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Abstract

The condition number of an eigenvalue measures the sensitivity of
that eigenvalue to small changes in the matrix elements. Such extra
information is hice, sometimes useful, but how much does it cost?

A program is presented here for the most difficult case of a real
square matrix whose eigenvalues are wanted without their corresponding
eigenvectors. The program requires no extra storage space (this is our
reason for presenting it) and the running time is about 50% longer than

for the fastest reliable program which only computes eigenvalues.

TResearch sponsored by Office of Naval Research Contract N00014-69-A~
0200-1017.



There are many industrial épplications in which the matrix elements
are known to only two or three decimal figures. Each condition number
will indicate how accurately such a matrix determinesvthe associated
eigenvalue. When no digits in an eigenvalue are reliable the suspect
eigenvalue should be tagged and this information passed on to a higher
level in the whole computation.

A number of programming devices keep thg code, storage, and running

time down to a minimum.

An interesting case study is included.
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1. THEORETICAL BACKGROUND

1.1 The Sensitivity of Eigenvalues

Several good programs are available for the computation of the eigen-
values of real and complex matrices [Wilkinson & Reinsch, EISPACK, IMSL].
Due to the limitations of finite precision arithmetic these programs cannot
produce, in general, the exact eigenvalues of the given matrix A. However
the computed numbers are always (very close to) the eigenvalues of a
matrix A+E which is very close to A. This matrix E is not unique
and error analyses [Wilkinson, 1965] have shown the existence of E's
with satisfactorily small upper bounds on [E[l/lAll. Here [*[ denotes
an appropriate matrix norm.

It follows from these remarks that a good program will not always
deliver accurate approximations to A's eigenvalues. It can happen that
some, or all, of the eigenvalues are very sensitive to changes in the
matrix elements. So some, or all, of the eigenvalues of A+E may
differ sharply from those of A. Actually this is true only for non-
normal matrices. Real symmetric matrices —-- indeed all normal matrices
-~ determine their eigenvalues very well; the change induced in an eigen-
value of such an A cannot exceed the spectral norm of E (which is
defined below).

Two questions arise, How can this sensitivity be measured and.hoﬁ
cheaply can it be computed?

Simple Eigenvalues

To any simple eigenvalue X of A there correspond both a column
vector x and a row eigenvector y* (the conjugate transpose of y)

which are unique to within a scalar multiple. Thus



Ax = xA , y*A = Ay (1)

and x =y if A is normal (i.e. A*A = AA*). The most popular mea-
sure of A's sensitivity was called by Wilkinson [Wilkinson, 1965] the
spectral condition number cond(A). Let 6 denote the acute angle

between x and y, then
cond(A) = secant 6 = lyll-lxll/|y*x| where I[vi = ~*v . (2)

This definition gives a number in [lgm) which is monotonic increasing
with A's sensitivity to changes in A.

In order to justify this defin%tion two popular matrix norms will
be used;

iMl = max (Mvl/lvl = VA___(M*M) ,

max
v#0 (3)

Mg = /2 ZTm = Vtrace(M*M) .

l‘
g3 H

Let |6A| be the change in A corresponding to a change 6A in A.

~ It can be shown that
cond(}) = suplGAI/HGAHE over all non null infinitesimal A . (4)

Another useful characterization of cond(\A) is the following. The
spectral projector PA of A 1is the matrix which projects every vector
into a multiple of A's eigenvector. It is easy to verify that for

simple A
Py, = xy* /y*x (y*x is a scalar) , (5)

and, by using the fact that PA is of rank one, one can



show that
cond(A) = [P, [l = IP,1 . (6)
It is this characterization which can be generalized.

Multiple Eigenvalues

When A has geometric multiplicity m almost all perturbations of
A break A into m simple eigenvalues in such a way that sup|SA|/[ISAl

is unbounded. Thus it is customary to set
cond(A) = o

in this case.
There is more to be said however. A reasonable definition (see

[Kahan 1972]) puts
cond(A) = sup|8A|/lISAl | 7)

over all non null infinitesimal G6A which preserve A's multiplicity.

This number can be estimated because
<
cond (A) —-HPAHE/m
where the spectral projector PA satisfies

P,A = AP, +N

APy = Py At

and NA is nilpotent (i.e. N? = 0). Moreover PA can be found from

the expression

P, = X(y*x) Ly* (8)



where the columns of X and rows of Y* are bases for A's invariant
subspaces.

We have followed the usual practice (cond = ®©) in our program CONDIT
but wish to point out that it is feasible to bring into adjacent positions
on the diagonal of the Schur form any associated ill conditioned eigen-
values. The spectral projector for this group of eigenvalues can then
be found from (8) and if its norm is small then the group can be desig-
nated as a cluster. That is another project.

If more specific information is required then the individual ele-

ments of PA will be involved because

L Y
53;; = ejPXei (A simple) . 9

A warning should be offered at this point. The measures presented
above are based on the Euclidean vector norm and the convention that A
acts on vectors in Euclidean n-space. It can happen that this model is
quite inappropriate for certain applications and then the conventional
condition numbers will be irrelevant. However it is only the order of
magnitudé (base 10) of cond(\) which is wanted, in most cases, and

this will be constant over a large range of norms.



1.2 1Invariance Properties

When the role of the matrix is to be stfessed the condition number

is written cond()A,A).

Theoren.

eigenvalue of A then

cond (A,QAQ%) =

Proof. Let Ax = xA,

(QAQ*) (Qx) = (Qx)A ,

Because A is simple y*x #

cond (A,QAQ*)

because the Euclidean norm is unitarily invariant.

Corollary.

If Q is unitary, i.e.

y*A =

0

Q*Q = QQ* = I, and A is a simple

cond(A,A) .
Ay*. Then

(y*Q*) (QAQ¥) = A (y*Q*) .
and

ly*Q*l«fqxl/| (y*Q*) (Qx) | ,
ly*l+lxl/|y*x| ,

cond(A,A) ,

]

If a given matrix B is reduced to Hessenberg form H

by unitary similarities (such as Householder transformations) and the

QR algorithm is applied to H to produce, in the limit, a quasi-triangular

matrix T then

cond(A,B) = cond(A,T) .

1.3 The Use and Cost of Condition Numbers

A computed eigenvalue A of a given matrix A 1is an exact eigen-

value of many matrices including some close to A.

Let A+ E designate



one of the closest matrices. Provided that (HE“E/HAHE)2 is negligible
the error in A 1is bounded by cond(A)ﬂEHE. Error analyses [Wilkinson
1966] give an upper bound B on (HEHE/"A"E) when the Householder/QR

method is used. It follows that
loglo(lk|/B-cond(A)'ﬂAﬂE)

glves the number of decimal digits in A which are assuredly correct.

When no figures in A can be relied on then a warning tag should
be attached to A for most applications. Conversely when an adequate
number of figures are certified as correct in each eigenvalue of A then
the subsequent calculations are placed on a sounder footing.

These estimateé of the number of correct figures have proved useful
in comparison of rival eigenvaiﬁe programs and in debugging big programs
of which the eigenvalue calculations were merely a part.

A natural question at this stage is how much extra does it cost to
compute cond(A) as well as A? The answer must depend on whether the
user also computes x and/or y along with A. We focus on real
matrices and real arithmetic.

_[A] If a complete Jordan factorization A = XAY* (Y*X = I) is
computed then each cond(ki) can be found from the definition
ﬂxiﬂﬂy:ﬂ/|y:x| at negligible extra cost in storage and time, 'No special
program is needed and this case will not be considered further, Few
dependable Jordan factorization routines are currently available,

[B] If a program is used which yields X and A but not Y* then
it is necessary to compute the triangular factorization Lxe and store
it in an extra array. Then cond(Ai) = ﬂe:X-1ﬂ°ﬂXeiﬂ. To invert X

costs n3 basic operations whereas X and A may be found in



approximately 7n3 operations using the double QR transformation.

No special program is needed. The time penalty is slight but the
extra storage requirement is substantial, This case will not be dis-
cussed further.

[C] The eigenvalues A of A may be found (EISPACK path, ELMHES, HQR) in
under 4%n3 operations and with no supplementary nXn storage arrays
provided that A can be overwritten. This is the most interesting case.
No extra arrays are needed for the computation of cond(li), i=1,...,n
but the multiplication count rises to approximately 7n3. See the section
on Operation Counts for more details. The 0(n2) terms bring down the
ratio of running times and the increase is approximately 50% (% 15%).

Our method is easily described. The given matrix A 1is reduced to
Hessenberg form H by orthogonal similarity transformations. Then H
is transformed to quasi-triangular Schur form T by the double QR
algorithm working on the whole of H and not just the remaining principal
submatrices. None of the orthogonal transforming matrices is retained.
Finally the célumn and row eigenvectors of T are found, for each A,
by back substitution and then discarded immediately after cond(\) has

been calculated.

By Theorem 1 cond(A,T) = cond(A,A).

For simplicity all condition numbers exceeding 1030 are recorded
as 1030.
The program uses only real arithmetic even if A has complex eigen-

values.



1.4 Operation Counts

In [Parlett & Wang 1975] it is pointed out that straightforward
counts of multiplications and additions are unreliable indicators of
running ;imes. Nevertheless they are good to within a factor of 2 and
they do give insight into the way the algorithm spends its time. An
op 1is defined as a scalar multiplication or division followed by an

addition.

ORTHES: The (n—_'])th step transforms the last j rows and columns

while reducing column (n-j) to upper Hessenberg form,

Row Operations: A =+ A' = A-wy(wTA), Y = 2/wTw, wT = (0,...,0,x,...,X%)
Computation Y WTA vT =y (WTA) A- va Total
Cost j j2 k| j2 23 (3+1)

Column Operations: A' -+ A" = A' —yA'wa

Computation Y | A'Ww | u=YA'w | A' - uwT Total

Cost 0 nj n nj n(23+1)
n-1 5 2
Grand Total: 2 n(2j+1) + 23 (j+1) = 30 (n-1) +0(n)
j=1

-

The program ELMHES is approximately twice as fast as ORTHES but will not

preserve condition numbers.

CONDIT: It suffices to assume that all eigenvalues are real. To
find the column and row eigenvectors for the jth eigenvalue requires
backsolving triangular systems of (j-1) and (n-j-1) equations

respectlively.



*
Computation X y Cond
j=1 n-j~-1
Cost )i i 3
. i=1 i=1

Grand Total: %n3 +%n2 +0(n)

HQR: A typical double QR transformation acts on a jXj submatrix
of a Hessenberg matrix. To restore column k to Hessenberg form requires

the following operationms.

Computation Key quantities | Row operations | Column operations
min(k+3,3)
Cost 9 5 5
2=k =1

Total: % [9+5(j-k+l) +5(k+3)] = 5j2+29j+0(j)
k=1

Assume four initial full transformations with j = n and then two
iterations per eigenvalue.

Grant Total: -13—0113 + 51m2 +0(n)

QR2N@Z: The same transformations as in HQR must act on the whole
matrix. This changes the range of the row operation and not the columm

because the jXj submatrix being transformed is the leading principal

submatrix.

Computation Key quantities [ Row operations | Column operations

n min(k+3,3)
Cost 9 15 5
L=k 2=1

Total: % [9+5(n-k+1) +5(k+3)] = 5nj +2935 +0(j)
k=1

With the same assumptions as above

Grand Total: 5n3 + 54n2 4+0(n)

11



Summary of Op Counts

ELMHES + HQR : 4%n3 + 53%n2 + 0(n)
ORTHES + HQR : 500 4 52%1:12 + 0(n)
ORTHES + QR2NOZ + CONDIT: 7n° + 52%112 + 0(n)

The actual timingé were more favorable to our program than these

_operation counts suggest. The assumption of two iterations per eigen-

value is unrealistic. In practice there are more iterations with larger
values of j and fewer with small values. With 20 < n < 60 our program
ran, on the average, 50% longer than did ELMHES+HQR; the worst case

ran 657 longer.

12




2. APPLICABILITY

The program accepts real square matrices which can be stored in the
high speed memory of the computer.

The condition numbers of all eigenvalues of all normal matrices
(and this includes symmetric matrices) are unity and consequently the
program is intended for use with nonnormal matrices.

Before our programs QR2NOZ and CONDIT are used A should be reduced
to Hessenberg form H by orthogonal congruences. We recommend the
procedure ORTHES in [Wilkinson & Reinsch, II/13] and its Fortran counter-
part ORTHES [Eispack Guide, p. 297].

Our program QR2NOZ is an adaptation of HQR2 (Eispack Guide, p. 248)
designed to avoid the formation of the product of all the similarity
transformations used in the double QR algorithm and the calculation of
the eigenvectors of the final matrix of the QR sequence. A listing is

included for completeness.

13



3. ORGANIZATIONAL DETAILS

3.1 Standardization

(1) 1In the course of the QR algorithm applied to H it is possible

for two real eigenvalues to be found, at the same time, as the roots of

28]

It is convenient in such cases to do a supplementary plane rotation which

a 2x2 diagonal block

will reduce this diagonal block to upper triangular form and change the
corresponding rows and columns of H accordingly.

If this transformation is done at the time the eigenvalues Al and
Az are recorded then some of the quantities which determine the correct
angle of rotation will be available.

This device is employed in HQR2 and has been carried over to QR2NOZ.

The details are given below.

The parameters c¢ = cos 8, s = sin 0 are determined so that

c -s o B c s
s ¢ Yy 6 j(-s ¢
is upper triangular. Thus

§-a.

Yc2 - des - Bs =0, d

Let t = (d/2)2 + By then

cot 6 = (d/2+sign(d)Ve)/2y ,
s = sign(cot 0)(14—cot26)_1/2 s
c = s*cot O .

14



(i1) It is also convenient to perform a supplementary plane rota-
tion after a pair of complex conjugate eigenvalues, A tiy, has been
recorded in the course of the QR algorithm. In this case the transfor-

mation of the diagonal block is

c s a B c -s A0
-8 ¢ Yy 6 s ¢ E A
where £0 = -uz. This device is not used in HQR2.

Note that it is not in general possible to transform

a B A -
->
Yy § oA
using orthogonal similarity transformationms.
The purpose of the transformation is to yield a simple solution to
certain systems of linear equations which must be solved. The supple-
mentary plane rotation is done at the stage when the eigenvalues 'are being

recorded in QR2NOZ. 1In this case ¢t = p2+BY <0, p= (a-6)/2. We want

to choose ¢ =cos © and s = sin O so that

acz + (B+Y)cs + 682 = 6c2 - (B+y)es + o:.s2 .

Hence
tan26=—-2—8£-—=-gp—=2 ign(-po) , o=B8+Yy.
c2_82 o] o

Let T = /o‘!+4p!. Then

cos O =q = -;—(l-i-cos 20) = V(1 + |o|/T)/2 ,

sin 6

sin 26/2 cos 8 = |p|sign(-po)/1q .

15



3.2 The Computation of the Eigenvectors of a Standardized Real,

Block Upper Triangular Matrix

For each real eigenvalue A the eigenvectors u, w* satisfy
Tu = ui , Wi = Aw* .

For each complex conjugate pair of eigenvalues A*ipu the eigen-

e +4 T . %k
vectors u, *1iu,, w1-+1w2 satisfy

T(ul,u?_) = (“1’“2)E s (wl,wz)*T = E(wl,wz)*

~ [ A }
E = .
-u A

In effecting the back substitution process in real arithmetic there

where

are four different cases which can occur, depending on whether the matrices

D and E shown below are 1X1 or 2x2.

" . . . . o | o or
= ( )
D . . . D aB
LY &)
T = . . .
A or
- E ) E = ( A ¢ ) ’
L ._. Le AJ

where 6¢ = -uz.

The positions of D and E should be exchanged when considering the

row eigenvectors.

Type 1: pair-pair (E is 2x2, D is 2x2).

Imagine that the elements of Uy, u, in the same row as D are

about to be computed. All elements below these have already been found,

16




the elements below E being O.
Let jl, j2 be the rows of T in which D 1lies. Then the unknowns

are

.. [ul(jl) u, (31) ] ‘
u, (32) v, (32)

The equation to be solved in the column case is

-DV+VE =R
where
r, (31 r,(31) 1+1 m = jl1, §2 ,
R = » r,m) = ]t Ky (0 ,{ (1)
r,(32) r,(32) k=j241 v=1, 2.
In the row case let
oo [wlon v, (J1) ]
wl(jZ) wz(jz)
then the equations to be solved are
- VD + BV = rT (2)

where R 1is as above except that k runs from i to jl-1. Trans-

posing yields
-DV+VE =R.

Comparing this with the column case we see that it is only necessary to
transpose D and £ (i.e., to exchange B, Y and u, =pg) in order to
use the same code for both cases. The way that this exchange is accom-

plished is described in Level Three,

17



The way in which these four linear equations in four unknowns are

solved is described in the next section.

Type 2: pair-single (E is 2x2, D is 1x1).

The relevant equations are

o (uy ()50, (D) + () u, ONE = (r,(3),r,(3))

and

g (3),9, (1) + (o (D ,wy GHET = (1, () r,y (1)

2 2 ¢t (for column)
Let d=X-0, den=d +yu°, wval ={ The solution for
-u  (for row) .
both cases is

v (rl'd-i-r *val)/den ,

1 2
vy = (-rl'val+r2°d)/den .

3)

Type 3: single-pair (E is 1x1, D is 2x2).

The relevant equations are

[ u; (§1) ] [ u; (31) ]A [ r, (G1) ]
-D + =
uy (32) u, (32) r, (32)

and the same equation for vy with DT in place of D. Set d = \A-aq,

den = d2- BY. The solution is

<
|

1= (rl(jl)-d+rl(j2)°§)/den ,

9 = (rl(j1)°§+r1(j2)°d)/den .

(4)

<
|

where §= and Yy =

B (for column) . Y (for column)
{ { . In practice

y (for row) B (for row)

B =T(IJ,J), Yy =T(J,JJ) and the setting of J and JJ is described

at Level Three.
18




Type 4: single-single (E is 1x1, D is 1x1).

v, = rl(j)/den , den = A-0 .

1

Type 5: formula breakdown.

If in any of the previous cases D = E then the formulae for solu-
tion breakdown. There are two cases to consider.
(i) Linear Independence. Any element vj for which the formula

yields 0/0 can be set to any value, the most convenient is O. .This

represents the existence of a whole space of eigenvectors associated
with E.
(i1) Defective Case. Any element v, for which the formula yields

k|
a value exceeding 1/TOL will cause the condition number to exceed 1/TOL.

If this case is detected computation is interrupted, the condition number
is set to 1/TOL and the program proceeds to the next eigenvalue.

We propose that TOL = 10-30 will be suitable for most applications
and most computers.

These tests make the code simple and machine independent. However,
it is possible to devise matrices for which the given value 1/TOL for
the condition is very misleading. We know of no failsafe procedure which
does not involve deciding the rank of T-§ for all £ in a neighborhood

of A. This is a costly, difficult, and often unrewarding task.

3.3 Closed Form Solution for Equations of Type 1

The equations to be solved are of the form

-DV+VE =R

where

19



a B n Au r r
L HoA T21 T2z

The standardization of the block triangular matrix T forces the diagonal
elements of D to be equal. This yields simple formulas for the elements

of V.

Rewrite the equation as

B -yI

2 | _ _ T
(V11 V12 Va1 Va2 [_ ] =Ty Typ Ty Typ) < T

612 B

A-0
B = .
U A-Q

where

Observe that

—BI2 B 612 B
where
2 2
T=(A-a)"+u -By (and By < 0),
0 0 0 ¥
0 0 -« O
J, = . s I 1is the kxk identity matrix.
4 0 B O O k
-0 0 O
Further
2 2
Hence
2. 2 T B Y1, )
(Vi1 Vip Vg Vo) (T +4WTBY) =« er. 5T (T, - 2u3,)
2

20



[ e -f yg -yh]
ol £ e Yh Y8
Bg -Bh e -f

| Bh Bg £ e |

where
d=A-a, e=dt, f=u(t+28y) , g-= T-Zuz s, h=2du .
Note that

2+ w’ey = @ % - % + wley

- g2anl

(=0 if and only if a = A, u2 = =fy) .

These same formulae will be valid for the row eigenvectors provided that
we exchange (B,yi and (u,-u).

The alternative to using this closed form solution is to code up a
special version of Gaussian Elimination with pivoting. It is the pivot-

ing which would lengthen the code considerably.

3.4 The Condition Number of Conjugate Pairs of Eigenvalues

Let AZiu be a complex pair of eigenvalues of the real Schur matrix
T obtained by the QR algorithm. In the course of the algorithm the

following real equations are solved for real n-vectors Ups Uy, Wy W,

Tupup) = (upu)) [_{j ';] » (o wy)*T = [_{j ‘;.]<w1.w2)* )

Thus span(ul,uz) and span(w;,wg) are real invariant subspaces under T,

However {ul,uz} and {w;,w;} are very special bases of these spaces.

21



Lemma. With the notation given above uli iu2 and wI-T—iw; are

the column and row eigenvectors belonging to Az ip.

Proof. From (5)

Tul = ulk -u,

Tu2 = ulp+u2}\ s w

) *
u o, wlT )\wl-i-uw* s

T

* * %
9 -uwl + }\wz .

Hence

T(ul+iu2) = ul()\+iu) + iuz(i].l +A) ,

]

* * ok *
(wl - iwz)T ()\+1u)wl - (A + iu)iw2 .

The eigenvectors for A -ipy are obtained in the same way. O
Consequently

_ T S * * AP S )
cond(A * iy) = I|u1+1u2[l llwl iwzll/[w1u1+w2u2+1(wlu2 wzuz)] .

Use was made in the lemma of the quasi-triangular nature of T.

A consequence of this form is that uy and w, can be packed into the

same real n-vector with two overlapping elements as indicated.

il

=1, 2

e % =%

(x,.. .,x,pi,qi,O,. ..,0) } .

(O,o--,o,ﬁi,ai,x,---,x)

The equations to be satisfied by p;» q; are of the form

s f 1

X B ][ pLP] [Pom, [ o)
- ’

LY A ql q2 J \ ql q2 —M A )

f — -— W '4 - - 1
PLoa |[* B) [rw ] SR

\ 52 52 Y A ) (=M A 52 62 )

where u2 = -By. These equations reduce to

22




The ‘simplest solution (which we adopt) takes

pl=p1=1’ q1=92=q1=P2=0’ q2=U/B, q2=1/q2°
With this choice

(w1

* = (3 = p p =
- 1w,)(u; +1uy) = (pypy +PyPy) + (439; +59y) = 2
and

1/2

cond(A £ 1) = [(luy 1+ Iuy0%) (g 12+ 1,191V 272 . (0)

23



4,

<START———JL = 1]

FLOW CHART FOR CONDIT

@ &—@—;@ < ‘,fncrement 5'
Set NJ=0
column eigenvector
_ Set NJ=1,
) ow eigenvecto
Initialize ith element 4
of eigenvector(s)
T No
Initialize J, index of
current element(s)

J loop

N\ Yes
NI =17 condition
CRDE

compute

number

Eié;;;ector _Yes Comput 585: record
completed? norm out of range
R I condition
numbers
Set critical
indices
1by 1 (order of> 2 by 2
.
EQ: -D*V+V*E=R(NJ = 0)
D AV 4+ VFE =R (W= 1)
eigenvalue) Yes
complex?
Eis 1 by 1 E is 2 by 2 Eis 1 by 1 E is 2 by 2
solve E solve E solve EQ solve EQ
f defectiv if defectiv if defectiv if defective
go to 585 go to 585 l go to 58§jj go to 585
- | i ]
Next J Next J
;. {3-1 (N=0) J={J—z (NJ = 0)
J+l (NJ=1) J+2 (NJ=1)
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2 YaYatalals

SUBROUTINE CONDIT
CONDIT COMPUTES THE CONDITION NUMBERS NF THE EIGENVALUES OF A

< TSTANDARIZED QUASI- TPIANGULIR TMATRIX o
C
C THE SUBROUTINE STATEMENTY IS
_C. SUBROUTINF CONDIT(NMyNyA,V1,V2,WI,COND)os
¢ ON TNPUT
c NM MUST BE SET TO THE ROW DIMENSION OF THE TWO DIMENS IONAL
o ARRAY AS DECLARED IN THE CALL ING PROGRAM.
€ N IS THE ORDER OF THE MATRIXe NJLEJNM
C A CONTAINS THE STANDARIZED QUASI-TRIANGULAR MATRYX PRODUCED 8Y
d OR2NDZ .
C wi CONTAINS THF IMAGINARY PARTS OF THE EIGENVALUES. THE
-.L CIGENVALUES ARE UNDRDERED EXCEPT THAT COMPLEX CONJUGATE
Cc APPEAR CONSECUTIVFLY .
o V1,V2 ARF FOR TEMPORAPY STORAGF.
C
_L.QN QUYPUT L T e e e . ‘
c 1S UNALTEREN,
el cnnn CANTAINS THE CNNDITION NUMBERS CORRESPONDING T0O THE
c EIGENVALUES IN (V2,WI)e COND = 1,/TOL IF THE USUAL
K i FORMULA WOULD CAUSE OVERFLOW OR YIELD A VALUE EXCEEDING
C 1/7T0L. TOL NEED NOT DEPEND ON THE COMPUTER.
C v2 CONTAINS THF REAL PARTS OF THE EIGENVALUES.
c
_C.. e e e
o
c
C TYPICAL USAGE
Lo
c
c DIMENSION A{(SC,5C)yWR(S0),WI(S0),COND(S50),0RT(S50)
C
CCkmdokkkk ki kkkEkEAXENTER MATRIX A AND DIMENST ONS N g NMksk dook dok ook g s ok gk desk
o
c Low = 1
c IGH = N
C . CALL ORTHES(NM,N,LOW, IGH,A,ORT)
CALL QR2NDZ(NM,N,LOW, IGH, Al sWR,WI , IERR)
c CALL CONDIT(NM,N,A,OQT un,wl.cown)
C
G ke ke e e e ot et s o e el el i o i e teole fe e e o e o ok el e ok e i o e el e e o ol el ko Rk ek
C
C NOTE THE USE OF ORT AND WR IN CONRIT
s
7
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6. PROGRAMS AND COMMENTS

OR2NOZ is a modification of the EISPACK program HQR2,

SURROUT IN

L QR2NUOZ(NM,NLOWy IGH H,WR,,WI ,IERR)

DIMTNSION HINM N) , WR{N) WI(N)

REAL. NDPM,

MACHEP

INTEFGER FN' ENM2
LOGICAL NOTLAS
NDATA MACHEP /7016424000000000000000/

IFRR = @
STORE PAHOTS

" SEARCH FOR

60 IF(EN.T.
1TS = 0
NA = EN -
FNM2 = NA

LODK FopP <1
FOR L=FN

7C IF (FN.FQ
NN 8¢ LL
L=EN+L
TF(ARS
X
8C CONTINUF
93 L = LOw

FORM SHIF

100 X H{FN,
IF (LeFD.

ISOLATFD RY BALANC

0¥ JAND. IL.LE.IGH) GOTO 'S0 ~
1

NEXT EIGENVALUES
LOW) RETURN

i
-1

NGLE SMALL SUB-DIAGONAL ELEMENT
STEP -1 UNYTIL LOW DO

+LOW) GOTO 9¢

=»L ow [] NA
ow-LL"™

(H(L,L-1)) e MACHEP X (ABS (H(L-14yL-1))
+ ABS(H(L,.L))IIGD TO 100

T

FNT . . e
FN) GOTO 270

H{NAZNA)

H(EN,

NA) % H(NA,EN)

Y =
W =
IF (LEQANA)Y GOTO 00 L e
IF (ITS.,ER«30) GOTO 1000

IF (17S.N
FRM FXCF
T =T ¢+ X

NO 1201
120 H{I,1) =

Eel” +AMDe TTS.NE.20) GOTO 130
PTIONAL SHIFT o o .

LOW L,FN o
(Ty1

ﬁ ) - X

27
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S = AHBS(H(EN,NA)Y) + ABS{H(NA,ENM2))

X = 0675 % §

Yy = X
.. W = -0e4275%S*%S -
130 ITS = 1TSS + 1}

LOOK FORP TWO CONSECUTIVE SMALL SUB-DIAGONAL
ELEMENTS. FOR M=EN-2 STEP -1 UNTIL L DO

DO 140 MM = L,yFNM2

M o= TNM2 4+ . - MM
7Z = H(M, M) )
P =X - 22
S =Y - 722
P = (R%S =W)/H{M+1,M) + H(M,M+1)
0 = H(M#+1,M#+1) - Z2Z - R - S
e = (M+?,M+l)
S = AARS({P) + ARS{(Q) + ABS(R)
P = P/S

- Q = Q/S . e
R = R/S
IF (MeEQeL) GOTO 1S5S0
IF (ARS(H(M ,M-1))*(ABS(Q) + AB

. * (ARS{H({(M=-1,M=1)) + ARS(ZZ) +

140 CONTINUF

150 MP2 = M + 2

D0 160 I = MP2,EN

H(to[“?) = 0.0
IF (1.EQeMP2) GOTO 160
H(I'[‘B) = 0.0

160 CANT INUE

NOURLE QR STEP INVNLVIMNG POWS L TO EN
CAND COLUMNS M TO EN.

NE «NA
GOT0 170

R = H(K4+2,K-1)

AHQ(P) + ARS(Q)Y + ABS(R)
(XeENDen ) GOTD 260

P/X

Qs X

R/X

SIGN(SQFT(D:xP + Q%Q + R%RP),P)
(K+FQeM) GOTO 180

gK=1) = —s%x
0 1990
(LeNFoeM) H(K,K-1) = 'H(K'K‘l)

ZO
e
>
N

1

it uw

170

180

28
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P+ S
P/S
arss

Z = R/S
a/p
R/P

1972

DOIN X T

.
wn

ROW MNDIFICATION

wn it
A
1]

910 200

’

200 HIK+1,
H(K J) = H

210 CONTINUF 7

J = MINT(FN,K+3)
CNLUMN MOODLFYCATION "~ ~ 77
D0 230 I = 1,4J

Pz XEHLI K] & YHHCL Ke1)

TR UG NOTNDTUASY G
P = P 4 ZZ¥H(1,K+2)
HOT K+2) = H(T K+2) - P*R

220 o H(I,K+1) = H(I,K+1) - PX*0Q

H(IyK) ='HTY} =P

230 CONTINUE
262 CONTINUE
GO TO 70

NNE RONT FUUND

P70 HUEN,EN)=X+T
WR{ENYEH(EN,EN) -7 777 7 77—
WI(EN)=0.0

290 €N = NA

GOTN 60 = Tt T
TWD RONDTS FOUND
260 P = UY=X)Y/2.07 T T T
Q = P%P + W
ZZ = SQRT(ARS(Q))
H(EN’EN) = X + 7T
X = H(EN,FN) T
H{(NAJNA) = ¥ + T
IF (N.LT.0.0) GOTO 310
2Z = P + SIGN(ZZ,P) =
REAL PAIR

29
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WR(MA) = X + 22Z
WRFN) = WR(NA)
CIF { ZZeNEeT «0) WR(EN) = - W2z
WI(NA) = 0.0 °
WI(ECN) = 0.0
X = H(EN,NA)
R = SQRT(X%X + 7Z%*7Z) .
0 = X/R
N = ZZ/R
GOTN 320
T COMPLEX PATR o
310 WR(NA) = X + P
WRIEN) = X _+ P i o
WI(NA)Y =22
WI(EN) = =27
 MAKE DIAGONAL FLEMENTS EQUAL. o
IF (DL,EQ.Ce0) GOTN 380
BPC = H(EN,NA) + HINALEN)
TX = SART(RPCX*BPC + 4.0# PEP)
N = SORT(«5 % (1e0 ¥+ ABS(BPCI/TX))
P = SIGN(RP/(O%TX),-BPC*P)
ROW MODYFICATION . .
225 DO 330 J = NAN

ZZ = HINA,J)
H(NA,J)
HOEN,J)

137 GINTINUE

TOXH(FN,J) -~

COLUMN MCNDIFICATION

00 340 1 = I'N
22 = H(I1 'NA)
H(T,NA) = Q¥2Z + PHH(I
HOT,EN) = Q*H(T,ENY

245 CONTINUE
389 EN = ENM?
T G0TN 60
103 [ERR = EN
RETURN
END

30
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SUBROUTINE CONDIT(NMyNyA,V1,V2,WI, COND)

VALI2 = VALI%VALI

€ NJ GIVES EIGENVECTOR TYPE, 0O FOR COLUMN, 1 FOR

NJ = 0
o INITIALTZE NONZFRO ELFMENTS OF EIGE ENVECTOR
SvIg1) = 10 o - -
v2(1) = 0.0
505 J =1 = 1 + 2%NJ
IF (VALT.FQe0e0) GNTO S10
v2(i+1) = VALI/A(‘,["") L R
Vi({1+#1) = C.
IF (NJsEQel) VZ([+1) = 160/V2(1+1)
Jd = 1 = 1 + 3%NJ
C . . e e
C FIND THFE INNDICFS OF ELEMENTS COMPUYTED SO FAR
¢
510 KS = J + 1 # NIR(T1=-U-1)
I +# 1 & NJx(JU=-1-2) )
IF (VALI FOQeCoeOeANDNJ eFOs0) KF = KF - 1
C
C TEST FNOR COMPLETION OF FIGENVECTOR
C
IF ((J*NJ.LTOI).OPQ(J0NJ0GT0N+1)) GNTO S6L
C

32

c

T DIMENSION A{NM,NM),VI{NM),V2(NM),WT(NM),COND(NM)
DIMENSION R1I(2),R2(2)

c DATA TOL/1.E-30/

e =L e

500 IF (I<GTN) GOTO S90 -
VALR = A(I,1)
VALT = Wi(l)

ROW
(V1,v2)

e g




The same section of program (the J loop) computes the column and
the row eigenvector for the Ith eigenvalue. J, which always points to
the block D, decreases for the column eigenvector (NJ = 1) and increéses

for the row eigenvector, as shown in the following diagram:

NI =0 N =1

J-rD I—1>E
Ee-I Deg—J

The J loop computes first the column eigenvector and then the row

elgenvector.

lines 505-1 We always give values to V2 even when only V1 is needed.

I-1 (NJ=0)
I+1 (NJ=1)

eige_nvalue) » in which case J ={

unless VALI = u # 0 (complex

I-1 (NJ=0)
I+2 (NJ=1)°

line 505+2 If VALI # 0, initialize V as in Section 3.4.

lines 505 and Initial J ={
after

lines 510 The lower limit KS = {J;l Egg:g; 3 the upper limit
_ JI41 (NJ=0) _
KF = {J-—l NI =1)[" unless E is 1 by 1 and NJ = 0, in which

case KF := KF-1 = I. See equations 3.2-1, 3.2-2, and
comments to line 560. ~
line 51043 V is completely computed if for NJ =0, J < 1, i.e.

NJ+J < 1lor if for NJ =1, J > N, i.e. J+NJ > N+1.
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C

.C_fgt_t!@;_ﬂr#*##*#**##*‘*#******?f*j‘ﬁ:*_*?*g&*****#_#****#****#**##*#***#*#**#****#
CHEOLVE =-NXVv & VXE = R FOR 'V = (Vvi1,v2).e D IS A DIAGONAL BLOCK IN ROWS ¥
C¥ 31,42y, AND E IS THE REAL CANONICAL FORM OF THE ITH EIGENVALUE » *

Ck¥ FITHFR D OR E OR BNTH CAN BE 1 By 1 *
C**#*#*#********#*#*##***##*****#***#******##*#********#**#********f{#f&

€ FIND J1 AND J2 (J1.LF.J2) FOR ALL CASES

c
JJ = J
IF (WI(J)eNFe0e0) JJ = J = 1 + 2%NJ
36 = NIX(JI=-4) ' -
J1 = JJ + JO
J2 = J - JoO .
L. D1 = VALR = A(J,J) [
C
C CALCULATE RIGHT HAND SIDF R
c
DO 53C L = J1,J2 - )
L = L - JI +1
R1(LJ) = R2(LJ) = 0.0
IF { VALI.NE.O+0) GOTO 520
DN 515 K = KS,KF
LK = NJ*(K-L)
o AA = A(L4LK,K=-LK) .
515 R1(LJ) = RI(LJ) + AARVI(K)
GOTN 530 ‘
520 PO 525 K = KSyKF
LK = NJ * (K~-L)
AA = A(L+LK,K=-LK)
PL(LJ) = RI(LJY + AARVL(K)
525 R2(LJ) = R2{LJ) + AARV2(K)
53~ CONTINUF :
c
IF (JJeNE.J) GNTO 545

34




lines 510+4 The pair {J,JJ} is the same as the pair {J1,J2}. However

lines 515

J1 < J2 whereas J > JJ when NJ = 0 and J < JJ when NJ = 1.
By this device D is transposed when NJ = 1 as required by

Section 3.2.

We need
J1=J2=J]=J when D is 1x1,
J1=J3J3=J3-1, J2 =J when D i8 2x2 and NJ = 0,

J1=J,J2=JJ=J+1when D i8 2X2 and NJ = 1.

This is achieved without IF statements by utilizing JO.

In order to avoid repetition of a condition, two inner DO
loops are used, and VALI need only be tested in the outer
loop. If E is 1 by 1, (VALI = 0.0), R is computed from
the first inner DO loop, i.e., only R1(LJ) is computed
(since V is real). If E is 2 by 2, the second inner DO
loop computes R1(LJ) and R2(LJ). If D is 1 by 1, J1 = J2;
hence LT = 1. If D is 2 by 2, J1 # J2, and LJ =1, 2. KS
and KF, the indices of the previously computed elements,

are correctly set for the two cases. It is only necessary

to reverse the indices of A: for NJ = 0, IK = 0,

]
n

AA

A(L+LK,K-LK) = A(L,K). For NJ = 1, LK = K-1L,

B

A(L+LK,K-LK) = A(K,L). See equations 3.2-1, 3.2-2,
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IF (VALTNF ,Ce0) 6GOTN 536
C T IS 1 ®vY 1 (D IS | Ay 1)

C
IF (ABS(D1) LT, TOLXARS(RI(1))) GOTO 585
V1(J) = V2{J) = (.C
| 84 (OI.NE-C.C) Vi(J) = R1(1)/D1
GOTN 54¢

C

C E 1S 28y 20151 2y 1)

-

535 DEN = D1%D1 4+ VALI2
VAL = VALIX(-1.7)%%ENJ
VI(J) = R1(1)%D1 + R2(1)*VAL
V2(J) = R2{1)%D1 - RI1{1)I*VAL
VMAX = AMAX1(ABS(V1(J)),ABS(V2(J4)))
IF (DENSLTTCLXVMAX) GATN 585
vi(J) = VI{J)/DEN
v2(J) = V2(J)I/DEN

C NEXT J

54¢C J = J - 1 + 2%NJ
GOTN S10

C

C

€ ook oo e v ook dAte ook o e ek ok ek e ook kR ) 1S 2 RY  2%kkiofokk ook dolok kg kg kxR kKRR &
c
545 IF (VALT.NEJCeC) GNTO 550

C
C £ IS 1 RY 1 (D IS 2 R’AY 2)
C

NEN = NIXNY + WI(J)%x2

v2(J1) = Vv2(J2) = e

VI(J1) = RI(1IXEDTL + RI(2)X*A(JJIJ)
VI(J2) = N1(1)%A(D,9J) + Rl(?)*n]
VMAX = AMAX] (ABRS(VI(J1)),ABS(VI(J2)))
IF (DENLLTLTOLARVMAX) GOTO 535

VIi(J1) = VI(J1I/DEN

Vi(J42) = VI(J2)/DEN

GOTO &85
C
CF IS 2 BY 2 (D IS 2 RY 2). CLOSED FORM SOLUTYION
P
550 R = A(JJ,yJ)
C = A{J,J0d)
VAL = VALI*(‘IQC)**NJ
BXC = R*
H = nl*Dl + VALI2 - AxC
F o= N1 iy
F = VAL®(H + 2.0%NPX(C)
G = H - 2,0%VALIZ2
H = 2.0*D1%VAL
VI(J1)Y = RIC1)%F 4 RP(1)%F + RI1(2)%B%G + R2(2)%B*H
V2(J1) = -RIT1)1®F + R2(1)1%E - R1(2)%*B%XH + R2(2)*83%G
V1(J2) = PLI1)Y%CHG + RP2(1)I%CHkH + RI(2)*%E + R2(2)*F
V2(J2) = =RI(1)I¥CH4 4 N2(1)%C*G -~ RI(2)%F + R2(2)*E
VMAX = AMAXT(ADRS{VI(J1)),ARS{V2(J1)),ARBS(VI(J2)),ABS(V?2(J42)))
NEN = GXG 4+ H%H
IF (DFN.LTTCLEREVMAX) GOTN 585
1 (DFNFQei «0) GOTN 888
V1(J1) = VI(J1)I/DFN
V2(J1) = V2(J1)/NEN
vVi(J2) = Vl(J?)/ﬁfN
VeLidr) = J2Y/TEN
-
(- L]
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line 535-5
line 535-3

lines 535-4

line 535+1

line 53545

line 545+1
line 54542
lines 54543

lines 550

line 550+16

If VALL # 0, E 1s 2 by 2.

Since E is 1 byll, V2(J) is set to zero.

Since there is a strict LT, the defective case (GOTO 585)
holds for ABS(D1) = 0, ABS(R1) # 0. If both are zero, the
less than condition does not hold, and the special zero
solution is chosen. (See Section 3.2, type 5).

The sign of VAL depends on NJ (see equation 3.2-3).

DEN > 0 (DEN is set at line 535), since VALI # 0. Hence
special solution does not occur.

DEN is again greater than zero.

Since E is 1 by 1, V2(J1) and V2(J2) are set to zero.

Because of the special definition of J and JJ, we have for

NJ = 0: A(JJ,J) = A(J-1,J) = D(1,2) = B
A(J,JJ) = A(J,J-1) = D(2,1) =y
NJ = 1: A(JJ,J) = A(J+1,J) = D(2,1) =y
A(3,33) = A(J,J+1) = D(1,2) = B

See equations 3.2-2 and 3.2-4,

If DEN = 0.0 = VMAX, we go to 555, skipping the lines where
V is set. But: from line 550413, we see that VMAX = 0.0
implies V1(J1) = V1(J2) = V2(J1) = V2(J2) = 0 (the special

solution).
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C

C NEXT J

558 J = Jd - 2?2 + 4%xNJ
GOTN S12

C
C COMPUTF EIGENVECTOR NORM
C
s6C VMAXY = £,0
) DN S68% K = KS,KF
565 VMAX = VMAX + VI(K)#%Xx2 + V2{K)*x%?
IF (NJ,FT.1) GOTO 57
Cc
C PREPARE TO COMPUTF ROW CIGENVECTNOR
C
NJ = 1
CNNRM2 = VMAX
G07TN 506

C

C COMPUTE CONDITINON NUMAER

C

57¢C CONND(TY) = SORT{CNORM2EVMAX)

575 IF (VALIfQeNe) GNATN S8
COND(TY = COND(I)/Z2.7
COND(I+1) = CCNDC(TI)
I = 1+1

C NEXT |

SR T = [+1

. GNTN 52

C

C DEFECTIVE CASF

C

585 COND(I) = 1.0/7700L
GOTH S7%

C

C PLACFE RFEAL PART 0OF FIGENVALUFE IN V2
c .
S9¢ DN %985 1

= 1 4N
598 V2(1) = A(I,1)
REFTURN
FND
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line 560 Verification of the correct index limits KS and KF for com-
putation of [V|:

NJ = 0, I # 1: For the last computation of V1(J1l), etc,,
before NJ is set to 1, J = 2 (D is 2 by 2)
or 1 (D is 1 by 1). After J is incremented,
J=0. Then KS = J+1 = 1, KF = I+l (E is
2by 2) orI (Eis 1 by 1), and the vector
is complete.

NJ =0, I =1: Initialization sets J = 0, hence KS =1,
KF =2o0r 1, i.e., only the initialized
elements are summed.

NJ =1, WI(N) =0, I < N: For the last computation J = N.
After J is incremented, J = N+1. Hence

KS = I, KF = J-1 = N.

NJ =1, WI(N) = 0, I = N: Initialization gives J = I+l
= N+l. Hence KS§ = I = N, KF = J-1 = N, _
NJ =1, WI(N) # 0, I < N-1: For the last computation,
J = N-1, After J is incremented, J = N+1,
KS = I, KF = J-1 = N.
NJ =1, WI(N) # 0, I = N-1: Initialization gives J = I-1+3
= N+1. Hence KS = I = N-1, KF = J-1 = N.
Incrementation of I gives 1 = N+1, and the
program ends.
1ine 565 If E is 1 by 1, V2(K) for K = KS,KS+1,...,KF was set to zero

when the equation was solved.

line 575+1 See 3.4-1 for explanation of halving of cond when E is 2 by 2.
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7. RESULTS

The matrix Eo descripted in Figure 1 came (in punched card form)
from a large industrial company. It was causing their eigenvalue pro-
gram to fail.

An inspection of the form of Eo suggests that perhaps the strange
diagonal element in }o and the discordant sign of the (1,1) element
of T, were key punch errors. So let us consider the matrices result-

~1

ing from the removal of these anomalies.

0 X 0 Y
L=|"~ T 1|, M= |~ 7
- I 0 T lr o
- \
2 h 0
¥T=104T, I, -5 |
0 -F3 E, )
" where TI is obtained from Tl by reversing the sign of its (1,1)
element.

Notice that L's eigenvalues are the square roots of X's:

0 X u u 2
T “l=Al T |+ Xv=AV, u=2Av .
I 0 v v - - - -

The eigenvalues of Lo, L and M are given in Table 1 and we
offer ﬁhe following comments. Every eigenvalue of 1° is moderately
ill~conditioned and the zero pair appear to belong to a quadratic elemen-
tary divisor (only one eigenvector). Perhaps some of this is due to the
unbalanced nature of L°. The thirteenth row of L° is null and this

must be permuted out of the way before the rest of the matrix is balanced.
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Is

Figure 1

24 x 24 Matrix for Case Study

the 0 diagonal element in 1° a keypunch error or did it really belong

in the user's problem?
o [0 X o
=1, "1 I" = diag(0,1,1,...,1);
("0
( D 31 0 a 0 o0
8 ab|_|0 a-b
A L e
0-c d
| 0 -F; F,
o c 0 O
D = diag(.5221,.3563,.5552% 10>, ,1328) ;
[ .5221 0 0 -.8951
_ 0 -.3563 .6109 0
I = -3 ;
~ 0 0 -.5552x10 0
| 0 0 0 -.1328
[ -.0976 0 0 0
0 -.0666 0 0
5= ~4
~ 0 .02659 -,4218x10 0
-.03896 0 0 -.1009x10" L
[ 2.859 0 1.079
0 2.828 -1.026 0
Fl = s
~ 0 -.2389 4294 0
| .2513 0 .4607
2.761 .5891 1.627 .5373
F2 = F H F3 = F H
~ ~l .2123 .3590 ~ Y .1096 .2868
g + 5x10% .

41
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1.849 .3731

.1178 .4970
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Table 1

Eigenvalues and Condition Numbers of Lo, L, M

The imaginary pair of eigenvalues had real parts less than 10-6 (a relative error of 10-11).
V denotes a digit that changed when the matrix was balanced.
A, (L% Cond(L°) | Cond(L%) A, (L) Cond (L) A, (M) Cond (M)
* (balanced) i 1

+ 21534594 % 10° 10? 1 + .21534594 x 10° 10% JE .21534594 x 10° 10%
= .18667890 x 10° 10* 10° + .18654343 % 10° 10* |+ .18692513x 10° 10*
+ .11076317x10°1 | 6x 10° 4x10° |+ .1008663vx10°1 | 6x10° ||+ .11142610x 1051 | 6x 10
+ .82614552x 10° | 6x 103 5x10° | + .8646568v x 10” 10* |+ .86339960x 10% | 10%
+ 83281998 x 10 | 6x103 1 + .83281998x 10° | 6x10° |+ .83281998x10% | 6x 103
= .41438248x10% | 7x10° 10° + .7026706V x 10° 10 ||+ .71883679x 10% | 10%
+ .64209960% 10% | 7x103 3 + .64209960 x 10° | 6x10° ||+ .64209960x 10® | 7x10°
+ ,33632953x 10" | 5x10° 9x10° ||+ .38448590x 10* | 3x10° ||+ .38458062x 10%x | 3x 103
+ ,35102700x 10° | 2x103 4 £ .35102700x 10% | 2x10% | % .35102700x 10% | 2x103
+ .30530592x10% | 3x103 3 + .30530592x 10° | 3x10° | * .30530592x10% | 3x103
s+ .o 1013 10°0 +.29241979x 10* | 3x10° ||+ .20134631x10% | 3x103,
+ .23559292 x 10° 10° 1 + ,23559291 x 10° 102 || + .23559292 x 103 102

+The unbalanced matrix Lo

had a negative eigenvalue —2><10-8

instead of -0.



|-

The rcsult was that none of the computed eigenvalues changed but half
of them became almost perfectly conditioned.

In fact we éan say that the ill-condition of all six pairs is due
to the zero element in position (13,1). When this is replaced by 1 we
obtain the matrix L which has six pairs of eigenvalues almost identical
to the well conditioned pairs of the balanced 1°. Four of the other
six pairs are changed completely, the remaining‘two (.t.186><105 and
i.ll><1051) are éubstantially altered. Interestingly the balanced ver-
sions of L and M are almost normal and we have not bothered to record
the condition numbers. The six pairs of eigenvalues which were unchanéed

by the move from 1° to L were also invariant in the change from L

" to M. The other six pairs had relative errors less than 2.5%.

We can tell in advance what the balanced form of L and M will be:

0o 107% 0o 107%

IA-I = 9 ﬁ = L4
101 o 10*t o

The change from ° to L is tiny relative to HLoﬂ (= 10—8“Loﬂ) but

the change from io to f is approximately ﬂfﬂ.
We conclude that the suspicious element in 1° was probably a key
punch error. Concerning the (1,1) element of T1 we cannot say, both

L and M are reasonable matrices and indeed the change of sign does

not affect the leading two decimals in any eigenvalue.
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