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Abstract

This paper introduces a new class of algorithms for insertion into

a binary search tree. Called "compact-tree" algorithms, they are

defined by the property that restructuring of the tree occurs only when

the tree's overall height exceeds a specified bound, which is a function

of the size of the tree.

First the algorithms are described in detail. Then the results of

several empirical tests are discussed. The best of the compact-tree

algorithms compares in some ways favorably, and in others unfavorably

with the Adel'son-Velskii and Landis [1, p. 451] algorithm. Finally we

have a couple of theoretical results, the principal one being that if

keys are inserted into a tree in increasing (or decreasing) order, using

a compact-tree algorithm, then the running time is proportional to

N log N, where N is the number of keys inserted.
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Description of Compact Trees

A binary search tree is a data structure which stores records in

such a fashion that an individual record can be located relatively quickly

Each record is presumed to have a field containing a key which uniquely

identifies that record. Given a binary search tree with n nodes

(records) and the key of some node in the tree, the corresponding record

can generally be found in O(log.n) steps. Much of a binary search

tree's value lies in the fact that a new node can be inserted into the

tree, or an existing one deleted, with relative ease.

The keys of all records are embedded in a total ordering. A binary

search tree is an extended binary tree containing keyed records such

that, if the nodes are visited in symmetric order (post order), then the

keys will be encountered in increasing order. Each node contains pointers

to two sons, one or both of which may be null, and usually there is a

header node which points to the root node of the tree.

Let P be a pointer to a node in the tree which is non-null. Then

P.KEY denotes the key for that node, P.LLINK is a pointer to its left

son, and P.RLINK is a pointer to its right son. The general procedure

to find a node, given its key K, is as follows:

1) Set P equal to the root node.

2) IF K = P.KEY THEN stop, we have found the record.

3) IF K< P.KEY THEN P «- P.LLINK ELSE P «- P.RLINK.

4) IF P is non-null then go to step 2. Otherwise stop, because

there is no record in the tree with key K.

We see that a pointer must travel down the tree to find a record.

The distance it travels is bounded by the height (maximum depth) of the

tree. Hence it is desirable to keep the height as small as possible.



Another measure is the "total path length" of a tree, which is the sum

of the root-node distances. If we assume that nodes are accessed with

equal probability, then the value r—^—-z r^— gives us the
number of nodes

average number of comparisons to find a node in the tree.

It would be nice to construct search trees which always have a

minimal total path length. However, it can be shown that under repeated

insertion or deletion of nodes, the amount of restructuring necessary to

maintain minimality is prohibitive. Hence, we look for algorithms which

can construct near-optimal trees. We will first look at the problem of

inserting a node into a search tree.

The basic tree-insertion algorithm is as follows:

We wish to insert a record with key K into a non-empty tree.

1) Set P equal to the root node.

2) If K < P.KEY then P •*- P.LLINK.

If K > P.KEY then P +- P.RLINK.

If K = P.KEY then the record is already in the tree, so we stop

3) If P is non-null repeat step 2.

4) Otherwise, P is null so we have found a leaf. Create a

node Q, set Q.KEY +• K, Q.LLINK -*- A, Q.RLINK *- A (A is the null

pointer) and place Q in this leaf. (This involves remembering where

the father node is, and setting a pointer there to point to node Q.)

This algorithm does no restructuring, and the trees it grows have

a total path length which can be very large if the order in which the

keys are inserted is poor. In a worst case the keys may appear in

ascending or descending order, and a completely degenerate tree (no node

has two non-null sons) results. Several algorithms have been developed

which eliminate this problem (see [2]) by restructuring the tree as



more nodes are inserted.

Possibly the most successful of these algorithms is the AVL algorithm

invented by Adel'son-Velskii and Landis [1, pp. 451-469], After insert

ing a node, it restructures the tree when necessary in order to keep the

tree "AVL balanced," which means that for any node in the tree, the

absolute difference between the heights of its left and right subtrees

never exceeds one. It has been empirically observed that the restruc

turing, called rebalancing, occurs after about 50% of the insertions.

Because rebalancing is fairly easy, this overhead is not excessive.

A new idea has been proposed which hoped to reduce this overhead

by restructuring less frequently. The basic idea is as follows: Given

a tree of size n, we devise a function h(n) which is the maximum

height which we will allow for a tree of n nodes. If an insertion

causes the height to exceed h(n) we locally restructure the tree so

that the overall height is again not more than h(n) (note that

n •*• n+1 occurred upon insertion).

There are many ways in which this idea could be realized. It was

the intention of this research to investigate and empirically test the

more promising of these algorithms.

When describing tree operations it is necessary to develop some

kind of shorthand representation for the trees. I shall use a form

found in Knuth, Vol. Ill [1 ] which substitutes a rectangle for a sub

tree, and varies the lengths of the rectangles in proportion to the

heights they represent. For convenience I shall omit specification of

the null nodes.



Example.

These represent successively more abstracted nodes of the same

subtree.

The basic tree operations which we use to restructure a tree are

called rotations. They come in four flavors: left single, left double,

right single, and right double. They will be described by example.

Left Single Rotation (at node 1)

o

The general mechanism is clearer in the abstracted versions:

sl 72)

S2
83

(IT

S3
Sl S2.



Left Double Rotation (at node 1)

or equivalently

\2J.
S4

s2
83

The right rotations are mirror images of the corresponding left

rotations. Notice that the left double rotation above is equivalent to

performing a right single rotation at node 3, followed by a left single

rotation at node 1. As seen in the examples, the rotations can sometimes

be used to decrease the height of a subtree.

Let sub(p) denote the subtree rooted at node p. The following

three conditions are necessary and sufficient for the existence of a

rotation which reduces the height of sub(p):

Let sub(p) have height k.

(i) p has two sons s. and s~, and s? has two sons t- and

t„ (s. and/or t. may be null).

(ii) sub(s1) has height < k-3.
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(iii) sub(t ) has height < k- 2.

These conditions imply that sub(t_) has height k-1,

Example,

or

In the first instance above a left double rotation shortens the subtree,

and in the second a right single does the trick.

We will refer to the deepest level of the tree which contains non-

null nodes as the "floor" of the tree (the trees have the root on top

and the floor on the bottom). A subtree "reaches the floor" if it has

non-null nodes on that level.

Suppose a node r is inserted into a tree and the height of the

tree increases as a result. Let p ,p_,... ,p, ,p, - = r be the nodes

on the path from the root p. to r. Then p.,- is a son of p. for
1 J+l j

j = 1,2,...,k. Let the "other son" of each p. be labelled q. (p
3 J k

has none). Then a rotation at node p. exists which will shorten the
J

tree if and only if sub(q ) doesn't reach the level which was the floor

before r was inserted. (In the example a left double rotation at p1

or a right single rotation at p_ will shorten the tree.) This

suggests a method for reducing the height of a tree after an insertion.



Example

(P4) (^ floor

"Let MAXHT be the current height of the tree (a tree with one non-

null node has height one). Insert node r. If the length of the path

from the root to r equals MAXHT then the height has increased. In

this case, look for a node q as defined above such that sub(q )

didn't reach the floor. If we find one, then perform the appropriate

rotation at p ."

Our original aim was to reduce the amount of time spent restruc

turing the tree, and hence we will replace MAXHT with avfunction h(n)

of the size of the tree, whose value determines the lowest level at

which a node can be inserted without the occurrence of some restructur

ing. This still leaves a lot unspecified, including what we should do

if a node q with the desired properties cannot be found.

Relative to some fixed function h(n), a tree with n nodes is

called "compact" if its height does not exceed h(n). For example, AVL

trees are guaranteed to be compact relative to a function

h(n) « 1.44 log«n. The algorithms which perform restructuring only to

restore the property of compactness we will call "compact tree algorithms."

They don't perform any restructuring as long as the tree is compact.

We will first derive an expression for h(n). The height of an

n-node tree with minimal total path length is flog„n+l]. Looking at
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the inverse function, we see that for a minimal-tp& tree of height k,

k-1 k
the number of nodes n obeys the inequality 2 < n+1 _< 2 . Hence,

if n is increased by insertion, the height increases only if n+1 > 2 ,

or n > 2 -1. Since we seek only to construct near-optimal rather than

optimal trees, we will relax this bound, and instead allow the tree's

height to increase whenver n > a(b ) -c becomes true, for some con

stants a, b and c, 1 < b <_ 2. Values for a, b and c can be

-1 k
found experimentally. Setting h (k) = a(b ) -c we obtain

h(n) ~ log,n.

We are now in a position to present the simplest of the compact

tree algorithms, which we refer to as "compact-streamlined" (C-SL).

Assume values for a, b and c have been chosen, so that the height

function h(n) is defined.

Compact-Streamlined Algorithm: A node is inserted using the basic

tree-insertion algorithm. Pointers to nodes p., ,p«,... 9p. are stacked

as we travel the path to the point of insertion, n «- n+1 reflects the

increase in the size of the tree. If k >_ h(n) we must attempt to

decrease the height of the tree. In this case we backtrack by unpopping

the stack, enabling us to locate the nodes q, 1,q, „,...,q-. At each

node q we perform a preorder search of sub(q ) to determine if it

reaches the floor. If it doesn't, we rotate at p , reducing the

height of the tree to the value it had before insertion. Otherwise we

continue backtracking, unless j = 1. In this case we have failed to

reduce the tree's height, and the tree ceases to be compact.

For this particular algorithm we choose not to let this bother us.

In fact, because the size of sub(q.) tends to increase exponentially



as j decreases, it is best to place a limit upon the distance we are

allowed to backtrack. This increases the chance of failure. However,

by careful choice of parameters we can limit the rate of failure, and

produce a tree whose height is usually within the bounds we set.

Suppose we wish to guarantee that the search tree we are growing

is always compact. An algorithm more complicated than the one just given

exists which will guarantee compactness, using a height function

h(n) ~ 1.44 log„n.

First we will describe a subroutine which is used to reduce the

height of a tree (or subtree) by executing an appropriate sequence of

rotations. Define a function f(k) by

f0 if k = 0

f(k) - < 1 if k = 1

f(k-l) + f(k-2)+l if k > 1

Subroutine SHORTEN will reduce the height of a tree by one if it has

height k and obeys the inequality n < f(k), where n is the number

of non-null nodes. We will show how to "shorten" any tree with height

k and n = f(k) - 1 nodes:

Trees with f(l) -1 = 0 and f(2) - 1 = 1 nodes have heights 0

and 1 respectively, and hence already have height less than the value

of f's argument. Otherwise we can assume k >_ 3 and n >^ 3.

Suppose both subtrees of the root have height k-1. We know that

one of the subtrees of the root must have less than half of the nodes,

and since f(k+l) > f(k) and f(k) -1 = f(k-1) + f(k-2) we know that

it has less than f(k-1) nodes. Hence we can recursively call SHORTEN

to reduce its height to become k-2. This gives us the figure (barring

symmetries).
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We will let "s " denote both a subtree and the number of nodes in that

subtree, s- or s and s_ have height k-2.

Suppose s^>^f(k-2). Then

s.+s2 +l = n-s3 -1

= f(k-l)+f(k-2) -(s3+l)

< f(k-l) -1

In this case we recursively call SHORTEN to reduce the height of the

left (in this diagram) subtree.

Otherwise s3 < f(k-2), enabling us to call SHORTEN and reduce

its height to k-3. If in fact s has height < k-2 a right double

rotation at the root will reduce the overall height to become k-2.

If s2 has height < k-2 a right single rotation at the root will do

the same thing. If s^^ < f(k-2) or s < f(k-2) then we call SHORTEN

to reduce the height of one of these two subtrees, and then rotate at

the root.

Example.
s~X

11



The remaining case has s3 < f(k-2), s >_ f(k-2) and s2 >_ f(k-2).

Let s1 = f(k-2) +d, d ^ 0. We perform a right single rotation at the

root to get

k-2

Observe that

s„ + s~ + 1 = n - s_ - 1

= f(k-l)+f(k-2)-f(k-2)-d-1

= f(k-l) -d-1

< f(k-l) .

This tells us that we can now recursively call SHORTEN to shorten the

right subtree, finishing the job!

Thinking back a bit, we recall that while backtracking after an

insertion to find a node p where we could rotate, if sub(q ) reached

the floor we had to continue backtracking. However, if we compute n

and k for sub(q ) and discover that n < f(k), then we could call

SHORTEN to reduce the height of sub(q,), allowing us to rotate at p..
j J

We will refer to an algorithm which does this as "compact with shortening."

For this algorithm, the tree's height will increase upon insertion

only if all of the sub(q )'s reach the floor, and none of them can be

shortened by SHORTEN.

12



Example,

k-4

lk-3

- floor

In this case we can determine a lower bound g(k) on the number of nodes

which must have been in the tree when r was inserted. Sub(q, .) has

height i, so it must have >_ f(i) nodes. Summing, we obtain

k-1

g(k) = I f(i)+k .
i=l

The recurrence relation for g is

g(k) = g(k-l)+g(k-2) + 2

with g(0) = 0, g(l) =1. If we allow the tree's height to increase

from k to k+1 if and only if its size becomes greater than g(k),

then we can guarantee that a backtrack search to absorb a newly inserted

node will always succeed when it is attempted. g(k) * (1.9)•(1.618) -2,

so a tree grown with the compact-with-shortening algorithm is compact

with respect to the function h(n) = g (n) ~ 1.44 log«n.

13



Empirical Results

We now turn to an evaluation of the empirical performance of compact-

tree algorithms. As a standard of comparison, the basic tree insertion

algorithm (using no restructuring) and the AVL algorithm were coded.

Several different compact-tree algorithms, and some variations of them,

were coded. The algorithms were used to construct 1000-node trees, using

as input random permutations of the sequence of keys numbering one to 1000,

In most cases each algorithm built ten trees. The statistics

exhibited a small enough variance to give reasonable confidence in the

results. The graphs show only the range in which values for the total

path length (tp&) fell. Generally most of the values fell slightly below

the middle of this range.

Before we construct a tree with the compact-SL algorithm we must

select values for the parameters A, B and C of the height function.

The most important parameter is B. It determines the asymptotic

-1 k
growth rate of the inverse of the height function (h (k) = A»B +C).

Increasing B causes the algorithm to restructure more often, because

it attempts to keep the tree at a given height during larger numbers

of insertions. The value of B cannot profitably be increased beyond

two, because that corresponds to the growth rate of a tree always having

minimum tp£.

The parameter A must be such that the initial values

-1 -1
h (0),h (1),... of the function are appropriate. The values shouldn't

exceed those of a minimal tree: 0,1,3,7,15,... and it was found that

the sequence of values 0,1,3,6,12 was about as high as could be used

before a plateau in the improvement of the tp£ occurred. This gives us

a narrow range of values for A, given a fixed B, and the values

14



actually chosen were picked somewhat at random from this range.

The value of C insures that the first four values of the sequence

after truncation are 0,1,2,6. C is somewhere around -1.0.

Trees produced with B taking values of 1.5, 1.618, 1.7, 1.75,

1.8 and 1.85 showed the expected inverse relation — the average tp& improved

(decreased) as B was increased, and the running time (the sum of the fetchs

and stores) increased. Looking at the first graph (p.20) and comparing

with the AVL algorithm, we see that their running times are approximately

the same. However, the average tp£ for the AVL trees was noticeably

better — within 3% of optimum, as opposed to tp£'s around 10% of optimum

for the compact trees.

The champion in the race to see who can build the fastest is the

basic insertion algorithm. The C-SL algorithm was run with B = 2.0

to see how compact a tree it could produce. The resulting trees were

almost as good as the AVL trees, but running time for the C-SL algorithm

was substantially slower.

The compact algorithm with a SHORTENING subroutine was also coded.

It was observed that with B = 1.618 (the maximum value which can gua

rantee success during backtracking) that the SHORTEN routine was only

called two or three times during the entire 1000 insertions, and the

resultant trees had tp£'s about the same as those produced by C-SL with

B = 1.618. This algorithm was also run with B = 2.0. The algorithm

increased its use of the SHORTEN routine, but surprisingly the trees

produced were actually poorer than those produced by C-SL with B = 2.0.

We conclude that the SHORTEN routine is not useful.

The second graph helps to justify the choice of six as a limit on

the amount of backtracking to allow the C-SL algorithm. It would be

15



expected that a small value would result in many failures during attempts

to restructure, resulting in a poorer tree. On the other hand, large

values would increase running times, and possibly waste time looking for

a place to rotate when none existed.

The graph shows the results when trees were grown with a C-SL

-1 k
algorithm using a height function h such that h (k) = 1,15*(1.8) -0.6

We see that as the value of the backtracking limit (BTLIM) was increased

the average values for the tpfl. decreased, and the variance in the tp&'s

also decreased. In addition, the number of failures to find a point

of rotation decreased. A pronounced tapering in the rate of improvement

occurs around BTLIM = 5 or 6, and we have chosen six as the limit for

subsequent uses of the C-SL algorithms.

For BTLIM = 6 the number of rebalancings averaged 246 and the

number of failures averaged about thirty. The statistics on the number

of rebalancings for this experiment exhibited low correlation with the

resulting averages for tpJl's. Apparently when or where rebalancings

occurred, rather than how many, determined the eventual shape of the tree.

During the experiments it was conjectured that how compact a tree

was during the initial stages of insertion determined to a large degree

how good the final tree would be. This was supported by an experiment

which built trees using the basic insertion algorithm for the first 500

insertions, and tried to compact the tree using C-SL with B = 2.0 and

full backtracking for the last 500 insertions. The average tpil's of the

trees were not as good as for trees produced using C-SL with B = 1.7,

and the running time of this 'combination' algorithm was substantially

greater.

It is natural to try a reverse experiment — build the tree first

16



using a compact tree algorithm, and then finish off the insertions using

the basic insertion algorithm. I used C-SL with B = 1.7 because it

exhibited a very low failure rate in backtracking (averaging less than

two failures per one hundred insertions). The results are shown in the

third graph.

Observe that we can actually build a tree faster with this hybrid

algorithm than if we use only basic insertion, and the resulting trees

are more compact. It is not hard to guess why this should be so. The

C-SL algorithm with B = 1.7 runs more slowly than basic insertion

principally because of a large number of stores, most of which can be

attributed to stacking of pointers to nodes along the path of insertion.

Hence, if we only use C-SL in the beginning, we avoid stacking up long

paths, and save most of the stores. On the other hand, because the

basic insertion algorithm finds a better than random tree when it cuts

in, it tends to insert the remaining nodes more evenly across the fron

tier of the tree. This results in the tree always being more compact

than a random tree, which means that the average length of a path of

insertion is decreased. Hence the basic insertion algorithm has a faster

than usual rate of execution.

This hybrid algorithm might be a good choice for building a tree

if the ratio of look-ups to insertions was expected to be relatively low.

A similar hybrid combining the AVL algorithm with basic insertion might

be expected to run even a touch faster, but once basic insertion commenced

the balance fields would become useless, and the AVL algorithm could not

again be applied to the same tree.

There was no obvious counterpart to the C-SL algorithm for the case

of deletion. Intuitively, we could say that a compact tree algorithm

17



can work quickly because the point of insertion is also the place where

a tree first increases its height. The effect of a deletion from a tree

may be realized well below the point where a deletion actually occurred,

and hence it is likely that only a rather contrived algorithm could find

the places requiring restructuring after deletion.

We also ran our algorithms on 5000-node trees. The AVL algorithm

built 5000-node trees which had tp£'s averaging within 1% of optimum,

so its performance in this department improved somewhat. Trees built

with C-SL, setting B = 1.7, had tpil's around 11% above the optimum,

only slightly worse than was the case for 1000-node trees. Rebalancing

occurred about one-fifth of the time. C-SL built its trees slightly

faster than did AVL.

After building the 5000-node trees, we deleted them. The basic

tree deletion algorithm was used on trees built by C-SL. We checked the

tp& of the trees when only 1000 nodes were left and found an unexpected

result. We predicted that after the random deletion of 4000 nodes with

no restructuring we would be left with trees which were essentially

random. In fact, the 1000-node trees left were still relatively compact,

with tp£'s averaging slightly over 9000. This is within 2% of the tp&'s

for trees grown from scratch, using C-SL with B = 1.7.

Basic deletion took only three-fifths as long to delete 5000-nodes

as did AVL deletion. Hence the overall time to build and delete the

trees using C-SL was about four-fifths of the time taken by the AVL

algorithm.

A brief trial of one other compact tree algorithm took place. It

worked like C-SL except that it maintained the current balance (difference

in heights between the right and left subtrees) of each node, so that no

18



backtracking was required to find the place to rotate for a rebalancing.

When a choice of rotations at nodes along the path of insertion existed,

then the rotation took place at the highest (nearest the root) of these

nodes. It was found that the trees produced were similar to their C-SL

counterparts in average tp&, but the added complexity and a slower

running time made the algorithm non-competitive.
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Conclusions

Let us refer to the hybrid algorithm, which follows initial use of

the C-SL algorithm with use of the basic insertion algorithm, as

algorithm H. The C-SL algorithm may be regarded as a variant of

algorithm H. Algorithm H is the only compact-tree algorithm which might

be used in practice, so we will evaluate its performance.

Advantages of Algorithm H: The program for it is simple. Essen

tially it just requires the addition to a program for basic insertion of

a subroutine which performs backtracking and rotations, and a mechanism

to stack the nodes along the path of insertion. In contrast, a program

which performs insertions and deletions on an AVL tree is larger and

more complicated.

Algorithm H is fast if the input data is reasonably random —

faster than straight basic insertion by a small amount, while producing

a more compact tree.

C-SL is slower than algorithm H mainly because it must store

pointers to all nodes along the path of insertion. However, it only

uses the last five or six nodes while backtracking. One can imagine a

piece of hardware which would keep in k registers only the last k

items stored into it. With such a device, with k equal to five or

six, we could eliminate most stores to memory from the C-SL algorithm,

and hence increase its speed to about that for algorithm H, while

improving the trees which were produced.

Algorithm H eliminates the need for "balance bits", or any other

extraneous fields in the nodes of the tree. Under some circumstances

this might result in a noticeable savings in space (e.g. if the tree-

insertion program was to be written in a high-level language which
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assigned a word of storage to each field.

Finally, algorithm H will operate on any binary search tree — it

doesn't require maintenance of a special underlying structure, as in AVL

or "weight-balanced" trees.

Disadvantages of Algorithm H: There are two serious disadvantages

to using algorithm H. The first is that the expected tp& of a tree

grown by algorithm H is around 14% longer than for AVL trees. This

increases the running time during "look-up" operations. Usually one

would expect that the time spent looking up nodes in the tree would be

much greater than the time spent inserting or deleting nodes.

The second disadvantage is that the performance of algorithm H is

very sensitive to the order in which keys are inserted. If the incoming

keys are ordered, or semi-ordered, the C-SL algorithm slows down quite

a bit, spending a lot of time backtracking and restructuring. Also,

there exist trees which have relatively large tp£'s but aren't restruc

tured by the C-SL algorithm (i.e. when all subtrees off of the path of

insertion reach the floor, but each is rather sparsely filled).

Finally, use of the basic insertion algorithm after initial use of C-SL

relies on a semi-random sequence of insertions to produce a reasonably

compact tree.

In contrast, the AVL algorithm is very well behaved under almost

all sequences of insertions, and is guaranteed to produce trees with

height less than or equal to about 1.44 log2N, given N insertions.

We conclude that for some specialized uses algorithm H might be

the algorithm of choice.
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Appendix: Some Theoretical Results

This section presents a few results concerning compact trees.

Theorem. Suppose an n-node tree is guaranteed to be compact with

respect to a height function h(n) <_ log,n+c for some constants b

and c . Then its total path length is bounded above by a function

whose asymptotic growth is 0(n log n).

Proof. Suppose n = 2 -1. Observe that if there are m nodes

on level i, then there must be at least 'y' nodes on level i-1,

since each node has at most two sons. In a worst case we try to place

as many nodes as possible on the bottom level. We can do no worse than

k-1 k-2
to have 2 nodes at the lowest level, 2 on the second lowest,

etc., noting that 1+2 +4+•••+2k_1 = 2k-l. (If the tree's height

h exceeds k, then we need h - k more nodes to form a path from the

root to the root of the subtree we have just built, but for simplicity

we will disregard them.)

The total path length of the subtree we have just built is

(k-2)2 +2. If the whole tree has height h then we must add the

amount h-k for each node in this subtree. Hence the total path

length for a compact tree with 2-1 nodes is less than

(k-2)2k+2+(h-k)(2k-l) = (h-2)2k+2-h+k .
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k
Because h < log. (2 -1)+ c and h > k we have

— b o —

tpJl < (k Iob 2+(cQ-2))2k+2
= (kc.+c )2 +c_ for some constants c., c„, c„.

Setting n = 2 -1 gives log_(n+l) = k so that

tpA < (cx log2(n+l)+c2)(n+l) + c3

= 0(n log n)

t?~_ o^ i ^ ^ «k+l _ worst case tpi . - .
For 2-l<n<2 -1 the ratio c— is less than

n

for the bound derived for n = 2 - 1, so that the total path length is

always bounded by an 0(n log n) function. D

Theorem. When keys are inserted in increasing order by a compact-

tree algorithm, the running time is 0(n log n) to insert n nodes

into an initially empty tree.

Proof. To prove this result we will keep track of the shape of

the tree as it is being built. Assume a function F exists such that

we insert F(k) nodes between each increase in the tree's height.

Lemma 1. Suppose we have inserted n nodes into an initially

empty tree using a compact tree algorithm which backtracks from the

inserted node r to find a place to rotate, and that the keys occurred

in increasing order. Then insertion always takes place at the "lower

right corner" of the tree. Let p be the root node and let p . be

the right son of node p , for 1 < i <_ k-1 (there are k levels in

the tree), Let s be the left subtree of p..
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(*) Assume that if no rotation occurs at a node p. for all

of the F(k) insertions which occur while the tree has

height k, then for the remainder of the insertions no

rotations will take place at nodes p..,p_,...,p .

We will show: The path P1,P2»'"»Pk always extends to the floor

of the tree, and there exist at any step variables a, b and c with

0£a£b<c£k such that

(i) subtrees s-,s0,...,s - don't reach the floor,
± a a—J-

(ii) subtrees s ,s +i»*'«»sh_i don't reach the floor, but they

reach level k-1 or level k-2,

(iii) subtree s, reaches the floor (unless b = k),

(iv) subtrees sb+i »sb+9»•••»s _i either reach the floor or reach

level k-1,

(v) subtrees s ,s ,-,...,s. .. all reach the floor,
c c+1 k-1

Call a subtree "f-compact" if it can't be shortened by SHORTEN because

its number of nodes n and height h obey the inequality n >^ f(h).

Then

(vi) all subtrees s are f-compact, 1 £ i £ k-1.

denote a (f-compact) subtree, (f is defined on p.10.)Let
8i

The proof of the lemma is by induction on n, the number of nodes

in the tree.

Basis. n = 1. Set a = b = c = 1 and k = 1.

Induction Step. Let G(k) be the function such that the tree's

height grows from k to k+1 when n = G(k+1) (G(k+1) = G(k)+F(k)).

Assume that the tree has n nodes, height k, and G(k) £ n < G(k+1).

We observe the result when a node is added to the right end of the tree,
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i.e. n •*• n+1.

Level 1

node inserted

This is a picture of

Case 1. n+1 < G(k+1), a < b = c. A node is added to the right of

p, , and we must rotate. Because s, ,s, -,...,s, , are f-compact and

reach the floor we backtrack to p, - and rotate there. If s. has
*d-1 b

height i-1 and s - has height >_ i-2, then we know that the number

Vi

sb

left

rotation
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after relabeling

of nodes in the new subtree s, (in the above frame) is >
b —

f(i-l)+f(i-2)+1 = f(i). (As drawn s,. appears to have height i-1.)

Hence the new subtree s, with height i is f-compact, as claimed.

We must set b •*• b-1. Because the subtrees s ,.,s ,«,...,s, -
c+1 c+2 k-1

represented by the triangle all left the floor, we set c •*- k.

Now the picture belongs to

Case 2. n+1 < G(k+1), b < c-1

Example.

sl
Pa

• • •

/ ^\«Pk
S

a

Sb
£c:i-^_

Flrin-r
pc-l s

c

_ _ _ _ _ _ _ _ _ _ _ _ _

Here the rotation takes place at p . (variable c is always chosen

so that s - doesn't reach the floor, except possibly when b = c) .

As in Case 1, the subtree which is the new s is f-compact and reaches
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the floor. If it happens that s, ,, ,s, ,«,...,s, all reach the floor we
b+1 b+2 k

set c -*- b and are in Case 1 unless n+1 = G(k+1). Otherwise set c «- k.

We stay in Case 2 if n+1 < G(k+1).

Case 3. n+1 = G(k+1). In this case the height of the tree increases

upon insertion, so k «- k+1. Label the new node p, and drop the floor

one level. Set a «- b and then b «- k, c -<- k and we land in Case 1.

Case 4. n+1 < G(k+1), a = b = c. If this case occurs then we

rotate after insertion at p ,, but we can't guarantee that the new

s is f-compact. Observe however that » p. is always the top-most p.

where a rotation occurred while we inserted nodes at a fixed level, and

in Case 3 we set a •*- b. Hence while inserting at which we now call level

k-1, a rotation at what is now labeled p 1 never occurred. We now

make use of the assumption (*) made earlier to assert that no rotations

will occur at p ,P2,...,p ,. Hence Case 4 can't happen.

This proves Lemma 1.

Now we would like to justify the assumption (*).

Lemma 2. Given the conditions of the theorem, then (*) is true.

This involves a counting argument.

We inspect what happens to a part of the tree which initially looks

like
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Floor

lk-i

k-i+1

sk-i

•^5k-4

sk-i+l
...

sk-4
sk-3

Fig. 1

:-3

Induction Hypothesis: After 2 -1 insertions to the right of p the
lv

resultant tree has \_.j^\_i+1> •••j^..! a11 reachin8 the floor, and
i-j
2 rotations occurred at each node p , 0 < j £ i. No rotations

K—j

have occurred at p, , if 1 > i.
k-j J

Floor

Fig. 2

We prove the hypothesis by induction on i.

Basis, i = 1

.P
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We see that 2-1=1 insertion produces the desired figure, and we

rotated 2 =1 time at node p. ..
k-i

Induction Step, i > 1

'k-i

Lk-i

:-i+l

lk-3

sk-i+l
• • • sk-3

sk-2

lk-2

'k-1

o- b^k

Fig. 3

We assume by hypothesis that Fig. 3 is produced from Fig. 1 after 2 "" -1

insertions.

One more insertion produces Fig. 4 (after relabeling).

Fig. 4
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Finally, 2 -1 more insertions produce Fig. 2. The total is

(21"1 -1) +1+(21"1-1) = 21 -1 insertions. D

At node p we had 2 =1 rotation and at each node p, ,

for 0 < j < i, there were 2-21"1"^ = l1"^ rotations. •

This finishes the induction.

Starting with n+1 = G(k), one insertion produces the result in

Fig. 1, and (2 - 1) +1 = 2 more insertions produce a rotation at

pj^. There are F(k) insertions at this level. Hence we don't rotate

at p if and only if F(k) £ 2 ~ . At the next level we don't rotate

at this node if and only if F(k+1) £ 2 . Hence Lemma 2 is true if

F(k+1) £ 2F(k).

For a compact algorithm we set G(k) =a»b -c, l<b£2. Then

F(k) = G(k+1) -G(b) = a0> -bK) = (ab-b)bK. Since b£ 2 implies

F(k+1) £ 2F(k), we are done.

We note that if we were using the compact-with-shortening algorithm

then G(k) = g(k) and F(k) = f(k)+l.

The result of the previous theorem tells us that the time spent on

inserting the nodes to build an n-node tree is 0(n log n). If we can

show that the number of rotations and the number of nodes visited during

backtracking are both 0(n log n), then the time spent on restructuring

is also.

Each time we performed a rotation at node p we first had to visit

all of the nodes in sub(p.), and hence we will just count the number

1+1of visits. Sub(p, ) has height j+1 and hence has £ 2J -1 nodes.

At level k we insert F(k) nodes. Suppose we never rotate at

p. _. (possibly i = k), then the most nodes we could have visited is
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i-1 .+1
£ I (2J -1)(# rotations at p, ,)

j=0 k~J

=1I1(2j+1-l)(2i-J) £Y2i+1 =i.2i+1 .
j=0 j=0

We know F(k) £21"1, implying log2F(k) £i-1 or i>l+log2F(k).
We can make i as small as possible, so set i = 1+ flog9F(k)"|. Then

the number of nodes visited at level k is

£ (l+[log2F(k)"|)«2
(2+ flog0F(k)l)

£ c_F(k)log F(k) for some constant c. .

We know that F(k) £ a*b for some constants a and b, b £ 2. Then

the total number of nodes visited during backtracking while building a

tree of n nodes is

m | |

£ c I ab [log9ab "|
k=0 Z

m .

£c2 Ikbk
k=l

£ c^mb for some constants c„ and c„

and a value m * log n. Therefore the total number of visits is

0(n log n). D
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