for each combination of

{A , A, to}, there corresponds a unique p(t). In other words, p(t) is
o

actually a function of A , A and w and to be precise, we may denote it

The frequency of p(t) in steady state may be a harmonic of the input
frequency, but neither subharmonics nor incommensurate frequencies are
allowed in p(t).
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by p(t; A , A, w). Let the steady state component of p(t) be denoted by

p (t). Since the function p (t) is periodic of the same period as that
s s

of input u(t), by assumption, it admits the' following Fourier series

representation

N

P_(t) = aft(A ,A,o)) + T\ Ja. (A ,A,w) cos ku)t + b. (A ,A,oo) sin ktot\ (31)

where the integer N is an arbitrary number which is determined by p (t).

k=l I

s

The Fourier coefficients in Eq. (31) are determined by
2tt

or f*7"ao(Ao,A,w) = -^ pg(x; AQ, A, u>)dx (32)
o

2ir

ak^Ao,A,c^ =f I ps^t; Ao' A' w)cos kwT dT <33)s o

o

,.A,«) =fj
2£
0)

and bk(AQ,A,a)) =-^ I Ps(t; Aq, A, a))sin kwx dx (34)
o

These coefficients are assumed to be continuous functions of A and A in
o

the mean-square sense, and square-integrable functions of u>; namely,

1. For each e > 0 and for each (A ,A) G |R x (R , there exists a

neighborhood N- of (A ,A\) such that

/* a

ao(Ao,A,ai) " a0(A0»A,w)" 2<e (35)
Li

llak(Ao,A,o)) - ^(A^Aa)!! 2<e (36)
Li

15T , ,
In most practical cases the integer N is a finite number. If it is

not a finite number, then we will approximate p«(t) by a finite Fourier
series expansion up to the Nth harmonic term and model the approximated
waveform.
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and llbk(Ao,A,u)) --bk(Ao,A,w.)B 2 <e (37)
Li

2for all (A ,A) £ N«, where L denotes the space of square-integrable functions,

2. a (A ,A, •)» ^(A »A» *) an(* \(^ »A» ') are square-integrable
2functions of to, i.e., they belong to L-n . .

Before we present a canonical state space model for memristive one-

16
ports which satisfies the preceding assumptions , we will introduce two

2
families of complete orthonormal functions in L - . These functions

lk, ;

will allow a unique decomposition of the Fourier coefficients into the

product between a frequency-dependent component and a frequency-independent

component which depends only on A and A of the input u(t) ^^U.. The two

families of complete orthonormal functions are defined by [15]:

<_A 4{a,, (a.) 4k2 E"Hz «€£.->. *££\ (38)
K L *"• m=l (fao)Zm K J

%4{*UM 4k1' £I -^ I»* [i -),I6,4} (39)
I m=l (kw) y

where .9 denotes the set of natural numbers and a and $. are constants

, m < I (40)

defined by:

Jl-1

1 n {2(m+n)--1}

alm A (4£-•i)2 n=l

n

n=l

n^m

2 (m-n)

1 fi •These assumptions can be relaxed such that whenever there is a Fourier
coefficient containing terms that are not functions of the excitation
frequency w, then the w-dependent terms are square-integrable functions
of to and the oj-independent terms are continuous functions of (AQ,A).
The model presented is also valid under these relaxed assumptions.
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Jl-1

1 n {2(m+n)+l}

8fcm ^<4£+1)2 BT^ , m<* (41)
n 2(m-n)

n«l

n&a

the families <J\. and ^o, will be used shortly to construct the read-out

map of pur state space model.

To model the steady state response of memristive one-ports subject

to the input testing signals u(t) ^HA, we propose the following:

Canonical State Space Model Representation

State Equation:

x. = -a(t) x.. + b(t) u

x2 - -X]L + u
•

x3 = p(u-x1-x3)
> (42. a)

x4 = p("x2"x4)

where xQ A [x1(0), x2(0), x3(0), xA(0)]T =0

Output Equation:

y = g(x1,x2,x3,x4,u)u (42.b)

where

i "Kt i
a(t) = —^-^ , b(t) = , K » 1 (42.c)

_ . 1 -Kt fc , 1 -Kt
t + Ke t + K6

and p(«) is a monotonically increasing nonlinear function whose graph is

similar to the diode characteristic curve. The nonlinear map g(«) in the

output equation (42.b) is defined by
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M

g(x1,x2,x3,x4,u) AZ^ ^o^VV aUH^HJLI^'x3)

• \l (1 + 2> ,y] Tk( X31
M

£ a.^x^x.)
a=i

UN„1,«3>

. bu((l+-)- <-f>|*!v,& (43)

where M is an integer, and C o(#)» YvpC*) and ^vo/*) are scalar nonlinear

functions of x- and x~ which are identified via the following Fourier

coefficient expansions:

fCoJt(VA) = J a0(Ao'A'u) *uMd'°

rYk£(Ao,A) =^ •kCAo'A«"> V(o,)d(0
k

o'A) "{fiU(A bk(AQ,A,a)) bk£(o))do)

(44)

(45)

(46)

The functions a (•)> a (•) and b.(') in these equations are themselves

Fourier coefficients of p (t) defined in Eq. (31) while ak£(*) and t>kJl(*)

are basis functions defined in Eqs. (38) and (39). In Eq. (43), N is a

fixed integer defined via Eq. (31) and Tfc(-)> Ufc(-) are the Chebyshev

polynomial functions of the first and second kind, respectively; namely [16],

[k/2]

j=o

T (z) A± lVJ (-l)j <k-1-l)! (2z)k"2jVZ) =2 2* < i; j! (k-2j)! UZ;

-22-
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V«> aEX?] (-Dj jrJfeijyT <2z>k~2j (48)
where [k/2] denotes the largest integer less than or equal to k/2.

Observe that in spite of the seemingly complicated algebraic structure

of the preceding canonical model, the only model parameter and model

functions that need to be identified are the integer M and (2N+1)M non-

linear functions, C A')> Yk£^ and 5k£^' and the nonlinear function

p(«). As mentioned earlier the nonlinear function p(«) may be any strictly

monotonically-increasing Lipschitz continuous function whose graph is

similar to the diode characteristic curve. However, for simplicity, we

will choose p(0 to be a piecewise linear function defined by [15]

p(e) A cte + (i - a) r(e) (49)

where a € (0,1) and r(*) is a unit ramp function, i.e.,

Lo

for e >_ 0
r(e) A i (50)

for e < '0

Notice from Eq. (49) that the nonlinear function p(») is uniquely specified

by the parameter a € (0,1). Hence, only the value of a need be identified.

We will present an algorithm that will determine the model parameters

M and a and the (2N+1)M nonlinear functions. Before we state the algorithm

let us first define the following stop rule. Given any set of input testing

signalsQJ A {u,,,(t) AA.+ A. cos \t}9 where the subscripts i,j,k range

from 1 to N. , N., N , respectively, the performance index of the model

° 17
with respect to these testing signals are defined to be

We are assuming without loss of generality that the time instant at which
both p(t) and p(t) attain steady state has been set to zero. Hence, by this
assumption, Ps(t) and Ps(t) are periodic on R., after an appropriate time
translation.
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\ NA
o

N

aLEE
i=i j-i k=i

^k
2tt

2£
0),(

{ p (t;u. ..)
s ijk

p (t;u.' )
s ijk

dx (51)

where p (t;u...,) denotes the steady state component of p(t) in the

original system and p (t;u...) denotes the steady state component of
S 1J K

p(t) in the model subject to the input u,..(t) e(~UD* Another error index
18

to be used is

NA N. N
A A a)

eM4E E E
i=l j=l k=l

M

(Aoi'Aj'V " 2 Cot^ol'^j'V aU(uk>

N f M .2

?n] •ta(Aoi'*J'"k) " ,?. V^oi'V^Vl

>n(Aoi'Vk> "&6n*(Aoi'VW1/ (52)
where a (•)» a (•) and b (•) are the Fourier coefficients of p (t;u..,)
on n s ijk.

defined in Eqs. (31)-(34), and a ^(0, bn£(*) are defined in Eqs. (38)

and (39). The error e is a function of the integer M and the nonlinear

functions £„(•)» 6 „(•)• To initiate the algorithm, we need to prescribe
o£ nx.

an upper bound n £ (0,1) for the performance index n. We also need to

assume an initial guess on the iterative parameter a £ (0,1).

Model Parameter and Function Identification Algorithm

Step 0. Select and a G (0,1), and n Q e (0,1). Set A=l

Step 1. Compute Co£(Aoi,Aj), Y^CA^Aj) and 6^^^) from Eqs. (44)-

18The second error index e^ is used to ensure that the model parameter M
and the nonlinear model functions C0jj,(')» YnfcC*) and 5n£,(*) are determined
properly so that the Fourier coefficients a0(*), an(«) and bn(«) can be
approximated closely for the given components Aq^, Aj and w^.
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(46) for n = 1,2,...,N for each i,j ranging from 1 to N and
o

N , respectively. ••••-..

Step 2. Set M = I and compute eM using Eq. (52).
n
maxStep 3. If eM >—r— set i = Z+l and go to Step 1.

Step 4. Compute the performance index n using Eq. (51)

Step 5. If n > n , set a = -z and go to Step 4.
max L

Otherwise stop.

The convergence of this algorithm is guaranteed by the following

theorem.

Main Theorem

If the Fourier series representation of a (A ,A,0 relative to the
o o

basis functions inLzL. afc(A ,A, •) relative to the basis functions in

k* and bk^Ao,A' "^ relat*ve to the basis functions in ^B, converge

uniformly over the set of testing signal components {(A ,A.)} for i, j

ranging from 1 to NA and NA> respectively, and for k = 1,2,...,N, then

for each nmax > 0 the preceding algorithm, terminates in a finite number

of iterations.

Proof: For each (Aq,A), the scalars ^(A^A), Yk^(AQ,A) and 6kA(AQ,A)

as defined by Eqs. (44)-(46) are the Fourier coefficients of

ao(AQ,A,«)» ak(AQ,A,-) and bk(AQ,A,') relative to the basis

functions in the complete orthonormal sets <Jk ,Jk, and ^B. . Hence

by the uniform convergence hypothesis, there exists a finite integer
n

M such that eM defined by Eq. (52) is less than or equal to -~£

for any n > 0, i.e.,
max ' *

^ max , ^
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From Lemma A-1 of the Appendix A, Co£(A()i,Aj), Yk£(AQi,Aj) and
<skJl(Aoi,A ) are continuous functions of (A ±,A.). From Theorem

A-1 in the Appendix A, there exists a 6 e (0,1) such that for any

a G (0,6), the steady state solution of the state equation (42.a)

yields arbitrarily close approximations A „, A. and aif to A „, A
oi j k oi' j

and wk, respectively. Also by the continuity of the Chebyshev

polynomials Tfc(.) and \(') of the first and second kind as defined

in Eqs. (47) and (48), cos nu>t and sin nut can be approximated
/u-x

arbitrarily closely in steady state by T t Mand((l+£)^ +
n\ x„ / V v 2 x,

i)\JZ— 1, where u £ nA, respectively. For convenience, we
- 3 / /u(t) - x (t)'

denote these approximating functions by C (t) A T

• x (t) \ /u(t)-x.(t)andSn(t)A((l+f)^ +f uj
From Eqs. (31), (43) and (51), we obtain

2tt
na na N rTT

"*•£ E LSJ |a0(AorAj'wk> +
i=l j=l k=l o ' J

x3(t)

n^ x3(t)

N r

YWa (A .,A.,
£iln 0i J

oi, ) cos no), t

+ b (A . ,A.,ul) sin no), t
n oi j k k

1 M

n [ r m
- E E

n=l I U=l

A A

^<Aoi'V V(uk> Cn(T)

+\jt «nAi>V bn,(V Sn(T) dx

V aH('V

It follows from Eq. (54) and the triangular inequality that

NA NA N
A0 A oi "

n< E E E
I i=l j=l k=l

M

(A«1'W - E ^oP.<An^A^aToK>ox oi' j' k
£=1

oJT oi' j' 1JIV k'
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+

N

+ E
n=l

M

in(Aoi,Aj(lok) - E ^oi'V'nt^

M

-n(Aoi,A B) - E «nJlCAol>V W
J £=1 J )]

NA NA N
A A u)

E° E E
i=i j=i k=i

M

E ^ol^oi'V- aU(V " col(Aoi'*j> "l*^

N

+ E
n=l'

Y „(A .,A.) a . (to. ) - y „(A .,A.) a -(a).)
'nil oi j nil k nJl oi j nil k

.+ 6 n(A ^,A.) b 0(iO - 6 „(A .,A.) b „(w, )
nil oi' j nil k nil oi* j nilv k ')]

2tt

+

NA \ N

0

E E
i=l j=l

5
k

Y n(A . ,A.) a 0(a). )
'nil oi j nil k

6 0(A ,,A.) b 0(a>.)
nil oi* j nil k

A E, + En + E„
— 1 2 3

where e (t), e (t) are defined by
c s
n n

C (t) - cos nwt + e (t)
n c

n

S (t) = sin nwt + e (t)
n s

n

n

e (t)
c

n

dx

(55)

(56)

(57)

Hence, it follows from Eq. (52) and Step 3 of the algorithm that

E, <
max

1-3
(58)

Moreover, since CoA(-)» Yn£(0, ^j^')? anfc<#) and bnJl^ are
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continuous, it follows from Theorem A. 1 in Appendix A that there

exists a 6 € (0,1) such that for any a ^ (0,6 )

E2£^P (59)
Since the Fourier coefficients of p (t) are by assumption bounded

s

for any input testing signal u.,, (t), there exist a 6 £ (0,1)

such that for any a £ (0,6.)

E3 i-p (60>

Hence, for any a € (0,6), where 6 = min{61,6.}, we obtain from

Eqs. (55) and (58)-(60) the inequality

n < n • •
— max

The preceding model is canonical in the sense that given any memristive

one-port satisfying the technical assumptions described earlier, we can

construct a dynamical system model having the same structure given in

Eq. (42). The state equation (42.a) is fixed— independent of the

device or system being modeled — except for the parameter a defining the

nonlinear function p(') which has to be chosen properly so that the time

constant of the model is much smaller than the period of the input signals.

To illustrate the implementation and the validity of the preceding algo

rithm, we present next a hypothetical memristive system and then derive

its associated model. We choose a hypothetical example rather than a real

19

19
This choice is to ensure that for any input frequency the canonical model

is capable of detecting the components of the input signal correctly in
steady state. Otherwise the solutions X3 and x^ in Eq. (42.a) may never
reach the steady state and hence fail to detect the peak values of
u-x-^ and -X2«
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device in order that the input-output signal pairs can be generated

accurately on a digital computer.

Example

Let cAl be a 5th-order memristive one-port characterized by

i. = -2x- + 2x2 i

x2 = -x2 + i

x3 =-4x3 +2x4 r y
x4 =-2x4 +i2
x5 = 1 - x5

2 2v = (Xj^+Xj-fx^.+Xg) i AR(x1,x2,x3,x4,x5)i

(61.a)

(61.b)

The block diagram for this system is shown in Fig. 13. The steady state

component of R(x(t)) of the zero-state solution x(t) due to the input

current i(t) « A + A cos u>t has been found analytically and is given by

p (t) A R(x(t)) =ao(Ao,A,o)) + £ Jan(Ao,A,u)) cos ntut
n-1 t

}
where

+ b (A ,A,w) sin nut
n o*

/a a x i _l o*2 , 1 A4 . 1 .2 .2 , 1 .4 . Aa_(A_,A,w) = 1 + 2A^ + — A^+— A^A +t A + —r
o o o 2 o 2 o

w2+4

Ik Ao)\2 Ik A\2 A.
+ 4(-2=—1 +16f-?-l + A

w +1

u>2+4/ I6(a>2+1)

A A ? AAA A3(oj2+2)
al(Ao,A,u,) =4-f- +4(A2 +A2) -§- + %_ , 2

w +1 a) +4 (u) +l)(w +4)
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2 -^ A2 2A2A=W)
*2<VA»"> "T£5t*\t +T)\+ ° 2^,2 <65>

+1 (u> +4)

.2,. 2. /A2 A2\ iA . A (1-u) ) .10, i
.•A'-) = , 2.n2 +lr +ry-

(U) +1) \ / b)

3 2Aq AJ(2-o) )
a (A ,A,u) =—^ ^ (66)
5 ° (o)+l)(u>+4)

A4n 2.
a (A A,(o) = AU7 \ (67)
* 16(co +1)Z

3
4A A a) 9 . A A a) A A a)

b, (A ,A,w) =—| + (4AZ + 2AZ) -^ +—•£ = . - (68)
1 ° u> +1 ° u> +4 (w +1) (u> +4)

/a2 / o a2\ a2 16A« A2 0)b2(Ao,A,u) =^+A+ff-|-+-f-y- (69)
o) +1 \ / a) +1 (w +4)

3A A a)

b,(A .A.eo) =—=-2 « (70)
J ° (u +1) (to +4)

A4
b, (An,A,o)) = % " 9 (71)
4 ° 4(eo +1)Z

The model parameters and model functions were identified from the above

data and from the system response to the input testing signals

3JD =|i(t) - Ao±+Aj cos tok t Ao±,Aj €{1,2,3,4,5), ufc €{1,2,3,10A}}

The high "testing frequency" w = 10,000 is used to segregate the frequency

independent component of the Fourier coefficient a (A ,A,u>) in Eq. (63)

(see footnote 16). The model parameters determined by the algorithm

subject to n = 0.5 is found to be
J max

<M,.> -(3, &) (72)

There are a total of 28 nonlinear model functions. Observe that if the

Fourier coefficients contain no frequency independent components then only
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27 (i.e., (2N+1)M, where N=4, M=3) nonlinear model functions need be

identified. The final nonlinear function g(*) for this model is given

as follow:

M=3
TT x 3

g (Xl,x2,x3,x4,i) Av(xrx3) + £ ^(Xl,x3) ax /(I +f)

N I|M=3
*3> "J*+f>^ ri-x.

n\ x.

M=3
it x 3+ g'AVJ^i^

x.a+f)^ +f

ri-x.

U
n-l\ x. (73)

where the nonlinear model functions y(0, C „(•), Y „(•) and 6 (•) are
OX/ nJo n*>

identified using the preceding algorithm. Standard computer optimization

techniques are then used to fit the data points defining each model function

into a two-dimensional polynomials in x- and x3. The complete descriptions

for these functions are listed in Appendix B.

To verify that the model can indeed mimic the original system for

any input signal that belongs to the setQi ,we compute the predicted

steady state response P.g(t) using the model as well as the exact steady

state response Pg(t) of the given system due to an input i(t) = A + A

cos cot, where (Aq,A,co) = (1,1,1). The resulting waveforms of p (t)

(dotted curve) and p (t) (solid curve) are shown in Fig. 14. Note the

remarkable resemblance between the two waveforms. To further illustrate

the properties of the model, we choose an arbitrary (not a member ofQi )

sinusoidal input i(t) = A cos ait with A=l. The frequency dependence of
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the Lissajous figures of the model (dotted curve) and those of the orig

inal system (solid curve) are shown in Fig. 15. Observe that as the

excitation frequency increases the Lissajous figures of the model and

those of the original system shrink and tend to a straight line passing

through the origin. The dc characteristic curves of the model (dotted

curve) and that of the original system (solid curve) are depicted in

Fig. 16. The model was also tested using a triangular input signal of

period 2tt defined as follow:

r- f«-1>
Kt) = <

for t € [1, it]

(74)

^ f(t "¥) for tG [7r» 2ir]
The output voltage waveform of the model (dotted curve) and that of the

original system (solid curve) are shown in Fig. 17. Observe that there

is a close similarity between the two waveforms in spite of the fact that

the input signal is not a member of the class of input signals ^U defined

in Eq. (30).

IV. CONCLUSIONS

A broad generalization of memristors to an interesting class of

nonlinear devices and systems called memristive systems has been presented.

The most salient feature of memristive systems is its zero-crossing

property. Observe that in spite of the memory effect which normally

introduces phase shifts in conventional systems, the output of a memristive

system is zero whenever the input is zero and hence the input-output

Lissajous figure always passes through the origin. Roughly speaking,

therefore, we could say that a memristive system is a "zero phase shift"
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dynamical system. Various generic properties of memristive systems have

been derived and shown to coincide with those possessed by many physical

devices and systems. Among the various properties of memristive systems,

the frequency response of the Lissajous figure is especially interesting.

As the excitation frequency increases toward infinity, the Lissajous

figure shrinks and tends to a straight line passing through the origin —

except for some pathological cases where the b.i.b.s. stability property

is not satisfied. The physical interpretation of this phenomenon is that

the system possesses certain inertia and cannot respond as rapidly as the

fast variation in the excitation waveform and therefore must settle to

some equilibrium state. This implies that the hysteretic effect of the

memristive system decreases as the frequency increases and hence it

eventually degenerates into a purely resistive system. Under small-signal

operations, the memristive one-port can be either inductive or capacitive

depending on the biasing point.

We believe that many devices and systems which have so far been

identified as dissipative should actually be modeled as memristive systems.

Only by using such a model can the dynamic behavior be properiy simulated.

Finally, we remark that the model presented can be made exact under dc,

small-signal (for all operating points) or sinusoidal (with dc component)

excitations. Even though our canonical model contains a time-varying

component in the state equations; namely i- = a(t)x.+b(t)u, we observe that

both a(t) and b(t) tend to zero in steady state. Hence, under steady-state

operation, our canonical model generates into a time-invariant dynamical

system. Furthermore, if the class of input testing signals is confined to

only purely sinusoidal waveforms, then our canonical model can be drastically
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simplified to a dynamical system characterized by a 3rd-order time-

invariant state equation and a much simpler output equation.
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APPENDIX A

Lemma A.1

The scalar functions c «(•)> Ykfi(0 and ^nC*) defined via Eqs. (44)-

(46) are continuous functions of (A ,A) £ R x R .

Proof: From Eq. (44)

YM(Ao'A) " \*(AoA- f (ak(Ao,A,u>) - ak(Ao,A,a))J a^GiOdu) (A.l)

From Eq. (A.l) and the Schwarz inequality, we obtain

Y, n(A ,A) - Yi «(A ,A) <
kJl o' lk£ o' —

J ak(AQ,A,o)) -a^A^A.w)

!v(u) du

The normality of a, (•) implies that

YM(VA) " Yk£(Ao'A) I ak(Ao,A,w) - ak(Ao,A,w)

k

du>

(A.2)

dot (A. 3)

Since av(»,»,u>) are mean-square continuous (Eq. (36)) by assumption,

Y, „(•) is continuous in (A ,A) G R x R . Similar arguments reveal
kJfc o +

that r, „(•) and 6ln(*) are continuous in (A ,A) G R x R *
oZ k£ o +

Lemma A. 2

The steady-state solution of

x = -a(t)x1 + b(t)u (A.4)
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where u(t) = A + A cos ait, x.(0) = 0

tends to a constant A .
o

Proof: In Eq. (A.4), a(t) and b(t) are given by Eq. (42.c); namely,

a(t) " 'V -Kt and b(t) " I -Kt • K» *•
t+-e t+-e

Hence, the function t h- -a(t)x- + b(t) u(t) is continuous and

the function x. H- -a(t)x- + b(t)u is Lipschitz continuous with

continuous Lipschitz function on R, . By the fundamental theorem

of differential equations [5,17], there exists a unique solution

xx(t) on R+ (for x]L(0) =0)

i(t) 1—Kt f u(T)dT (A,5)
K

It follows from Eq. (A.5) that the solution x,(t) corresponding

to u(t) = A + A cos ut tends to A , i.e.,
o o

Lemma A. 3

x- (t) -*• A as t -»• °°
1 o

Consider the first-order differential equation

x3 = p(u-X]L-x3), x3(0) = 0 (A. 6)

where the nonlinear function p(.) is defined by Eq. (49), x is the

solution of Eq. (A.4) and u(t) = A + A cos tot. Then for each £ > 0,

there exists a 6 G (0,1) such that for any a G (0,6), the solution x3(t)

tends to a constant A; namely

lim |x3(t) - A| <e (A.7)
t-*»
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Proof: From Lemma A. 2 the steady-state component of x. (t) is A . Hence

for t 21 t , where t is a sufficiently large number, Eq. (A.6) is

equivalent to

x3 = p(u-x3) (A.8)

where u(t) = A cos ut. The inequality (A.7) follows from Eq. (A.8).

For a proof of this assertion see [15] •

Remark: The differential equation (A.8) describes a peak detector and

tin steady state the solution x3(t) for an arbitrary initial

condition is arbitrarily close to the peak value of any periodic

waveform u(») .

Theorem A.l

Given any e > 0, there exists a 6 £ (0,1) such that for any a £ (0,6),

and for any input signal u(t) - A + A cos <ot the steady-state solutions

to Eq. (42.a) satisfy the following inequalities:

|x- - A 1 < £
1 1 o'

(A. 9)

|x3 - A | <£ (A. 10)

1(1 +1) J-.1 <e
4

(A. 11)

1(1 +f) ^ +f - sin u)t| <£
4

(A. 12)

U-X-

1 COS U)t| < E
x3

(A. 13)

Proof: The inequalities (A.9) and (A.10) follow from Lemma A.2 and

Lemma A.3, respectively. Consider the differential equation for

t
By steady state we mean that the transient component is negligible.
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x„ in Eq. (42.a); namely,

x2 = -x1 + u, x2(0) = 0

It follows from Eq. (A. 5) and u(t) = A + A cos o>t that

x2(t) f (^ '7±7^ f u(s) ds)dT
o \ K o /

X / k
o e

-Kt

l \ K ^ . 1 -Kt
Jo V t +Ke

A Ao f*= — sin o)t + — I
b) K 1

+ A cos
A sin WT \

UT "0. .1 -KT )

1 A f sin o)T

dT

(A. 14)

Applying Eq. (A. 15) and the triangle inequality, we obtain

A „t
o

K
xn(t) [sin (ot -
2 u)\

sin o)T( ^ dT

J 1+ t e1

(1)

C I sin o)T sinorcX . . of 1

A + w
sin wt sin wx dx < ° v 1 + e

. 1 -Kt T K e

t + — e
K

dT

dt

(where e=2.71828 ...) for all te R+ , Since the integral

{' sln fa)T dT -*- £ ast + ", for sufficiently large K and for

sufficiently large t, the solution x2(t) in steady state is such

that

x2(t) ~ - (sin wt -^ (A.17)
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Hence as K and t increase toward infinity, xAt) becomes almost

periodic. In Eq. (42.a) the*solution of

X4 = p(~x2 ~x4}» x4(0) = ° (A.18)

is almost periodic in steady state when x2(t) is almost periodic

because x^(t) is bounded on R and the function th- p(-x9(t)-x )

is almost periodic [17]. By a similar argument used in the proof

of Lemma A.3, we can assert that given any £ > 0 there exists a

64 G (°>1) such that for any aG (0,6^), the steady state component

of x^(t) is arbitrarily close to the peak value of -x2(t), i.e.,

lim

t-x»

x4(t)-(i+f)A < e (A.19)

Let 53 € (0,1) denote the associated constant so that for any

aG (0,63) the inequality (A. 10) is satisfied. If we choose

6= min{63,6^}, then the inequality (A. 11) follows from inequalities

(A.10) and (A. 19). Similarly, the inequality (A.12) follows from

Eq. (A.17) and inequality (A.19). The last inequality (A.13)

follows from the inequalities (A. 9) and (A.10) *

?
A function f(t) is said to be almost periodic if for any n > 0, there is
an I = £(f,n) > 0 such that in any interval of length I there is a t such
that |f(t+r) - f(t)| < n for all t € R. .
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APPENDIX B

The nonlinear model functions vfr^Xj), ^(x^x^, Y^te^2^) and

6 (x ,x..) are described in terms of two-dimensional polynomials of the
nx l j

form:

N±=5 N =5
P(Xl,x3) =£ £ a x*"1 x^1 (B.l)

1 J i=l j=l J J

Observe that for each nonlinear model function there are 25 polynomial

coefficients. The list of these coefficients are as shown in Table B.l,

where a . is located at the ith row and the jth column associated with

each function. These coefficients were determined using the Fletcher-

Powell minimization algorithm [18].
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TABLE B.l

<-y>
.749 .024 .199 -.087 .135
.662 -.410 -.150 .108 -.013

v(xx,x3) 1.510 .420 .485 -.040 .006
.134 -.132 .023 .005 -.001
.488 .013 -.003 -.000 .000

.407 -.073 .708 .127 .048
-.388 -.537 .923 -.330 .034

C01(x1,x3) .057 .643 2.764 .243 -.024
.018 -.212 .212 -.066 .006

-.003 .021 -.020 .006 -.001

.295 -.545 -.524 -.078 -.047

-.545 1.008 -.602 .143 -.012

09 1,2^' .326 -.602 -6.779 -.086 .007

-.078 .143 -.086 .020 -.002

.006 -.012 .007 -.002 .000

.162 .059 .219 .047 .018

.016 -.689 .606 -.170 .015

O1^ 1 *^^' -.092 .564 3.977 .124 -.011

.031 -.152 .119 -.032 .003

-.003 .013 -.010 .003 -.000

.056 .335 -.416 .139 -.014

.625 1.992 1.575 3.973 .042

Yn(x1,x3) -.726 1.827 -1.329 .361 -.032

.238 6.461 .388 -.103 .009

-.024 .053 -.036 .010 -.001

-.633 .273 .271 -.144 .017

-.361 -1.074 -2.190 -7.943 -.064

Y12(x1,x3) .947 -2.741 2.115 -.592 .054

-.359 -13.377 -.651 .176 -.016

.038 -.090 .063 -.017 .001

-.317 .619 -.394 .097 -.008

.616 .243 .760 5.102 .016

Y13(x1,x3) -.421 .811 -.511 • .125 -.010

.115 8.642 .137 -.033 .003

-.011 .020 -.013 .003 -.000

.160 -.464 -3.412 -.107 1.000

-.211 .701 -.595 .176 -.017

Y21(x1,x3) .103 -.376 -1.964 -.099 .009

-.022 .085 -.075 .023 -.002

.002 -.007 .006 -.002 .000
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-4.058 7.499 30.242 1.067 -3.488

7.499 -13.859 8.276 -1.971 .162

Yoo 'X- »X,j/ -4.478 8.276 72.450 1.177 -.097

1.067 -1.971 1.177 -.280 .023

-.088 .162 -.097 .023 -.002

11.616 -21.466 -65.517 -3.053 6.011

-21.467 39.671 -23.690 5.642 -.464

Y23(x1,x3) 12.820 -23.691 -227.364 -3.369 .277

-3.053 5.642 -3.369 .802 -.066

.251 -.464 .277 -.066 .005

-.306 -.187 .474 -.179 .019

.574 .331 -.867 -6.546 -.035

Y31(x1,x3) -.346 -.191 .514 -.196 .021

.083 .044 -.122 .046 -.005

-.007 -.004 .010 -.004 .000

-3.257 6.021 -3.595 .856 -.070

6.022 -11.127 6.641 218.677 .130

Y32(x±,x3) -3.598 6.645 -3.965 .943 -.078

.857 -1.583 .944 -.225 .018

-.070 .130 -.078 .018 -.002

19.779 -34.663 24.536 -6.979 .662

-37.749 66.006 -46.361 -1339.469 -1.238

Y33(x1,x3) 22.109 -38.421 26.992 -7.640 .723

-5.087 8.778 -6.185 1.757 -.167

.403 -.691 .489 -.139 .013

.001 -.001 .001 -.000 -.946

-.001 .002 -.002 .000 -.000

Y41(x1,x3) .000 -.001 .001 -.000 .000

-.000 .000 -.000 .000 -.000

.000 -.000 .000 -.000 .000

-.022 .045 -.029 .007 34.719

.038 -.078 .051 -.013 .001

Y42(x1,x3) -.021 .045 -.029 .007 -.001

.005 -.010 .007 -.002 .000

-.000 .001 -.001 .000 -.000

.219 -.403 .298 -.087 -313.336

-.351 .657 -.504 .151 -.015

Y43(x1,x3) .196 -.373 .293 -.089 .009

-.045 .087 -.069 .021 -.002

.004 -.007 .006 -.002 .000

-.379 .766 -.499 .127 -.011

.848 2.291 1.065 1.524 .023

6n(Xl,x3) -.583 1.131 -.712 .177 -.015
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.154 3.213 .184 -.045 .004

-.014 .026 -.016 .004 -.000

-.064 "-.193 .269 -.092 .009

-.618 -1.681 -1.310 -2.893 -.033

612(xrx3) .724 -1.682 1.174 -.311 .028

-.237 -6.617 -.351 .091 -.008

.024 -.050 .033 -.009 .001

.121 -.026 -.081 .037 -.004

.249 .615 .671 1.774 .018

613(xrx3) -.375 .911 -.650 .174 -.016

.131 4.137 .200 -.052 .005

-.013 .029 -.019 .005 -.000

-.076 .139 .094 .019 .246

.139 -.255 .151 -.036 .003

621(xrx3) -.083 .151 1.776 .021 -.002

.020 -.036 .021 -.005 .000

-.002 .003 -.002 .000 -.000

-1.155 2.134 19.845 .304 -.875

2.134 -3.944 2.355 -.561 .046

622(x1,x3) -1.275 2.356 10.435 .335 -.028

.304 -.561 .335 -.080 .007

-.025 .046 -.028 .007 -.001

3.796 -7.071 -51.057 -1.011 1.523

-7.021 13.078 -7.839 1.870 -.154

623(xrx3) 4.185 -7.797 -48.070 -1.115 .092

-.994 1.853 -1.111 .265 -.022

.082 -.152 .091 -.022 .002

.015 .009 -.023 .009 -.001

-.028 -.016 .043 .323 .002

631(xrx3) .017 .009 -.025 .010 -.001

-.004 -.002 .006 -.002 .000

.000 .000 -.000 .000 -.000

-.375 .694 -.414 .099 -.008

.694 -1.282 .765 25.052 .015

"on \X-i jXoJ -.414 .765 -.457 .109 -.009

.099 -.182 .109 -.026 .002

-.008 .015 -.009 .002 -.000

2.702 -4.993 2.982 -.710 .058

-4.993 9.228 -5.511 -180.377 -.108

633(Xl,x3) 2.982 -5.511 3.291 -.784 .064

-.710 1.313 -.784 .187 -.015

.058 -.108 .064 -.015 .001
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.000 .000 v -.000 .000 .022

-.000 -.000 .000 -.000 .000

641(xrx3) .000 -.000 -.000 .000 -.000

-.000 .000 .000 -.000 .000

.000 -.000 .000 .000 -.000

.011 .049 -.063 .021 10.558

-.056 -.023 .075 -.029 .003

642(xl,x3) .051 -.019 -.025 .013 -.001

-.016 .011 .002 -.002 .000

.001 -.001 .000 .000 -.000

-.106 -.508 .641 -.217 -110.570

.572 .243 -.769 .301 -.032

643(xrx3) -.524 .190 .259 -.132 .015

.158 -.107 -.025 .023 -.003

-.015 .013 -.000 -.001 .000
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Fig. 1. The Hodgkin-Huxley model.
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20 V(mV)

Fig. 3. The Potassium channel dc characteristics,

-49-



V(volt) t

200

100-

200 I(mA)

Fig. 4. The dc characteristics of a short neon tube.
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I i

Fig. 5. Illustration of Property 4

(a) possible Lissajous figure, (b) impossible Lissajous figure
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0*1 < 0*2

Fig. 6. Frequency response of Lissajous figures.

-52-



R0(X,I) R,(X,I)
O **+r

Impedance=ZQ(s)

Rn(X.I)

Fig. 7. The small-signal equivalent circuit.
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R„{X) IR.(X,I) IRn(X,D

Fig. 8. The small-signal equivalent circuit for representation (4)
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slope =R0(XMQXRi(X, I0), at a>=0
1=1

Fig. 9. The small-signal Lissajous figures,

-55-



C A A

C'^7^T^C'(T•I,

, 2«PR(T) A a

R| 8-aP -Rl(T'1'

where a=--4" <0 , P=VI =R(T)I2

Fig. 10. The small-signal equivalent circuit for the thermistor,
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6K(n)

GK(n) =9"Kn4

L.-
4gK"4V[V-n da„(V) d$niV)

dv dv

R,=
an(V)+)9n(V)

4gKn4V |-n daAV) d0n(V)

dv

where an (w) =
. O.OI(v +EK +IO)

exp[(v+EK +IO)/lo]-l

)8n(v)=O.I25exp(^^-)

A A

= L,(n,V)

= R,(n,V)

Fig. 11. The small-signal equivalent circuit for the Potassium channel

of the Hodgkin-Huxley model.
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E -5-

(.> 2\ Positive temperature
\*J coefficient thermisto

_j) Negative temperature
coefficient thermistor

Fig. 12. A two-thermistor circuit which functions as an ultra-low

frequency oscillator.
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CM

(VI
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Fig. 13. The block diagram for the hypothetical example in Section III.
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Fig. 1A. The steady state model response vs. system response.
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Fig. 16. The dc characteristics of the model (dotted curve) and the

system (solid curve)•
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Fig. 17. The response due to a triangular input for the model (dotted

curve) and the system (solid curve).
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