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ABSTRACT

In order to find a distortion measure for image encoding that

reflects the properties of the human visual system, a number of

psychophysical experiments investigating the detection of pseudo

random patterns by human subjects are conducted. A mathematical

model for the detection of distortion in still monochromatic images

is developed. Estimates for the numerical values of the parameters

of the model are found. The model consists of a number of parallel

channels each selectively sensitive to a range of spatial frequencies

and orientations, with detection taking place when the response of

any one of these channels reaches a threshold level. The threshold

rms contrast of narrow-band isotropic noise, superimposed on a

constant luminance background, is measured as a function of the center

frequency of the stimulus. The result is similar to the contrast

sensitivity curve for sinusoidal gratings. Maximum sensitivity appears

around the frequency 4.5 cycles per degree. In another experiment

the visibility of different linear combinations of two narrow-band

patterns with different center frequencies is investigated; this confirms

the multichannel form of the model. In order to find numerical values
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for the parameters of the channel filter tuned to 4.5 cycles/degree,

threshold contrast of gaussian pseudo-random patterns that are narrow-band

In both spatial frequency and orientation, are measured for various

radial and angular stimulus bandwidths. The thereshold contrasts of these

patterns as predicted by the model, are computed for various values of

the filter radial and angular bandwidths. By comparing the simulation %

results with experimental results, the radial bandwidth of the filter is

found to be around +2.5 cycles/degree and the orientational selectivity

expressed in terms of the polar angle in the frequency plane is found to

be +10°. The threshold contrasts of pseudo-random patterns obtained

from a family of nonlinear operations on a narrow-band gaussian noise

pattern are measured. Using different values of p in the L -norm

operation, the threshold of these patterns as predicted by the model is

computed; the results for p=8 match the experimental data. The threshold

contrast of narrow-band noise,multiplicatively combined with a narrow

band background image, is measured for two different background center

frequencies as a function of the noise center frequency. The presence

of the background image decreases the sensitivity to the noise pattern.

This decrease is maximum when the noise and the background have the same

center frequency. It is also found that the threshold contrast of the

noise is a monotonic increasing function of the background contrast. The

effect of the background image is reflected in the model by

assuming that the background is processed by a separate channel

whose output scales down the response of the channel to the

noise. Various forms of the fidelity criteria resulting from this

model are discussed. The expression for the resulting distortion

measure depends on the image that is to be transmitted as well as

the difference of this image and its distorted reproduction.
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CHAPTER 1

INTRODUCTION

1.1. Research Objectives

The transmission of images over communication channels with

finite capacity usually results in some form of distortion in the

image. This distortion can be due to several factors. Suppose a

still monochromatic image is regarded as a function u(x,y),

representing the luminance as a function of the spatial variables

x and y over some frame [0,T] x [0,T]. The transmission of such

an image requires encoding it into a form that is acceptable by

the communication channel. For example we may have available a

digital communication channel which can transmit up to C binary

digits (bits) per second reliably (i.e. with very small probability

of error). Therefore the transmission of one image frame within a

finite period of time requires that the function u(x,y) be encoded

into a sequence of a finite number of bits from which at the receiver

an approximation u(x,y) of the original image can be reconstructed.

Efficient transmission schemes require that we encode the image

into the smallest possible number of bits consistent with some level

of the fidelity of the reconstructed image u(x,y). Clearly the

smaller the number of bits, the coarser will be the quantization of

the space of all possible images u(x,y); this in turn results in
A

u(x,y) being a poorer approximation of u(x,y). Therefore this

process which is referred to as source coding, introduces some

inevitable amount of distortion. Further distortion can result from

channel errors. Depending on the specific source coding algorithm

used, in some cases the channel's error in transmitting a single
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bit can cause a substantial amount of distortion in the received
image.

In many applications it is necessary to transmit large numbers

of images over a communication channel of limited capacity. One

such example is in the use of satellite photographs to study the

earth's environment. In these applications the efficiency of the \

source coding algorithm and consequently the trade off between the

number of bits per picture frame and the fidelity of the received

image plays an important role. Clearly the criteria used in

evaluating this fidelity depends on the subjective judgment of the

user of the communication system. If we were able to find a

non-negative function, d(u,u), termed the distortion measure, which

represents the degree of the dissatisfaction of the user due to

transmitting the image u(x,y) and receiving the image u(x,y), then

the trade off between the number of bits per image frame and the

distortion as perceived by the user could be treated quantitatively.

This distortion measure enables the designer of the coding and

transmission systems to predict the quality of the system from the

point of view of the end user rather than building systems and

experimentally determining the user's satisfaction.

Such a quantitative measure of distortion would also allow

one to apply Shannon's rate distortion theory (Shannon [1]) to the

problem of image encoding. Given a distortion measure d(•»•)» for £

an image source with a given probability distribution, Shannon has

shown that we can define a function R(D), termed the rate distortion

function, with the important property stated by Shannon's source

coding theorem. This theorem states that if an encoding and

-2-



transmission system yield average distortion less than or equal to D

E{d(U,U)} <. D

for some positive D, then regardless of its complexity or the

specific encoding algorithm used, it must contain a channel

whose transmission capacity is at least C = R(D). Conversely

by suitably designing the encoding system and allowing sufficient

complexity of the encoder, it is possible to achieve a transmission

rate R(D) + e with an average distortion of value D, where e is

positive but can be made arbitrarily small.

Although the rate distortion theory does not in general tell us

how to design efficient encoding algorithms, it is of extreme

importance in that it gives the absolute (but achievable) lower

bound to the efficiency of any system and thus provides a point of

reference with respect to which the performance of the existing or

proposed systems can be measured.

One major problem is to find the distortion measure d(.,.) which

does in fact reflect the human subjective sensation of the distortion,

and does this consistently for a large class of images and for all

levels of distortion. Finding a precise quantitative measure for an

* imprecise notion such as the dissatisfaction of the user is, to say

the least, a very difficult task; we can not even be sure that such

a function exists at all.

Suppose we approach the problem in a different way by asking

what are the distortions to which the user of the communication

system is insensitive. This insensitvity may be due to the very

specific objectives of a transmission system, in which the user's
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requirements allow certain types of distortion. For these special

cases we may very well be able to define a distortion measure which

can be used to increase the efficiency of the encoding system

appreciably.

More important however is the fact that due to the limitations

of the visual perception mechanism of the human being, there is a

large class of distortions that are not detectable at all by the

user. A trivial example is when the two images u(x,y) and u(x,y)

differ only in very high spatial frequency components, beyond the

resolving power of the visual system. Then no matter how large

this difference is it will not be detectable. It is clear that

in designing an efficient system, regardless of any other requirements

of the user, the limitations of the visual perception mechanism

have to be taken into consideration.

The primary objective of this research is to find a mathematical

model which can predict the threshold of detection of the distortion

in images. In order to construct such a model, a series of psychophysical

experiments investigating the detection of pseudo random patterns by

human subjects, has been conducted. Based on this model we define

a distortion measure which is in agreement with the subjective

judgment of the user as far as the limitations of his perceptual

mechanism is concerned. It should be pointed out that such a

distortion measure is useful as long as the level of distortion is

around the threshold of detection; for very visible distortions we

are still faced with the problem of subjective judgment and the

dependence of user's criteria on the specific goals of the transmission

system.

-4-
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The construction of a mathematical model for the detection of

distortion requires a knowledge of the properties of the human

visual system. Fortunately the study of both the physiological

and psychophysical properties of the visual system started long

before the study of image transmission systems. Of specific

importance for this research are a number of psychophysical

experiments, conducted within the last decade, investigating the

visibility of such patterns as sinusoidal gratings,lines and edges.

These studies have established some basic facts about the detection

of these structured patterns. Based on these results, a survey of

which will be conducted in Chapter 2, detection models that use the

concept of linear two dimensional filters have been suggested. The

application of the results of these experiments to the image encoding

problem was suggested by Sakrison [2].

All of the experiments of this research deal with the properties

of still monochromatic images. The stimulus patterns used in these

experiments were sample functions of random patterns. There are two

reasons for choosing pseudo-random patterns. First the distortion

caused by transmitting an image over a communication channel often

takes the form of an unstructured pattern which does not resemble

structured forms such as periodic gratings or lines. The second

reason is that for a random pattern, the phase effects of the individual

frequency components average out over the frame of the image.

Consequently such properties of the image as the ratio of the peak

to r.m.s. value are not affected substantially by a change in other

parameters such as the bandwidth of the image. While, for example

the ratio of peak to r.m.s. value for a compound grating consisting

of two sinusoids whose frequencies are close together can be changed
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substantially by changing the relative phase of them. Pseudo

random patterns were also used by Mitchell [3] who investigated

the effect of the spatial frequency components of these patterns on

their detectability.

1-2. Overview of the Dissertation

In an effort to find a model for the threshold perception of

distortion patterns, we first concentrate on the detection of

patterns on a blank (constant luminance) background, thus ignoring

the effect of the image that is to be encoded on the visibility of

the distortion. In Chapter 2, after a brief description of the

processing of images by the visual system, a survey of the past

research on the visibility of patterns on a blank background is

given. Then based on these results a general structural form for

the detection model is presented.

In Chapter 3 the experimental methods and the stimulus images

are described. Chapter 4 is devoted to describing a sequence of

experiments designed to refine the model that was assumed in

Chapter 2. The experiments of sections 4.3, 4.4, 4.5, 4.6 were

designed specifically for a quantitative analysis of this model.

They provide numerical estimates for the values of the important

parameters of the model.

The experiments of Chapter 5 investigate the effect of the

background image on the visibility of pseudo random patterns. In

Chapter 6 the experimental results and their implications are

discussed and a modified version of the model of Chapter 2 which takes

the effect of the background image into account is presented. Based

on this model a quantitative measure of distortion is defined.

-6-
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Finally the possible implications of this distortion measure for

image encoding are discussed.
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CHAPTER 2

VISUAL PERCEPTION

In order to find a distortion measure that can be used

successfully in the encoding of still monochromatic images, we

need to have a mathematical model for the mechanism of the

perception of distortion in images. In this chapter we will first

study the formation of the retinal image and the properties of the

photoreceptors of the retina to the extent that they relate to the

processing of visual patterns by the visual system. Then, after

discussing the significance of psychophysical methods, we will make

a survey of the past research in psychophysics of vision as related

to the visibility of patterns. Based on the results of these

studies we will present a basic structural form for the model of

the perception of patterns on a constant luminance background. The

objectives of most of the experiments that were conducted in this

research are based on the assumption of this basic model. These

objectives will be discussed at the end of this chapter.

2.1. Processing of Images by the Visual System

The first step in the visual process is the formation of

an optical image on the retina of the eye. This step is of interest

because it is the retinal image which is the real input to the

neural mechanism and it is therefore important to know how it is /*

related to the outside visual scene. Figure 1 is a diagramatic

cross section of the human eye. The light entering the cornea is

refracted by its surface, then refracted more by the body called

the lens, and finally forms an image of the light source at the

-8-
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Fig. 1. Diagram of a horizontal cross section of the human eye.

retina. The combination of corneal and lens surfaces all may be

considered as an optical imaging device that forms an image of an

object on the retina.

Although the retinal image in each eye is usually formed as a

projection of three dimensional objects, it is always possible to

produce an equivalent light distribution on the retina by an

appropriate two dimensional external stimulus. Therefore we shall

assume that for each eye our visual stimulus can always be characterized

by a function i(x,y) of two spatial variables x and y, which represents

the luminance distribution in a plane. We call this the stimulus

image. If distances between points in both the object and image

planes are expressed as angles subtended at the appropriate nodal
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points of the optical system, then both the stimulus image i(x,y)

and the retinal image ir(x,y) can be expressed as the light intensity

as a function of the same two variables x and y, which are the

orthogonal components of the subtended angle between a point and the

origin which is assumed to be on the visual axis.

Partly because of diffraction at the pupil and partly because of

focus error, aberrations and imperfections in the optical components

of eye, i(x,y) and i (x,y) are not in general identical. But like

in any imaging device the relation between these two images can be

expressed in terms of the point spread function of the optical

system, which is the retinal image h(x,y,u,v) in the coordinates

x and y, that is produced by a point source of light located at the

point (u,v) in the object plane. In its general form the point

spread function is a function of four variables. If the optical

system has the shift invariance property, namely for all u and v

h(x,y,u,v) = h(x-u,y-v,0,0) (2.1)

then the system is called homogeneous or isoplanatic and the

point spread function can be identified by a function of two

variables, h(x,y), which is the image of a point source of light

located on the visual axis. A homogeneous optical system, whose

point spread function is circularly symmetric around the origin,

is called isotropic. If we identify the stimulus image corresponding

to the point source of light by a delta function, 6(x,y), then we

can say that an optical system is perfect if it is homogeneous

and its point spread function is a delta function.

-10-
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Assuming that the stimulus image is incoherently illuminated

the illuminance at each point in the retinal image is the sum of the

contributions from all the stimulus picture points. Therefore it

is possible to calculate the retinal illuminance distribution for

any arbitrary luminance distribution in the object plane by the

convolution integral

ir(xiy) =||b(x,y,u,v) i(u,v) dudv (2.2)

We can see that the optical system of the eye can be regarded as a

two dimensional linear filter. If the assumption of shift invariance

is made about this optical system we can also characterize it by

its two dimensional frequency response

-tfH(fx'V =IIexP[-327r(fxx + fyy)] h(x,y) dxdy (2.3)

which is the two dimensional Fourier transform of the point spread

function (impulse response) of the optical system. The variables

f and f are called the spatial frequency variables, and when x
x y

and y are subtended angles, they are expressed in cycles/degree

C70).

From the theory of linear shift invariant filters, we know

that if I(f ,f ) and I (f ,f ) are the Fourier transforms of the
a. y r x y

stimulus and retinal images respectively, then

wy • »<yy • ^vy <2.4>

and the response image can be computed by the inverse Fourier

transformation

-11-



^>-JJexpEtia^^x+fyy)] Ir(fx,fy) dfxdfy (2.5)

In optics the two dimensional frequency response is called the

modulation transfer function (MTF). For isotropic imaging devices
the MTF becomes real and circularly symmetric, and thus

identify it by a function of one variable f ,where
we can

f =+/f?+f2r Trrx y (2.6)

It is possible to measure the MTF of an optical system by using

sinusoidal gratings which are stimulus images generally expressed by

Kx.y) =Io +Asin[2TT(vxx+vyy) +<f>]. (2.7)

For example for vy =0, we have avertical sinusoidal grating with

spatial frequency vx ~/0. Since i(x,y) is the luminance and hence

always non-negative, we have A < I .
— o

The response of a linear shift invariant filter to this stimulus

image is a sinusoidal grating with the same spatial frequency

components v and v
x y

ir(x,y) = I + B sin[27r(v x+v y) + *] (2.8)
x y

The ratio B/A is equal to the magnitude of the MTF at the point

^Vx,Vy^ in tlie fre<luency plane. Therefore if we measure the ratio

of the amplitude of the image grating to the amplitude of the

stimulus grating for all spatial frequency pairs (v ,v ), we find
x y

the magnitude of the MTF. For isotropic imaging systems, we can

-12-
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determine the real valued MTF completely by using gratings with one

direction only, that is for example let v = 0 and vary v .

Most imaging devices, including the eye, act as low pass filters

and above a certain frequency which depends upon the focal ratio

of the optical system and the wavelength of the light, the MTF

becomes essentially zero. The quality of the optical system of the

human eye depends upon the size of the pupil; aberrations being the

dominant contributor to the degradation of the image when the pupil

is large and diffraction when it is small. At some intermediate pupil

size (about 2-3 mm), the optical system produces the least blurred

image.

Assuming that the imaging system of the eye is isotropic, its

MTF has been measured by, among others, Arnulf and Dupuy [4] and

Campbell and Green [5]. The results of Campbell and Green for

different pupil sizes are shown in Fig. 2.

1-0 r

Fig. 2.

OB

06

a

a

0-2

19 20 10

Spatial froquecwy (o/dcg)

SO

Contrast transfer runctxons for the focused eye at four
pupil diameters. • ,2, ram; V, 2.8 mm; •, 3.8 mm; A, 5.8 mm
(Campbell and Green [5]).
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The second step in the visual process is the conversion of the

light into signals which can be transmitted and processed by the

nervous system. This is done by the photoreceptors of the retina.

There are two types of photoreceptors in the retina, rods and cones.

In the center of the back of the eyeball, where the visual axis

meets the retina, there is a region called the fovea which is slightly \

depressed. This region contains only cones and the cones there are

very densely packed. The density of cones rapidly declines as the

distance from the fovea increases. The rods begin to appear about

1° from the center of the fovea, and their density increases to a

maximum at about 20°, thereafter falling to a low level. Except for

the presence of the optic disk which is the region where the axons

from all ganglion cells - which are connected to rods and cones

- coverage and exit from the eyeball, the distribution of receptors

is radially symmetric about the fovea.

The cones of the fovea are responsible for the high resolution

vision at the illumination levels that we normally encounter (photopic

vision). The cones at these illumination levels, which range from

a modestly lighted room up to a bright sun light, have a lower

threshold than rods for responding to the light incident upon them.

On the other hand, for a dark adapted eye, the rods have a lower

threshold of excitation at very low levels of illumination.

The retinal image is only of functional significance in so far -*

as the retinal photoreceptors respond to the light incident upon

them. Since the activity of each photoreceptor depends on the light

falling upon it, we can think of the activity pattern of the

photoreceptor array as a neural image. This image clearly

-14-

s»

.-<«.



-J

t&\

differs from the retinal image in that it is spatially quantized.

However so long as the retinal image does not contain any spatial

frequency component with periods smaller than twice the distance

between adjacent photoreceptors, the sampling process does not,

per se, result in any loss of information. Indeed in the center of

the human fovea, the spacing between adjacent photoreceptors

(center to center) is about 2 ym, equivalent to a little less than

.5 minutes of are (Polyak [6]). Thus the photoreceptor mosaic in

this region is capable of transmitting the spatial frequencies up

to 60 ~/0, while the absolute diffraction - determined cutoff

frequency for a 2 mm pupil and a light of wavelength 560 nm is

63 ~/0. Therefore the coarseness of the foveal photoreceptor mosaic

and the frequecy response of the optical system of the eye are

reasonably well matched.

It is well know that the activity of each photoreceptor is a

monotonically increasing function of the intensity of the light

falling on it. So we might expect that the sensation of brightness

produced by any point in the visual field should depend only on the

intensity of the light radiating from that point. But in fact this

is not the case, and many perceptual phenomena, like the existence

of Mach bands (Cornsweet [7]), indicate that the sensation of

brightness at each point is determined by the distribution of luminance

in a region that includes some of the surrounding area as well as

that point.

There is also physiological evidence about the spatial

interaction in the visual system of animals. In order to explain

this we consider the response of the ganglion cells of the retina.

-15-



These are not of course the cells that are immediately affected by

signals from the photoreceptors. Rather, they are the output cells

of the retina and each one of them is connected to a group of

photoreceptors by a rather complex arrangement of intermediate cells.

The information in the response of a ganglion cell is conveyed in

the form of nerve impulses which the cell generates for transmission

along its axon to the brain. Although the occurence of these

impulses is random in time, the average frequency of the cell's

firing (occurence of an impulse) is a measure of the response of

the cell. Kuffler [8] was among the first to study, by

electrophysiological techniques, the response of mammalian retinal

ganglion cells to patterned visual stimulation. Kuffler found that

he could influence the activity of a ganglion cell from points in a

relatively extensive area of the retina. This was in fact expected

since each ganglion cell is connected indirectly to a number of

photoreceptors. There is also evidence that at higher levels of

processing, for example in the visual cortex, the response of

retinal cell are further combined and actually the process of

spatial interaction takes place at several stages of the visual

process (Brindly [9]).

The study of the exact nature of the spatial interaction, at

all stages of the visual system is a difficult job. So far the amount

of information obtained from physiological studies is very small

compared to what is actually needed for constructing a mathematical

model suitable for the goals of this research. Another approach

to the problem of the identification of the visual system is the

study of the input-output relationship in this system. The input

-16-
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in this case is the visual stimulus and the output is the response

of the subject which is his psychological reaction to a particular

physical characteristic of the stimulus image. The experiments that

use this general approach are called psychophysical experiments. The

reaction of the subject can take many different forms. For example

he can give a grade corresponding to his certainty of seeing a visual

pattern after he has been exposed to it for a limited duration of

time, or he can give a yes or no answer to a question about his

sensation of some characteristic of the stimulus image.

This kind of approach seems to be more relevant to the objective

of this research which essentially requires that the mathematical

model for perception of error in images to be in agreement with the

subjective judgment of the user of the image transmission system.

Since we are going to concentrate on the threshold perception

of distortion patterns, the psychophysical experiments we will be

dealing with will be mainly of the type in which the subject's

threshold of perception of a pattern is measured. This threshold

is usually expressed in terms of some measure of the contrast of

the pattern when it is barely visible to the subject.

2.2. A Survey of the Past Research

There is a growing body of knowledge obtained from psychophysical

experiments about the visibility of visual patterns. The majority

of researchers in this area have concentrated on describing the

mechanism of pattern detection, at threshold levels of contrast,

by models that contain linear two dimensional filters. The incentive

for this approach is to model the spatial interaction that take place

-17-



in the retinal cells and higher levels of the visual process, by the

same methods that are used in optical imaging devices and were

explained in sec. 2.1 where the formation of the retinal image was

discussed.
A-

Because of this, many psychophysical experiments for investigating

the visibility of sinusoidal gratings have been conducted. A number a.

of researchers have measured the sensitivity of the visual system to

sinusoidal gratings of different spatial frequencies with the

intention of characterizing the detection process by the frequency

response of a linear two dimensional filter. In these experiments

the contrast of the grating is defined in terms of the maximum and

minimum luminances in the stimulus image by

„ max minContrast = +i (2.9)
max min

Therefore for a sinusoidal grating defined by Eq. (2.7) we have

A
Contrast = •=- (2.10)

o

where A is the amplitude of the sinusoid and I is the mean

luminance of the stimulus image.

The contrast sensitivity is defined as the inverse of the

contrast that corresponds to the threshold of perception. The «

variation of contrast sensitivity with the spatial frequency has

*

been studied; for example the result of the experiment of Campbell

and Robson [10] is shown in Fig. 3. The function represented by the

curve in Fig. 3 is called the contrast sensitivity function or the

visual modulation transfer function. Typically the contrast

-18-
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sensitivity increases with spatial frequency in the range of

frequencies lower than 3 ~/0 and after leveling around 4 ~/0, it

decreases exponentially. The rapid decrease of sensitivity at

higher frequencies is of course partly because of the low pass

filtering that is associated with the formation of the retinal

image (Fig. 1). But the additional decrease in contrast sensitivity

can be attributed to the process of spatial summation within the

neural system. Also since no optical factor can account for the

fall-off of the contrast sensitivity at lower frequencies, it is

likely to be representative of some kind of inhibitory interaction

between the activities of the cells which respond to the retinal

image.
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The effects of the mean luminance I and the wavelength of the

light source of the stimulus image on the contrast sensitivity

function were studied by Van Nes and Bouman [11], They found little

difference between the contrast sensitivity curves corresponding to

different mean luminance levels as long as the mean luminance

remains within the range that results in photopic vision. For mean

luminances below this range the maximum of the contrast sensitivity

curve shifted toward lower frequencies. Furthermore at the photopic

luminance levels the same invariance was exhibited with respect to

different wavelengths of the light source.

The independence of the contrast sensitivity from the mean

luminance means that the amplitude of the grating at the threshold

of detection is proportional to the mean luminance. This phenomena

is attributed to the results of electrophysiological studies on

the retina of vertebrates (Werblin [23]). These results indicate

that interactions among various retinal cells adjust the response

characteristics of the overall system according to the level of

ambient illumination. As indicated previously, each of the ganglion

cells of the retina is connected to the photoreceptor cell through

a number of intermediate cells (bipolar, horizontal and amacrine

cells). Only the photoreceptors contain photopigments and act as

transducer, converting the light energy into neural signals. The

receptor cell drives the bipolar cell which then passes the signal

on to the ganglion cells. The ganglion cells generate the retinal

output; their outgoing fibers comprise the optic nerve and carry

the neural image to higher centers of the nervous system. The
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slope and the offset level of the response curve of the bipolar

cell is adjusted within the broad range of the output of the

photoreceptor cells. This adjustment is caused by the acitivity of

the horizontal cells in the immediate surrounding of the bipolar

cell; these cells carry the information about the luminance levels

laterally and tune the operating curve of each bipolar cell to the

appropriate intensity range. Specifically the above process causes

the slope of the linear part of the response curve of the bipolar

cell to be inversely proportional to the average surrounding

illumination, thus enabling the retina to form a high contrast

neural image over a broad range of light conditions. The spatial

extent of this interaction among retinal cells is very small

compared with the extent of the spatial interactions that take

place at higher levels of the nervous system. The overall effect

of the above phenomena, when the retinal image consists of a low

contrast pattern superimposed on a constant luminance background,

is that the neural image is an approximately logarithmic transformation

of the retinal luminance levels.

The contrast sensitivity as a function of the orientation of

the sinusoidal grating was measured by Campbell, Kulikowsky and

Levinson [12]. They concluded that the slope of the decreasing

part of the contrast sensitivity curve was maximum for oblique

(45° and 135°) gratings. Therefore the maximum resovable spatial
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frequency is highest for horizontal and vertical gratings. They

also concluded that optical factors such as astigmatism alone can

not significantly account for the existence of these preferred

directions, and that they are mainly due to some orientational

selectivity in the visual nervous system.

The contrast sensitivity curve was initially interpreted

in some of the studies (Cornsweet [7]) as the frequency response of

a single linear two dimensional filter in the model associated with

the perception mechanism. In such a model the stimulus pattern is

first processed by this filter and when some measure of the contrast

(e.g. rms value or peak value) of the output of the filter reaches

a certain threshold level, the subject detects the pattern. But

the results of some psychophysical experiments could not be described

successfully by this single channel model. Rather they suggested

a model in which the stimulus pattern is processed by a bank of

processors or channels. The results of some of these experiments

will be discussed here.

Campbell and Robson [10] in addition to sinusoids used gratings

with square, rectangular and saw-tooth waveforms. They found that

over a wide range of spatial frequencies the contrast threshold

of the grating is determined only by the amplitude of the fundamental

Fourier component of its waveform. Also gratings with complex

waveforms cannot be distinguished from sine wave gratings until

their contrast has been raised to a level at which the higher

harmonic components reach their independent thresholds. Campbell

and Robson suggested that these findings can be explained by a

model in which several filters, that are selectively sensitive to
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limited ranges of spatial frequencies, process the stimulus pattern
independently and when the contrast of the output of any one of

these channels reaches athreshold level, detection is achieved by
the subject.

Blakmore and Campbell [13] arrived at the same conclusion

through aset of experiments in which the contrast sensitivity of
agrating was measured before and after adaptation to ahigh

contrast (suprathreshold) grating of the same frequency and orientation.

They found afive-fold decrease in contrast sensitivity after

exposure to the high contrast grating. They also measured the

decrease in contrast sensitivity for arange of frequencies when the

frequency of the adapting grating was kept constant. This decrease

was limited to aband of frequencies, with ahalf amplitude bandwidth
of about one octave, centered about the adapting frequency.

Another result of the experiment of Blakmore and Campbell was

that the adaptation of one eye to ahigh contrast grating reduced
the sensitivity of the other eye to the same grating. Through these

"suits they argued that the human visual system may posses neurons
selectively sensitive to spatial frequency and that the visual cortex
is the site of these neurons.

Saks, Nachmias and Robson [14] conducted aset of experiments

using linear combinations of sinusoidal gratings of different

frequencies (complex gratings). They considered single channel

and multiple channel probabilistic models of detection for the

visual system. In their experiment they measured the psychometric

function, which is the relative frequency of detection as a
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function of contrast, for simple and complex gratings. The

resulting psychometric functions were consistent with the multiple

channel model but not with the single channel model.

Some experimental results suggest that gratings with different

orientations are also detected with separate mechanisms. For

example Campbell and Kulikowsky [15] studied the detection of gratings

with fixed frequency and varying orientation as they were superimposed

on a grating with suprathreshold contrast (masking grating) which

had the same frequency and a fixed orientation. They found that

the masking effect which is the decrease in contrast sensitivity due

to suprathreshold background was maximum when both gratings had the

same orientation. The masking effect, as a function of the angle

between the threshold grating and the background grating, decreased

exponentially by a factor of 2 at 12° on either side of the vertical

background grating. This angle was independent of the background

contrast. They argued that the high contrast of the background

grating reduced only the sensitivity of the mechanism which is tuned

to the orientation of background. They also compared the proposed

orientationally tuned mechanisms with the orientationally sensitive

cells that were electrophysiologically discovered in the visual

cortex of the cat by Hubel and Wiesel [16].

Another important aspect of the perception mechanism isr the

effect that the spatial extent of the stimulus pattern has on its

visibility. There are a number of psychophysical results on this

question of which we describe that of Robson [17]. He conducted

an experiment using sinusoidal gratings with fixed spatial frequency

-24-
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and varying number of cycles, hence varying area. The contrast

sensitivity as a function of the number of cycles displayed was

measured for five different spatial frequencies. The family of

curves in Fig. 4 show his results. Except for 22 ~/0 and 28 ~/0

the curves are similar in shape and monotonically increasing up

to 100 cycles. If we assume that gratings with different spatial

frequencies are detected by separate channels, then the similarity

and parallelism of the curves in Fig. 4 suggest that the spatial

extent of the activity of each channel is different and in fact it

is inversely proportional to the frequency to which that channel

is sensitive. Also the increasing shape of the curves can give us

an idea of the approximate extent of spatial interaction in each

channel. For example for the channel which is sensitive to 4.8 ~/0,

this extends up to more than 50 periods or about 10 degrees.

Fig. 4.
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Contrast sensitivity or sinusoidal gratings as a function
of spatial extent for frequencies 1.2, 4.8, 14, 22 and
28 ~/0 (J. G. Robson [17]).
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2.3. Assumption of a Model

The experimental results described in the last section suggest

a general structural form for the model of perception of the patterns

on a constant luminance background. All of the assumptions that we

will make here are based on definitive results obtained by other

investigators. But some of them will be further supported by the

results of the experiments of this research.

The structural form that we assume for the model is shown by

the block diagram of Fig. 5. Suppose we consider the detection of

the change in the displayed image when it is changed from the

background with constant luminance I to the image

i(x,y) = Iq + cm(x,y) (2.il)

n(x,y) is the pattern for which the threshold of detection is to be

found and a is the attenuation factor which is varied for different

contrast settings. It is assumed that the subject is fixating on

the origin of the spatial coordinates which is the same as the

center of the display. Under these conditions the input pattern

to our model is g[i(x,y)] - g[IQ], where g is a nonlinear function

which transforms the luminance of each point and does not involve

any spatial interaction. Taking the difference of the patterns

after being operated on by the function g is dictated by the results

of Van Nes and Bouman and the discussion following it in the previous

section. Thus the model of Fig. 5 describes the detection

mechanism at levels that are beyond the nonlinearity that exists at

the photoreceptor stage of the visual process.
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The pattern g[i(x,y)] - g[IQ] is the input to a group of

parallel processors that are identical in structural form but each

has a different set of parameters. For example in the kth processor

the linear two dimensional filter H, (f ,f ) is a band pass filter

k k
whose frequency response is peaked at (v ,v ) in the frequency plane

x y

and is almost zero outside a limited region that corresponds to a

particular band of spatial frequencies and orientations. The output

of this filter vfc(x,y) is operated on by the functional^-JL which

generates the real number W, . This number is a measure of the

response of the kth channel to the pattern otn(x,y).

If W, is greater than the threshold level t, the output of

the threshold device is a 1, which signifies detection by the kth

channel. Otherwise the output of the threshold device is 0. The

output of each threshold devices is treated as a logical variable

and the outputs corresponding to all of the channels are combined

by the inclusive OR function to generate a logical 1 or 0 corresponding

respectively to detection or no detection by the visual system.

This represents the assumption that the presence of some pattern

is detected by the subject if one or more of the channels reach

their threshold levels.

The linear filter followed by a functional operation in each

channel was initially chosen because of the generality of this

arrangement for a model using linear operation for describing

the spatial interaction in the visual system. But this choice will

be further justified when in a coming chapter we compare the

experimental results of this research with the results of the

simulations that uses this structural form.
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Furthermore, at the outset, we can rule out at least one other

form of linear operation which seems to be a candidate for this

part of the model. In order to explain this we first recall that

the experimental results of Robson indicate that the spatial extent

of the activity of each channel in terms, of the number of cycles

of the grating detected by that channel, is rather large. Given

this, we want to see if the response of the channel is the result of

a coherent spatial summation of the stimulus grating. If this were

indeed the case the obvious choice for the linear operator would

have been a linear functional which gives the response W, directly

as the inner product of a fixed pattern hfc(x,y), which should be a

tapered sinusoid, with the pattern g[i(x,y)] - g[I ], namely

Wk 0l|Vx»y){8[1(*»y)1 "8[Io]} dxdy (2'12)

Halter [18] conducted a psychophysical experiment which tests this

hypothesis. The stimulus pattern in this experiment consisted of

three nonoverlapping segments of sinusoidal gratings with frequency

12.8 ~/0. One patch, of width 2.5 cycles, was fixed in the center

of the display, two side patches, of width 2.5 cycles, were

displaced from the center patch by gaps of 2.5, 2.25, 2 and 1.75

cycles, so that the phase difference between the center grating and

side gratings varied by increments of 90°. The sensitivities for

the center patch alone and an uninterrupted grating, whose extent

equalled the three patches, were also measured.

The experiment was a racing experiment in which the subject

gave grades from 1 to 5, with a 5 indicating complete certainty
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of observation of a grating and 1 indicating complete confidence

that only a blank screen was shown. The results are shown in

Fig. 6. The continuous grating is clearly more visible and the

center patch alone clearly less visible than any of the other four

patterns, while to within experimental accuracy, all other four

patterns, each consisting of three grating segments, are equally

visible.

If we assume that all of these patterns are detected by the

same channel, namely the channel that is sensitive to frequencies

around 12.8 ~/0, then the assumption of coherent summation is

rejected because the phase discontinuity in the stimulus did not

affect their visibility.

The effect of the area of the stimulus pattern on its detectability

is accounted for by incorporating a spatial weighting function in

••5^

a>

o 3-
w

>

<

2H

I-

o 61 — Single potch
o 82 — All three patches in phase
a 63 —Outer potches shifted in phose 90°
••64 — " " ii it 180°

5_ i 65 — " <• ii ii 270°
• 66 — Full field sinusoid

Subject O.S.

~r i « i • 1 1 1 1 " 1 1
54 51 49 48 46 43

Attenuation of sinusoid ( dB )

Fig. 6. Visibility of grating segments for various phasings,
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the functional operation that follows the filter in each channel.

The functional operation should produce some measure of the contrast

of the pattern v, (x,y). The use of L -norm functional is useful
ic p

because for different values of p it includes the usual notions of

contrast such as peak value or rms value. Therefore in order to take

the extent of the activity of each channel into account, the

functional operation will have the form of a spatially weighted

L -norm, that is

Wk -[IT|vk(x,y)|Pak(x,y) dxdyj 1/p (2.13)

where the non-negative function a, (x,y) weights the contribution

from different parts of the visual field. From the curves of Fig. 4

we conclude that a(x,y) should be monotonically decreasing from the

origin. We also assume that it is circularly symmetric about the

origin. The spatial extent over which a.(x,y) is substantially

different from zero varies from channel to channel and, according

to the interpretation of the results of Fig. 4, this extent is

inversely proportional to the spatial frequency at which the

frequency response, H, (f ,f ), is peaked.
k x y

We note that this choice of the functional operation causes

the response of each channel to be proportional to the value of

a in the stimulus patterngiven by Eq. 2.11. Therefore we take the

threshold level to have the same value, t, for all channels and

thus account for different sensitivities of the channels by proper

scaling of the response of each filter.
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2'*« The Objective of the Experiments

The psychophysical experiments that were conducted in this

research can be categorized according to their objectives. Some

experiments were designed to provide a test for the hypotheses

that we have made so far about the human visual system. Also the

results of these experiments, which use sample functions of

random patterns as the stimulus pattern, can be compared with the

corresponding results obtained by using sinusoidal gratings in

other studies.

In order to make this model useful for the eventual application

of it, which is in the determination of a measure of distortion,

we need to study the model quantitatively. Therefore another set

of experiments was designed to estimate the numerical values of

some of the parameters which are most important for this application,

But the model that we have considered so far has a large number of

unknown parameters. This fact, and the assumption that the

structural form of different channels is identical, lead us to

choose one of these channels and investigate as many parameters

corresponding to that channel as possible. Further research

combined with the existing results will hopefully provide information

as to how each parameter changes as we go to other channels.

The experiments mentioned so far were for detection of the

patterns on a constant luminance background. Therefore these

experiments do not provide any information about the effect of the

image that is to be encoded on the visibility of distortion in

that image. In order to study this effect two experiments were
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conducted in which the backgrounds themselves were images with

contrasts above the threshold of detection. The results of these

experiments will provide some information as to how the model that

we have defined so far has to be modified in order to take the

effect of background image into account.
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CHAPTER 3

STIMULUS PATTERNS AND THE EXPERIMENTAL METHODS

In this chapter, the experimental set up, stimulus image

characteristics, and the psychophysical methods that were used in

this research will be described. Also the use of the sample

functions of random patterns as the stimulus images will be

discussed.

3.1. Experiment Set Up and Methods

The still monochromatic images that were used in the

psychophysical experiments were generated on the face of an

ordinary black and white 8" television monitor whose input signal

was supplied by a three-channel video disk unit with 105 tracks

(total capacity of 105 color, or 315 black and white frames). When

a track was selected,three black and white TV picture frames were

available at the three channel outputs. The patterns used in the

experiments were generated by an IBM 1800 computer system and stored

in TV format on the video disk.

The pale blue (phosphor P4 ) TV screen had a space average luminance
2

of 860 cd/m in all of the experiments, and it was surrounded by a

81 cm x 111 cm cardboard with approximately the same color and

luminance as the face of the TV tube. The TV screen was located

just behind a rectangular opening in the middle of the cardboard.

This opening subtended 3 degrees and 10 minutes in the vertical side

and 3 degrees and 36 minutes in the horizontal side at the viewing

distance of 218 cm which was used in our experiments.

Most of the experiments were performed on more than one subject.
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These subjects either had hematropic vision, or vision correctable

to 20/20 with glasses. Binocular vision with natural pupils was

used in all of the experiments.

Each stimulus image, as represented by luminance as a function

of spatial variables (which can be translated into subtended angles

in the x and y directions), was, in each experiment, a special case

of the general expression

i(x,y) = i(x,y)[l + c^n^x.y) + a2n2(x,y)] (3.1)

where i(x,y) is a non-negative function representing luminance

variation in an image, n (x,y) and n9(x,y) are zero mean functions
1 ^

and a and a. are variable attenuation factors.

Normally the image i(x,y) is displayed on the screen; when

the subject pushes a micro switch, the display is switched to

i(x,y) for a specified period of time that was 0.9 seconds in our

experiments. The image i(x,y) is called the background image;

2
it was either a constant function of x and y (860 cd/m ) for

experiments dealing with detection of patterns on a blank background,

or an image with a fixed contrast above the threshold of perception.

The functions n_(x,y) and n«(x,y) are called test patterns and, in

our experiments, were sample functions of random patterns.

The process by which the patterns i(x,y), n.(x,y) and n«(x,y)

were generated by the computer is explained in appendix A. Appendix B

explains the equipment set up and the generation of the input signal

for the TV monitor from the video disk outputs.

The perturbation in a displayed image when it is switched from

i(x,y) to i(x,y) is caused by the pattern ot-n..(x,y) + a?n_(x,y)
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In each experiment the experimenter's goal was to find a good

estimate for the threshold values of a and a ; that is, the

values of a± and «2 that cause the change from i(x,y) to i(x,y)

to be barely detectable by the subject.

The multiplicative form of the expression for the perturbed

image i(x,y), given by Eq. (3.1), was dictated by the fact that the

input pattern to the model of Fig. 5 of chapter 2, is taken to be

gU(x,y)] - g[i(x,y)]. Since the luminance of the background

patterns were always in the range of photopic vision, we can assume

that the function g(.) is logarithmic, that is

g(z) = Zn(z) (3.2)

Furthermore for the values of a and a. corresponding to the

neighborhood of the threshold, the peak to peak value of

a1n1(x,y) + a2n2(x,y) is very small compared with 1. Under these

conditions the input pattern to model becomes

g[i(x,y)] - g[i(x,y)] = £n[i(x,y) + fcnU+cyi^x.yHcyi^y)]

- *n[i(x,y)]

* a1n1(x,y) + a2n2(x,y) (3.3)

This is important, because in the experiments in which the

background i(x,y) is a suprathreshold image, we want to study

various effects of i(x,y) on the visibility of the perturbation

pattern a n (x,y) + a2n»(x,y). But we already know one effect of

the background image due to the fact that neural image is taken to
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be approximately the logarithm of the retinal image, as explained

in sec. 2.2. This causes the sensitivity of the eye to the change

in luminance i(x,y) at the point (x,y) to be inversely proportional

to the value of i(x,y). The multiplicative form of Eq. (3.1) allows

us to investigate, without the interference of this phenomenon,

other effects that the background image might have on the detectability

of the test pattern. In other words the input to the stages beyond

the nonlinear process in the retina is generated only by the test patterns

and whatever effect the background image has on the visibility of

test patterns is due to the phenomena other than this nonlinearity.

In all of the experiments, except one, the function n (x,y)

was identically zero and only the threshold value of a , which for

these experiments we denote by a, had to be measured. The self

setting method was used in these experiments and the graded response

method was employed in the case where both n.,(x,y) and n (x,y) were

present.

In the self setting method a was controlled by two attenuators

that were connected in cascade, each changing the value of a in 1 dB

steps. For each trial the experimenter sets one of the attenuators

at a randomly chosen value above the approximate threshold of the

subject. Then the subject, who is unaware of this setting, adjusts

the other attenuator until he feels that by pushing the micro switch

he can just detect the presence of the test pattern. The total

attenuation of both attenators at the threshold is averaged over a

number of such trials; this average is used as the estimate of the

threshold value of a.

In the graded response experiment the values of a1 and a« were
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set each time by the experimenter and the subject, after pushing

the micro switch, gave a 1 response if he detected any change in

the stimulus pattern and a 0 response otherwise. The average of

responses over a number of trials for each setting of a and a

gives the relative frequency of detection. The values of a and

a2 corresponding to a relative frequency of detection of .5 were

chosen as the threshold values. In order to monitor the relative

frequency of false alarms, the values of a and a were occasionally

set to zero and after giving his response the subject was informed

that a blank image had been used.

In all of the experiments the objective was to estimate the

threshold values of a and/or r* as a function of a particular

parameter of the test or background pattern. Therefore in each

experiment a sequence of stimulus images, corresponding to different

values of the parameter of interest, were stored on consecutive

tracks of the video disk. In a typical experiment the threshold

value of a for each stimulus pattern is determined in a set of

trials that uses each track only once. Then this process is repeated

while the order in which different stimulus images are presented to

the subject is randomly changed each time by the experimenter. In

this way the slow variations of the subject's criterion during the

entire course of an experiment affects the estimates of a equally

for all of the stimulus patterns and consequently its effect on

the shape of the variation of the threshold value of a as a function

of the parameter of interest is minimized. The total number of

trials for estimating the threshold value of a was fixed within each

experiment but varied from 12 to 48 for different experiments.
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3.2. Pseudo Random Patterns as Stimulus Images

Sample functions of two dimensional random fields (random

patterns) were used both as test patterns and as background images

throughout the experiments of this research. These patterns are

obtained by two dimensional filtering of a sample function of a

Gaussian white noise pattern. The implementation of this process

on a digital computer is described in appendix A. The filtering

process is for controlling the spatial frequency components of

the stimulus image. An example of a sample function of a Gaussian

band pass random pattern with radially symmetric power spectral

density is shown in Fig. la of appendix A.

The use of pseudo random patterns instead of conventional

gratings has first of all the advantage of being able to test, by

using a different type of test pattern, some of the hypotheses

made about the visual system from the past psychophysical experiments.

However more important are some inherent characteristics of random

patterns that make their sample functions more suitable for the

experiments designed to estimate the parameters of the visual

perception model. One such characteristic is the following.

In all of the experiments except one, the sample functions that

were used corresponded to homogeneous Gaussian random patterns. A

property of these sample functions, which is useful in our experiments,

is the relation that exists between the L -norms of such sample

functions. This relation can be explained as follows.

Suppose (N(x,y), (x,y) G R } is a collection of random

variables defining a homogeneous zero mean Gaussian random pattern.

The L -norm of a sample function n(x,y) of this random pattern over
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the frame [- |, |] x [- 1 1] ls

2 2 1/p
n(x,y)8p>T£ [if f |n(x,y)|pdxdyj (3.4)

11
2 "2

If we assume the ergodicity condition, then On(x,y)ll for large
p,T

values of T becomes approximately equal to the statistical average

[E{|N(x,y)|p}]1 p. But for all xand y, N(x,y) is azero mean
Gaussian random variable with standard deviation a, and for such a

random variable we have (Papoulis [19])

ri.3...(p-l)op for p= 2k

E{|N(x,y)|P} -J (3.5)
L|2kk!o2k+1 for p=2k+l

Therefore for large enough T, Dn(x,y)0 _ differs from lln(x,y)(L
p,l *J 2,T

only by a scale factor that depends on p.

This property will prove useful in estimating the different

parameters in a channel of the assumed model. For this estimation

we need to design a sequence of experiments whose results are

orthogonal to each other. This means that we want to be able to use

the results of each experiment for estimating a given parameter

in such a way that the values of the unknown parameters of the

channel do not affect the measurement of the given parameter. It

will become clear, in the description of the experiments, that the

above property of Gaussian random patterns enables us to estimate

the bandwidth of the channel filter without knowing the value of p
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in the L -norm functional that follows the filter. On the other

hand the non-Gaussian random pattern stimuli which lack the above

mentioned property will prove useful in the experiment that is

designed to estimate the value of p.

Sample functions of Gaussian random patterns were also used

as background images in the experiments desinged to study the

effect of the background image on the detectability of distortion

patterns. This allows us to simulate a Gaussian Image source with

a given power spectral density, and thus enables us to study the

effect of the spatial frequency contents of the image source on

the detectability of the distortion.
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CHAPTER 4

EXPERIMENT RESULTS (I)

PSEUDO RANDOM PATTERNS ON A CONSTANT LUMINANCE BACKGROUND

In this chapter the experimental results for detection of

pseudo random patterns on a constant luminance background are

described. Therefore in all of these experiments the background

image i(x,y) is the constant I = 860 cd/m . Except for the

experiment described in sec. 4.2, in all of the experiments

reported here, the function n2(x,y) was identically zero, and the

perturbed image presented to the subject was

i(x,y) = IQ[1 + an(x,y)] (4.1)

4.1. Visibility of Narrow Band Noise as a Function of Center
Frequency

The test patterns used in the experiments described in this

section and section 4.2 are sample functions of random patterns

with power spectral densities given by the general expression

^H-*^)'}wy ^ N^exp(- **-*-?.—-) > <4-2>

where f and f are in cycles/degree (~/0). We call f the center

frequency and (o the one-sided bandwidth of these band-pass isotropic

random patterns.

In order to investigate the effect of the center frequency of

a narrow-band noise on its detectability, a self setting experiment

was conducted in which n(x,y) was a sample function of a narrow

band Gaussian random pattern with power spectral density given by

Eq. (4.2). The one sided bandwidth oj was 1/5 the center frequency

in all patterns. A sequence of stimulus images in which the center
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frequency of n(x,y) ranged from 1 ~/0 to 36 ~/0 were presented

to the subject and the threshold values of a for these test

patterns were measured.

Figure 1 shows four examples of the suprathreshold versions

of these test patterns. The spatial extent of the test patterns

in all of these stimulus images was limited by a square frame that

subtended 2 degrees in each side. For each image the threshold

value of a was used to compute l/0an(x,y)B , which is termed the

rms contrast sensitivity. The resulting rms contrast sensitivities

as a function of the center frequency is plotted in Fig. 2 for two

subjects. The dashed curves correspond to the data taken when the

viewing distance was changed from 218 cm to 109 cm. At this viewing

distance the frame of the patterns subtended 4° x 4°, and hence the

spatial frequencies of each pattern in terms of cycles/degree were

halved. This was done in order to make the measurement for very

low values of the center frequency feasible. The discrete

finite two dimensional Fourier transform is used to generate these

pseudo random patterns (see appendix A); when the center frequency

of a pattern (in cycles/degree) is not sufficiently large compared

with -, where T is the spatial extent of the frame (in degrees), it

is difficult to approximate the radially symmetric power spectral

density of Eq. (4.2) in the discretized transform domain. The

contrast sensitivity curve obtained by Campbell and Robson using

sinusoidal gratings (Fig. 3 of chapter 2) is plotted on the same

coordinate axes with a downward shift of 15 dB. We can see that the

rms contrast sensitivity curve for narrow band pseudo random patterns

is very similar in shape to that of sinusoidal gratings.
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f = 2.5 "70
o

f = 18 -70
o

f » 4.5 ~/0
o

f = 36 -70
o

Fig. 1. Narrow band isotropic pseudo random patterns with different
center frequencies; one sided bandwidth is 1/5 the center
frequency f .
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SPATIAL CENTER FREQUENCY OF THRESHOLD NOISE
(CYCLE/DEGREE)

Fig. 2. rms contrast sensitivity curves for narrow band noise and
sinusoidal gratings.
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4*2» Detection of Two Narrow Band Pseudo Random Patterns

In order to give more support to the parallel and independent

channels hypothesis, shown by the model of Fig. 5 in chapter 2, we

report in this section the results of an experiment that was designed

by Sakrison [20]. In this experiment n (x,y) and n (x,y) were

sample functions of two independent narrow band random patterns with

power spectral densities given by Eq. (4.2). Each of the patterns

h1(x,y) and n2(x,y) was generated by filtering a different white

noise sample function. This cuased the two patterns to be statistically

independent.

Two different stimulus images were presented to the subject.

The center frequencies of nx(x,y) and n2(x,y) were 4.5 ~/0 and 18 ~/0

respectively in one image and 4.5 ~/0 and 6 ~/0 in the other. The

one-sided bandwidth of each random pattern was 1/5 its center

frequency. The spatial extent of the sraaple functions was limited

to a squire frame that subtended 2 degrees in each side.

Using the graded response method, the relative frequency of

detection for different combinations of the values of a- and a_ was

measured for each of the two cases. From the attenuations a_ and a.,

Ha.n-(x,y)IL and Ha_n2(x,y)B ,which are the rms values of a n.(x,y)

and ot_n0(x,y), were computed and the values —n 7 nr- (rms contrast)2 2 v a1,|n1(x,y)H2
in dB were used for plotting the results shown in Fig. 3. Figure 3a

is for the image with 4.5 ~/0 and 18 ~/0 center frequencies and

Fig. 3b is for 4.5 ~/0 and 6-/0 center frequencies. In each plot

the relative frequencies of detection are shown at the points with

corresponding rms contrast coordinates.

Lines are drawn through the points with .5 relative frequency
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of detection which are assumed to correspond to the threshold

of detection. When the center frequencies of n..(x,y) and n (x,y)

are widely spaced (Fig. 3a) these lines are vertical and horizontal

over a broad range of contrsts, indicating that the detection of one

of the test patterns occurs independently of the amplitude of the

other pattern. In other words, detection occurs when either one

of the patterns reaches its threshold. But when the center frequencies

of n1(x,y) and n2(x,y) are close together (Fig. 3b), for the contrasts

whore both patterns are on the verge of being detected, the visibility

of the combined pattern is increased beyond the visibility of either

pattern alone, and it seems that the combination of both patterns is

being detected by a single mechanism tuned to a frequency intermediate

to the frequencies of the two components.

4.3. Visibility of Isotropic Noise as a Function of its Bandwidth

In the model discussed in sec. 2.3, one of the most important

parameters is the bandwidth of the filter in each channel. According

to the results of sec. 4.2 and those referred to in chapter 2, it

is reasonable to presume that each channel is selectively sensitive

to a band of spatial frequencies. In this and the next two sections

we describe a sequence of experiments that were conducted in order

to estimate the selectivity of one of the channels.

In choosing a suitable set of stimulus patterns for the

experiments that estimate such parameters as the bandwidth of a channel

one must make sure that the detection of all of these patterns is

always achieved by the single channel that we have in mind. This

suggests that the channel chosen for investigation has to be the one

with a frequency response peaked at the spatial frequency to which
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the visual system is most sensitive. The reason for this can be

explained by noting that although the pass bands of different

channels may substantially overlap in the frequency domain, it is

very likely that a narrow band pseudo random pattern with center

frequency equal to that of the most sensitive channel, will always

be detected by this channel.

The rms contrast sensitivity curve of Fig. 2 shows that the

channels with center frequency 4.5 ~/0 are among the most sensitive

ones. The six test patterns n (x,y), i = 1,2,...,6 that were used
Wi

in this experiment were sample functions of isotropic random patterns

with power spectral density given by Eq. 4.2, with center frequency

f = 4.5 "/0 and one sided bandwidth u> ranging from a)- = .3 ~/0

to a), =2.25 ~/0. Figure 4 shows examples of n (x,y) for four

different values of u, As can be seen the sample functions were

multiplied by a weighting function that caused the test patterns

to be slightly tapered on the edges of a 2° x 2° square frame. This

was done for all of the remaining experiments of this chapter in

order to eliminate sharp edges that result in unwanted frequency

components which may in turn cause the detection to take place through

a channel different from the one being investigated. The above

patterns were scaled so that the value of max|n (x,y)| was identical
x,y "i

for all six test patterns.

The experiment consisted of measuring the threshold value of a

in Eq. (4.1) as a function of the bandwidth u>. The self setting

method was used for these measurements. The threshold value of a

in dB attenuation (i.e. -20 log a) as a function of o> is plotted

for two subjects with circles at the top of Fig. 5. Since the value
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oj = .3 ~/0 = .75 -70

oj = 1.5 "70 = 2.25 70

Fig. 4. Narrow band isotropic pseudo random patterns with different
one-sided bandwidths, co.
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of max|n (x,y)| was the same for all of the stimulus patterns,
x,y i

the shape of the variation of a as a function of to does not have

any particular meaning in itself.

The estimation of the selectivity of the channel filter

consisted of first assuming a certain shape for the frequency

response of the band pass filter, with the bandwidth of the filter

being a parameter that can be changed. For each bandwidth of the

filter and each value of p in the L -norm functional that follows
P

the filter (see Fig. 5 of chapter 2), the detection process in the

channel can be simulated by computing the response of the filter

v(x,y) to the same patterns n (x,y) that were used in the experiment,
wi

and performing the L -norm operation to obtain the response of the

channel W . This process was implemented on a digital computer

using two dimensional digital filtering.

We note that in the model the response of the channel is

proportional to the value of a for the input ctn(x,y). Therefore

hypothesizing that Ml should be a constant value at the threshold

of detection implies that the threshold value of a should be

inversely proportional to M ,or that 20 log10 "vO ,the model

response in dB,should differ from the threshold value of a in dB

attenuation only by an additive constant.

The general procedure followed in the remaining experiments

described in this chapter is to compute the response of the channel,

OvB for all of the stimulus patterns, using different combinations

of the bandwidth parameters and the parameter p of the model. For

each set of model parameters we plot the response in dB as a function

of the parameter of the stimulus pattern (i.e. the bandwidth
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for this experiment); the curve corresponding to the right values

of channel parameters should match the curve of a (in dB attenuation),

as a function of the stimulus parameter only by a vertical shift.

For this experiment the filter transfer function was assumed

to have the form

r ,//2+f2 - 4.5 \2i
{-if*-*— }H(fx,fy) =Aexpi- fl=-*-i 1 f (4.3)

which corresponds to an isotropic filter with band pass characteristics

(see Fig. A2, appendix A); w is termed the (one-sided) radial

bandwidth of the filter.

Assuming this filter shape, the response of the channel for

different values of w and the parameter p were computed. These

results are shown by two groups of curves at the bottom of Fig. 5.

One group corresponds to p = 2 and the other to p = «>, where

L norm of the filter output is Bv(x,y)D = max|v(x,y)|. These
x,y

curves are drawn with the same vertical dB scale as the experimental

data shown at the top of the figure. The vertical position of each

group is arbitrarily chosen.

Each curve within a group corresponds to a different value of

w. For the value of p from 2 to 16 the shape of the curves remained

almost unchanged, change was noticed for p = 32 for which value the

curves bore resemblance to those for p = °°. Therefore the p = 2

group of curves can actually represent the results for small values

of p(2 to 16). We can see that the curve corresponding to p = 2

(or 2 to 16) and w = 2.5 ~/0 fits the experimental data points for
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both subjects. A dashed replica of this curve is drawn through

the experimental points for each subject. We can also see that

the shape of the curves show good sensitivity to the value of

bandwidth w around the values 2 to 4. This allows a relatively

accurate estimation of the bandwidth for the assumed isotropic

filter.

It is noted that the experimental data can not be fitted with

any of the curves in the p = » group. Therefore assuming that the

filter has the isotropic form expressed by Eq. (4.3) our estimate

of its one-sided bandwidth becomes 2.5 ~/0. As for the value of

p although 32 and higher values are ruled outj it remains

undetermined.

The insensitivity of the shape of the curves to the value of

p, for small values of p, is to be expected. This is due to the

fact that n(x,y) and v(x,y), which is the result of linear homogeneous

filtering of n(x,y), are sample functions of Gaussian random

patterns. According to the discussion of sec. 3.2, the L norm of

each sample function differs from its L9 norm only by a scale

factor which depends on the value of p. Therefore on a logarithmic

scale the curves corresponding to the same value of bandwidth

parameter but different values of p differ only by a vertical shift.

The changes that do occur for large p are partly due to the finiteness

of the frame size, and partly because of the fact that the tails

of the distributions of the random patterns involved depart from

Gaussian.

4.4. Orientational SeieciivxLy ot the Channel Filter

The experimental results of Campbell and Kulikowsky, described
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in sec. 2.2 indicate the existence of channels in the visual system

that are selectively sensitive to different orientations. In the

model presented in sec. 2.3 this was accounted for by assuming that

each channel is sensitive to the frequencies within a limited region

of the frequency plane, corresponding to a range of spatial frequencies

and orientations.

An experiment similar to that described in sec. 4.2 was designed

by Sakrison [20] to further test this hypothesis. The pseudo

random patterns used in this experiment were band limited in both

f and f directions in the frequency domain. In one stimulus
x y

image the pass band of n-(x,y) (see sec. 4.2) was on the f axis and

the pass band of n«(x,y) was on the f axis, both centered around

4.5 ""/0. In the other stimulus image, the pass band of n. (x,y) was

on the f axis and that of n0(x,y) was located on a line making a
x z

45° angle with the f axis. As in the experiment of sec. 4.2, the

relative frequency of detection for different combinations of the

contrasts of n1(x,y) and n«(x,y) was measured for both pair of

images. The results were similar to those of Fig. 3a in both cases,

indicating that detection of one pattern occurs independently of

the contrast of the other pattern when the .two patterns have

different orientations.

Given that channels are orientationally selective,the objective

of the experiment that we are going to describe in this section is

to estimate the orientational selectivity of one of these channels,

i.e. the angular bandwidth. In order to do this we assume that the

filter in each channel has a frequency response that in terms of the

polar coordinates in the frequency plane can be characterized by the
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separable form

H(f,6) = Hr(f) • Ha(9) (4.4)

f =/&£ ,e- tan'1-^
v x y f

x

where the radial part is given by

t f-f 2
Hr(f) -Aexp{- \ (-^) } (4.5)

and the angular part is given by

A— fl 0 A—A —ir 9

Hz(9) «Bfexpf- YC-b^) 1+exPl- I^-b2") 1} <*-6>

This means that the frequency response is band pass in both

the spatial frequency variable f and the orientation variable 6.

The frequency f , termed the center frequency, and the orientation

9 specify the locations at which the frequency response of the

filter is peaked. The parameters w and b are termed the radial

bandwidth and angular bandwidth respectively and specify the width

of the pass band of the channel.

According to the results of Campbell, Kulikowsky and Levinson

(see sec. 2.2) the channels that correspond to 9 =0° (vertical

gratings) are among the most sensitive ones. Therefore the

experiment of this section was designed for the f = 4.5 ~/Q and
o

6=0 channel. The objective was to estimate the angular bandwidth

b.

The five test patterns, n0 (x,y), i = 1,...,5 that were used in
D .

X

this experiment, were sample functions of random patterns with power

spectral densities given in terms of polar frequency coordinates by
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S, <f.6> =NQ exp[ I(|^5)2]{exp[- \§2] +exp[- ^)2]>
(4.7)

in which the value of $, the angular bandwidth of the random

pattern, ranges from 3.5° to 28°. Figure 6 shows examples of

«g(x,y) for four different values of 6. The value of

max| n (x,y)| was the same for all five test patterns.
x,y

The experiment consisted of measuring the threshold value of

a in Eq. (4.1) as a function of g, the angular bandwidth of the

stimulus patterns. The threshold values of a in dB attenuation for

two subjects are plotted by circles and squares in Fig. 7.

In order to estimate the angular bandwidth, the frequency

response given by Eqs. (4.4), (4.5) and (4.6) was assumed for the

filter. The parameter b is to be estimated; the other two parameters

are the radial bandwidth w and p in the L norm functional. As in
P

the previous section, for each set of values of b, w, and p the

detection process in the channel was simulated by computing the

response of the filter to the same patterns n0 (x,y) i = 1,...,5
3i

that were used in the experiment, and performing the L norm

operation to obtain the response of the channel.

Two groups of curves obtained from such a computation are

shown in Fig. 7. One group corresponds to p = 2, w = 2.5 70 and

the other to p = » and w = 2.5 ~/0. These curves are drawn with

the same vertical scale as the experimental data in Fig. 7; the

vertical position of each curve is arbitrary and is adjusted so

that the response corresponding to 3 = 3.5° coincide for all filter

parameters. Each curve within a group corresponds to a different
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= 3.5' 3 = 14'

6 = 21' 3 = 28'

Fig. 6. Four examples of narrow band pseudom random patterns with
different angular bandwidths,8.
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value of b. Again the shape of the curves is insensitive to the

value of p for small p (2 to 10) for large p (16 and higher) the

curves show a maximum around 3=7°.

In computing these simulation results the radial bandwidth

of the filter, w was assumed to have the value 2,5 ~/0. This

choice was based on the findings of sec 4.3. Since the assumption

of orientational selectivity may change this figure, we should

also examine the sensitivity of the shape of the curves to the value

of w. This was done by computing the curves corresponding to

p = 2, b =10°, w = 2 ~/0 and p = 2, b » 10°, w = 3.8 ~/0. These

are shown by dashed curves in the p = 2 group. As it can be seen,

the shape of this curve is almost insensitive to changes in the

parameter w.

We note that the curve corresponding to p = 2 (or p = 2 to 10)

and w = 2.5 ~/0 (or w = 2 ~/0 to 3.8 ~/0) and b = 10° fits the

experimental data points for both subjects. A dashed replica of

this curve is drawn through the data points of each subj ect in

Fig. 7. We can also see that the experimental data can not be

fitted with any of the curves in the p = » group. Thus our estimate

of the one-sided angular bandwidth of the channel becomes 10°.

Because of the insensitivity of the simulation results to the

value of w, this estimate of the bandwidth is independent of the

value of w. Therefore in the remaining experiments of this chapter

we can fix the value of this parameter at 10°.

4.5. Estimation of the Radial Bandwidth

In sec. 4.3 we described an experiment in which the radial

bandwidth of the channel filter was estimated. However, that result
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was based on the assumption that the channel filter has a radially

symmetric frequency response, thus ignoring the orientational

selectivity of the channel. In this section we .inscribe the

experiments that were conducted to estimate the radial bandwidth,

w, of the filter with frequency response given by Eqs. (4.4), (4.5)

and (4.6).

First an attempt was made to use the experimental results of

sec. 4.3 by conducting the simulation with the orientationally

tuned filter. Therefore the isotropic stimulus patterns used in

that experiment were processed by the filter given by Eqs. (4.4),

(4.5) and (4.6), with f = 4.5 ~/0, b = 10° and various values of

w. Since these test patterns are isotropic there is an uncertainty

as to which one of the channels corresponding to f =4.5-/0

and different values of 0 reaches its threshold.
o

Initially 0 was taken to be 0° and the response of the channel

was computed for different values of the radial bandwidth w. Then

the same process was repeated for 0 = 84° which corresponds to the

direction in which the particular sample functions used in the

experiment had the highest energy concentration. This direction was

found by looking at the magnitude of the Fourier transform of these

smaple functions. However the shape of the curves, which represent

the relative variation of the channel response, exhibited little

sensitivity to changes in the value of 0 .

In order to obtain a good estimate of the radial bandwidth

from these curves, the shape of the curves has to be sensitive to

the choice of this parameter. However within the range of values

of w that resulted in curves that fitted the experimental results,
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this sensitivity was small and taking the experimental error into

account the value of w could be anywhere between 2-/0 and 4.5 ~/0.

This is due to the fact that the maximum bandwidth in the six

stimulus patterns used in the experiment, u), = 2.25 ~/0 was not
o

large enough to cause a substantial variation in the response of

the filter, as w varied within the above range.

In order to obtain a more accurate estimate of the radial

bandwidth, another experiment was conducted in which the six

stimulus images were sample functions with power spectral densities

given by

S^f.e) =No exp[- !(i^VHexp[- ffcji)2] +exp[- A^J2])
(4.8)

i = 1,...,6

which are band-pass around f =4.5-/0 and 0 =0°, 180° with the
r o o

angular bandwidth fixed at 10°. The radial bandwidth ranged from

w- = .75 ~/0 to (i>, = 4.25 ~/0. The value of max|n (x,y) | was
x,y Wi

the same for all six patterns. Four examples of these patterns

are shown in Fig. 8.

The threshold value of a in dB attenuation as a function of the

stimulus radial bandwidth w was measured on two subjects. The

results are plotted in Fig. 9.

The simulation results were obtained by processing the test

patterns n (x,y), i = 1,...,6 with the filter given by Eqs. (4.4),

(4.5) and (4.6) (f =4.5 70 and 0 = 0°) using various values of
o o

w while b was fixed at 10°. The response of the channel is shown

by the curves of Fig. 9. Since these results were insensitive to

the value of p, only the curves for p = 4 are shown. By comparing
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03 = .75 ~/0 a) = 1.5 -/0

= 3 ~/0 = 4.25 ~/0

•Fig. 8. Narrow band random patterns with four different radial
bandwidths W.
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the experimental results and simulation results we notice that the

actual relative response of the visual system for large stimulus

bandwidths drops off more slowly than that predicted by any of the

filter bandwidths used in the simulation. If we simply increase

the value of w,we still cannot get a good fit because the

experimental data fits the simulation results for w between 2.5 ~/0

and 3-/0 for stimulus bandwidths up to w = 2.25 -/0. It is only

for larger values of u> that the model response decreases faster

than the visual system response. Clearly this can be due to the

particular shape of the radial filter that we have chosen. The

Gaussian radial filter has tails that drop off very rapidly.

These observations suggested the use of a different radial

filter which has a frequency response that approximates the

Gaussian shape for small values of f- fQ, while for large values

of f - fQ drops off more slowly than the Gaussian filter. One such

radial filter which produced satisfactory results has the transfer

function

H.(f) =-=*= (4.9)
/ M~?

Using the filter

H(f,0) = H (f) H (0)
r a

where Hr(f) is given above and Ha(0) is given by Eq. (4.6),

simulation results were computed for values of w ranging from

2 ~/0 to 4 ~/0. These are shown by the curves at the bottom of

Fig. 9. The curve for w = 2.5 ~/0 matches the experimental data,
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A dashed replica of this curve is drawn through the experimental

points. Thus we take the shape of the radial filter to have the

form gi'en by Eq. (4.9) (Butterworth filter) with w = 2.5 ~/0.

We note that although we used a Gaussian shaped radial filter

in estimating the angular bandwidth b in sec. 4.4, that estimate

is still valid because the simulation results were insensitive

to the width of the radial filter, hence the change from Gaussian

to Butterworth cannot cause any significant change in the simulation

results.

4.6. Estimation of the value of p

In order Co determine the value of p in the L norm functional
P

that operates on the output of the channel filter, an experiment was

conducted where as in the previous experiments, the threshold value

of a in Eq. (4.1) for a set of test patterns was measured and the

results were compared with the simulation results that use various

values of p in the model. In these simulations the transfer function

of the filter was assumed to have the form found by the last two

experiments, independent of the value of p.

For this experiment we need to have a set of stimulus patterns

that, unlike the sample functions of Gaussian random patterns, make

the variation of the channel response to different test patterns

sensitive to the value of p. For this reason non-Gaussian narrow

band random patterns were used in this experiment.

The five test patterns n (x,y), q = 1, 1.5, 2, 3, 5 were
q

generated as follows:

A sample function n(x,y) of a narrow band zero mean Gaussian
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random pattern, with the radially symmetric power spectral density

of Eq. (4.2) (fQ = 4.5 ~/0 and u> = 1.25 ~/0) was chosen. For each

value of q given above, the function m (x,y) was computed by the

nonlinear operation

mq(x*y> " |n(x,y)|qsgn[n(x,y)] (4.10)

Then nq(x,y) was found by filtering m (x,y) by an isotropic filter

defined by

G<fx'V = 1 ==? (4-U)

We note that mq(x,y) for q= 1, 1.5, 2, 3, 5 can be regarded as a

sample function of the zero-mean random pattern M (x,y) which is

non-Gaussian for q = 1.5, 2, 3, 5. But for these values of q it will

not be quite narrow band either. Therefore each m (x,y) was filtered
q '

by G*fx,fy^ in order to remove part of the frequency components

introduced by the nonlinear operation and keep the spatial frequency

components of m (x,y) in a band which ensures the excitation of only

the channel that is under study. Since the bandwidth of m (x,y) is
q

not very large compared with the bandwidth of the filter G(f ,f ).
x y *

n (x,y) remains non-Gaussian for q = 1.5, 2, 3, 5.

The test patterns were scaled so that the value of max|n (x,y)|
x,y q

was the same for all of them. Three examples of these patterns are

shown in Fig. 10.

The threshold value of a(in dB attenuation) as a function of q

is plotted in Fig. 11 for two subjects.
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q - 5

Fig. 10. Three examples of the pattern n (x,y) used for determining
the value of p.
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The simulation results were obtained by filtering the same

five test patterns that were used in the experiment by the filter

given by Eq. (4.4), (4.9) and (4.6). The bandwidth parameters of

this filter were those found in previous experiments, namely

b = 10° and w = 2.5 ~/0 (for Butterworth radial filter). The

center frequency of the filter was f =4.5-/0. However since
o

the stimulus patterns of this experiment are sample functions of

isotropic random patterns, the choice of the orientation 0 depends

on what channel is actually detecting each of the test patterns.

Therefore 0q was treated as a parameter to which the sensitivity

of the simulation results had to be investigated.

Using various values of 0 and p the response of the channel

was computed. It was noticed that the simulation results were

almost insensitive to the value of 0 ; therefore the value of
o

9o = °° was used* Eacn of tlie curves in Fig. 11 show, for a fixed

value of p, the variation of channel response as a function of q

which is a measure of the deviation of the stimulus probability

distribution from Gaussian. The curves corresponding to nine

different values of p ranging from 2 to » are shown.

The simulation results show a good sensitivity to changes in the

value of p and it can be seen that the curve corresponding to p = 8

matches the experimentally measured response of both subjects. This

estimate of the value of p is within the range of low values (1-10) that

was consistent with the previous experiments.
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CHAPTER 5

EXPERIMENT RESULTS (II)

VISIBILITY OF PSEUDO RANDOM DISTORTION IN NARROW BAND BACKGROUND IMAGES

The experiments of the previous chapter dealt with the

detectability of pseudo random patterns on a constant luminance

background. It is well known that the visibility of distortion in

images depends strongly on the characteristics of the image itself

as well as the nature of the distortion. The experiments of this

chapter were designed to investigate the effect that various

characteristics of a background image have on the threshold detection

of pseudo random perturbations in that image.

The self setting method is used to measure the threshold value

of a for detecting the difference between the image i(x,y) and the

distorted image

i(x,y) = i(x,y)[l + an(x,y)] (5.1)

The background image i(x,y) is a non-negative function given by

i(x,y) = Iq + u(x,y) (5.2)

where I is the mean background luminance and the pattern u(x,y),

which has a contrast well above the threshold of perception, represents

the background image information. In most of the experiments u(x,y)

was a sample function of a narrow band random pattern with the power

spectral density of Eq. (4.2).

In the experiments of this chapter we want the perturbation

pattern n(x,y) and the background pattern u(x,y) correspond to two

independent random patterns. Therefore in each stimulus image n(x,y)
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and u(x,y) were generated by filtering two different white noise

sample functions.

5,1« The Effect of Background Image Center Frequency

In order to investigate the effect of the spatial frequency

components of a background image on the visibility of narrow band

random perturbations, the measurements of the experiment of sec 4.1

were repeated for background images that were narrow band.

Four different background images were used in this experiment.

In two of them u(x,y) was a narrow band pseudo random pattern with

center frequencies 4.5 ~/0 and 13 ~/0; the bandwidth of each was

1/5 the center frequency. In the other two u(x,y) was given by

u(x,y) =cJ (2irf lx2+y2)
o o

where JQ(*) is the Bessel function obtained by the Hankel transform

of the delta function £(f-f ), with the center frequency f equal to

4.5 ~/0 for one pattern and 12 ~/0 for the other. The rms value of

u(x,y) for the case of pseudo random patterns was 1/3 the value of

the mean luminance I , and the peak amplitude of u(x,y) for the

radial Bessel functions was 1/3 the value of I . In Figs, la and lc

two examples of these background patterns are shown. Figures lb and

Id show the perturbed versions of these images as given by Eq. (5.1)

for a narrow band n(x,y) with a visible contrast.

As in the experiment of sec. 4.1, for each background image

the threshold value of a as a function of the center frequency of

n(x,y) was measured. The upper curves of Fig. 5.2 show the rms

contrast sensitivity l/iianvx,yjt! , in dB, as a function of the center
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Fig. 1. Examples of background images and distorted background
images (see the text).
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frequency of n(x,y) for different background images, including the

curve corresponding to the blank background which is replotted

from Fig. 4.3. The lower curves in Fig. 5.2 show the difference in

contrast sensitivity between the constant luminance background and

different narrow band background images.

The depression in the contrast sensitivity curve is maximum

when the center frequency of the test pattern n(x,y) is the same

as that of the background pattern u(x,y), but this depression

extends over a range of frequencies that is large compared with the

bandwidth of the background image.

5.2. The Effect of Background Contrast

In order to investigate the effect of the contrast of a

narrow band background pattern on the visibility of a narrow band

test pattern an experiment was conducted in which u(x,y) was

a narrow band pseudo random pattern with different contrast values.

The center frequencies of the test pattern and the background

patterns were identical.

By the self setting method the threshold rms contrast of the

test pattern as a function of the background rms contrast was

measured for two subjects. These measurements were carried out for

center frequencies 4.5 ~/0 and 13 ~/0; the results are plotted in

Fig. 3.

We can see that one of the subjects (D.S.) has in general a

higher sensitivity. But aside from that we can conclude that the

threshold contrast of the test patterns increases with the contrast

of the background pattern. Also the rise in threshold, due to the
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background, is almost a linear function of the background contrast.

The experimental results of this chapter indicate that, in

general the presence of the background image considerably reduces

the visibility of the test pattern. According to the discussion

of sec. 3.1, the multiplicative form of Eq. (5.1) causes this

reduction in sensitivity to be due to reasons other than the local

spatial interaction of the retinal cells that was described in sec 22,

In sec. 6.2 we will present a modified version of the perception

model which takes the phenomena observed in the above experiments,

into account.
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CHAPTER 6

CONCLUSIONS REGARDING THE MODEL

AND THE DISTORTION MEASURE

In this chapter the experimental results and their implications

will be discussed and a modified version of the model of Chapter 2

which takes the effect of the background image into account will

be presented. Finally the possible distortion measures that are

suggested by this model will be discussed.

6.1. Implications of the Experimental Results

The experimental results of sec. 4.2 support the multichannel

hypothesis about the model given in Fig. 5 of Chapter 2. These

results indicate the existence of channels that are selectively

sensitive to different spatial frequencies and as indicated by the

OR function in the model, the detection of a given pattern takes

place when the response of any one of the channels reaches its

threshold. The experiment described at the beginning of sec. 4.3

indicates that the same statement is true about the channels that

are sensitive to different orientations.

The results of the experiments of sees. 4.3, 4.4 and 4.5

provide us with quantitative information about the filter in the

channel which is sensitive to frequencies around f = 4.5 ~/0 and

orientations around 6 « 0° i.e. along the f axis in the frequency

domain. In other words this is the channel that is most sensitive

to a 4.5 ~/0, vertically oriented grating. For the frequency

response given by Eqs. 4.4, 4.6 and 4.9 the radial bandwidth w and

the angular width b of this filter were found to be + 2.5 ~/0 and

+ 10° respectively. The magnitude of the frequency response of

-78-



Q *

this filter is illustrated by a three dimensional plot in Fig. 1.

The center of this plot corresponds to the origin of the

frequency plane and it shows the magnitude of the transfer function

over the range of frequencies -32 ~/Q < i <_ 32 ~/0, - 32 ~/0

1 fy 1 32 "70. All of the filters used in the simulation studies

of Chapter 4 have real valued transfer functions. No attempt was

made to find the phase response of the channel filter. Fortunately

since the stimulus images were Gaussian random patterns, and the

output of the filter was operated on by a L -norm operation, it is

unlikely that the simulation results will change significantly by

changing the phase response of the filter while the magnitude of the

frequency response is kept fixed. This is due to the fact that the

L2-norm of the output of the filter is approximately equal to the

integral of the product of the power spectral density of the noise

pattern and the square of the magnitude of the frequency response

of the filter. Thus the L -norm of the output for a Gaussian random

pattern should depend only on the magnitude of the transfer function.

Therefore the use of Gaussian random patterns has enabled us to

determine the magnitude response of the filter independently from

the shape of the phase response of the filter. It should be pointed

out that in order to apply this model to the detection of patterns

that are not random, in most cases the shape of the phase response

has to be known.

The point spread function of the filter i.e. the inverse

transform of the frequency response can be computed under the

assumption of a real frequency response. This is shown by the three

dimensional plot of Fig. 2. The center of this plot corresponds
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Fig. 1. Magnitude of the frequency response of the filter
with f = 4.5 ~/0 and 6 = 0°.

o o

Fig. 2. Point spread function for the real-valued
transfer function.
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Fig. 3. Point spread function with the assumption of
symmetry in the y direction and antisymmetry
in the x direction.

to the origin of the spatial coordinates and it shows the point

spread function over the range -.5° <. x <_ .5°, -.5° <_ y <_ .5°.

Notice that the assumption of a real transfer function has resulted

in having symmetry in both x and y directions.

If we assume that the frequency response of Fig. 1 corresponds

to a point spread function that is symmetric in the y direction and

antisymmetric in the x direction, then it can be computed by

assuming an imaginary frequency response with proper conjugate

symmetries. This point spread function is shown in Fig. 3. Clearly

the point spread function can have a form different from these two

extreme cases and in genral corresponds to a complex-valued frequency
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response. A more plausible alternative is to hypothesize that there

exist channels whose filters have the same magnitude response, but

different phase responses. Then the two extreme cases shown in

Fig. 2 and Fig. 3 can be identified with the line detectors and

edge detectors, respectively, that have been investigated by

Kulikowsky and Kingsmith [21]. In fact the variation of these

point spread functions along the x axis is both quantitatively and

qualitatively similar to the line spread functions that Kulikowsky

and Kingsmith have found for these detectors.

A few observations about the physilogical correlates of the

model can be made at this point. The linear filtering and the norm

operation can correspond to spatial interaction at all levels of the

visual nervous system, from the retina to the cortical cells. The

retinal cells have receptive fields that are almost isotropic. The

angular selectivity must correspond to the spatial interaction at

higher levels of the visual process. In fact the cortical cells of

the cat, studied by Hubel and Wiesel [16] have simple and complex

receptive fields that show such angular selectivity. Receptive

fields with shapes corresponding to both point spread functions of

Figs. 2 and 3 have been discovered in these studies.

The value of p = 8 in the L -norm operation that follows the

filter seems to be in agreement with subjective experience. When

a spot with large amplitude dominated the test pattern, subjects

detection was almost entirely based on detecting this peak; this

corresponds to a value of p that is higher than 2 or 3. On the other

hand when no such dominant peak was present, as in the case of

Gaussian patterns, the detection was due to contributions from all

parts of the image rather than the point with maximum amplitude;
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this corresponds to a value of p that is less than infinity.

In estimating the numerical values of the model parameters,

we have concentrated only on the channel with center frequency

f = 4.5 ~/0 and orientation 6 =0°. However some observations
° o

about the parameters of other channels canbe made. First the

result of the experiment of sec. 4.1 shows how the sensitivity of

the channels tuned to different spatial frequencies depends on the

center frequency of the channel. As for the bandwidth of the other

channels, the experimental results of Blackmore and Campbell and

several other investigators indicate that within a large range of

spatial frequencies the ratio of the center frequency to the

bandwidth of the filters are constant. Also the orientational

selectivity for gratings, expressed in terms of the polar angle in

the frequency plane, has been found to be constant for different

grating frequencies (Kulikowsky, Abadi and Kingsmith [22]). The

implication of these results in our model is that while the angular

width b remains fixed, the radial bandwidth w is proportional to the

center frequency. Therefore channels with larger center frequency

have wider bandwidth in both f and f directions in the frequency

plane.

Another parameter of the model that was not investigated in our

experiments is the shape and effective support of the spatial

weighting functions a^x.y) in the L -norm operation. In our

simulation studies this function was assumed to be a constant and

hence was ignored. This was due to the fact that Robson's data

(Fig. 4 of Chapter 2) indicates that the spatial extent of a(x,y)

for the channels around 4.5 ~/0 is greater than 10°.
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In fact these experimental results show that for the 4.8 ~/0

grating, the response of the visual system increases drastically

by increasing the number of cycles displayed, up to 45 cycles

which is equivalent to 10°. Since our stimulus patterns in all

cases extended over a 2° x 2° frame and the channel filter is not

very narrow band we can assume that over the area in which the ^

output pattern of the filter is non zero, this function is almost

constant.

6.2. The effect of the background image

The block diagram of Fig. 4 shows a typical channel of a

modified version of the model given by Fig. 5 of Chapter 2. In

this model the effect of the background image is taken into account

by introducing a separate channel that processes the background

image i(x,y) only and whose output U scales down W, the response

of the channel to the perturbation pattern fcn[i(x,y)] - £n[i(x,y)].

This structural form is in agreement with the experimental results

of Chapter 5. The quantity U, is assumed to be a spatially weighted

norm of the output of a filter G. (f ,f ). We assume that the d-c
k x y

response of this filter, i.e. G(0,0) is zero. This* is because we

are only interested in the effect of the contrast of i(x,y) on the

detectability of the perturbation. It is clear that for a zero - *

background contrast this model reduces to the one given in Chapter 2.

The results of sec. 5.1 indicate that the depression of the

contrast sensitivity curve is maximum at the center frequency of

the background image, suggestine that this filter is tuned to the

center frequency of the filter H. (f ,f ). However since the

-84-



I 0
0

i
n

'<
«

*<
A

*
I
.

'»

9l
t(x

,y)
]-g

[i(
x,y

)]
O

O
Ri

^O
O

El

'(*
.V

> F
ig

.
4

.
B

lo
c
k

d
ia

g
ra

m
o

f
a

ty
p

ic
a

l
c
h

a
n

n
e
l

o
f

th
e

m
o

d
e
l

o
f

d
e
te

c
ti

o
n

o
f

p
e
r
tu

r
b

a
ti

o
n

s
in

b
a

c
k
g

ro
u

n
d

im
a

g
e
s.



depression of the contrast sensitivity function (Fig 2 of Chapter 5)

due to a narrow band background (masking effect) extends over a

wide band of frequencies, the bandwidth of Gfc(f ,f )has to be large

compared with that of H^f^f ). it seems plausible to assume that

the spatial weighting function for the channel that processes i(x,y)

is the same as that of the channel which processes the perturbation

pattern.

The experimental results of sec. 5.2 suggest that the overall

channel response Dfe should be related to W. and U. by

W

Dk =Ihl" (6.1)
k

To see this we note that the assumption of a linear filter makes

the value of U, , for a given Gaussian background pattern, proportional

to the r.m.s value of the background contrast, c,

\ - A Cb (6.2)

where A depends on the relation between the background image bandwidth

and the frequency response G, (f ,f ) as well as the value of p in
k x y

the L -norm operation which generates U. . Also W, is proportional

to c , the rms contrast, of the perturbation pattern which in this

experiment was

*n[i(x,y)] - *,n[i(x,y)] - an(x,y) (6.3)

Thus we have

Wfe-B (6.4)
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If the value of the threshold is taken to be t, at the threshold

we have

BC

t =

or

n,t

1+C,
D

r - 1 a. tA p
n,t"B+TCb (6.5)

where Cn fc is the threshold r.m.s. contrast of the noise pattern.

This relation is consistent with the experimental results of

sec. 5.2 (Fig. 6 of Chapter 5).

We notice that the perturbation pattern is taken to be

n[i(x,y)] - *n[i(x,y)] and that Ufc does not depend on the mean

luninance of the background image. These are suggested by the

fact that the perturbed images used in the experiments of Chapter 5

had the multiplicative form of Eq. 5.1 and consequently the results

of these experiments correspond to phenomena different from the

adaptation of the photoreceptors of the retina.

Unfortunately the experimental results of Chapter 5 are not

adequate for making a definitive statement about the relation between

the background image i(x,y) and the value of U.. Also we have used

only a limited number of background images, and there are

undoubtedly images for which this model will not accurately predict

the detection of perturbations. This model does however predict

some of the masking phenomena observed in practice. For example

it is known that if the background image has a sharp transition in

luminance along a boundary, then the perturbations are less visible

around this boundary. In our model this corresponds to the response
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Ufe that the "edge" in the background image generates and the

subsequent decrease in the responses Dk of the channels over a

wide band of spatial frequencies.

6.3. The Distortion Measure

Based on the model presented in the last section we are going >>

to define several distortion measures and consider their implications.

The distortion measures will be for the encoding of still

monochromatic images.

Let the non-negative function u(x,y), which is nonzero only on

the subset [- —, —]x [-—,—] of R , represent an image. Suppose

S is small enough so that the variables x and y correspond to

subtended angles in the horizontal and vertical direction from the

point of view of a human observer. We assume that the fixation

point of the visual system of the observer coincides with the

origin (0,0). Therefore each image corresponds to a specific

fixation point of the observer as well as his distance from the

scene.

Let u(x,y) be a reconstructed version of u(x,y) at the receiver.

We first ocnsider a vector-valued function D(u,u) defined in terms

of its non-negative components D, (u,u), k = 1,2,...,n by

Wk(u,u)
Dk = 1+U.(u) k = l,2,...,n (6.6)

A,

where W, (u,u) and U, (u) are the same as W, and U, shown in Fig. 4,

with i(x,y) = u(x,y) and i(x,y) = u(x,y). (Note that the notation

i(x,y), previously used for an image has been changed to u(x,y) in

this section) We are assuming that there is a one to one correspondence
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between the components of D(.,.) and the channels of the model.

From the last section the values of W, (u,u) and U. (u) are given by

Il/P

-"'-» (6.7)

00 00

Wk(u,u) -I I ak(x,y)|[(£nu-£nu)*hk](x,y)|Pdxdy|

00 00

Vu) -[l 1 ak(x>y)|[u*gk](x,y)|p,dxdyj ? (6.8)
.00 ~ .00

Notice that if we require that u(x,y) represent all of the visual

information perceived by the human observer for a given fixation

point, then the size of the frame [- | ,|] x[- | ,|] needs to
be chosen large enough so that the support of all of the spatial

weighting functions afc(x,y), k » l,2,...,n is covered by this frame

Suppose the threshold t is taken to be identical for all of

the channels, thus accounting for different sensitivities of the

channels to distortion by proper scaling of the transfer function

Hk(fx,f ) in each channel. With this in mind the prediction of

the model of Fig. 4 is that if

Dfc(u,u) < t for all k « l,2,...,n

then the difference between u(x,y) and u(x,y) is not detectable.

On the other hand if for some k^Dk .> t, then this difference

becomes visible.

Based on the function D(.,.) we can define various fidelity

criteria for encoding and transmission of monochromatic pictures.

In what follows we will study some of these fidelity criteria and
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discuss their possible implications. We start by choosing a-

mathematical representation for the image sources that are often

encountered in practice .

Let(^ be the set of all functions u(x,y), each representing

an image in the sense defined at the beginning of this section.

We assume that all of the images u(x,y), that are reconstructed

at the receiver also belong to this set. We consider an information

source whose output is a randomly chosen sequence of images from

the set[j[. An image source may therefore be characterized by a

probability measure that is defined on the set [/. The random output

of the source is denoted byu » where u takes on values from the set

r\J. Also the random image reconstructed at the receiver is denoted

by U.

We recall that each image u(x,y) was defined with reference

to a specific fixation point of an observer. The sequence of

images generated by the source can therefore be a mathematical

representation of various real situations. For example the images

in this sequence may correspond to a sequence of adjacent fixation

points of an observer, as his visual system scans a frame of a

picture or an actual scene. In this case the whole picture frame

or scene is represented by a sequence of finite length of the

source outputs. A sequence of source outputs can also correspond

to a fixed observer and a picture that varies with time. In this

case any finite segment of the sequence represents a finite time

history of the moving picture.

A statistical model in which picture frames are represented

by finite sequences requires that we have a probability distribution
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defined on the set of all sequences of finite length of images

u(x,y). The set of all such sequences of length N is denoted by

l£. The random sequence of images of length N is denoted by

H •(U1,U2,...,UN) »where gN takes on values from the set^.
The random sequence of images reconstructed at the receiver is

denoted by f .(fi^,... ,UN)
Some practical situations may be modeled by a sequence of

independent and identically distributed random images \j y

from the source^. This can, for example, correspond to transmitting

a sequence of images that result from widely spaced fixation points

of the observer, with the scene being represented by a two dimensional

homogeneous random field.

It should be pointed out that many practical situations do not

lend themselves to statistical modeling, and even if they do, the

probability distribution of the sequences of images may be very

difficult to find.

Suppose the probability distribution of a source is known.

The sequence of images generated by this source is encoded and

transmitted over a communication channel and at the receiver a

corresponding sequence of images is reproduced. The randomness of

f ? the source outputs and the random errors in the channel cause the

reconstructed image sequence to be also random. Thus the combination

of the source, the encoder and the channel give a joint probability

distribution, P for the sequences uN and \jp.

Since a picture is represented by a finite sequence of source

Noutputs u = (u^Ujt.-.tUjj), Lne ridelity criteria must be defined
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N *Non the set of all pairs of sequences u and u . However the

function D(.,.) given by Eqs. (6.6-6.8) is defined for a single

image pair (u,u). Therefore any single image distortion measure

d(u,u) defined on the basis of D(.,.) has to be extended to a

distortion measure d"N(u ,u ) defined on pairs of sequences of

length N. We note that when u and jjN are random sequences,

^(u tin is a random variable.

Suppose the user of the image transmission system requires

that with probability greater than 1-6, 0 < 6 < 1, the distortion

in a reproduced picture (i.e. a N-long sequence of images u(x,y))

be below the threshold of detection. Clearly this requirement will

be satisfied if we let the single image distortion measure be

d(u,u) * max D.(u,u) (6.10)
k=l,2,...,n

and extend this to sequence of images by letting

N aN
d (u ,u ) = max d(u.,u.) (6.11)
max- ~ j-1,2....,* i J

and then design our system in such a way that

Pm J'W^U1) >t> <6 (6.12)
m r.K max -v *• —

U ,11

This fidelity criteria simply specifies an upper bound on the

probability with which the encoding and transmission system

introduces visible distortion in the pictures transmitted, thus

implying that all pictures with visible distortion are judged as

being equally distorted without giving more weight to a particular

form of distortion or a particular part of the picture frame.

-92-



Another possible requirement may be expressed in terms of

the average of d(u,u) over the picture frame, that is we define

N

3, N -NN 1 V^1 j/ A v ~ vd(y >" )=n 2-r d(uj,UJ (6.13)
j=l

and require that the probability of this average increasing beyond

the threshold t be less than 6

P(d(uN,uN)}_>t} <6 (6.14)

This is less restrictive than the fidelity criteria defined by

dmax(.».) and an encoding system that satisfies 6.12 also satisfies

6.14.

The model of Fig. 4 and the fact that the threshold level, t,

in 6.12 and 6.14 is taken to be constant, imply that for any single

image u(x,y) the set of all possible reconstructions, ii(x,y) is

divided into two disjoint sets of distorted and undistorted images.

This means that there is no ordering defined on the set of distorted

reproductions and thus they are all judged equivalent in quality.

The fidelity criteria that we have discussed so far puts restrictions

on the relative frequency with which distorted images are reproduced

at the receiver.

Although the model of Fig. 4 is for threshold detection of

images, it is useful to discuss possible extensions of this model

that can be used in evaluating the quality of the images in which

the distortion is at a low but detectable level. We start by

commenting about the manner in which we can define an ordering on

the set of reproductions of an image.
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Using the function D(.,.) one such ordering is defined in the

following way. Suppose u^x.y) and u2(x,y) are two reproductions

of the image u(x,y) at the receiver, resulting from two different

encoding algorithms. Then we say that u.(x,y) is a better (less

distorted) reproduction if

d»«(u»Sl> <dmax(u'G2) <6-15>

where d (...) is given by Eq. (6.10). Also when we have
IUcLX

W^V =W^V <6-16>

then the two reproductions are taken to be equally distorted. For

each transmitted image u(x,y), this gives a total ordering on the

set of all reproduced images. Note that the distortion in either

or both of these reproductions can be above the threshold of

detection. Although they are judged as being equal, the nature

of the distortion of u-(x,y) can be quite different from that of

u2(x,y). For example the distortion can be due to high frequency

noise in our image and low frequency noise in the other.

The user of the transmission system may specify his fidelity

criteria for levels of distortion that are slightly beyond threshold

in various ways, all of them using the above ordering as the underlying

criteria.

For example the fidelity criteria may be specified by requiring

that

P(d (uN,UN) > t} < 6 (6.17)
max * ** —

where t is now a positive number that depending on the user's

-94-

*3



specification takes on different values greater than or equal to

the fixed threshold t.

Another way of specifying the fidelity criteria is by

requiring that the statistical average of the distortion dN(U ,y)

be less than a given positive number A.

E{dmax(U^,U^} <A (6.18)

Notice that in both of these criteria the extension of the single

image distortion measure to pairs of sequences can also be done by

d(.,.) as defined in Eq. (6.13).

It can be argued that by using the above criteria for values

of t and A greater than t, we are extending the domain of the

application of the model for threshold detection of distortion to

describe the suprathreshold behavior of the visual perception

mechanism. On the other hand however, the assumption of an

exact and fixed threshold, t, for the human visual system is in

itself quite unrealistic. Therefore it seems that at least for

the values of t (Eq. 6.17) within the range that corresponds to

the fuzziness of the threshold, we should be able to use the above

criteria. For larger values of t, corresponding to a distortion

that is clearly visible, the possibility of using the above criteria

needs to be investigated.

We used the value of max D, (u,u) to define an ordering
k=l,2,...,n

of the set of reproductions u(x,y), of the image u(x,y). For

suprathreshold distortion we are not restricted to this form, and

other functions such as the L -norm of the vector D(u,u), for somep «.*»'»

finite p, can be used to define the ordering. Psychophysical
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experiments can be conducted to determine if there is a value of

p that is in agreement with subjective judgement and, if there is,

whether its value depends on the level of distortion.

Another possibility is that for suprathreshold distortion,

each component of D(u,u) assumes a different weight in contributing

to the subjectively judged degradation of the image. Futhermore

the relative weight of the components of D(u,u) may change as the

level of distortion is increased.

In the above discussion we indicated some of the possible ways

in which the user of the transmission system may specify his fidelity

criteria. However in the actual design of an encoding algorithm in

addition to user's specification we are also concerned about the

rate (number of bits per picture frame) that will result from the

source coding process. For example the capacity of the channel used

in conjunction with the source encoder determines an upper bound on

the number of bits that can be used for each picture frame. Therefore

the tradeoff between the user's satisfaction represented by his

fidelity criteria and the channel capacity requirements plays an

important role in designing image source encoders.

Suppose we decide on one of the fidelity criteria discussed

above and ask what is the lowest rate with which an image source

can be encoded consistent with this fidelity criteria; also how

does this minimum rate change if the fidelity criteria is varied.

As indicated in Chapter 1 this question can be answered by Shannon's

[1] rate distortion theory.

In order to obtain a quantitative answer, however, we need to

compute the rate distortion function for the image source. This
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requires a knowledge of the probability distribution of the source

as well as the distortion measure used. Suppose we use one of the

fidelity criteria discussed above in conjunction with an image

source with a knwon probability distribution to compute the rate

distortion function. We note that all of these fidelity criteria

are defined in terms of the function D(u,u) which is a rather

complicated function (Eqs. 6.6-6.8) of the source output u(x,y)

and its reproduction u(x,y). To find an analytic expression for

the rata distortion function using such a distortion seems to be a

very difficult task.

This difficulty seems to be mainly due to the following two

characteristics of the functions D, (u,u), defined by Eq. (6.6).

First, the L -norm of the filtered difference of image and its
P

reproduction, for p = 8, does not have the mathematical tractability

of the L2 norm functionals. Secondly, from Eq. (6.6) we see that

the distortion measure depends on the background image as well as

the difference of the two images. Analytically, the distortion

measures that depend only on the difference of the two images are

more easily tractable.

However, the problem can be approached by trying to find

good upper and lower bounds for the rate distortion function using

proper approximation of the above distortion measure. If such

bounds can be found, we can answer questions concerning the

possibility of improving the efficiency of the encoding algorithm

by using the distortion measure prescribed by the visual system.

For example we may come to the conclusion that if for a given

rate, encoding is performed to minimize the distortion as defined
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by a simpler distortion measure, then the resulting distortion in

the sense of the measures defined by the function D(.,.), may be

very close to what the rate distortion function predicts as the

smallest possible distortion for that rate.

Therefore it seems that the study of the properties of the

rate distortion function and finding a set of good lower and upper

bounds for it, is a potentially useful area for analytic research.
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APPENDIX A

GENERATION OF PSEUDO RANDOM PATTERNS

The pseudo random patterns used in the experiments were

generated on the IBM 1800 computer system using the picture ^processing

system PPSYS . On this system picture files with sizes 2 x 2 ,

n= 4, 5, 6, 7, 8, 9 can be generated and processed. These picture

files were either in unpacked form or in packed form. In unpacked

form each 16 bit computer word is assinged to the value of one

picture element (PEL). In packed form each computer word contains

two PELs.

All of the images used in this research have the size 512 x 512.

A sample function of a random pattern with a given power spectral

density is generated as follows.

The output of an analog Gaussian noise generator is sampled

and quantized using the analog to digital converter of the computer.

The resulting numbers with values inthe range [-32767,32767] are

stored in an unpacked 512 x 512 picture file. The sampling

frequen cy is chosen sufficiently small compared to the bandwidth

of the noise generator so that the samples are uncorrelated. In this

way we generate a 512 x 512 point sample function nw(x,y) of a white

£* Gaussian noise N (x,y) whose power spectral density SN (fn»fy) ls tne
w w y

constant N . An example of such a pattern is shown in Fig. Ala.

y *

If this white noise pattern is passed through a linear

homogeneous (shift invariant) filter with frequency response H(fx»f ),

the power spectral density of the output random pattern, N(x,y), is

given by
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(b) (d)

Fig. Al. (a) Sample function of a white noise pattern;
(b) Fourier transform of the white noise sample function;
(c) After multiplication by the frequency response of a

narrow band isotropic filter
(d) Inverse Fourier transform of the image in (c).
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S„(f ,f )oN |H(f ,f )|2 /A nN x y o' N x y ' v.A.1;

Therefore in order to generate a sample function of a random

pattern with power spectral density S„(f ,f ) we filter the

white noise sample function n (x,y) with a filter whose frequency
*, w

response satisfies

* l^x'V1 =tSN(£x'Vll/2 (A,2)
The linear homogeneous filtering operation is performed on the

computer using the two dimensional discrete Fourier transform.

The fast Fourier transform (FFT) algorithm is used for computation

of discrete finite transforms. Using this algorithm, the Fourier

coefficients of the 512 x 512 white noise pattern are computed.

Then they are multiplied by the corresponding frequency domain

coefficients of the filter. The inverse Fourier transform of the

resulting coefficients is a 512 x 512 point sample function of the

random pattern with power spectral density given by the square of

the magnitude of the frequency response of the filter (this ignores

edge effects, which were negligible for the filters used).

The magnitude of the Fourier transform of the sample function

of Fig. Ala is shown in Fig. Alb. Figure Ale shows the magnitude

of the Fourier transform after filtering with a radially symmetric

narrow band filter. The inverse transform which is a sample function

of a band pass random pattern is shown in Fig. Aid. The magnitude

of the frequency response of the filter used in this process is

illustrated by the three dimensional plot of Fig. A2.

In both the generation of stimulus images and simulation

studies, the filters had a real valued frequency response which
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Fig. A2. Magnitude of the frequency response of a band pass
isotropic filter.

-102-



c,

r -

corresponds to zero phase shift for all spatial frequencies.

The computations performed on picture files on the IBM 1800

computer use 16 bit integer arithmetic. In order to keep the

percentage round-off error within an acceptable range, before

each filtering operation the picture element values are scaled

so that the maximum absolute value in the picture file is 32767

the largest positive decimal integer for 16 bits).

Before storing an image on the video disk for display on the

TV monitor (see Appendix B), it has to be packed, which means that

two adjacent picture elements are stored in a 16 bit word, each

occupying 8 bits. Therefore in the process of packing, the PEL

values are scaled so that they fall between 0 and 255. In the

experiments of sees. 4.1 and 4.2 and all experiments of Chapter 5,

the packed pseudo random files were such that the mean of the PEL

128
values was 128 and the rms value was —r-. In the experiments of

sees. 4.3, 4.4, 4.5 and 4.6 the mean was 128 and max|n(x,y)| had the

value 127 for all pseudo random files n(x,y).
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APPENDIX B

EQUIPMENT SET UP FOR THE EXPERIMENTS

The block diagram of Fig. Bl shows the equipment set up for

the psychophysical experiments.

The visual patterns used in the experiments are generated as

two dimensional arrays on the IBM 1800 computer system. With the

use of the interface unit VIBE these digital pictures are converted

into analog signals in standard TV format and are stored on the

video disk. Each picture file is stored as a single monochromatic

picture frame on any of the three channels of a track which is

selected from the 105 tracks of the video disk.

VIBE accepts 8 bit picture elements with values in the range

[0,255] as the input. The non-negative video signal voltage at

the output of each channel is a linear function of the PEL values

with value 0 generating 0 volts and value 255 generating 3 volts.

For a specific setting of the CONTRAST and BRIGHTNESS controls

on the TV monitor, which was maintained throughout the experiments,

the luminance 1 on the face of the picture tube is related to the

video input voltage and hence the PEL values in the computer by a

monotonically increasing nonlinear function that we denote by g(.)

This function was found by measuring the luminance for PEL values

ranging from 0 to 255.

The inverse of this function f = g was made into a table

mapping the values [0,255] onto [0,255]. In order to make the

luminance at each point on TV screen a linear function of the

corresponding PEL value in the computer, the background image values

are transformed with this table before recording on the video disk.

-104-



o I

O
Q 0 M O O 0
0 a r
t

=
r

c 3 (D 3 C

IB
M

1
8

0
0

V
IB

E

V
ID

E
O

D
IS

C
D

C
s
h

if
t

c
ir

c
u

it

D
C

sh
if

t

c
ir

c
u

it

T
ra

ck
se

le
ct

io
n

—
.

'C
on

tr
ol

le
d

1
••

!-
«

?
-

by
ex

pe
ri

m
en

te
r

<
*

(m
on

ito
r"
\

M
IC

RO
\±

s
SW

IT
C

H
/

I
C

lo
se

s
fo

r
I

0
.9

se
c
o

n
d

s

t

C
o

n
tr

o
ll

ed
by

su
b

je
ct



The background image which is a non-negative pattern i(x,y)

is stored on channel 1 of each track. The perturbation patterns

^(x.y) and n2(x,y) are stored on channels 2 and 3 respectively.

Since VIBE accepts only non-negative values in the range [0,255],

these patterns are transformed in such a way that their mean value

becomes 128 (see Appendix A) which corresponds to 1.5 volts in the

output. However since the video signals corresponding to these

patterns have to be zero mean, the output signal voltages of channel

2 and 3 are shifted down 1 volts by the circuits shown in Fig. Bl.

In the experiments that use a constant luminance background,

the luminance of the pattern on the TV screen has to be I = 860
o

2
cd/m (=270 millilamberts) when the micro switch (Fig. Bl) is

open and

i(x,y) = Iq[1 + c^n^x.y) + <x2n2(x,y)]

= I0 + IQ <*x ^(x.y) + Iq a2 n2(x,y) (B.l)

when the micro switch is closed. In order to achieve this, a

constant picture file with the value f(I ) = g (I ) was stored on

channel 1 of a track. The pseudo random patterns n1(x,y) and

n2(x,y) were stored on channels 2 and 3 of the same track. From

the diagram of Fig. Bl we can see that the luminance is

i(x,y) -g(g~1(Io)) =IQ (B.2)

when the micro switch is open and

i(x,y) =gfg"1^) +31n1(x,y) +e2n2(x,y)] (B.3)
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C

when the micro switch is closed. The constants 3- and 39 are the

scalar factors corresponding to the attenuators of Fig. Bl. For

the contrast levels that are around the threshold of detection

of the patterns n-(x,y) and n«(x,y), the values of 31 and 39

are such that the peak amplitude of 31n.(x,y) + 32no(x,y) is very

small compared with g (I ) and we have

i(x,y) ~ g[g_1(I0)] +g,[g"1(I0)][31n1(x,y) +32n2(x,y)]

= IQ + C31n1(x,y) + C32n2(x,y) (B.4)

where

C=g,[g"1(I0)] (B.5)

Therefore for constant background experiments the attenuations

a1 and ct« are related to 3.. and 3« by

a. = •**- 3. , J - 1.2 (U.b)
J o J

In the experiments using a non-constant image i(x,y) as the

background, the picture file g~ [i(x,y)] = f[i(x,y)] is stored on

channel 1 of the track. The perturbed image must be

i(x,y) = i(x,y)[l + «n(x,y)]

In order to have a luminance distribution given by this multiplicative

form, the derivative of the function f, f, was made into a table

and using this table the image
«

n(x,y) i(x,y) • f'IKx.y)]
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was formed by the computer and it was stored on channel 2 of the

track. In these experiments channel 3 was not used. Thus the

luminance oh TV screen becomes

g[f[i(x,y)]] = i(x,y) (B.7) <

when the micro switch is open and i3>

i(x,y) = g[f[i(x,y)] + 3n(x,y) i(x,y) f'IKx.y)]] (B#8)

when the micro switch is closed. Since around the threshold of

detection of perturbations the amplitude of 3n(x,y) i(x,y) f*[i(x,y)]

is small compared to f[i(x,y)] we have

i(x,y) ^ g[f[i(x,y)]]+g'[f[i(x,y)]]|? n(x,y) i(x,y) f'[i(x,y)]
(B.9)

However since f = g we have

gf[f[i(x,y)]] • f[i(x,y)] = 1 (B.10)

Therefore the luminance of the perturbed image becomes

i(x,y) ?* i(x,y) + i(x,y) 3n(x,y)

= i(x,y)[l + 3n(x,y)] (B.ll)

which has the desired form.
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