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Abstract

In this paper, an investigation of the parallel arithmetic complexity

of matrix inversion, solving systems of linear equations, computing

determinants and computing the characteristic polynomial of a matrix

is reported. The parallel arithmetic complexity of solving equations

has been an open question for several years. The gap between the com

plexity of the best algorithms (2n + 0(l), where n is the number of

unknowns/equations) and the only proved lower bound (2 log n (All

logarithms in this paper are of base two.)) was huge. The first break

through came when Csanky [1] reported that the parallel arithmetic

complexity of all these four problems has the same growth rate and

exhibited an algorithm that computes these problems in 2n-0(log n)

steps. It will be shown in the sequel that the parallel arithmetic
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complexity of all these four problems is upper bounded by 0(log n) and

the algorithms that establish this bound use a number of processors

polynomial in n.

This work was supported in part by National Science Foundation Grant
DCR72-03725-A02.



1. INTRODUCTION

The Model and Complexity. The intuitive definition of the model of

parallel computation and its complexity is the following. The model has

an arbitrary number of identical processors and an arbitrarily large

memory with unrestricted access. Each processor is capable of performing

any one of the binary operations +,-,*,/ in unit time. This unit

time is called a step. (The processors do not necessarily perform the

same operation in any step.) It is assumed that no other operation takes

time (i.e. only the arithmetic operations count the overhead is ignored).

The processors always take their operands from the memory and after a

step they store the result in the memory. Before starting the computa

tion the input data is stored in the memory. Then the computation starts.

The parallel arithmetic complexity of the computation is the least number

of steps necessary to produce the result in the memory.

If P is a computational problem of size n, then the parallel

arithmetic computational complexity P(n) of P is the least number of

steps necessary to compute P for any possible input.

Let A be an order n matrix. Let det(A), adj (A), tr(A) denote

the determinant of A, the adjoint of A and the trace of A respectively,

Unless specified otherwise capital letters denote matrices, lower case

letters denote scalars.

Let I(n), E(n), D(n), P(n) denote the parallel arithmetic complexity

of inverting order n matrices, solving a system of n linear equations

in n unknowns, computing order n determinants and finding the charac

teristic polynomials of order n matrices respectively.



2. RESULTS
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Theorem 1. I(n) £ 0(log n) and the number of processors used in

the algorithm is a polynomial in n.

Proof. Let A be the order n matrix to be inverted. Let the

characteristic polynomial f(X) of A be

f(X) = det(Al-A) =Xn+c1Xn"1+•••+c ,X+c .
1 n-1 n

Let

adj (Xl-A) = IX11"1 +B0Xn"2 +•. •+B ,X+B .
2 n-1 n

Using the idea of one of the simplest proofs of the Cayley-Hamilton

theorem (Marcus-Ming [2]) the following formulas were obtained:

B! - I (1)

Bk " ^k-l " k=l ^k-l* <2>

ci " "J tr(AB±) (3)

and

a"1 n ...
A =ni7(AFT- <*>

n

(It was pointed out to the author that a number of people derived essen

tially the same formulas in recent years. Frame [3] seems to have been

the first.)

Define operator T as follows:

TA - tr(A)

(I+MT)A = A + MTA = A + M tr(A) .



Then

Bk= (I-^AB^
and

Bn =(I-^T){A[(I-^2T){A[---(I-IT){A[I]}-.-]}]} . (5)

In this formula A can be thought of as a second operator, its

action being multipication on the left.

Observe that

T(AT) = (TA)T , (6)

that is, operators T and A associate. This implies that the factors

in the expression for B associate, i.e.

B = (A--Va)(A--^tTA)--.(A-|-TA)(A-ITA) . (7)
n n-1 n-2 z

Thus B can be computed in roughly log n stages by the well known

binary tree method.

Stage 1. For all i+1 = 2t compute from (A- TTtTA)(A- -TA)

the form

A2 -M«y -M«)tTA .

As a consequence of (6) matrices m| * can be computed indepen

dently. The powers of A can also be computed independently.

Stage j. For all 2Jt compute from

r 2^ 1 (1) 2^_1 (2^~lyi ^(A -MW TA MU \ TA)
j-1 23t j-1 23t

r 2^""1 (1) 2^"1 (2^~"h >• (A -KK) . TA MU \ TA)
j-1 2j(t-l) j-1 2j(t-l)



the form

A2J-M(1> TA^-M^.TA2^1 M<2J>TA.
j 2Jt j 2Jt j 2Jt

As a consequence of (6) matrices M '. can be computed indepen-
j 2Jt

dently. The powers of A can also be computed independently.

The number of steps stage j takes is roughly

log n + log n + 1 + log 7? = log n + log n + 1 + j

where the first term is the number of steps the multiplication on the

right by A and matrices M ; takes, the second term is the number

of steps computing the traces takes, multiplication by the trace takes

1 step and addition of the matrices takes j steps. Thus the total number

of steps for all stages is roughly

log n(2 log n+1) +1+2+3+ ••• + log n= 2.5 log2n + 1.5 log n.

B

Since n-^- (TAB $ 0o Ais invertible) can be computed in 0(log n)
n

additional steps, we have

I(n) < 2.5.log2n + 0(log n) .

A very crude upper bound on the number of processors can be obtained

by observing that in any stage the multiplication phase takes the maximum

number of processors.

In stage j the number of matrix multiplications is roughly

jJ-l + JL 22J-2 .
23



Thus for the number of processors p we obtain

P<maxCnV-1*^"2} •K +V . Q.E.D.
(j) 23 4 2

Careful counting of the processors and application of Leverrier's
2 A

method yields 0(log n) steps with 0(n ) processors.

Corollary 2. E(n), D(n), P(n) <0(log2n) and the number of

processors used in the algorithms is a polynomial in n.

Proof. Solve Ax = b where b is a column vector by inverting A,
-1 TAB

then x = A "T>. Compute det(A) from det(A) = -c = -. Compute
TAB n n

f(X) from c --—£±. Q#E.D#

3. CONCLUSIONS

This work has decreased the gap between the lower and upper bounds

on the parallel arithmetic complexity of problems I, E, D, P. Indeed

we have

0(log n) < I(n), E(n), D(n), P(n) < 0(log2n) .

It is our belief that if I(n) = 0(log n) then the algorithm which

establishes this will have to use some new, surprising and fundamental

result.
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