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ABSTRACT

Several new results concerning the qualitative properties of a large

class of dynamic nonlinear networks are presented. These results are *

all stated in terms of the network topology and the elements' constitutive

relations. Among other things, simple conditions are derived which

guarantee that an autonomous nonlinear network has a globally, asymptot

ically stable operating point. In the case of nonautonomous nonlinear

networks, fairly general sufficient conditions are given which guarantee

that the network will have either a bounded, or an eventually uniformly bounded

output for a bounded input. Other conditions are shown to guanantee that the

network will have a unique steady state response. Moreover, the frequency

spectrum of almost periodic responses are expressed in terms of the

spectrum of the input signals. Estimates of the transient decay are

derived for a large class of dynamic nonlinear networks and the concept

of "time constant" for linear networks is generalized to high order

nonlinear networks.

To demonstrate that the hypotheses of our results are rather weak,

counter-examples are presented showing violation of each "network-

topology hypothesis" and "element-constitutive-relation hypothesis" will

invariably lead to significantly different qualitative behaviors — such

as the existence of subharmonic oscillations.

The results to be presented should contribute toward the formulation

of a unified theory of nonlinear networks.

Research sponsored by the National Science Foundation Grant GK-32236X1
and the Naval Electronic Systems Command Contract N00039-75-C-0034.



I. Introduction

Much of the analysis of dynamic electrical networks has traditionally

been directed towards the study of linear networks. Specifically, results

have been developed concerning the analysis and synthesis of linear net

works and systems [l]-[3], the linear amplification of "small signal"

voltage and current waveforms [4], and the use of linearized models of

nonlinear networks in computer-aided analysis and design [5], [6]. In

the last decade, however, the technological advances in device engi

neering has made it possible to synthesize highly nonlinear electrical

elements [7] and, at the same time there has been a phenomenal increase

in the use of large-signal digital and analog networks. It has thus become

necessary to examine nonlinear networks and to find ways to predict their

qualitative behavior.

Most of the literature dealing with the study of nonlinear networks

involves the formulation of network equations, and the analysis of their

inherent structure [8]-[12]. There are relatively few results dealing with

behavior of dynamic nonlinear networks [8], [13]-[17]. These are usually

concerned with networks containing specific nonlinear elements such as

transistors or iron-core inductors, or they deal with more general non-

linearities, but their hypotheses are in terms of mathematical conditions

on the overall network equations. —

In this paper we present a series of results concerning the qualitative

analysis of dynamic nonlinear networks. This paper is a summary of theorems

developed and presented in three papers [18]-[20]. We give conditions for

determining a large variety of types of network behavior; e.g., conditions

are given which guarantee that networks have no finite-escape time solu

tions, that the solutions are bounded or eventually uniformly bounded, that

the solutions converge to a globally asymptotically stable equilibrium

point or to a unique steady-state solution (these concepts are defined in

the following sections of this paper). We also examine the periodic nature

of network solutions. An important aspect of these theorems is that, unlike

previous results of a similar type, in their final form the hypotheses of

the theorems involve examining the nonlinearity of each network element,

and examining the interconnection of the elements in the network. That is,

the overall network equations need not be solved, or even formed. Furthermore,
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the nonlinearities of the network elements are described in circuit-

theoretic terms rather than by a purely mathematical description. Hence,

these results are both practical and easily verifiable.

In Sec. II we characterize the class of nonlinear networks which

will be examined, and we define the various types of nonlinearities used

to characterize the elements. In Sec. Ill we motivate and discuss the

graph-theoretic results of [18]. In Sec. IV we present the theorems con

cerning the behavior of autonomous and nonautonomous networks given in

[19] and [20] respectively. In the concluding Sec. V we present two tables

which summarize nearly all of the results of [18], [19] and [20].

It is assumed throughout this paper that the voltages and currents of

any network satisfy the Kirchoff Voltage Law (KVL) and the Kirchoff

Current Law (KCL), and that all network elements are lumped and time-

invariant (except time-varying sources) [1].

II. Characterization of the Dynamic Nonlinear Network

We shall examine the behavior of a dynamic nonlinear network cJV) con

taining nonlinear capacitors, inductors and resistors. Linear two-terminal

and nonlinear two-terminal capacitors, inductors and resistors are shown

respectively in Fig. 1(a) and 1(b). The voltages (v , v , and v_, resp.)

and currents (i , i and i , resp.) of each element are measured as
C L R

illustrated in the figure.

We let q and <|> denote respectively the capacitor charge and inductor
\j Li

flux linkage, where "TT^pCt) - \M * and "J^L^ = vL^fc^' Capacitors and
inductors are traditionally viewed as two-terminal elements which may be

"coupled." For example, if <Jv contains n linear capacitors, they are

described by the equation

3c = S?c (1)

where the off-diagonal elements of the n x n matrix C denote the coupling,

This is discussed in further detail in the next paragraphs of this section.

The term resistor is used to denote any electrical element whose be

havior is specified completely by its voltage and currents, i.e., there is

no third variable such as charge or flux-linkage needed to prescribe the

element behavior. In this sense, the set of resistors contains almost

every important electrical element other than capacitors or inductors. A
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common example of a nonlinear resistor is the transistor shown in Fig. 1(c)

It is a three-terminal resistor which is viewed as a grounded two-port

with voltages v£ and v , and currents i and i . In general, any (n+1)-
terminal resistor may be modeled as a grounded n-port resistor.

There is an important class of resistors which we shall view as

separate from other resistors. These are the voltage sources and cur

rent sources shown respectively in Fig. 1(d). Voltage sources are

resistors whose voltages are prescribed a priori but whose currents are

arbitrary. A dual definition applies to current sources . As shown in

Fig. 1(d) the voltage of the voltage sources and the current of the

current sources may vary with time.

Consider the dynamic nonlinear network cAI shown in Fig. 2. It is

formed using the elements of Fig. 1. Specifically, it contains n (pos-

siby coupled) one-port capacitors, and n (possibly coupled) one-port
nC nL

inductors. Let v ,i ,q G ]R and v ,i ,<[> € ]R denote respectively
""L» ~t» ~C **L **L "»L

the capacitor voltages, currents, charges, and the inductor voltages,

currents and fluxes. The constitutive relations of a charge-controlled

capacitor and a flux-controlled inductor are defined respectively by:

~c ~c ~c (2)

nr nC nL nL
where h : 1R L -»• ]R and K : 1R •+ 1R . The constitutive relations

of a voltage-controlled capacitor and current-controlled inductor are

defined respectively by

9c = ?C(V
(3)

Equation (1) is thus a special case of (3). Define the n -vectors (n =

°° I-B< s-13. *-$ *-$ s-El«»
then (2) and (3) become respectively

?p =hp(5p> 5 5p " fp(?p) (5)
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h * (1^,1^) , f = (fc»{L) (where "T" denotes transpose). Often the
capacitors and inductors may be described by either (2) or (3), in which

case h = f .
~P ~P

We view the n capacitors and the n inductors as attached to an

(n +n )-port N. Time-varying, independent voltage and current sources
" ° n

are attached to the remaining n ports of N. Let u G 3R S denote the

voltages of the independent voltage sources, and currents of the independent
nS

current sources. Let w G 3R denote the currents of the independent

voltage sources, and voltages of the independent current sources. The

vectors x,y ,u and w are port variables of N as well as capacitor,
p ~p ~o ~o

inductor and source variables. The multiport N may contain (nonlinear)
2

one-port resistors, (nonlinear) multi-port resistors, and constant

independent voltage and current sources.

Assume resistor Ra of N is an na-port resistor. Its voltage and cur
rent are, respectively, v ,Lg]R0. In defining its constitutive re-

lations (when it exists) we assume that for each port of the n -port
aresistor either the port voltage or the port current is an independent

resistor variable, and the remaining port variable is a dependent resistor

variable. Let j^ ,yR e ffi. denote respectively the independent and

dependent resistor vectors. The constitutive relation is therefore

?*« "W (6)
Let n^ be the number of resistors of N, and let il be the number of

all internal resistor ports of N (ja^n^ if, and only if, all resistors
are two-terminal elements). The composite resistor vectors are v ,i G ]RnR
representing respectively all internal voltages and currents. Let the nL

resistors be described by their constitutive relation g^ (•),gTJ (•)»••.,g (•),
^R, ^R« ~R

I X 2 "R
Here, a source is considered time-varying if it indeed varies with time,
or if it is a constant source which is to be represented by the source '
vector uc.
2 ~b
N may also contain controlled sources (i.e., voltage and current sources
whose voltages and currents respectively are dependent upon the voltage
and currents of other elements of N) in the sense that most practical
controlled sources can be described as "coupling" with multi-port re
sistors. For example, although transistors, FET, and operational
amplifiers are multi-terminal elements-which.are:often modeled using
controlled sources, they can also be represented as multi-port resistors.
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nR
and let xR>yR G 3R denote, respectively, the independent and dependent
resistor vectors, then

is the composite resistor constitutive relation representing all internal
" T T T T "1^|R ('),§R (•),..-,gR (•),..-gR (•) • The
Ll 2 ~ <* ~hlJ

constitutive relation of the "overall resistor" (n +nH)-port N (when it
p S

exists) is given by

lP =^vV (8)

resistors, where §«(*) =

*s ="Is'V-s* (9)
n +n n n +ng n

tg(.,.):3RP -• 1R p and g (•,•):» P + JR •
••P ~s

Remarks; 1. If N is an autonomous n -port, i.e. there are a no time-

varying sources, then (8) becomes y = -g (x ).
~P ~p ~P

2. Equations (8) and (9) have a negative sign because the port

currents (in Fig. 2) are directed away from the ports on "voltage-driven"

(i.e., capacitor and voltage source) ports, and the port voltages are re

versed on the "current-driven" (i.e., inductor and current source) ports.

These reference directions and polarities are chosen to be consistent with

those assigned to the capacitors, inductors, and sources.

Using (5) with (8) and (9), we can write the dynamical system repre

sentation [3] of lAI. Note first that •£• z (t) =z (t) =y (t): hence
dt ~p "*P P

5P - -?p(y;P>>«s) do)

w.s =-Is(hp(;p>'!!s) <u>

These equations describe the input-output system where u (•) is the input,

w (•) is the output, and z (t) denotes the state at time t. An alternative

way to view <J\) is to assume that the source waveform u_(t) represents fixed

time-varying sources, in which case we are interested only in the capacitor

and inductor waveforms described by the state equation (10). In all cases,

it is (10) which is of primary importance in determining the behavior of o\f,
and to this differential equation and its autonomous counterpart
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z =-g (h (z )) (12)
~P ~P\~P ~P /

we devote our attention in the sequel.

The following definitions characterize the various types of n-ports

considered here, and the form of the behavior of (_AI which we shall examine.

Let f: M +]R be an arbitrary function. The function f is passive if,

and only if, for all x G ln,

?Tf(?) >0 (13)

It is strictly passive if, and only if, (13) is true where the left side

is positive for all x ^ 0. It is eventually passive if, and only if, there

exists a constant k > 0 such that (13) is true for all ||x[| > k, and even

tually strictly passive if there exists k > 0 such that the left side of

(13) is strictly positive for all llxll > k.

Let f: D C 3Rn^. ]Rn, where D is convex in lRn.

The function £ is increasing in D if, and only if, for all xf,x" G D

(xl-x")T(f(x,)-f(x")j >0 (14a)
It is strictly increasing in D if, and only if, the left side of (14) is

positive for all x1 ^ x". The function f is uniformly increasing in D

if, and only if, there exists y > 0 such that for all x' ,x" G D

(xf-x,,)TEf(x,> - f(x")] >Y!lx'-x"ll2 (14b)

Remarks; The passive property and the increasing property defined above

with their extensions reflect the intrinsic nature of nonlinear functions.

Thus, in using these concepts in Sec. IV to determine the behavior of

dynamic nonlinear networks, the results are completely general and not

dependent upon the particular mathematical form of the nonlinearities.

Note that these definitions satisfy our intuitive physical concepts. For

example, a resistor described by (6) is passive (i.e., the resistor

absorbs and never delivers energy) if, and only if, g„ is passive by the

above definition. A case in point is the Ebers-Moll equation [21] describing

3
The norm D"B we have used in this paper is the Euclidean norm II5II =

Xl ••* ^V 1 • of course, the following results remain valid
for any choice of norm in ]Rn.
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the transistor in Fig. 1(c);
v /V

-. -, , _ ., r E' T
l. ~
"E

?tr r^ur1 "M^Ivvt"1 (15)

where the subscript "tr" denotes transistor. In (15), I_,<,, !„„, a_, V_,

and a are positive constants, and furthermore a < 1, a< 1, and aRIrc =

a„IFq. Now, it can easily be shown that g is a strictly passive C°°-

surjective diffeomorphism [19], [21]. We shall discuss this transistor

eauat"" on

III. Closure Properties of Resistive n-Ports

Let us examine the state equation of the autonomous network (12);

namely z = -g /h (z )). As we shall see in Theorem 6 of the next section,
-p 1~P\~P ~P / 4

if h is a C -strictly increasing diffeomorphic state function mapping
n ~p n g

]R p onto H p, and if g is strictly passive, then 0 € 1 p is the globally
asymptotically stable equilibrium point of the differential equation. That

is, for every solution z (•)> lim z (t) =0. This leads us to the following:
P t-*00 ~P

Conjecture: Let (JvJ be an autonomous network. Assume its capacitor-inductor

function h is a C -strictly increasing diffeomorphic state function map-
n ~P n

ping H p onto IR p and each "internal" resistor function g^ , a= 1,...,

m is strictly passive. Then g is strictly passive and 0 G IR P is the

globally asymptotically stable equilibrium point of the autonomous state

equation (12). *

The key point of this Conjecture is the seemingly reasonable assump

tion that if each ^> is strictly passive, then the "overall" n -port

resistor function g is also strictly passive. Let us examine the validity

of the Conjecture. Let us first examine the network of Fig. 3(a), where

The C -function h is a state function if, and only if, its Jacobian is
~p ~~*^>

symmetric everywhere in 3R v ; i.e., it is an exact 1-form. Capacitors
and inductors described by state functions are said to be reciprocal. The
condition of reciprocity is weak and is satisfied by most capacitors and
inductors of practical interest. We assume throughout this paper that h
is a state function.

In this figure and in all other figures, any element voltage or current
not explicitly shown is measured according to the convention illustrated
by Fig. 1. Thus, for example in Fig. 3(a) the current iR of resistor R^
is measured in the same way as the inductor current iL.
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we assume resistor R /is current-controlled (v_ = g_ (i_ )) and resistor
R1 Rx Rx

R9 is voltage controlled (i_ = g_ (v_ )). Then
Z R2 R2 R2

t-vL

. e (vc\ rvv-^L
(16)

and it is easy to see that if g and g_ are strictly passive, then g
Rl R2 ~p

is strictly passive. Hence, for this example, the Conjecture is true.

We next examine Fig. 3(b) assuming the resistor is voltage-controlled.

r±.

L.VL->

8R(VC2-VC1)
%(vc2-vc1) +*L
-i.

—v + V

L C2 C3

(17)

Here, if g is strictly passive, then g is passive but not strictly

passive. Furthermore, the network cannot have a globally asumptotically

stable equilibrium point, because if

v„ f.7
cl i

v„ K,
U2 2

v_ F...

S 3

i_ T
LLj M. —

denotes one equilibrium point, then

N ei E

\ =
E2

+

E

\ E3 E

l\] I 0

(18a)

(18b)

denotes another equilibrium point, for E G IR . Hence, the Conjecture

is false.

Similarly, for the linear network of Fig. 3(c) where the (linear)

resistor is strictly passive, it can easily be shown that g is not strictly
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passive. Furthermore, the network does not have a globally asymptotically

stable equilibrium point because

'vc (t)\ /Bsin 1!^ fc\
yV^COy =\-6 sin l/>£c t/ (19)

is a solution of the network for any p G ]R .

We conclude that in general the Conjecture is false; for some networks

such as that of Fig. 3(a) its conclusions are valid, while for other net

works such as those of Figs. 3(b) and 3(c), the conclusion is false. We

further conclude that the problem does not lie in the choice of the re

sistor functions g or the capacitor or inductor function h ; e.g., if
~R ~p

the network of Fig. 3(b) has one equilibrium point such as (18a), it will

have an infinite number of equilibrium points given by (18b), regardless

of the element constitutive relations. Rather the problem lies with the

way the network elements are interconnected. This observation has motivated

the graph-theoretic research discussed and presented in [18]. In particular

a series of theorems are derived in [18] which give conditions such that

properties possessed by the resistor functions g are "inherited" by the
~Ra

composite n -port function g . These results are summarized in Table 1

and discussed below. In general, they can be called closure property

theorems.

Let N be an autonomous n -port equation y = -g (x ).
V ^P P P

Theorem 1:

(i) If each function g^ of each internal resistor is passive, then
~Ra

g is passive.

(ii) If each function g^ of each internal resistor is increasing, then
~Ra

g is increasing. *

We will not prove this theorem, or any of the others presented here.

It is instructive, however, to illustrate the main points in the proof of

(i) of Theorem 1. The proof is based on the application of Tellegen's

Theorem: Noting that the voltages and currents of the n -port N are

Tellegen's Theorem states that for any network containing b branches, the
linear subspace C\] c lRb containing the voltage vectors such that KVL is
satisfied is orthogonal to the subspace $ C IR*3 containing the current
vectors such that KCL is satisfied. See, for example, [1], [8].
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measured as shown in Fig, 2, we have

P~P ~P ~P~PVn(XD) =^X =VR*R = £ &J )% K >>° <20>~p~p ~p ~p~p ~K~K a^ ~Ka ~Ka ~Ka

which proves that g is passive. An equation similar to (20) can be

written to prove (ii) of Theorem 1.

We have already shown with the counterexamples of Fig. 3 that if

each g_ is strictly passive, then g is not necessarily strictly passive.
~R ~p

The condition used to guarantee that g is strictly passive is the following:

Fundamental Topological Hypothesis: There is no loop and no cutset

formed exclusively by the ports of N.

A more general form of the Fundamental Topological Hypothesis is

given in Table 2, and Footnote 7, where it is assumed as in Fig. 2 that

capacitors, inductors and sources are attached to the ports of N.

Theorem 2: Assume the autonomous network N satisfies the Fundamental
2npx2nR

Topological Hypothesis. Then there is a matrix P G ]R r which has

elements +1, -1, and 0 such that for any set of network voltages and cur

rents v , v„, i , and i„ satisfying KCL and KVL, we have
~p ~R ~p ~R

v

~P

i
•~p-

= P
V

L^RJ
* (21)

Remarks: 1. This theorem and its extensions form the basis of a large

number of closure property theorems of [18]. These are listed in Table

1 and discussed to some extent in this section.

2. It is possible to elaborate further on this theorem. For

example, using the constitutive relations of the resistors, it is possible

under certain topological conditions given in [18] to find an inverse of
2^ 2n«

the equation (21); i.e., there exists a function h^: m *+ 3R * such that for

any set of voltages and currents y ,v^ i ,and j^ satisfying KCL and KVL, we have

When independent sources, capacitors and inductors are attached to N to

form o\) as in Fig. 2, we can use the following condition to write a

functional-relationship similar to (21):

Inductor-Capacitor Loop-Cutset Hypothesis (L.C. Hypothesis)

•11-



Let the dynamic nonlinear network (Jv) contain capacitors, inductors,

resistors and constant sources. The capacitors and inductors are described
3

by h in (5), where h is a C -strictly increasing diffeomorphic state
~P n~P n 3

function mapping 3R p onto 3R y . Let each resistor function g^ be a C -
^a

function, and let u_(.) satisfy a global Lipschitz condition. Assume that

the state equation (8) has at least one bounded solution and assume there

is no loop (resp. cutset) formed exclusively by capacitors and voltage

sources (resp., inductors and current sources). Furthermore, let c> be

any set of capacitors and inductors such that any capacitor or inductor

in o forms a loop and/or cutset exclusively with any combination of

independent voltage and current sources, and other capacitors and induc

tors of o . For each such set S, assume that at least one of the following

conditions is satisfied:

(a) There is a capacitor C. in o which is in a loop formed exclusively

with any combination of independent sources and other elements of S, but

not in a cutset formed exclusively with any combination of current sources

and elements of o. This capacitor is not coupled to any other capacitor

of S.
(b) There is an inductor L, in o which is in a cutset formed

exclusively with any combination of independent sources and other elements

of S but not in a loop formed exclusively with any combination of voltage
sources and elements of o. This inductor is not coupled to any other

inductor of o. •

Using the L.C. Hypothesis we show in Theorem 12 of [18] that there

is a continuous function h^such that

-*(*•>) (23)
\us(.)/

where v (•), i (•), v_(»), !.,(•) and u_(«) are C -functions of time, and
-p ~p ~K ~K ~o

KCL and KVL are satisfied. In Sec. IV we will show that there is a non-

trivial difference between the application of the Fundamental Topological

Hypothesis and the L.C. Hypothesis in determining the behavior of dynamic

nonlinear networks.

The closure properties derived in [18] using Theorem 2 and Eq. (21)
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are summarized in Table 1. Also included in Table 1 is a pair of results

involving equivalent networks. Of particular interest is the equivalent

transformation of networks containing loops of capacitors, and/or cutsets

of inductors.

In Theorem 3 below we present some of the closure property results

which are of particular interest in the next section.

Theorem 3: Let N be an n -port satisfying the Fundamental Topological
7 p

Hypothesis.

(i) If each internal resistor function g is strictly-passive (resp.,
u ~^astrictly increasing, CM—strictly increasing, surjective and diffeomorphic)

then g (»,u ) in (8) is strictly passive (resp., strictly increasing, Cy-
~p "b no

strictly increasing, surjective and diffeomorphic) for all u« G 3R .

(ii) If each g is eventually strictly passive and satisfies the

"growth condition"

lim "IT-CXr )T8r <*»>-+- (24)

nsthen g (.,u ) is eventually strictly passive, for all u G ]R . *
~P "D ~S

Remark: In [18] we note that (24) is true if g is uniformly increasing

i a
or is a C -strictly increasing and surjective diffeomorphism. Furthermore,

(24) may be relaxed to

lim (x. )TgR (x^ )=+«> (25)
llv 0-ko "*a 5Ra -^a

if N contains no sources, or if all sources are voltage sources (resp.,

current sources) and all resistors are voltage-controlled (resp., current-

controlled) .

IV. The Behavior of Dynamic Nonlinear Networks

When N contains independent sources, the Fundamental Topological Hypothesis
should be modified as follows: There is no loop (resp., cutset) formed
exclusively by capacitors, inductors, and/or independent voltage sources
(resp., current sources). Observe that under this hypothesis, the set
defined in the preceding L.C. Hypothesis becomes an empty set and hence
the topological conditions of the L.C. Hypothesis are automatically
satisfied.
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In this section, the theorems of [19] and [20] prescribing the be

havior of autonomous and nonautonomous dynamic nonlinear networks are

discussed. These results are summarized in Table 2 of Sec, V. The

hypotheses take two forms; first, purely mathematical conditions of the

network state equations (10) and (12), and second, conditions on the net

work element constitutive relations and on their interconnection. Theorems

of the latter type use the graph theoretic results of the previous section.

These results are discussed and illustrated in the theorems below. Let us

begin by examining networks which have no finite-forward escape time

solutions; i.e., networks whose solutions exist for all "forward" times.

A. Networks with No Finite Escape-Time Solutions

A well-known theorem of A. Wintner [22] states that if there exists

a continuous function i/>: 3R,->• H, satisfying

00

{ du
— +0

*(u)

such that for g and h given in (8) and (10), we have

k(W'2s)l ^"v0* (26)
ns

V IIz II > k, V u G IR , where k is any positive constant, then the
~p ~b _

solutions z (•) of state Eq. (10) are well-defined for all t G R .

This conclusion offersmore than is really.needed in the study of

dynamic nonlinear networks and, as a consequence, the conditions (26) is

prohibitively strong. This observation is illustrated with the network

of Fig. 4 which is formed with two of the most common elements used in

electrical networks; namely, the linear capacitor and the silicon diode.

The diode constitutive relation is given in Fig. 4, where I and V are

positive constants. The state equation of this network is given by

I
s

e - 1 (27)

As we shall see (Theorem 6), v = 0 is the globally asymptotically stable

equilibrium point of (27); i.e., every solution v (•) satisfies lim v (t) = 0.
t-x°

Every other solution has the form

f(t> \W0)
vc(t) =vc(0) *n ( f(t) " — I (28a)

e sgn vc(0)
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where

/sgn v„(0)A / \ /s8n vrW) \f(t) -(is/cvT)t +uJ ^-_ (28b)
Cs " T,

— e

and

sgn vc(0) =vc(0)/|vc(0)| (28c)

where, of course, vc(0) ^ 0. Observe that when v (0) > 0, (27) has a
finite "backward" escape-time solution. For example, if we choose the
time

A /CVt\ / , \
(29)

then it follows from (28a) that vc(t1) =+~ . In [19] criteria are
presented which guarantee that for any initial time tQ GIR1 and any initial
condition z (tn) of (10) the solutions z (•) are well-defined for all

~p u ~p

"forward time" t> tQ. Furthermore, the criteria are more practical
for our purposes than that of Wintner because most networks of practical
interest, such as that of Fig. 4, satisfy the conditions. An example of
these results is the following:

Theorem 4: Assume there exists a continuous function d>: 3R -* ]R
+ +

satisfying (25) such that

5P§p(yy^s)^-*(v2) <3°>
V llzp!l >k, Vug, where k is apositive constant. Then for any initial
time tQ and initial condition z (tQ)» the solutions of (10) are well-
defined for all t ^ t . •

Two theorems based on variations of these criteria and particular
choices of the function <K*) are given in Table 2.

B* Networks with Bounded or Eventually Uniformly Bounded Solutions

The solutions of state equations (10) and (12) are said to be bounded

if, and only if, for every solution z (•) there exists a constant k and

time tQ such that llzp(t)ll <kQ for all t>tQ. The solutions are said
to be eventually uniformly bounded if, and only if, there exists k such

that for every solution zp(.) there is atime tQ such that ||z (t) II <k
for all t_> tQ« P
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A series of theorems are presented in [19] and [20] and summarized

in Table 2 in Sec. V. They give conditions such that the solutions of

state equations (10) and (12) are eventually uniformly bounded. The

theorems are based on a well-known application of Lyapunov's Direct

Method [23], [24]. Furthermore, using Brouwer's Fixed Point Theorem,

we show in [19] and [20] that if the solutions of (12) are eventually

uniformly bounded then (12) has an equilibrium point, and if the solutions

of (10) are eventually uniformly bounded, then there is a periodic solu

tion z (•) with period T > 0 whenever u (•) is periodic with period T.
**p "*S

The theorems concerning the eventual uniform boundedness of solutions

of (10) require that g (»,u ) be eventually strictly passive for each
Ilq *"P ~"

u_ G IR . We can therefore use the methods of the previous section to

apply conditions to the resistor functiong g and to invoke the
~Ra

Fundamental Topological Hypothesis to assure that this criterion is

satisfied. Several such results are presented in Table 2. We can form
Q

a similar theorem for transistor networks. It is based on the observa

tion that the transistor constitutive relation g given in (15) is

strictly passive, and satisfies (25).

Theorem 5: Let (_A) be a network whose state equation is given by

(10). This network may contain capacitors, inductors, transistors

(described by (15)), voltage-controlled resistors which are eventually

strictly passive and which satisfy (25), and independent voltage sources.

Assume the capacitor-inductor function h is a state function and its
n fP

associated scalar function H : H p-> H is such that VH = h , and
P P -P

lim [|h (z)|| = +»

UJ-H. ~P "P
~P • (31)

lim H (z ) = +»

Hz lk~ p ~p
~P

Assume further that v_A) satisfies the Fundamental Topological Hypothesis.

Under these conditions, for any bounded and continuous set of time-

varying voltage sources (i.e., u (•) is continuous and bounded), the

8
Of course, any theorem of Table 2 may be applied to transistor networks
if gtr in (15) satisfies the appropriate conditions. Theorem 5 is
specifically designed to apply to transistor networks.
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solutions of (10) are eventually uniformly bounded. Furthermore, if

z i

~P
u (•) is periodic with period T > 0, then (10) has a solution z_(»)

which is periodic with period T. •

C. Networks with Unique Steady-State Solutions

The state equations (10) and (12) are said to have a unique steady-

state solution if, and only if, regardless of the initial conditions,

for any two solutions z'(') and z"(#), both solutions are bounded and
~p ~P

lim llz'(t) - z"(t)ll = 0 (32)
t-KO ~P ~P

Note that if the autonomous state equation (12) has a unique steady-

state solution, then the solutions of (12) are eventually uniformly

bounded and hence (12) has a constant solution z (t) = z . Then, from
* ~P ~P

(32) we conclude that z is the globally asymptotically stable equilib

rium point of (12).

It is often both useful and necessary to determine if an autonomous

network has a globally asymptotically stable equilibrium point, or to

determine if a nonautonomous network has a unique steady-state solution.

Consequently we have developed a number of results dealing with these

forms of network behavior in [19] and [20], respectively. The results

are listed in Table 2. In the remainder of this section we discuss two

of the theorems with their extensions. The following theorm has been

discussed in conjunction with the Conjecture of the previous section.

Theorem 6: Let Uv be an autonomous network described by state
equation (12). Assume h is a C -strictly increasing and surjective dif-

P
feomorphic state function, and assume g is strictly passive. Then
* A -l, ~P

?p ~ ~p W is the Slobally asymptotically stable equilibrium point of
(12). *

From Theorem 3 we conclude that the condition that g is strictly

passive is satisfied if each resistor constitutive relation g is
~Rct

strictly passive, and if cJU satisfies the Fundamental Topological Hypothesis
We have already noted that if the nonautonomous state equation (10)

has a unique steady-state solution, then the solutions of (10) are even

tually uniformly bounded. If u (.) is periodic with period T, then (10)

has a periodic solution z (•) with period T. Then, from Eq. (32) we
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conclude that every other solution z (•) converges to z (•) as t ->- 4»;

i.e., every solution z (•) is "asymptotically periodic." We can extend
8

this observation to the case where u (•) is asymptotically almost periodic

by using the following result of Yoshizawa [24]: If the state equation

(10) has a unique steady-state solution and u (•) is Lipschitz continuous

and asymptotically almost periodic, then each solution z (.) of (10) is

asymptotically almost periodic. Furthermore, let S and 2 — called
S p

the Spectrum of uc(*) and z (•) — denote respectively the countable
~b ~p

modules formed by integer combinations of the Fourier exponents of the

almost periodic functions to which u_(0 and z (•) converge. Then,

2 cS .
z u

p p
We shall use this result in the following theorem. First, let us

define the ultimate range of a time-varying function £(•): 3R, -»• 3R as

<£.($<•>) = n i UGmn:3tn >Tsuch that UO =D (33)
V ' test ° ~ °

Theorem 7: Assume in the dynamic nonlinar network lA) that the

capacitor-induetor function h is a C -strictly increasing and diffeomorphic
np ~p np

state function mapping ]R r onto 3R , and its Jacobian is Lipschitz con

tinuous. Assume cJvl satisfies the Fundamental Topological Hypothesis and

let each resistor function g be a C -strictly increasing diffeomorphism
% V /Rot.

mapping IR onto 3R , satisfying

lim

[]x_ l^-Oxp I (XR > 8R (x^ ) = -H» (34)

* nS
Under these conditions, for every u 61 there exists 6 > 0 such that

9
for any Lipschitz continuous and bounded uc(») satisfying

X n

A continuous function €(•): ^j.-9" ^ is asymptotically almost periodic

if, and only if, there is a continuous almost periodic function §q(*)J
]R, + ]Rn such that lim f-(t) - £n(t) = 0. Note that the almost periodic

function £Q(.)may be uniformly approximated by a Fourier series in the
same sense that a periodic function can be represented by a Fourier
series [24].

9That is, if 5S gQ/us(-)), then Dug -u*ll <6.
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,CP-f8s<->) -%» <s (35)
o\j has a unique steady-state solution. Furthermore, if u (•) is asymp

totically almost periodic, then every solution of (JvJ is asymptotically
almost periodic, and in the steady-state J> C ,Q •

zp us
In many of the theorems of this type presented in [19] and [20] it

is possible to extend the conclusions in the following way: If (10) has

a unique steady-state solution in the sense of Eq. (32), the solution

zf(0 and z"(.) may converge exponentially to each other. That is, there

may exist constants y > y > 0 and times x > t .„ > 0 such that
J —L max — min

-t/T ,
Xllz'(O) -z£(0)||e mln <flz^(t) -z£(t)||

-t/x -<36)
< Yllz*(0) - z"(0)[|e max, V t > 0
- ~p ~p -

It is useful to establish inequalities such as (36) in order to estimate

"transient decay times" of dynamic networks. An algorithm for computing

the two constants y > 0 and t > 0 of (36) is presented in [19].
' max

It is also possible to use weaker hypotheses in these theorems.

Specifically, the Fundamental Topological Hypothesis may be replaced by

the weaker L.C. Hypothesis in many cases. For example, the linear net

work of Fig. 5(a) has a globally asymptotically stable equilibrium point

(lC) =\0 J* similarly» it: can be shown (assuming I(») is continuous and
Li

bounded) that if each resistor constitutive relation in Fig. 5(b) is a

C^-diffeomorphism, then the network has a unique steady-state solution.

In both cases, the Fundamental Topological Hypothesis is not satisfied

(there is a loop formed by the capacitor and inductor in Fig. 5(a), and

a cutset formed by the capacitor, inductor, and current source in Fig.

5(b)). The L.C. Hypothesis can be applied, however, to show that these

networks converge to a unique steady-state solution.

V. Conclusions

A number of results concerning the qualitative behavior of dynamic

nonlinear networks have been presented and discussed. In their final

form, the hypotheses of these results involve conditions on the individual
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elements' interconnections. These conditions are simple, easy to verify,

and thus quite practical. The graph-theoretic theorems of [18], and the

network behavior theorems of [19], [20] are summarized respectively in

Table 1 and Table 2 which follow.

We conclude by noting that these theorems are often the best possible.

A case in point is the application of Theorem 7 to the network of Fig. 6.

This theorem is directly applicable, and it can be easily seen that there

exists some "sufficiently small" 6 > 0, such that for any <5 > 0, 0 <_ 5 < 6

the network state equation has a.unique steady-state solution. On the

other hand, we have shown in [20] that for 6 = 1 this circuit does not

have a unique steady-state solution. Instead, we found a periodic solution

with frequency w = 1, and a subharmonic solution with frequency <d = 1/10.

Similar counterexamples for the other theorems of [19] and [20] can be

found to show that the conditions given are often necessary as well as

sufficient.
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Table 1: GRAPH-THEORETIC THEOREMS

OF NETWORK qJJ AND N-PQRT N

A. Definitions and Notation

Network

Elements

Notation and

Dimension
Constitutive Relation

n capacitors

qc = charge

v = voltage

n_ inductors

<J>T = flux

i. = current

nc + "L = np

nc
9C'?c e \

h•\lj> ?p ~Yc]

9c = ?c(Yc> J *c = bc(qc)

*L = -fL(JL> ; iL =W

iil resistors

v = voltage

i-. = current

each resistor

Ra(a=l,..,mR) is
an n -port

2>a =nR
a=l

n

v ,i^ g m a
n

^R
V^Rem

?r'7r G m

~Ka ""a "Ka

*R = $R<5r>

Independent voltage
and current sources:

ns

ns
usGm »s = -s(,)

Autonomous n-port

Nonautonomous n-port

n

v ,i G R p

n

x ,y G ]R p

?p " 1p<Sp>

B. Equivalent Networks

From network lAI we may form an equivalent network lAj such that:

1. There is no loop and no cutset formed exclusively by voltage and current sources,

2. There is no loop (resp., cutset) formed exclusively by capacitors and constant
voltage sources (resp., inductors and constant current sources).

Moreover, each of the following properties of the capacitors, and inductors of
(JV( are also properties of the capacitors and inductors of ^Aj:

(i) f is a state function
~P

(ii) f is an increasing (strictly increasing, uniformly increasing) function,

(iii) J is a strictly increasing, surjective, Cy-diffeomorphic state function,
y > 0.



Table 1 Continued

C. Closure Properties of n-Ports

Resistor Property of each
gR ,a = 1,2,.. .n^

Additional Conditions (If Any) Under which the
n-Port Constitutive Relation g Has This Property

Graph-Theoretic Conditions Resistor Conditions

1 1 ; = =rr '—-=rzi r- —

Autonomous n-Ports

Passive none none

Increasing none none

Strictly Passive There is no loop and no cut
set formed exclusively by the
ports.

none

Strictly Increasing There is no loop and no cut
set formed exclusively by the
ports.

none

Strictly Increasing,

Surjective C^-Diffeo-
morphic (y _> 0)

There is no loop and no cut
set formed exclusively by the
ports.

none

Eventually Strictly
Passive

There is no loop and no cut
set formed exclusively by the
ports.

For each a= l,..,in

11m (x ) § (x )
[|x |-H» ~R<* *Ra ~Ra

s -f-co

Uniformly Increasing There is no loop and no cut
set formed exclusively by the
ports.

Each g_, and g_ is
Rct ~Ka

uniformly increasing

Nonautonomous n-Ports

ns
(Here, g («,u ) has the appropriate property for each u G ]R )

~P O *" o

Increasing none none

Strictly Increasing There is no loop (resp., cut
set) formed exclusively by the
ports and voltage (resp., cur
rent) sources.

none

Strictly Increasing
Surjective, C^1-
diffeomorphic (y _> 0)

There is no loop (resp., cut
set) formed exclusively by the
ports and voltage (resp., cur
rent) sources.

none

Eventually Strictly
Passive

There is no loop (resp., cut
set) formed exclusively by the
ports and voltage (resp., cur
rent) sources.

1 T
1 fin - . ... /-ir \ a (v \

^ „ XR H(XRa} %*„~VDx_ fl-*» ~Ra a a a

= -h»

Unl formly Iticrc/iH'tnK Then1 Ih iu> loop (re-Hp., cut

set) formed exclusively by the
ports and voltage (resp., cur
rent) sources.

Kiirh nK nnd ^ It.
uniformly increasing



Table 1 Continued

D. Relationship between Internal Resistor and External Port Variables

Network or N-port
Relationship

Autonomous n-port equation

[~v 1 rv_~i
~p

= p
~R

1 "** 1Upj "--fey

[5r]
X = P.
-1? ~± L?R^

Autonomous n-port equation

hi'

Network equation

Ly-> • «ii:5.

Properties of the
Relationship

The elements of matrices P

and P are +1, -1, and 0.~
There is no all zero row.

2n x2

P G m
"r

n x2nTJ
p R

P G m

When each resistor function

^ is Cy, y_> 0, then h^ is

For any compact interval

Dt = [VT2] ^ ml» Tl KT2,
hjf is a continuous map of a

1
subset of C —functions map-

2nR+n«
ping D into ]R into

1
the space of C -functions

2^
mapping D into 3R ^

Criteria for the

Relationship to exist

Necessary and Sufficient
Condition: There is no

loop and no cutset formed
exclusively by the ports.

Theorem 4, Reference
[18].

The L.C. Hypothesis

Also, y (•), YR(*),
1 (O, ip(') and u_(«)
-p ~R ~b

satisfy KVL and KCL

and are C -functions

of time.



TABLE 2. CRITERIA FOR DETERMINING THE BEHAVIOR
OF DYNAMIC NONLINEAR NETWORKS

The notation is the same as in Table 1, with the following additions:

1] Let £(•)•* 5R -*• Km be continuous. Define the ultimate range of £(•); C"R00(^(')) = H {g G ]Rm: 3t >T, with E, (t )=
2] Let §(•): Et ^ IR™ be asymptotically almost periodic and let {u^} be the set of Fourier exponents of the almost period!

function to which §(•) converges. Define the spectrum of g(») G_ to be the countable module formed by integer combina-
tions of the to,

k

3] Network state equations: Autonomous network z = -g (h (z )). Nonautonomous network z = -g (h (z ),u ). The functions h
1 P ~P\~P "P / ~p 5p\~p ~p ~S/

and §p are C . The autonomous network contains no voltage or current sources other than constant sources which are
absorbed into the capacitor, inductor, and resistor constitutive relations.
The different forms of network behavior are listed beginning with the weakest conclusion that there are no finite escape

time solutions to the strongest conclusion that there is a unique steady-state solution. In general, the criteria of the
stronger conclusions are also sufficient to guarantee the weaker conclusions.

The hypotheses are of two types;, first, mathematical conditions on h and g , and second, conditions on h , the
resistor functions g , and on the interconnection of elements. ~P ~P **P

Network Behavior

Autonomous or nonautonomous

network: there exists no

finite forward escape time
solution.

Autonomous or nonautonomous

network: there exists no

finite forward escape time
solution.

Autonomous or nonautonomous

network:

solutions are bounded

Autonomous network:

solutions are eventually
uniformly bounded

Conditions on h ; h is a State
~p ~p

Function and H is a Functional
P

Satisfying VH = h
P ~P »,

=1 constants k. ^ 0, Y ^_ X > 0
such that

Yllz»-z"ll2< (z'-z") [h (z')-h
-p ~p

< yOz'-z"
- ~p -p

-p ~p -p ~p

v llZpli >\
iiz"|| > k

lim

"~pH

lh (z )|| = -Ho
~p -»p

lim

Izfl-K.
P

H (z ) = -h»
P ~P

lim

DzpB->-

lim

Hzpll-*»

llh (z )l| = -Ho
~P ~P

H (z ) = -H*>
P -P

lim "h (z )
II z I]-h» ~P ~P

= -H»

~P
lim

Pgpfl"*"

H (z ) = -h»
P ~P

<^J

Conditions on g and on u
~P ~S

3 arbitrary matrix G , vector y ,
"P ~P

constants ^ ^ 0, k2 >_ 0 such that

sJwv+ ePxP +?p] >-kr
vv Ix

~p
> k.

3 constants k _> 0 and k > 0
such that

Xp!p(VUS} ^ "kl
V u

S'
Ix
-IP.

> k.

3k > 0 such that IIu (t)ll < k ,

V t G ]R , and g (•,u ) is even-
~p ~S

tually passive, V Hu II < k_

g is eventually strictly

passive

-••••ft"

Additional Conclusions and

Comments

1. Solution may become
unbounded as t •+ «>.

2. Solution may become
unbounded at some finit

but backward time.

The conditions on h and H
P

are satisfied if hp is a
C^-strictly increasing
diffeomorphic surjective
state function.

Solution may have arbi
trarily large amplitude,
depending on the initial
condition. Lossless net

works have this property.

The network has an

equilibrium point.
Lossless networks do not

have this property.



TABLE 2 CONTINUED

Network Behavior

Nonautonomous network:

solutions are eventually
uniformly bounded

Autonomous network:

there is a globally
asymptotically stable
equilibrium point z

Autonomous network:

there is a globally
asymptotically stable
equilibrium point z*

Nonautonomous network:

for every u , and e > 0
*

3 6 > 0 and a unique z*
(* *R
h (z ),u )= 0,
~p ~p ~s /

n^'Hh]< e for

every solution z (•).

Nonautonomous network:

there exists a unique
steady-state solution

Conditions on h ; h is a State
~P ~P

Function and H is a Functional
P

Satisfying vH^ = h

IS llh (z )ll = -Ho
liz ||+eo~P ~P

~P

lim H (z ) = +«>

•Spl-K."P ^
"h is a C1-strictly increasing

surjective and diffeomorphic
state function.

liis a C^-strictly increasing
~P
surjective and diffeomorphic
state function

~h is a cJ—strictly increasing
~P
surjective and diffeomorphic
state function.

h is linear; i.e.,
~P

h (z ) = T z
~p ~p ~p~p

where £ is positive-

definite and symmetric.

Conditions on g and on u„

3 k. > 0 such that IIuc(t)T< k ,

V t61 , and g (•,u_) is even-
» 2p '-S

tually strictly passive,
V llugll < k1.
g is strictly passive with
-P * *
respect to x = h (z ), i.e.,

~P ~p ~p
* i

(x -x ) g (x ) > 0, V x * x .
~p ~p ?p ~p ~p ~p

g is a strictly increasing and

surjective homeomorphism.

8 (#»u_) is a strictly increasing
~P ~S
eventually strictly passive, and
surjective C -diffeomorphism,

v v

g (',uj is a strictly increasing
~p ~S
and eventually strictly passive
homeomorphism, V u .

Additional Conclusions and
Comments

If u (•) is periodic with

period T > 0, then there i$
a solution z (•) which is

~P

periodic with period T.

If —F—K— is positive
9xp

definite, solutions con
verge exponentially to the
equilibrium point,

If gis in addition a C1-

diffeomorphism, solutions
converge exponentially to
the equilibrium••point.

If lim u_(t) = u*, then

lim z (t) = z for every
~p ~p

solution z (•).
-P

If u (•) is Lipschitz con-

tinuous and asymptotically
almost periodic, then ever
solution z (•) is asymp

totically almost periodic
and gz C g If

p s

g (*,u ) is in addition
~P i ~s
a C -diffeomorphism, solu
tions converge exponen-

M'fllly l-o the RtPadv-state



TABLE 2 CONTINUED

Network Behavior

Nonautonomous network:

there is a unique steady-
state solution, and all
other solutions converge

exponentially to the
steady-state.

Nonautonomous network:

for every u* 3 <$ > 0 such
~S

that if

ifi5„(us(.))-u < 6

then there is a unique
steady state solution

Conditions on is a StateV h i
Function and H is a Functional

P
Satisfying VH = h

h is a C -strictly increasing

and surjective diffeomorphic
state function.

«

h is a C -strictly increasing

and surjective diffeomorphic
state function, and its Jacobiar

is Lipschitz continuous.

Conditions on g and on u
~p ~b

g is linear;

g (x ,u ) = G x + G u
~p -p ~b ~p~p ~S-S

where G is positive-definite
~P

and symmetric.

g (»,u_) is a strictly-
~p ~S

increasing eventually strictly
passive and surjective C^-
diffeomorphism,. V u .

**b

Additional Conclusions

and Comments

If u (•) is Lipschitz
"" b

continuous and asymp
totically almost periodic,
then every solution z (•)

~P

is asymptotically almost
periodic, and Q C CJU .

If u (•) is Lipschitz
~* b

continuous and asymp
totically almost periodic,
then every solution z (•)

~p

is asymptotically almost
periodic, and 0 C g .

•p US

In the remainder of this table, the criteria of network behavior is given in terms of conditions on the resistor con
stitutive relations g_ and element interconnection rather than on the function g (')• Note that the conditions on u (•) and

~*a ~P ~b
the Additional Conclusions and Comments apply to the different types of network behavior below.

Fundamental Topological Hypothesis
voltage (resp., current) sources.

L.C. Hypothesis: See page 11•

There is no loop (resp., cutset) formed exlusively by capacitors, inductors and/or

Network Behavior

Autonomous network:

solutions are eventually
uniformly bounded

Nonautonomous network:

solutions are eventually
uniformly, bounded

Conditions on h ; h is a State
~p ~p

Function and H is a Functional
P

Satisfying VH = h

lim Hh (z ) |] = +oo
~p ~p-

Iz ll-*»
~P

lim H (z )
Hz II-ko P ~P
~P

= +00

lim Hh (z )|| = -H*>

Iz D~ ~P ~P
~p

lim H (z ) = +»

Hz 0— p ~p
~P

Resistor Conditions

Each resistor function g is even-
?R

a

tually strictly passive, and

llm <5R )Tip (xr >=+00

Each g^ is eventually strictly

passive, and

lim 1 (x,. )\ (x- )=+°
llx„ li^co ||x„ II ~K<* "Ka ~Ka
"R,a IXR '

Graph-Theoretic
Conditions

Fundamental Topological
Hypothesis

Fundamental Topological
Hypothesis



TABLE 2 CONTINUED

Network Behavior

Autonomous network:

there is a globally
asymptotically stable
equilibrium point z

Autonomous network:

there is a globally
asymptotically stable
equilibrium point z

Nonautonomous network:

for every u_, and e > 0

3 6 > 0 and a unique z

such that 8p(hp(z*),u*J =

te(*.<->KI <']
_R(V->K! *e]for

every solution z (•).

Nonautonomous network:

there exists a unique
steady-state solution

Nonautonomous network:

there is a unique steady-
state solution, and all
other solutions converge
exponentially to the
steady-state
Nonautonomous network:

for every u t3 6 > 0 such
that if ~S

then there is a unique
steady state solution

0,

Conditions on h ; h is a State
~P ~P

Function and H is a Functional
P

Satisfying VH = h

his a Ci-strictly increasing

and surjective diffeomorphic
state function.

~h is a C1-strictly increasing

and surjective diffeomorphic
state function.

his a Cl-strictly increasing

and surjective diffeomorphic
state function.

h is linear; i.e.,
~P

h (z ) = r z
~p -p ~p~p

where r is positive-

definite symmetric

l.The network contains- only one
type of energy storage elements;
i.e.. either all capacitors, or
all inductors.

2.hp is a Cl-strictly increasing
and surjective diffeomorphic
state function.

h is a cl-strictly increasing

surjective diffeomorphic state
function, and its Jacobian is
Lipschitz continuous.

Resistor Conditions

Each g is strictly passive

(Except for contrived situations,
this condition excludes independent
sources)
Each g is a strictly increasing,

surjective homeomorphism.

Each g is a strictly increasing
1 ~Ra
C -diffeomorphism satisfying

lim 1

Ix, 0-K.HZ1
T

~Ra ~Ra ~Ra

Each g is a strictly increasing
~Ra

homeomorphism satisfying

lim _1 , xT , . ,

Each g is linear; i.e.,

gR (xR } = G«*R"Ka ~Ra ~a Ra
where G is positive definite and
symmetric.

Each g is a strictly increasing
1 a
C -diffeomorphism satisfying

»x„ lUlxTT Rot ~R eR"
"R

"a

Graph-Theoretic
Conditions

Fundamental Topological
Hypothesis, or the L.C.
Hypothesis.

Fundamental Topological
Hypothesis, or the L.C.
Hypothesis.

Fundamental Topological
Hypothesis.

Fundamental Topological
Hypothesis, or the L.C.
Hypothesis.

Fundamental Topological
Hypothesis, or the L.C.
Hypothesis(in this case,
transients do not neces

sarily decay exponen-
tially).

Fundamental Topological
Hypothesis.
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