Copyright © 1975, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

A PROGRAM TO COMPUTE THE CONDITION NUMBERS OF MATRIX EIGENVALUES WITHOUT COMPUTING EIGENVECTORS by

S. P. Chan, R. Feldman and B. N. Parlett

Memorandum No. ERL-M517
April 1975

A PROGRAM TO COMPUTE THE CONDITION NUMBERS
OF MATRIX EIGENVALUES WITHOUT COMPUTING EIGENVECTORS
by
S. P. Chan, R. Feldman and B. N. Parlett

Memorandum No. ERL-M517
Apri1 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

A PROGRAM TO COMPUTE THE CONDITION NUMBERS

 of matrix eigenvalues without computing eigenvectors ${ }^{\dagger}$by

S.P. Chan
Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California Berkeley, California 94720
R. Feldman
Department of Mathematics University of California Berkeley, California 94720
and
B.N. Parlett
Department of Mathematics
Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory
University of California
Berkeley, California 94720

April 1975

Abstract

The condition number of an eigenvalue measures the sensitivity of that eigenvalue to small changes in the matrix elements. Such extra information is nice, sometimes useful, but how much does it cost?

A program is presented here for the most difficult case of a real square matrix whose eigenvalues are wanted without their corresponding eigenvectors. The program requires no extra storage space (this is our reason for presenting it) and the running time is about 50% longer than for the fastest reliable program which only computes eigenvalues.

^[$\dagger_{\text {Research }}$ sponsored by Office of Naval Research Contract N00014-69-A-0200-1017.]

There are many industrial applications in which the matrix elements are known to only two or three decimal figures. Each condition number will indicate how accurately such a matrix determines the associated eigenvalue. When no digits in an eigenvalue are reliable the suspect eigenvalue should be tagged and this information passed on to a higher level in the whole computation.

A number of programming devices keep the code, storage, and running time down to a minimum.

An interesting case study is included.

Key words: eigenvalue, condition number

TABLE OF CONTENTS
Level 1 is a description designed for a busy colleague.
Level 2 is a description designed for publication.
Level 3 is a description designed for a programmer.
Page
Abstract Level 11
1 Theoretical Background Level 2
1.1 The Sensitivity of Eigenvalues 3
1.2 Invariance Properties 7
1.3 The Use and Cost of Condition Numbers 7
1.4 Operation Counts 10
2 Applicability 13
3 Organizational Details 14
3.1 Standardization 14
3.2 The Computation of the Eigenvectors of a Standardized Real, Block Upper Triangular Matrix 16
3.3 Closed Form Solution for Equations of Type 1 19
3.4 The Condition Number of Conjugate Pairs of Eigenvalues 21
4 Flow Chart for CONDIT 24
5 Formal Parameters and Usage 25
6 Programs and Comments 27
CONDIT (with facing comments) 33
7 Results 40
8 Bibliography 44

1. THEORETICAL BACKGROUND

1.1 The Sensitivity of Eigenvalues

Several good programs are available for the computation of the eigenvalues of real and complex matrices [Wilkinson \& Reinsch, EISPACK, IMSL]. Due to the limitations of finite precision arithmetic these programs cannot produce, in general, the exact eigenvalues of the given matrix A. However the computed numbers are always (very close to) the eigenvalues of a matrix $A+E$ which is very close to A. This matrix E is not unique and error analyses [Wilkinson, 1965] have shown the existence of E's with satisfactorily small upper bounds on $\|E\| /\|A\|$. Here $\|\cdot\|$ denotes an appropriate matrix norm.

It follows from these remarks that a good program will not always deliver accurate approximations to $A^{\prime} s$ eigenvalues. It can happen that some, or all, of the eigenvalues are very sensitive to changes in the matrix elements. So some, or all, of the eigenvalues of $A+E$ may differ sharply from those of A. Actually this is true only for nonnormal matrices. Real symmetric matrices -- indeed all normal matrices -- determine their eigenvalues very well; the change induced in an eigenvalue of such an A cannot exceed the spectral norm of E (which is defined below).

Two questions arise. How can this sensitivity be measured and how cheaply can it be computed?

Simple Eigenvalues

To any simple eigenvalue λ of A there correspond both a column vector x and a row eigenvector y^{*} (the conjugate transpose of y) which are unique to within a scalar multiple. Thus

$$
\begin{equation*}
A x=x \lambda, \quad y^{*} A=\lambda y^{*} \tag{1}
\end{equation*}
$$

and $x=y$ if A is normal (i.e. $A^{*} A=A A^{*}$). The most popular measure of λ 's sensitivity was called by Wilkinson [Wilkinson, 1965] the spectral condition number cond (λ). Let θ denote the acute angle between x and y, then

$$
\begin{equation*}
\text { cond }(\lambda) \equiv \text { secant } \theta=\|y\| \cdot\|x\| /\left|y^{*} x\right| \text { where }\|v\|=\sqrt{v^{*} v} . \tag{2}
\end{equation*}
$$

This definition gives a number in $[1, \infty)$ which is monotonic increasing with λ 's sensitivity to changes in A.

In order to justify this definition two popular matrix norms will be used;

$$
\begin{align*}
& \|M\| \equiv \max _{v \neq 0}\|M v\| /\|v\|=\sqrt{\lambda_{\max }(M * M)}, \tag{3}\\
& \|M\|_{E} \equiv \underset{i j}{\sqrt{\sum}\left|m_{i j}\right|^{2}}=\sqrt{\operatorname{trace}(M * M)} .
\end{align*}
$$

Let $|\delta \lambda|$ be the change in λ corresponding to a change δA in A. It can be shown that

$$
\begin{equation*}
\operatorname{cond}(\lambda)=\sup |\delta \lambda| /\|\delta A\|_{E} \text { over all non null infinitesimal } \delta A \tag{4}
\end{equation*}
$$

Another useful characterization of cond (λ) is the following. The spectral projector P_{λ} of λ is the matrix which projects every vector into a multiple of λ 's eigenvector. It is easy to verify that for simple λ

$$
\begin{equation*}
P_{\lambda}=x y^{*} / y^{*} x \quad\left(y^{*} x \text { is a scalar }\right), \tag{5}
\end{equation*}
$$

and, by using the facl that P_{λ} is of rank one, one can
show that

$$
\begin{equation*}
\operatorname{cond}(\lambda)=\left\|P_{\lambda}\right\|_{E}=\left\|P_{\lambda}\right\| . \tag{6}
\end{equation*}
$$

It is this characterization which can be generalized.

Multiple Eigenvalues

When λ has geometric multiplicity m almost all perturbations of A break λ into m simple eigenvalues in such a way that sup $|\delta \lambda| /\|\delta A\|$ is unbounded. Thus it is customary to set

$$
\operatorname{cond}(\lambda)=\infty
$$

in this case.
There is more to be said however. A reasonable definition (see [Kahan 1972]) puts

$$
\begin{equation*}
\operatorname{cond}(\lambda) \equiv \sup |\delta \lambda| /\|\delta \mathrm{A}\| \tag{7}
\end{equation*}
$$

over all non null infinitesimal δA which preserve λ 's multiplicity. This number can be estimated because

$$
\text { cond }(\lambda) \leq\left\|P_{\lambda}\right\|_{E} / m
$$

where the spectral projector P_{λ} satisfies

$$
\mathrm{AP}_{\lambda}=\mathrm{P}_{\lambda} \mathrm{A}=\lambda \mathrm{P}_{\lambda}+\mathrm{N}_{\lambda}
$$

and N_{λ} is nilpotent (i.e. $N_{\lambda}^{m}=0$). Moreover P_{λ} can be found from the expression

$$
\begin{equation*}
P_{\lambda}=X\left(Y^{*} X\right)^{-1} Y^{*} \tag{8}
\end{equation*}
$$

where the columns of X and rows of Y^{*} are bases for $\lambda^{\prime} s$ invariant subspaces.

We have followed the usual practice (cond $=\infty$) in our program CONDIT but wish to point out that it is feasible to bring into adjacent positions on the diagonal of the Schur form any associated ill conditioned eigenvalues. The spectral projector for this group of eigenvalues can then be found from (8) and if its norm is small then the group can be designated as a cluster. That is another project.

If more specific information is required then the individual elements of P_{λ} will be involved because

$$
\begin{equation*}
\frac{\partial \lambda}{\partial a_{i j}}=e_{j}^{*} P_{\lambda} e_{i} \quad(\lambda \text { simple }) \tag{9}
\end{equation*}
$$

A warning should be offered at this point. The measures presented above are based on the Euclidean vector norm and the convention that A acts on vectors in Euclidean n-space. It can happen that this model is quite inappropriate for certain applications and then the conventional condition numbers will be irrelevant. However it is only the order of magnitude (base 10) of cond (λ) which is wanted, in most cases, and this will be constant over a large range of norms.

1.2 Invariance Properties

When the role of the matrix is to be stressed the condition number is written cond (λ, A).

Theorem. If Q is unitary, i.e. $Q^{*} Q=Q^{*} Q^{*}=I$, and λ is a simple eigenvalue of A then

$$
\operatorname{cond}\left(\lambda, Q A Q^{*}\right)=\operatorname{cond}(\lambda, A) .
$$

Proof. Let $A x=x \lambda, y^{*} A=\lambda y^{*}$. Then

$$
\left(\mathrm{QA}^{*}\right)(\mathrm{Qx})=(\mathrm{Qx}) \lambda, \quad\left(\mathrm{y}^{*} \mathrm{Q}^{*}\right)\left(\mathrm{QA} \mathrm{Q}^{*}\right)=\lambda\left(\mathrm{y}^{*} \mathrm{Q}^{*}\right) .
$$

Because λ is simple $y^{*} x \neq 0$ and

$$
\begin{aligned}
\operatorname{cond}\left(\lambda, Q A Q^{*}\right) & =\left\|y^{*} Q^{*}\right\| \cdot\|Q x\| /\left|\left(y^{*} Q^{*}\right)(Q x)\right|, \\
& =\left\|y^{*}\right\| \cdot\|x\| / \| y^{*} x \mid \\
& =\operatorname{cond}(\lambda, A)
\end{aligned}
$$

because the Euclidean norm is unitarily invariant.

Corollary. If a given matrix B is reduced to Hessenberg form H by unitary similarities (such as Householder transformations) and the QR algorithm is applied to H to produce, in the limit, a quasi-triangular matrix T then

```
cond}(\lambda,B)=\operatorname{cond}(\lambda,T)
```


1.3 The Use and Cost of Condition Numbers

A computed eigenvalue λ of a given matrix A is an exact eigenvalue of many matrices including some close to A. Let $A+E$ designate
one of the closest matrices. Provided that $\quad\left(\|E\|_{E} /\|A\|_{E}\right)^{2}$ is negligible the error in λ is bounded by cond $(\lambda)\|E\|_{E^{\prime}}$. Error analyses [Wilkinson 1966] give an upper bound B on $\left(\|E\|_{E} /\|A\|_{E}\right)$ when the Householder/QR method is used. It follows that

$$
\log _{10}\left(|\lambda| / \beta \cdot \operatorname{cond}(\lambda) \cdot\|A\|_{E}\right)
$$

gives the number of decimal digits in λ which are assuredly correct.
When no figures in λ can be relied on then a warning tag should be attached to λ for most applications. Conversely when an adequate number of figures are certified as correct in each eigenvalue of A then the subsequent calculations are placed on a sounder footing.

These estimates of the number of correct figures have proved useful in comparison of rival eigenvalue programs and in debugging big programs of which the eigenvalue calculations were merely a part.

A natural question at this stage is how much extra does it cost to compute cond (λ) as we11 as λ ? The answer must depend on whether the user also computes x and/or y along with λ. We focus on real matrices and real arithmetic.
[A] If a complete Jordan factorization $A=X \Lambda Y^{*} \quad(Y * X=I)$ is computed then each $\operatorname{cond}\left(\lambda_{i}\right)$ can be found from the definition $\left\|x_{i}\right\|\left\|y_{i}^{*}\right\| / y_{i}^{*} x \mid$ at negligible extra cost in storage and time, No special program is needed and this case will not be considered further. Few dependable Jordan factorization routines are currently available.
[B] If a program is used which yields X and Λ but not Y^{*} then it is necessary to compute the triangular factorization $L_{X} U_{X}$ and store it in an extra array. Then $\operatorname{cond}\left(\lambda_{i}\right)=\left\|e_{i}^{*} X^{-1}\right\| \cdot\left\|X e_{i}\right\|$. To invert X costs n^{3} basic operations whereas X and Λ may be found in
approximately $7 \mathrm{n}^{3}$ operations using the double QR transformation.
No special program is needed. The time penalty is slight but the extra storage requirement is substantial. This case will not be discussed further.
[C] The eigenvalues λ of A may be found (EISPACK path, ELMHES, HQR) in under $4 \frac{1}{6} n^{3}$ operations and with no supplementary $n \times n$ storage arrays provided that A can be overwritten. This is the most interesting case. No extra arrays are needed for the computation of $\operatorname{cond}\left(\lambda_{i}\right), i=1, \ldots, n$ but the multiplication count rises to approximately $7 n^{3}$. See the section on Operation Counts for more details. The $0\left(n^{2}\right)$ terms bring down the ratio of running times and the increase is approximately $50 \%(\pm 15 \%)$.

Our method is easily described. The given matrix A is reduced to Hessenberg form H by orthogonal similarity transformations. Then H is transformed to quasi-triangular Schur form T by the double $Q R$ algorithm working on the whole of H and not just the remaining principal submatrices. None of the orthogonal transforming matrices is retained. Finally the column and row eigenvectors of T are found, for each λ, by back substitution and then discarded immediately after cond (λ) has been calculated.

By Theorem 1 cond $(\lambda, T)=\operatorname{cond}(\lambda, A)$.

For simplicity all condition numbers exceeding 10^{30} are recorded as 10^{30}.

The program uses only real arithmetic even if A has complex eigenvalues.

1.4 Operation Counts

In [Parlett \& Wang 1975] it is pointed out that straightforward counts of multiplications and additions are unreliable indicators of running times. Nevertheless they are good to within a factor of 2 and they do give insight into the way the algorithm spends its time. An op is defined as a scalar multiplication or division followed by an addition.

ORTHES: The $(n-j)^{\text {th }}$ step transforms the last j rows and columns while reducing column ($n-j$) to upper Hessenberg form.

Row Operations: $A \rightarrow A^{\prime}=A-w \gamma\left(w^{T} A\right), \quad \gamma=2 / w^{T} w, \quad w^{T}=(0, \ldots, 0, x, \ldots, x)$

Computation	γ	$w^{T} A$	$v^{T}=\gamma\left(w^{T} A\right)$	$A-w^{T}$	Total
Cost	j	j^{2}	j	j^{2}	$2 j(j+1)$

Column Operations: $A^{\prime} \rightarrow A^{\prime \prime}=A^{\prime}-\gamma A^{\prime} w w^{T}$

Computation	γ	$A^{\prime} w$	$u=\gamma A^{\prime} w$	$A^{\prime}-u w^{T}$	Total
Cost	0	$n j$	n	$n j$	$n(2 j+1)$

Grand Total: $\quad \sum_{j=1}^{n-1} n(2 j+1)+2 j(j+1)=\frac{5}{3^{n}}{ }^{2}(n-1)+0(n)$
The program ELMHES is approximately twice as fast as ORTHES but will not preserve condition numbers.

CONDIT: It suffices to assume that all eigenvalues are real. To find the column and row eigenvectors for the $j^{\text {th }}$ eigenvalue requires backsolving triangular systems of ($\mathrm{j}-1$) and ($\mathrm{n}-\mathrm{j}-1$) equations respectively.

Computation	x	y^{*}	Cond
Cost	$\sum_{i=1}^{j-1} i$	$\sum_{i=1}^{n-j-1} i$	j

Grand Total: $\quad \frac{1}{3} n^{3}+\frac{1}{2} n^{2}+O(n)$

HQR: A typical double QR transformation acts on a $j \times j$ submatrix of a Hessenberg matrix. To restore column k to Hessenberg form requires the following operations.

Computation	Key quantities	Row operations	Column operations
Cost	9	$\sum_{\ell=k}^{j} 5$	$\min (k+3, j)$

Total: $\sum_{k=1}^{j}[9+5(j-k+1)+5(k+3)]=5 j^{2}+29 j+0(j)$
Assume four initial full transformations with $\mathbf{j}=\mathrm{n}$ and then two iterations per eigenvalue.

Grant Total: $\quad \frac{10}{3} n^{3}+54 n^{2}+0(n)$

QR2NØZ: The same transformations as in HQR must act on the whole matrix. This changes the range of the row operation and not the column because the $\mathrm{j} \times \mathrm{j}$ submatrix being transformed is the leading principal submatrix.

Computation	Key quantities	Row operations	Column operations
Cost	9	$\sum_{\ell=\mathrm{k}}^{n} 5$	$\min (k+3, j)$

Total: $\sum_{k=1}^{j}[9+5(n-k+1)+5(k+3)]=5 n j+29 j+0(j)$
With the same assumptions as above
Grand Total: $\quad 5 n^{3}+54 n^{2}+0(n)$

```
ELMHES + HQR \(\quad: \quad 4 \frac{1}{6} n^{3}+53 \frac{1}{6} n^{2}+0(n)\)
ORTHES + HQR
    \(: \quad 5 \mathrm{n}^{3}+52 \frac{1}{3} \mathrm{n}^{2}+0(\mathrm{n})\)
ORTHES + QR2NOZ + CONDIT: \(\quad 7 n^{3}+52 \frac{5}{6} n^{2}+0(n)\)
```

The actual timings were more favorable to our program than these operation counts suggest. The assumption of two iterations per eigenvalue is unrealistic. In practice there are more iterations with larger values of j and fewer with small values. With $20 \leq n \leq 60$ our program ran, on the average, 50% longer than did ELMHES + HQR; the worst case ran 65\% longer.

2. APPLICABILITY

The program accepts real square matrices which can be stored in the high speed memory of the computer.

The condition numbers of all eigenvalues of all normal matrices (and this includes symmetric matrices) are unity and consequently the program is intended for use with nonnormal matrices.

Before our programs $Q R 2 N O Z$ and CONDIT are used A should be reduced to Hessenberg form H by orthogonal congruences. We recommend the procedure ORTHES in [Wilkinson \& Reinsch, II/13] and its Fortran counterpart ORTHES [Eispack Guide, p. 297].

Our program QR2NOZ is an adaptation of HQR2 (Eispack Guide, p. 248)
designed to avoid the formation of the product of all the similarity transformations used in the double $Q R$ algorithm and the calculation of the eigenvectors of the final matrix of the $Q R$ sequence. A listing is included for completeness.

3. ORGANIZATIONAL DETAILS

3.1 Standardization

(i) In the course of the $Q R$ algorithm applied to H it is possible for two real eigenvalues to be found, at the same time, as the roots of a 2×2 diagonal block

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

It is convenient in such cases to do a supplementary plane rotation which will reduce this diagonal block to upper triangular form and change the corresponding rows and columns of H accordingly.

If this transformation is done at the time the eigenvalues λ_{1} and λ_{2} are recorded then some of the quantities which determine the correct angle of rotation will be available.

This device is employed in HQR2 and has been carried over to QR2NOZ. The details are given below.

The parameters $\mathbf{c}=\cos \theta, \mathbf{s}=\sin \theta$ are determined so that

$$
\left(\begin{array}{rr}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{rr}
c & s \\
-s & c
\end{array}\right)
$$

is upper triangular. Thus

$$
\gamma c^{2}-d c s-\beta s^{2}=0, \quad d=\delta-\alpha .
$$

Let $t=(d / 2)^{2}+B \gamma$ then

$$
\begin{aligned}
\cot \theta & =(d / 2+\operatorname{sign}(d) \sqrt{t}) / 2 \gamma, \\
s & =\operatorname{sign}(\cot \theta)\left(1+\cot ^{2} \theta\right)^{-1 / 2}, \\
c & =s \cdot \cot \theta .
\end{aligned}
$$

(ii) It is also convenient to perform a supplementary plane rotation after a pair of complex conjugate eigenvalues, $\lambda \pm i \mu$, has been recorded in the course of the $Q R$ algorithm. In this case the transformation of the diagonal block is

$$
\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)=\left(\begin{array}{ll}
\lambda & \theta \\
\xi & \lambda
\end{array}\right)
$$

where $\xi \theta=-\mu^{2}$. This device is not used in HQR2.
Note that it is not in general possible to transform

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\lambda & -\mu \\
\mu & \lambda
\end{array}\right)
$$

using orthogonal similarity transformations.
The purpose of the transformation is to yield a simple solution to certain systems of linear equations which must be solved. The supplementary plane rotation is done at the stage when the eigenvalues are being recorded in $Q R 2 N O Z$. In this case $t \equiv p^{2}+\beta \gamma<0, p=(\alpha-\delta) / 2$. We want to choose $c=\cos \theta$ and $s=\sin \theta$ so that

$$
\alpha c^{2}+(\beta+\gamma) c s+\delta s^{2}=\delta c^{2}-(\beta+\gamma) c s+\alpha s^{2} .
$$

Hence

$$
\tan 2 \theta=\frac{2 \mathrm{sc}}{c^{2}-s^{2}}=-\frac{2 p}{\sigma}=\frac{2|\mathrm{p}|_{\operatorname{sign}(-p \sigma)}, \quad \sigma=\beta+\gamma . ~}{|\sigma|}
$$

Let $\tau=\sqrt{\sigma^{2}+4 p^{2}}$. Then

$$
\begin{aligned}
& \cos \theta=q=\sqrt{\frac{1}{2}(1+\cos 2 \theta)}=\sqrt{(1+|\sigma| / \tau) / 2}, \\
& \sin \theta=\sin 2 \theta / 2 \cos \theta=|p| \operatorname{sign}(-p \sigma) / \tau q
\end{aligned}
$$

3.2 The Computation of the Eigenvectors of a Standardized Real,

 Block Upper Triangular MatrixFor each real eigenvalue λ the eigenvectors u, w^{*} satisfy

$$
T u=u \lambda, \quad w^{*} T=\lambda w^{*} .
$$

For each complex conjugate pair of eigenvalues $\lambda \pm i \mu$ the eigenvectors $u_{1} \pm i u_{2}, \quad w_{1}^{*} \mp i w_{2}^{*} \quad$ satisfy

$$
T\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}\right) \hat{E}, \quad\left(w_{1}, w_{2}\right) * T=\hat{E}\left(w_{1}, w_{2}\right)^{*}
$$

where

$$
\hat{E}=\left(\begin{array}{rr}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right)
$$

In effecting the back substitution process in real arithmetic there are four different cases which can occur, depending on whether the matrices D and E shown below are 1×1 or 2×2.

$$
\begin{aligned}
& \text { where } \theta \phi=-\mu^{2} \text {. }
\end{aligned}
$$

The positions of D and E should be exchanged when considering the row eigenvectors.

Type 1: pair-pair (E is $2 \times 2, \mathrm{D}$ is 2×2).
Imagine that the elements of u_{1}, u_{2} in the same row as D are about to be computed. All elements below these have already been found,
the elements below E being 0 .
Let $j 1, j 2$ be the rows of T in which D lies. Then the unknowns are

$$
v=\left(\begin{array}{ll}
u_{1}(j 1) & u_{2}(j 1) \\
u_{1}(j 2) & u_{2}(j 2)
\end{array}\right)
$$

The equation to be solved in the column case is

$$
-D V+V \hat{E}=R
$$

where

$$
R=\left(\begin{array}{ll}
r_{1}(j 1) & r_{2}(j 1) \tag{1}\\
r_{1}(j 2) & r_{2}(j 2)
\end{array}\right), \quad r_{v}(m)=\sum_{k=j 2+1}^{i+1} t_{m, k} u_{v}(k),\left\{\begin{array}{l}
m=j 1, j 2, \\
v=1,2 .
\end{array}\right.
$$

In the row case let

$$
v=\left(\begin{array}{ll}
w_{1}(j 1) & w_{2}(j 1) \\
w_{1}(j 2) & w_{2}(j 2)
\end{array}\right)
$$

then the equations to be solved are

$$
\begin{equation*}
-v^{T} D+\hat{E} v^{T}=R^{T} \tag{2}
\end{equation*}
$$

where R is as above except that k runs from i to $f 1$-1. Transposing yields

$$
-D^{T} V+\hat{V E}^{T}=R .
$$

Comparing this with the column case we see that it is only necessary to transpose D and \hat{E} (i.e., to exchange β, γ and $\mu,-\mu$) in order to use the same code for both cases. The way that this exchange is accomplished is described in Level Three.

The way in which these four linear equations in four unknowns are solved is described in the next section.

Type 2: pair-single (E is $2 \times 2, \mathrm{D}$ is 1×1).
The relevant equations are

$$
-\alpha\left(u_{1}(j), u_{2}(j)\right)+\left(u_{1}(j), u_{2}(j)\right) \hat{E}=\left(r_{1}(j), r_{2}(j)\right)
$$

and

$$
-\alpha\left(w_{1}(j), w_{2}(j)\right)+\left(w_{1}(j), w_{2}(j)\right) \hat{E}^{T}=\left(r_{1}(j), r_{2}(j)\right)
$$

Let $d=\lambda-\alpha, \quad$ den $=d^{2}+\mu^{2}, \quad$ val $= \begin{cases}\mu & \text { (for column) } \\ -\mu & \text { (for row). The solution for }\end{cases}$ both cases is

$$
\begin{align*}
& v_{1}=\left(r_{1} \cdot d+r_{2} \cdot v a 1\right) / \text { den } \\
& v_{2}=\left(-r_{1} \cdot v a 1+r_{2} \cdot d\right) / \operatorname{den} \tag{3}
\end{align*}
$$

Type 3: single-pair (E is $1 \times 1, \mathrm{D}$ is 2×2).
The relevant equations are

$$
-D\binom{u_{1}(j 1)}{u_{1}(j 2)}+\binom{u_{1}(j 1)}{u_{1}(j 2)} \lambda=\binom{r_{1}(j 1)}{r_{1}(j 2)}
$$

and the same equation for w_{1} with D^{T} in place of D. Set $d=\lambda-\alpha$, den $=d^{2}-\beta \gamma$. The solution is

$$
\begin{align*}
& v_{1}=\left(r_{1}(j 1) \cdot d+r_{1}(j 2) \cdot \tilde{\beta}\right) / \operatorname{den} \\
& v_{2}=\left(r_{1}(j 1) \cdot \tilde{\gamma}+r_{1}(j 2) \cdot d\right) / \operatorname{den} \tag{4}
\end{align*}
$$

where $\tilde{\beta}=\left\{\begin{array}{ll}\beta & \text { (for column) } \\ \gamma & \text { (for row) }\end{array}\right\}$ and $\tilde{\gamma}=\left\{\begin{array}{ll}\gamma & \text { (for column) } \\ \beta & \text { (for row) }\end{array}\right\}$. In practice $\tilde{\beta}=T(J J, J), \tilde{\gamma}=T(J, J J)$ and the setting of J and $J J$ is described at Level Three.

Type 4: single-single (E is 1×1, D is 1×1).

$$
v_{1}=r_{1}(j) / \operatorname{den}, \quad \operatorname{den}=\lambda-\alpha
$$

Type 5: formula breakdown.
If in any of the previous cases $D=E$ then the formulae for solution breakdown. There are two cases to consider.
(i) Linear Independence. Any element $\mathbf{v}_{\mathbf{j}}$ for which the formula yields $0 / 0$ can be set to any value, the most convenient is 0 . This represents the existence of a whole space of eigenvectors associated with E.
(ii) Defective Case. Any element $\mathbf{v}_{\mathbf{j}}$ for which the formula yields a value exceeding $1 / T O L$ will cause the condition number to exceed $1 / T O L$. If this case is detected computation is interrupted, the condition number is set to $1 / T O L$ and the program proceeds to the next eigenvalue.

We propose that $T O L=10^{-30}$ will be suitable for most applications and most computers.

These tests make the code simple and machine independent. However, it is possible to devise matrices for which the given value $1 / T O L$ for the condition is very misleading. We know of no failsafe procedure which does not involve deciding the rank of $T-\xi$ for all ξ in a neighborhood of λ. This is a costly, difficult, and often unrewarding task.

3.3 Closed Form Solution for Equations of Type 1
 The equations to be solved are of the form

$$
-\mathrm{DV}+\mathrm{V} \hat{E}=\mathrm{R}
$$

where

$$
D=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \alpha
\end{array}\right), \quad \hat{E}=\left(\begin{array}{cc}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right), \quad \mathbf{R}=\left(\begin{array}{ll}
\mathbf{r}_{11} & \mathbf{r}_{12} \\
\mathbf{r}_{21} & \mathbf{r}_{22}
\end{array}\right)
$$

The standardization of the block triangular matrix T forces the diagonal elements of D to be equal. This yields simple formulas for the elements of V.

Rewrite the equation as

$$
\left(\begin{array}{llll}
v_{11} & v_{12} & v_{21} & v_{22}
\end{array}\right)\left(\begin{array}{cc}
B & -\gamma I_{2} \\
-\beta I_{2} & B
\end{array}\right)=\left(\begin{array}{llll}
r_{11} & r_{12} & r_{21} & r_{22}
\end{array}\right)=r^{T}
$$

where

$$
B=\left(\begin{array}{cc}
\lambda-\alpha & \mu \\
-\mu & \lambda-\alpha
\end{array}\right)
$$

Observe that

$$
\left(\begin{array}{cc}
B & -\gamma I_{2} \\
-\beta I_{2} & B
\end{array}\right)\left(\begin{array}{cc}
B^{T} & \gamma I_{2} \\
\beta I_{2} & B^{T}
\end{array}\right)=\tau I_{4}+2 \mu J_{4}
$$

where

$$
\begin{gathered}
\tau=(\lambda-\alpha)^{2}+\mu^{2}-\beta \gamma \quad \text { (and } \beta \gamma<0 \text {), } \\
J_{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & \gamma \\
0 & 0 & -\gamma & 0 \\
0 & \beta & 0 & 0 \\
-\beta & 0 & 0 & 0
\end{array}\right], I_{k} \text { is the } k \times k \quad \text { identity matrix. }
\end{gathered}
$$

Further

$$
\left(\tau I_{4}+2 \mu J_{4}\right)\left(\tau I_{4}-2 \mu J_{4}\right)=\left[\tau^{2}-4 \mu^{2}(-\beta \gamma)\right] I_{4} .
$$

Hence

$$
\left(\begin{array}{llll}
v_{11} & v_{12} & v_{21} & v_{22}
\end{array}\right)\left(\tau^{2}+4 \mu^{2} \beta \gamma\right)=r^{T}\left(\begin{array}{cc}
B^{T} & \gamma I_{2} \\
\beta I_{2} & B^{T}
\end{array}\right)\left(\tau I_{4}-2 \mu J_{4}\right)
$$

$$
=\mathbf{r}^{\mathbf{T}}\left[\begin{array}{cccc}
e & -f & \gamma g & -\gamma h \\
f & e & \gamma h & \gamma g \\
\beta g & -\beta h & e & -f \\
\beta h & \beta g & f & e
\end{array}\right]
$$

where

$$
d=\lambda-\alpha, \quad e=d \tau, \quad f=\mu(\tau+2 \beta \gamma), \quad g=\tau-2 \mu^{2}, \quad h=2 d \mu .
$$

Note that

$$
\begin{aligned}
\tau^{2}+4 \mu^{2} \beta \gamma & =\left(d^{2}+\mu^{2}-\beta \gamma\right)^{2}+4 \mu^{2} \beta \gamma \\
& =g^{2}+h^{2} \\
& \left(=0 \text { if and only if } \alpha=\lambda, \quad \mu^{2}=-\beta \gamma\right) .
\end{aligned}
$$

These same formulae will be valid for the row eigenvectors provided that we exchange (β, γ) and $(\mu,-\mu)$.

The alternative to using this closed form solution is to code up a special version of Gaussian Elimination with pivoting. It is the pivoting which would lengthen the code considerably.

3.4 The Condition Number of Conjugate Pairs of Eigenvalues

Let $\lambda \pm i \mu$ be a complex pair of eigenvalues of the real Schur matrix T obtained by the QR algorithm. In the course of the algorithm the following real equations are solved for real n-vectors $u_{1}, u_{2}, w_{1}, w_{2}$

$$
T\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}\right)\left(\begin{array}{rr}
\rho & \mu \tag{5}\\
-\mu & \rho
\end{array}\right), \quad\left(w_{1}, w_{2}\right)^{*} T=\left(\begin{array}{rr}
\rho & \mu \\
-\mu & \rho
\end{array}\right)\left(w_{1}, w_{2}\right)^{*}
$$

Thus $\operatorname{span}\left(u_{1}, u_{2}\right)$ and $\operatorname{span}\left(w_{1}^{*}, w_{2}^{*}\right)$ are real invariant subspaces under T. However $\left\{u_{1}, u_{2}\right\}$ and $\left\{w_{1}^{*}, w_{2}^{*}\right\}$ are very special bases of these spaces.

Lemma. With the notation given above $u_{1} \pm i u_{2}$ and $w_{1}^{*} \mp i w_{2}^{*}$ are the column and row eigenvectors belonging to $\lambda \pm i \mu$.

Proof. From (5)

$$
\begin{array}{ll}
T u_{1}=u_{1} \lambda-u_{2} \mu, & w_{1}^{*} T=\lambda w_{1}^{*}+\mu w_{2}^{*} \\
T u_{2}=u_{1} \mu+u_{2} \lambda, & w_{2}^{*} T=-\mu w_{1}^{*}+\lambda w_{2}^{*}
\end{array}
$$

Hence

$$
\begin{aligned}
& T\left(u_{1}+i u_{2}\right)=u_{1}(\lambda+i \mu)+i u_{2}(i \mu+\lambda), \\
& \left(w_{1}^{*}-i w_{2}^{*}\right) T=(\lambda+i \mu) w_{1}^{*}-(\lambda+i \mu) i w_{2}^{*}
\end{aligned}
$$

The eigenvectors for λ - ij are obtained in the same way.

Consequently

$$
\operatorname{cond}(\lambda \pm i \mu)=\left\|u_{1}+i u_{2}\right\| \cdot\left\|w_{1}^{*}-i w_{2}^{*}\right\| /\left[w_{1}^{*} u_{1}+w_{2}^{*} u_{2}+i\left(w_{1}^{*} u_{2}-w_{2}^{*} u_{2}\right)\right]
$$

Use was made in the lemma of the quasi-triangular nature of T. A consequence of this form is that u_{1} and w_{1} can be packed into the same real n-vector with two overlapping elements as indicated.

$$
\left.\begin{array}{rl}
u_{1}^{*} & =\left(x, \ldots, x, p_{i}, q_{i}, 0, \ldots, 0\right) \\
w_{i}^{*} & =\left(0, \ldots, 0, \bar{p}_{i}, \bar{q}_{i}, x, \ldots, x\right)
\end{array}\right\} \quad i=1,2
$$

The equations to be satisfied by p_{i}, q_{i} are of the form

$$
\begin{aligned}
& \left(\begin{array}{ll}
\lambda & \beta \\
\gamma & \lambda
\end{array}\right)\left(\begin{array}{ll}
\mathrm{p}_{1} & \mathrm{p}_{2} \\
\mathrm{q}_{1} & \mathrm{q}_{2}
\end{array}\right)-\left(\begin{array}{cc}
\mathrm{p}_{1} & \mathrm{p}_{2} \\
\mathrm{q}_{1} & \mathrm{q}_{2}
\end{array}\right)\left(\begin{array}{cc}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right)=0, \\
& \left(\begin{array}{ll}
\overline{\mathrm{p}}_{1} & \overline{\mathrm{q}}_{1} \\
\overline{\mathrm{p}}_{2} & \overline{\mathrm{q}}_{2}
\end{array}\right)\left(\begin{array}{ll}
\lambda & \beta \\
\gamma & \lambda
\end{array}\right)-\left(\begin{array}{cc}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right)\left(\begin{array}{cc}
\overline{\mathrm{p}}_{1} & \overline{\mathrm{q}}_{1} \\
\overline{\mathrm{p}}_{2} & \overline{\mathrm{q}}_{2}
\end{array}\right)=0
\end{aligned}
$$

where $\mu^{2}=-\beta \gamma$. These equations reduce to

$$
\begin{array}{ll}
\beta q_{2}=p_{1} \mu, & \bar{p}_{1} \beta=\mu \bar{q}_{2} \\
\beta q_{1}=-\mu p_{2}, & \beta \bar{p}_{2}=-\mu \bar{q}_{1} .
\end{array}
$$

The simplest solution (which we adopt) takes

$$
p_{1}=\bar{p}_{1}=1, \quad q_{1}=p_{2}=\bar{q}_{1}=\bar{p}_{2}=0, \quad q_{2}=\mu / \beta, \quad \bar{q}_{2}=1 / q_{2} .
$$

With this choice

$$
\left(w_{1}-i w_{2}\right)^{*}\left(u_{1}+i u_{2}\right)=\left(\bar{p}_{1} p_{1}+\bar{p}_{2} p_{2}\right)+\left(\bar{q}_{1} q_{1}+\bar{q}_{2} q_{2}\right)=2
$$

and

$$
\begin{equation*}
\operatorname{cond}(\lambda \pm i \mu)=\left[\left(\left\|u_{1}\right\|^{2}+\left\|u_{2}\right\|^{2}\right)\left(\left\|w_{1}\right\|^{2}+\left\|w_{2}\right\|^{2}\right)\right]^{1 / 2} / 2 . \tag{6}
\end{equation*}
$$

4. FLOW CHART FOR CONDIT

-0d引Z 01 1ヨS SI

 HIM SIIVNIW甘GI ヨNIIfIO

 ヨH1 SNIVINDS 11 I NaNI NO－N $1 S \forall \exists 7$ IV NOISNヨWIO NANTU？ ONV WN NOISNENIO MO甘 HIIM AVY甘甘 7VNOISNGWIU－OMI TVGY \forall SI －N O1 HOI ONV I DI MOT

－————
\qquad

$$
\begin{aligned}
& \mathbf{1} \\
& \underset{y}{*} \\
& \mathbf{1} \\
& \underline{Q} \\
& \hline
\end{aligned}
$$

$$
1 M^{4} \forall m
$$

\square

$$
\text { actl } 1
$$

 ZONZ४O $3 N 1$ 1nD8GOS
－SNUIIVWAOASNVYI TVNUTOHIZO

－NOI 1 OnOjy 3 HI NI

 BHI SNIVINOS \forall INdNI NO－N 1SVヨ7 IV NOISNヨWIO NWINOD ON甘

－N O1 HDI ONV I O1 MOT

 SヨH180 ヨN11nO8日กS

> SI 1VヨNヨ1甘1S ヨNIICO甘ENS ヨH1
> 3コNヨกO 3 S $9 N 1$ ㄱำ

SUBROUTINE CONDIT

CONDIT COMPUTES THE CONDITION NUMBERS DF THE EIGENVALUES OF A STANNARIZËD QUASI-TRIANGULAR MATRIX.

THE SIJAROUTINE STATEMENT IS SUBROUTINF CONDIT(NM,N,A,VI,V2,WI, COND) -
ON INPUT
NM MUST BE SET TO THE ROW DIMENSION OF THE TWO DIMENSIONAL ARRAY AS DFCLARED IN THE CALLING PROGRAM. IS THE ORDER OF THE MATRIX. NOLE NM
$\stackrel{N}{\mathrm{~N}}$
OP?NOZ.
CONTAINS THF IMAGINARY PARTS OF THF EIGENVALUES • THE EIGENVALUES ARE UNORDERED EXGEPT THAT COMPLFX CONJUGATE PAIRS APDEAR CONSECITTIVFLY.
V1, V2 ARF FOR TEMPORAPY STORAGF.

ON QUYPUT
A IS UNAL.TERER.
COND CONTAINS THF
C.INTAINS THF CNNDITION NUMBERS CORRESPONDING TO THE FIGENVALUES IN (V2,WI). CONI) $=1 . / T O L$ IF THE USUAL FQPMULA WOULD CAUSE OVERFLOW OR YIELD A VALUE EXCEEDING 1/TOL. TOL NEED NOT DEPEND ON THE CÖMPUVER.
V2 CONTAINS THF REAL DARTS OF THE EIGENVALUES.

TYPICAL USAGE

DIMENSION A(5C,5C),WR(50),WI(50),COND(50),ORT(50)

LOW $=1$
IGH $=\mathrm{N}$
CALL ORTHES(NM,N,LOW, IGH, A,ORT)
CALL. OR2NOZ (NM,N,LOW,IGH,A,WR,WI,IERR)
CALL CONDIT(NM,N,A,ORT,WR,WI, COND)

NGTF. THE USEE OF ORT ANI WR IN CINDIT

6. PROGRAMS AND COMMENTS

OR2NOZ is a modification of the EISPACK program HOR2.
SUAPQUTINE OR2NUZ(NM,N,LOW,IGH,H,WR,WI,IERR) iIMTNSICN H(NM,N),WR(N),WI(N) REAI. NOPM, MACHEP
INTFGFR EN, ENM2
LOGIC.AL NOTLAS
DATA MACHEP /O16424000000000000000/ IFRF $=C$
c
c
c
c
C STURE PROTS ISOLATFD RY BALANC
 WR(I) $=$ H(I,I) WI(I) $=0.0$
50 CONTINUF
C
$\mathrm{CN}=1 \mathrm{ICH}$
C
C ARCH FOR NEXT
C. $6 O$ IF (EN•LT•LOW)
ITS $=O$
NA $=E N-1$
FNMI $=N A-1$
C LODK FOP SINGLE SMALL SUB-DIAGONAL ELEMENT
$C \quad$ FOR L=FN STED-1 UNTIL LOW DO
70 IF (FN.FQ.LOW) GOTO 90
O円 $3 O L L=L$ OW,NA
$L=E N+L O W-L L$
TF (ABS(H(L,L-1)) LLE.MACHEP* (ABS (H(L-1,L-1))
x
$+A B S(H(L, L i)) G O$ TO 100
BC CONTINUF
$00 L=1.0 W$
C
C

```
    100x=H(EN,FN)
```

 IF (L.FO.FN) GOTO 270
 \(Y=H(N A, N A)\)
 \(W=H(E N, N A)\) * \(H(N A, E N)\)
 IF (L.E日UNA) GOTOZ 300
 IF (ITS.EO.30) GOTO 1000
 IF (ITS.NF•1? ANO. TTS.NE.2O) GOTO 130
 c

$$
\begin{aligned}
& \text { RO } 120 \mathrm{I}=(\mathrm{LOW}, \mathrm{FN} \\
& 120 \mathrm{H}(I, I)=H(I, I)-X
\end{aligned}
$$

 \(S=A B S(H(E N, N A))+A R S(H(N A, E N M 2))\)
 \(x=0.75 \neq S\)
 \(Y=X\)
 \(W=-0.4275 * S * S\)
 LOOK FOD TWO CONSECUTIVE SMALL SUB-DIAGONAL
 LOOK FOD TWO CONSECUTIVE SMALL SUB-DIAGONAL
 ELEMENTS. FOR M=EN-2 STEP -1 UNTIL L DO
 DD \(140 \mathrm{MM}=\mathrm{L}, \mathrm{FNM} 2\)
 \(M=\) ENMP +1. - MM
 \(Z Z=H(M, M)\)
 \(p=x-Z Z\)
 \(S=Y-Z Z\)
 \(\stackrel{\circ}{\dot{D}}=\left(\Gamma * S S^{-}-W\right) / H(M+1 ; M)+H(M, M+1)\)
 \(0=H(M+1, M+1)-Z Z-R-S\)
 \(Q=H(M+2, M+1)\)
 \(S=A H S(P)+A H S(Q)+A B S(R)\)
 \(0=p / S\)
 \(0=\) Q/s
 \(R=R / S\)
 IF (MOFO.L) GOTO 150
 IF (ABS(H(M,M-1))*(ABS(Q) + ABS(R))-LE.MACHEP*ABS(P)
 *(ARS(H(M-1,M-1)) + ARS \((Z Z)+A B S(H(M+1, M+1))))\) GOTO 150

c.
$150 \mathrm{MP2}=M+2$
DO 160 I $=$ MPZ,EN
$H(I, I-2)=0.0$
IF (I-EQ.MP?) GOTO 160
$H(I, I-3)=0.0$
1,0 O CONTINIJt.
$\stackrel{C}{C}$ DOUBLE OR STEP INVOILVING POWS L TO EN
AND COLUMNS M TO FN.
DO PGOK $=$ MOTLAS MA NA \quad K.NF.NA
IF (KOEO.M) GOTM 170
$P=H(k, k-1)$
$n=1+(k+1, k-1)$
$17=0.0$
IF (NOTLAS) $R=H(K+2, K-1)$
$X=A B S(P)+A E S(D)+A B S(R)$
IF (X.En.O. \because) GOTO 260
$n=p / x$
$0=0 / x$
$0=0 / x$
$170 \quad S=\operatorname{SIGN}(\operatorname{SQFT}(D \div R+Q * Q+R * P), P)$
IF (K.FO.M) GOTO 190
$H(k, k-1)=-G r x$
GOTO 190
190 IF (L.NF.M) $H(K, K-1)=-H(K, K-1)$

C
WR(NA) = X + ZZ
WR(NA) = X + ZZ
WP(FN) = WR(NA)
WP(FN) = WR(NA)
IF (ZZ.NEOE.O) WP(EN) = X -W/ZZ
IF (ZZ.NEOE.O) WP(EN) = X -W/ZZ
WI(NA)=0.0
WI(NA)=0.0
WI(TN) = 0.0
WI(TN) = 0.0
x = H(EN,NA)
x = H(EN,NA)
R = SORT(X*X + 7Z*ZZ)
R = SORT(X*X + 7Z*ZZ)
O= X \Q
O= X \Q
O=ZZ/R
O=ZZ/R
GOTO 320
GOTO 320
Ç. COMPLEX PAIA
310WR(NA) = x + P
310WR(NA) = x + P
WR(FN) =X +P
WR(FN) =X +P
WI(NA)}=\mathbf{ZZ
WI(NA)}=\mathbf{ZZ
WI(EN)=-ZZ
WI(EN)=-ZZ
$\stackrel{C}{C}$ MAKF DIAGONAL ELEMENTS EOUAL
IF (D.EC.O.O) GOTO 380
$B P r=H(E N, N A)+H(N A, E N)$
$T X=S D R T(B P C * B P C+4.0 * P * P)$
$n=S Q R T(.5 *(1.0+A B S(B P C) / T \ddot{X}))$
$r=S I G N(F /(0 * T X),-B P C * P)$
C C BOW MODIFICATION
320 50 $330 \mathrm{~J}=\mathrm{NA}, \mathrm{N}$
$Z Z=H(N A, J)$
$H(N A, J)=N * Z Z+P * H(E N, J)$
$H(E N, j)=0 * H(F N, J)-\dot{P} Z Z Z$
332 CONT INUE
C
C
C

```
c SURROUTINE CONDIT(NM,N,A,VI,V2,WI,COND)
\(c\)
    DIMENSION A(NM,NM),V1(NM),V2(NM),WI(NM),COND(NM)
    DIMENSION RI(2),R2(2)
    DATA TDL/1•F-30/
    C
    500 IF (IGGT.N) GOTO 590
    VALR \(=A(I, I)\)
    VALI \(=\) WI(I)
    VALI2 = VALI\#VALI
C NJ GIVES EIGENVECTOR TYPE, O FOR COLUMN, I FOR ROW
C INITIALIZE NONZFRO ELEMENTS OF EIGENVECTOR (V1,V2)
VI(I) \(=100\)
V2(I) \(=0.0\)
\(505 \mathrm{~J}=1-1+2 * N J\)
    IF (VALI.FO.O.O) GOTO 510
    \(V 2(I+1)=V A L I / A(I, I+1)\)
    vi(iti) \(=0.0\)
    IF (NJ.ER.1) V2(It1) \(=1.0 / \mathrm{V} 2(I+1)\)
    \(J=1-1+3 * N J\)
    C FIND THE INDICES OF ELEMFNTS COMPUTEO SO FAR
    \(\begin{array}{ll}510 & K S=J+1+N J *(I-J-1)\end{array}\)
    IF (VALI.EO.C.C.AND.NJ.FO.O) KF \(=K F-1\)
    C TEST FOR COMPLETION OF FIGENVECTOR
    IF ( \(J+N J \cdot L T \cdot 1) \cdot Q R \cdot(J+N J \cdot G T \cdot N+1))\) GOTO 560
```

The same section of program (the J loop) computes the column and the row eigenvector for the $I^{\text {th }}$ eigenvalue. J, which always points to the block D, decreases for the column eigenvector ($\mathrm{NJ}=1$) and increases for the row eigenvector, as shown in the following diagram:

The J loop computes first the column eigenvector and then the row eigenvector.
lines 505-1 We always give values to V2 even when only V1 is needed. 1ines 505 and Initial $\mathrm{J}=\left\{\begin{array}{l}\mathrm{I}-1(\mathrm{NJ}=0) \\ \mathrm{I}+1(\mathrm{NJ}=1)\end{array}\right\}$ unless VALI $=\mathrm{u} \neq 0$ (complex eigenvalue), in which case $J=\left\{\begin{array}{ll}I-1 & (N J=0) \\ I+2 & (N J=1)\end{array}\right\}$.
line 505+2 If VALI $\neq 0$, initialize V as in Section 3.4.
lines 510 The lower limit $\mathrm{KS}=\left\{\begin{array}{cc}\mathrm{J}+1 & (\mathrm{NJ}=0) \\ \mathrm{I} & (\mathrm{NJ}=1)\end{array}\right\}$; the upper limit $K F=\left\{\begin{array}{ll}I+1 & (N J=0) \\ J-1 & (N J=1)\end{array}\right\}$, unless E is 1 by 1 and $N J=0$, in which case $K F:=K F-1=I$. See equations 3.2-1, 3.2-2, and comments to line 560 .
line $510+3 \quad V$ is completely computed if for $N J=0, J<1$, i.e. $\mathrm{NJ}+\mathrm{J}<1$ or if for $\mathrm{NJ}=1$, $\mathrm{J}>\mathrm{N}$, i.e. $\mathrm{J}+\mathrm{NJ}>\mathrm{N}+1$.

c

 C*SOLVE-n*V+V*F=R FOR $V=$ (VI,V2). D IS A OIAGONAL GLOCK IN ROWS C* J1, J2, AND E IS THE REAL CANONICAL FORM OF THE ITH EIGENVALUE. C* EITHFR 13 OR E OR BOTH CAN BE 1 BY 1
 CFIND JI AND J2 (JI LLE.J2) FOR ALL CASES
C


```
    jo = NJ* (J-Jj)
    \(J 1=\mathrm{JJ}+\mathrm{JO}\)
    \(J 2=J-J 0\)
    DI = VALR - A(J,J)
```

C CALCULATE RIGHT HANO SIDF.
DO 530 L $=J 1, J ?$
R1(LJ)=R2(LJ) $=0.0$

lines $510+4$ The pair $\{\mathrm{J}, \mathrm{JJ}\}$ is the same as the pair $\{\mathrm{J} 1, \mathrm{~J} 2\}$. However $\mathrm{J} 1 \leq \mathrm{J} 2$ whereas $\mathrm{J} \geq \mathrm{JJ}$ when $\mathrm{NJ}=0$ and $\mathrm{J} \leq \mathrm{JJ}$ when $\mathrm{NJ}=1$. By this device D is transposed when $N J=1$ as required by Section 3.2.

We need
$\mathrm{J} 1=\mathrm{J} 2=\mathrm{JJ}=\mathrm{J} \quad$ when D is 1×1, $\mathrm{J} 1=\mathrm{JJ}=\mathrm{J}-1, \mathrm{~J} 2=\mathrm{J}$ when D is 2×2 and $\mathrm{NJ}=0$, $\mathrm{J} 1=\mathrm{J}, \mathrm{J} 2=\mathrm{JJ}=\mathrm{J}+1$ when D is 2×2 and $\mathrm{NJ}=1$. This is achieved without IF statements by utilizing JO. In order to avoid repetition of a condition, two inner DO loops are used, and VALI need only be tested in the outer 10op. If E is 1 by 1 , (VALI $=0.0$), R is computed from the first inner DO loop, i.e., only R1(LJ) is computed (since V is real). If E is 2 by 2, the second inner DO loop computes $\mathrm{R} 1(\mathrm{LJ})$ and $\mathrm{R} 2(\mathrm{LJ})$. If D is 1 by 1 , $\mathrm{J} 1=\mathrm{J} 2$; hence $\mathrm{LJ}=1$. If D is 2 by 2 , $\mathrm{J} 1 \neq \mathrm{J} 2$, and $\mathrm{LJ}=1$, 2. KS and KF, the indices of the previously computed elements, are correctly set for the two cases. It is only necessary to reverse the indices of A : for $N J=0, L K=0$, $A A=A(L+L K, K-L K)=A(L, K) . \quad$ For $N J=1, L K=K-L$, $A A=A(L+L K, K-L K)=A(K, L)$. See equations 3.2-1, 3.2-2.

r


```
C E IS IHY 1 (D IS 1 GY 1)
    IF (ARC(D1).LT.TOL*ARS(RI(1))) GOTD 585
    V1(J)=V2(J)=r.C
    IF(O1.NE.C.C)VI(J)=RI(1)/DI
    GOTM 54C
C. E IS O BY % ( O IS l raY 1,
535 DFN = DI*N1 + VALI?
    VAL = VALI*(-1-n)**NJ
    V1(J)=R1(1)*D1 + R2(1)*VAL
    V2(J)=R2(1)*D1-R1(1)*VAL
    VMAX = AMAXI(ABS(VI(J)),ABS(V2(J)))
    IF (DEN.LT.TCL#VMAX) GOTH 5.95
    V1(J)=V1(J)/DEN
    V2(J)= V2(J)/DEN
C NEXT J
54C J GOTMJ5\10 l + ? %NJ
```

C
c
C
C
5
C
C
C
line 535-5 If VALI $\neq 0$, E is 2 by 2.
line 535-3 Since E is 1 by 1 , V2(J) is set to zero.
lines 535-4 Since there is a strict LT, the defective case (GOTO 585) holds for $\operatorname{ABS}(D 1)=0, A B S(R 1) \neq 0$. If both are zero, the less than condition does not hold, and the special zero solution is chosen. (See Section 3.2, type 5).
line 535+1 The sign of VAL depends on NJ (see equation 3.2-3).
line 535+5 DEN >0 (DEN is set at line 535), since VALI $\neq 0$. Hence special solution does not occur.
line 545+1 DEN is again greater than zero.
line 545+2 Since E is 1 by 1, V2(J1) and V2(J2) are set to zero.
lines 545+3 Because of the special definition of J and $J J$, we have for
lines 550

$$
\begin{aligned}
\mathrm{NJ}=0: A(\mathrm{JJ}, \mathrm{~J}) & =A(\mathrm{~J}-1, \mathrm{~J})=D(1,2)=\beta \\
A(\mathrm{~J}, \mathrm{JJ}) & =A(\mathrm{~J}, \mathrm{~J}-1)=D(2,1)=\gamma \\
N J=1: A(\mathrm{JJ}, \mathrm{~J}) & =A(\mathrm{~J}+1, \mathrm{~J})=D(2,1)=\gamma \\
A(\mathrm{~J}, \mathrm{JJ}) & =A(\mathrm{~J}, \mathrm{~J}+1)=D(1,2)=\beta
\end{aligned}
$$

See equations 3.2-2 and 3.2-4.
line $550+16$ If $\mathrm{DEN}=0.0=\mathrm{VMAX}$, we go to 555 , skipping the lines where V is set. But from line $550+13$, we see that $\operatorname{VMAX}=0.0$ implies V1(J1) $=\mathrm{V} 1(\mathrm{~J} 2)=\mathrm{V} 2(\mathrm{~J} 1)=\mathrm{V} 2(\mathrm{~J} 2)=0$ (the special solution).

```
\(C\)
\(C\)
\(5.5 E X T\)
    GOTn \({ }^{\mathrm{G}} \mathrm{Jin}^{2}+4 \% \mathrm{NJ}\)
C COMPUTF EIGFNVECTOR NORM
\(\stackrel{c}{C}\)
560 VMAX \(=\) - 00
    DO \(565 \mathrm{~K}=\mathrm{KS}, \mathrm{KF}\)
\(565 \quad V M A X=V M \wedge X+V 1(K) * * 2+V 2(K) * * 2\)
    IF (NJ.F.O.1) GOTO 57C.
C PRFOAPE TO COMPUTF FOW FIGFNVECTOR
    \(\mathrm{NJ}=1\)
    CNOPMZ \(=\) VMAX
    GOTח 505
E COMPUTF CONDITIIN NUMAER
57 CONO(I) \(=\) SORT(CNORM2*VMAX)
```



```
    rONR(I) \(=\) COND(I)/2.r
    \(\operatorname{CONI}(I+1)=\) CCND(I)
    \(I=I+1\)
c. NEXT I
```

```
5HC I = I+1
```

5HC I = I+1
GnT? 50r
GnT? 50r
C}\mathrm{ DEFECTIVE CASF
C}\mathrm{ DEFECTIVE CASF
r
r
545 CONN(I) = 1.0/TOL.
545 CONN(I) = 1.0/TOL.
GOT(1 57!
GOT(1 57!
C PLACF RFAL PAFT OF EIGFNVALIJF IN VP
C PLACF RFAL PAFT OF EIGFNVALIJF IN VP
C
C
Gar 0ח 595 T = 1,N
Gar 0ח 595 T = 1,N
595 V2(I)=A(I,I)
595 V2(I)=A(I,I)
RFTIJRN
RFTIJRN
FNN

```
    FNN
```

Verification of the correct index limits KS and KF for computation of $1 \mathrm{VI}:$
$\mathrm{NJ}=0, \mathrm{I} \neq 1$: For the last computation of $\mathrm{V} 1(\mathrm{Jl})$, etc., before $N J$ is set to $1, J=2$ (D is 2 by 2) or 1 (D is 1 by 1). After J is incremented, $\mathrm{J}=0$. \quad Then $\mathrm{KS}=\mathrm{J}+1=1, \mathrm{KF}=\mathrm{I}+1$ (E is 2 by 2) or I (E is 1 by 1), and the vector is complete.
$\mathrm{NJ}=0, \mathrm{I}=1:$ Initialization sets $\mathrm{J}=0$, hence $\mathrm{KS}=1$, $\mathrm{KF}=2$ or 1, i.e., only the initialized elements are summed.
$\mathrm{NJ}=1, \mathrm{WI}(\mathrm{N})=0, \mathrm{I}<\mathrm{N}$: For the last computation $\mathrm{J}=\mathrm{N}$. After J is incremented, $J=N+1$. Hence $\mathrm{KS}=\mathrm{I}, \mathrm{KF}=\mathrm{J}-\mathrm{I}=\mathrm{N}$.
$\mathrm{NJ}=1, \mathrm{WI}(\mathrm{N})=0, \mathrm{I}=\mathrm{N}$: Initialization gives $\mathrm{J}=\mathrm{I}+1$
$=\mathrm{N}+1$. Hence $\mathrm{KS}=\mathrm{I}=\mathrm{N}, \mathrm{KF}=\mathrm{J}-\mathrm{I}=\mathrm{N}$.
$\mathrm{NJ}=1, \mathrm{WI}(\mathbb{N}) \neq 0, \mathrm{I}<\mathrm{N}-1$: For the last computation, $\mathrm{J}=\mathrm{N}-1 . \quad$ After J is incremented, $\mathrm{J}=\mathbb{N}+1$, $\mathrm{KS}=\mathrm{I}, \mathrm{KF}=\mathrm{J}-\mathrm{I}=\mathrm{N}$.
$\mathrm{NJ}=1, \mathrm{WI}(\mathrm{N}) \neq 0, \mathrm{I}=\mathrm{N}-1$: Initialization gives $\mathrm{J}=\mathrm{I}-1+3$ $=\mathrm{N}+1$. Hence $\mathrm{KS}=\mathrm{I}=\mathrm{N}-1, \mathrm{KF}=\mathrm{J}-1=\mathrm{N}$. Incrementation of I gives $I=N+1$, and the program ends.
line 565 If E is 1 by 1 , $\mathrm{V} 2(\mathrm{~K})$ for $\mathrm{K}=\mathrm{KS}, \mathrm{KS}+1, \ldots, \mathrm{KF}$ was set to zero when the equation was solved.
line 575+1 See 3.4-1 for explanation of halving of cond when E is 2 by 2.

7. RESULTS

The matrix ${\underset{\sim}{L}}^{\mathbf{0}}$ descripted in Figure 1 came (in punched card form) from a large industrial company. It was causing their eigenvalue program to fail.

An inspection of the form of $\underset{\sim}{L^{0}}$ suggests that perhaps the strange diagonal element in ${\underset{\sim}{I}}^{0}$ and the discordant sign of the (1,1) element of ${\underset{\sim}{T}}^{1}$ were key punch errors. So let us consider the matrices resulting from the removal of these anomalies.

$$
\begin{aligned}
& \underset{\sim}{\mathbf{L}}=\left(\begin{array}{cc}
\underset{\sim}{0} & \underset{\sim}{X} \\
\underset{\sim}{\mathbf{I}} & \underset{\sim}{0}
\end{array}\right), \quad \underset{\sim}{M}=\left(\begin{array}{cc}
\underset{\sim}{0} & \underset{\sim}{\mathbf{Y}} \\
\underset{\sim}{\mathbf{I}} & \underset{\sim}{0}
\end{array}\right) \\
& \underset{\sim}{\mathbf{Y}}=10^{8}\left(\begin{array}{ccc}
\underset{\sim}{\mathrm{D}} & \underset{\sim}{\mathrm{~T}} & \underset{\sim}{0} \\
\underset{\sim}{\mathrm{~T}} & \underset{\sim}{\mathrm{~T}} & \underset{\sim}{\underset{\sim}{F}} \\
\underset{\sim}{\sim} & -\underset{\sim}{\mathrm{F}} & \underset{\sim}{\mathrm{~F}} \\
\underset{\sim}{\mid}
\end{array}\right) \text {, }
\end{aligned}
$$

where $\underset{\sim}{T}-$ is obtained from $\underset{\sim}{T}$ by reversing the sign of its $(1,1)$ element.

Notice that $\underset{\sim}{L}$'s eigenvalues are the square roots of $\underset{\sim}{X}$'s:

$$
\left(\begin{array}{ll}
\underset{\sim}{0} & \underset{\sim}{x} \\
\underset{\sim}{\mathbf{I}} & \underset{\sim}{0}
\end{array}\right)\binom{\underset{\sim}{u}}{\underset{\sim}{\mathbf{v}}}=\lambda\binom{\underset{\sim}{u}}{\underset{\sim}{v}} \longleftrightarrow \underset{\sim}{x v}=\lambda^{2} \underset{\sim}{v}, \underset{\sim}{u}=\lambda \underset{\sim}{v}
$$

The eigenvalues of L^{0}, L and M are given in Table 1 and we offer the following comments. Every eigenvalue of L^{0} is moderately ill-conditioned and the zero pair appear to belong to a quadratic elementary divisor (only one eigenvector). Perhaps some of this is due to the unbalanced nature of L^{0}. The thirteenth row of L^{0} is null and this must be permuted out of the way before the rest of the matrix is balanced.

Figure 1

24×24 Matrix for Case Study

Is the 0 diagonal element in ${\underset{\sim}{1}}^{0}$ a keypunch error or did it really belong in the user's problem?

$$
\begin{aligned}
& {\underset{\sim}{L}}^{\mathrm{L}}=\left(\begin{array}{cc}
\underset{\sim}{0} & \underset{\sim}{\mathrm{X}} \\
\underset{\sim}{\mathrm{I}} & \underset{\sim}{0}
\end{array}\right) ; \quad{\underset{\sim}{\mathrm{I}}}^{0}=\operatorname{diag}(0,1,1, \ldots, 1) ; \\
& \underset{\sim}{\mathrm{X}}=\left(\begin{array}{ccc}
\underset{\sim}{\mathrm{D}} & {\underset{\sim}{T}}_{1} & \underset{\sim}{0} \\
\underset{\sim}{\mathrm{~T}} & \underset{\sim}{\mathrm{~F}} & -\underset{\sim}{\mathrm{F}} \\
\underset{\sim}{\mathrm{~F}} & -\underset{\sim}{\mathrm{F}} & \underset{\sim}{\mathrm{~F}}
\end{array}\right) 10^{8} ; \quad \underset{\sim}{\mathrm{F}}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a} & 0 & 0 & \mathrm{~b} \\
0 & \mathrm{a} & -\mathrm{b} & 0 \\
0 & -\mathrm{c} & \mathrm{~d} & 0 \\
\mathrm{c} & 0 & 0 & \mathrm{~d}
\end{array}\right) ; \\
& \underset{\sim}{\mathrm{D}}=\operatorname{diag}\left(.5221, .3563, .5552 \times 10^{-3}, .1328\right) ;
\end{aligned}
$$

$$
\underset{\sim}{T} \underset{\sim}{T}=\left(\begin{array}{cccc}
.5221 & 0 & 0 & -.8951 \\
0 & -.3563 & .6109 & 0 \\
0 & 0 & -.5552 \times 10^{-3} & 0 \\
0 & 0 & 0 & -.1328
\end{array}\right) ;
$$

$$
\mathrm{T}_{2}=\left(\begin{array}{cccc}
-.0976 & 0 & 0 & 0 \\
0 & -.0666 & 0 & 0 \\
0 & .02659 & -.4218 \times 10^{-4} & 0 \\
-.03896 & 0 & 0 & -.1009 \times 10^{-1}
\end{array}\right)
$$

$$
\underset{\sim 1}{\mathrm{~F}}=\left(\begin{array}{cccc}
2.859 & 0 & 0 & 1.079 \\
0 & 2.828 & -1.026 & 0 \\
0 & -.2389 & .4294 & 0 \\
.2513 & 0 & 0 & .4607
\end{array}\right) ;
$$

$$
\underset{\sim}{F} 2=\underset{\sim}{F}\left(\begin{array}{cc}
2.761 & .5891 \\
.2123 & .3590
\end{array}\right) ; \quad \underset{\sim}{F} 3=\underset{\sim}{F}\left(\begin{array}{rr}
1.627 & .5373 \\
.1096 & .2868
\end{array}\right) ; \quad \underset{\sim}{F} 4=\underset{\sim}{\underset{\sim}{F}}\left(\begin{array}{ll}
1.849 & .3731 \\
.1178 & .4970
\end{array}\right) ;
$$

$$
\left\|\underset{\sim}{L}{ }^{0}\right\|_{\infty} \div 5 \times 10^{8} .
$$

Table 1
Eigenvalues and Condition Numbers of L^{0}, L, M
The imaginary pair of eigenvalues had real parts less than 10^{-6} (a relative error of 10^{-11}). V denotes a digit that changed when the matrix was balanced.

$\lambda_{i}\left(L^{0}\right)$	Cond ($\mathrm{L}^{\text {O }}$)	$\begin{gathered} \text { Cond }\left(\hat{\mathrm{L}}^{0}\right) \\ \text { (balanced) } \end{gathered}$	$\lambda_{i}(\mathrm{~L})$	Cond (L)	$\lambda_{i}(\mathrm{M})$	Cond (M)
$\pm .21534594 \times 10^{5}$	10^{4}	1	$\pm .21534594 \times 10^{5}$	10^{4}	$\pm .21534594 \times 10^{5}$	10^{4}
$\pm .18667890 \times 10^{5}$	10^{4}	10^{3}	$\pm .18654343 \times 10^{5}$	10^{4}	$\pm .18692513 \times 10^{5}$	10^{4}
$\pm .11076317 \times 10^{5} \mathrm{i}$	6×10^{3}	4×10^{3}	$\pm .1098663 \mathrm{~V} \times 10^{5} \mathrm{i}$	6×10^{3}	$\pm .11142610 \times 10^{5} \mathrm{i}$	6×10^{3}
$\pm .82614552 \times 10^{4}$	6×10^{3}	5×10^{3}	$\pm .8646568 \mathrm{~V} \times 10^{4}$	10^{4}	$\pm .86339960 \times 10^{4}$ *	10^{4}
$\pm .83281998 \times 10^{4}$	6×10^{3}	1	$\pm .83281998 \times 10^{4}$	6×10^{3}	$\pm .83281998 \times 10^{4}$	6×10^{3}
$=.41438248 \times 10^{4}$	7×10^{3}	10^{4}	$\pm .7026706 \mathrm{~V} \times 10^{4}$	10^{4}	$\pm .71883679 \times 10^{4}$ *	10^{4}
$\pm .64209960 \times 10^{4}$	7×10^{3}	3	$\pm .64209960 \times 10^{4}$	6×10^{3}	$\pm .64209960 \times 10^{4}$	7×10^{3}
$\pm .33632953 \times 10^{4}$	5×10^{3}	9×10^{3}	$\pm .38448590 \times 10^{4}$	3×10^{3}	$\pm .38458962 \times 10^{4}$ *	3×10^{3}
$\pm .35102700 \times 10^{4}$	2×10^{3}	4	$\pm .35102700 \times 10^{4}$	2×10^{3}	$\pm .35102700 \times 10^{4}$	2×10^{3}
$\pm .30530592 \times 10^{4}$	3×10^{3}	3	$\pm .30530592 \times 10^{4}$	3×10^{3}	$\pm .30530592 \times 10^{4}$	3×10^{3}
$\pm .0^{+}$	10^{15}	10^{30}	$\pm .29241979 \times 10^{4}$	3×10^{3}	$\pm .29134631 \times 10^{4}$	3×10^{3}
$\pm .23559292 \times 10^{3}$	10^{2}	1	$\pm .23559291 \times 10^{3}$	10^{2}	$\pm .23559292 \times 10^{3}$	10^{2}

The rcsult was that none of the computed eigenvalues changed but half of them became almost perfectly conditioned.

In fact we can say that the ill-condition of all six pairs is due to the zero element in position $(13,1)$. When this is replaced by 1 we obtain the matrix L which has six pairs of eigenvalues almost identical to the well conditioned pairs of the balanced L^{0}. Four of the other six pairs are changed completely, the remaining two $\left(\pm .186 \times 10^{5}\right.$ and $\pm .11 \times 10^{5}$ i) are substantially altered. Interestingly the balanced versions of L and M are almost normal and we have not bothered to record the condition numbers. The six pairs of eigenvalues which were unchanged by the move from L^{0} to L were also invariant in the change from L to M. The other six pairs had relative errors less than 2.5%.

We can tell in advance what the balanced form of L and M will be:

$$
\hat{\mathrm{L}}=\left(\begin{array}{cc}
0 & 10^{-4} \mathrm{X} \\
10^{4} \mathrm{I} & 0
\end{array}\right), \quad \hat{\mathrm{M}}=\left(\begin{array}{cc}
0 & 10^{-4} \mathrm{Y} \\
10^{4} \mathrm{I} & 0
\end{array}\right)
$$

The change from L^{0} to L is tiny relative to $\| L_{\|}{ }_{\|}\left(\equiv 10^{-8} \| L^{0} 甘\right)$ but the change from $\hat{\mathrm{L}}^{\mathbf{0}}$ to $\hat{\mathrm{L}}$ is approximately 旺\|.

We conclude that the suspicious element in L^{0} was probably a key punch error. Concerning the $(1,1)$ element of T_{1} we cannot say, both L and M are reasonable matrices and indeed the change of sign does not affect the leading two decimals in any eigenvalue.

8. BIBLIOGRAPHY

1. EISPACK GUIDE, Lecture Notes in Computer Science No, 6, SpringerVerlag (1974).
2. IMSL - International Mathematical and Statistical Library, 7500 Bellaire Blvd., Houston, Texas 77036.
3. W. Kahan, "Conserving Confluence Curbs Ill-Condition," Technical Report No. 6, Computer Science Department, University of California, Berkeley (1972).
4. B.N. Parlett and Y. Wang, "The Influence of the Compiler on the Cost of Mathematical Software - in Particular on the Cost of Triangular Factorization," ACM Transactions on Mathematical Software, Vol. 1, No. 1, March 1975, pp. 35-46.
5. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1975).
6. J.H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, II. Linear Algebra, Springer-Verlag (1971).

Computer Science Division
Unclassified
University of California
Berkeley, California 94720
3. REPORT TITLE

A PROGRAM TO COMPUTE THE CONDITION NUMBERS OF MATRIX EIGENVALUES WITHOUT COMPUTING EIGENVECTORS
4. DESCRIPTIVE NOTES (Type of raport and Inclugive datea)

Scientific Final
5. AUTMORIS) (First name, middio Initiali, Tatil namo)
S.P. Chan, R. Feldman and B.N. Parlett

C. AEPORT DATE April 1975	$\begin{aligned} & \text { TO. TOTAL NO. OFPAGES } \\ & 46 \end{aligned}$	$\begin{array}{\|} 7 \mathrm{BD} \text { NO. OF REFS } \\ 6 \end{array}$
$\begin{array}{\|l\|} \text { Sa. CONTAACT OR GRANT NO. } \\ \text { ONR-NOOO14-69-A-0200-1017 } \end{array}$ b. prosect no.	OQ. ORIGINATOR'S REPORT NUMOER(S)Electronics Research LaboratoryMemorandum M-517	
e. d.		
Approved for public release; distribution unlimited.		
11. SUPDLEMENTARY NOTES 13. ABSTALCT	12. SPONSORING MILITARY	$\begin{aligned} & \text { vity } \\ & \text { earch } \\ & 0360 \\ & \hline \end{aligned}$

The condition number of an eigenvalue measures the sensitivity of that eigenvalue to small changes in the matrix elements. Such extra information is nice, sometimes useful, but how much does it cost?

A program is presented here for the most difficult case of a real square matrix whose eigenvalues are wanted without their corresponding eigenvectors, The program requires no extra storage space (this is our reason for presenting it) and the running time is about 50% longer than for the fastest reliable program which only computes eigenvalues.

There are many industrial applications in which the matrix elements are known to only two or three decimal figures. Each condition number will indicate how accurately such a matrix determines the associated eigenvalue. When no digits in an eigenvalue are reliable the suspect eigenvalue should be tagged and this information passed on to a higher level in the whole computation.

A number of programming devices keep the code, storage, and running time down to a minimum.

An interesting case study is included.

Unclassified
Security Clessification

