
 

 

 

 

 

 

 

 

 

Copyright © 1975, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



THE SPATIAL STRUCTURE OF PRODUCTION WITH A LEONTIEF TECHNOLOGY

by

Urs Schweizer and Pravin Varaiya

Memorandum No. ERL-M545

22 September 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

0/i7ZO



The spatial structure of production with a Leontief technology

Urs Schweizer and Pravin Varaiya
Department of Economics Department of Electrical
University of California Engineering and Computer
Berkeley, California 9^720 Sciences and Electronics

Research Laboratory
University of California
Berkeley, California 9*4720

Abstract

The structure of the optimal spatial pattern of production

is studied when there are interdependencies among production un

its which can be described by a Leontief technology, and when

there is a single marketplace of final demand, the CBD. Tran

sportation cost is proportional to distance. It is shown that

the various goods are produced in rings which can be ranked by

distance from the CBD independently of the levels of final

demand. Furthermore shipment of goods for meeting intermediate

and final demand can only be in the direction of the CBD and no

shipment of goods towards the periphery can occur. A finite al

gorithm is given for the construction of the optimal pattern and

for determining a system of f.o.b. prices and land rents which

sustain it as a competitive equilibrium.



1. Introduction. In this paper we examine the spatial struc

ture of production within the context of a model whose elements

can be briefly described as follows.

a) Space. This is a featureless plane at the center of which

is the central business district (CBD) of fixed radius u >. 0.
V

Land outside the CBD, at distances u > u , is devoted exclusively

to production.

b) Commodities. There is a finite number of goods indexed

j = 1,...,n produced outside the CBD. There is one other commodity

which is available throughout and serves as a numeraire; we shall

call it money ($). Money can be regarded as a composite commodity.

c) Technology. Land is the only non-produced factor of pro

duction. To produce x. units of j requires o< oc. units of land
* it

and #..x. units of i, where U. > 0, a.. > 0, a.. < 1 are con-

stants. Thus we have a linear technology with intermediate goods

but without joint products and without substitution.

d) Transportation. It costs $t. to transport each unit of
3-

good j over a unit distance where t. > 0 is a constant.

Now suppose we are given a vector Q r (Q ,...,Q ) > 0 of

final demands at the CBD. Since we have assumed a Leontief tech

nology, Q uniquely determines the total amounts of the various

goods which must be produced in order to meet this demand. They

are given by the vector x = (x ,,..,x ) which satisfies (I-A)x=Q

where I is the identity matrix and A= (a.. ). However the spatial

organization of this production and the transportation flows,

both between production units and between them and the CBD, are

still undetermined. Among all possible ways of organizing these
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spatially we study the optimal pattern, i.e., the one which

minimizes total transportation cost. Specifically, we wish to

know whether certain qualitative properties enjoyed by the op

timal pattern in the two simple examples discussed next continue

to hold in general.

In the first example there are no intermediate goods i.e.,

all the a =0. Then it is easy to show that the optimal pat-

tern enjoys the following two properties (see e.g. Artie and

Varaiya [1975]).

(A) If the different goods are ordered according to the rule

"i precedes j if, in the optimum, production of i does not occur

further away from the CBD than production of j," then this order

ing is independent of the final demand Q and depends only on the

technology and transportation costs.

(B) It is possible to sustain the optimal pattern as a com

petitive equilibrium by means of a system of land rents r(u) and

f.o.b. prices for the goods p. (u), u > u . Furthermore r(u)
'$• - °

and p. (u) descrease with u whereas Ak (u) and <%(u) are non

decreasing in u. The analytically trivial nature of this result

stems from the fact that there are no intermediate goods, hence

no locational interdependence between production units.

Recently, Mills [1970] and Hartwick [1974] analyzed the sim

plest possible example with intermediate goodd. They consider a

two-goods economy, n = 2. Furthermore a > 0, but a =0, and Q

> 0 but Q2 = 0. Thus good 2 is strictly an intermediate good.

With these assumptions it is clear that, at the optimum, produc

tion of good 1 cannot be located further away from the CBD than
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production of good 2, since this would entail that some units of

good 2 would have to be shipped outwards, incorporated into good

1, and then shipped inwards which is inefficient. Secondly, they

show that property (B) holds also.

It is difficult to draw any conclusions about the general

case from these examples. Furthermore the methods of analysis

employed do not appear to be extendable to the general case for

it is important there that the ordering of goods - in the op

timum, by distance from the CBD - be established a priori and

that no outwards shipment occur in the optimum. But in the gen

eral case it appears that a priori we can neither establish this

ordering nor can we rule out outwards shipment.

Nevertheless, we shall show below that properties (A) and

(B) always hold for the model outlined before. We show also that

in the optimum no outward shipment of goods can occur. Further

more, the optimum is unique. The method of proof is somewhat

unusual. In Section 2 we formulate the determination of the

optimal pattern of production as a problem of optimal control and

we exhibit necessary and sufficient conditions for optimality.

From these conditions we can conclude that the optimum pattern

can be sustained as a competitive equilibrium. Next, in Section

3, we propose a particular pattern of production and transporta

tion in which there is no outwards shipment and prove that it

satisfies these optimality conditions. Hence the proposed pat-

turn 13 optimal. The land rents and f.o.b. prices corresponding

to this proposed pattern satisfy the qualitative properties list

ed under (B). It is also shown that the optimum is unique. The
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price system which sustains the optimum need not be unique

(although the rent system is unique). We characterize precisely

the set of equilibrium price systems. In Section 4, we study

some properties of the entire region as an aggregate production

function. Finally, in Section 5, we compare our results with

those obtained by Goldstein and Moses [1975] for the two-goods

case. In their analysis backwards shipment is possible and we

show how this can occur. Throughout the analysis critical use is

made of the assumption that there are no substitute production

techniques and no joint production. We hope to remove these res

trictions in subsequent papers.

2. Formulation as an optimal control problem. For any vector z,

z > 0 means that all its components are non-negative; z > 0

means z > 0 and z ^ 0; z>>0 means that all its components are

positive. We need the following notations.

A* = (a. ,...,a. ) is the (column) vector of inputs
n "* .

necessary to produce one unit of j. A > 0 all j.

A = (A ...A ), D = I - A is the input-output matrix

with columns D ,..>D . D is the ith activity vector.

o( = (o( ,...,°<n) is the vector of land inputs; o( » 0

t = (t ,...,tn) is the (row) vector of unit transportation

costs; t >> 0

Q = (Q f...fQ ) is the vector of final demands at the

CBD; Q > 0

&(u) r amount of land at u > u available for production;

0(u) > 0. (For e.g., in a circular region 0(u) = 2JCu)

We impose the following assumption.



Assumption: A is productive i.e., there exists a vector x > 0

such that Dx >> 0.

Definition 2.1: An allocation with final output Q is a 4-tuple

Cj=(u, x(-), f(-), $(•)) where (i) u > u is the maximum distance

at which production occurs, (ii) x(u) = (x (u),...fxw(u)) > 0 is

the vector of activity levels at u, uQ < u < u, (iii) f(u),

respectively $(u), is the amount of (net) local production at u

which is shipped inwards to the CBD, respectively outwards from

the CBD; and such that the following feasibility conditions are

satisfied.

a) 0< o<'x(u) < 0(u); ufl <u< tt

b) y(u) = DX(u) = f(u) + jZf(u), uQ < u < u

c) If s(u) is obtained from the differential equation

(2.1) s(u) = 4s(u) = -f(u) ,s(u) = 0 ,

then s(u) > 0, u < u < u and s(u ) = Q.

d) If 6 (u) is obtained from the differential equation

(2.2) *"(u) = j?S (U), (T(u0) = 0,

then 6"(u) 2 0, u < u < u.

The transport cost corresponding to the allocation

(2.3) T(W) = )t[s(u) +^(u)] du

sCub)=Q S(U)

WH6.rd$ Cot»Uocftb<*flotti

•S(u +t/u)=S(U)* S('ti)^K .s(Z) =0

flu) in

ytodu

(fi(K)du

><T(U0)=0 <f(«) ><r(u f^n) =G(u)+<r(u)Mn t(u) >0

tt Uidu

Fig 2.1. Commodity flows in an allocation.
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Condition a) states that land devoted to production at u

cannot exceed land available at u, whereas b) states that commo

dity flows originating at u equal net production at u. Conditions

c) and d) can be deduced from Figure 1. They are essentially

material balance equations with the additional restriction that

the total flows must be non-negative.

Definition 2.2: An allocation with final output Q,a>* = (u*, x*(-

), f*(«), #*(•)), is optimal if T(fc») < T(w) for all allocations

to with final output Q.

Thus the problem of finding an optimal allocation is an

optimal control problem: we must find a "control function" x(u),

so as to minimize the functional (2.3)i subject to the "dynamical

equations" (2.1) and (2.2) and the "state constraints" s(u) > 0,

6" (u) > 0. The presence of these state constraints makes the

problem quite difficult since, as we shall see below, the result

ing optimality conditions do not permit us to deduce any of the

interesting properties of the optimal allocation that we are

seeking.

Theorem 2.1. (Optimality conditions) An allocation with final

output Q, go* = (u*, x*(»), f*(-), $*(•)) is optimal if and only

if there exists an absolutely continuous price system p*(u) > 0,

u > uk , such that the following conditions hold.

a) For u < u < u*

(2.4) p*(u) Dx*(u) = Max {p*(u) Dx \x > 0, cf'x < 6(u)}

b) If s*(u), 6*(u) are solutions of (2.1), (2.2) correspond

ing to f*(u), 0*(u) respectively, then
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*(2.5) (s*(u)) tf*(u) = 0 , u0 < u < u

(2.6) P*(u) = 0, u > u*

f -t. , if s* (u) >0

(2.7) P.* (u) - < t- , if ^*(u) > 0

1€[-t. ,t. ], if s*(u)=0 andO(u)=0
for j=1,...,n and u < u < u*

(Note: Here and elsewhere the price vector p* is always con

sidered a row vector)

Proof: See Appendix.

The conditions can be easily interpreted. (2.4) says that

x*(u) is the maximum profit activity vector at u when p*(u) is

the f.o.b. price at u. Since s*(u) > 0, <C*(u) > 0, (2.5) says

merely that we cannot have simultaneously s*(u) > 0 and <$.*(u) > 0

which would clearly be inefficient. (2.6) limits the total

amount of land devoted to production. (2.7) is a version of the

condition first observed by Samuelson [1952]. It asserts that if

it is optimal at u to ship the ith good inwards, respectively

outwards, then the price of i must decrease, respectively in

crease, at the rate of the transport cost; on the other hand

price cannot change faster than transport cost to prevent arbi

trage. From these conditions it is not at all evident that it is

not optimal to have outwards shipment of goods, nor that prices

must decline with distance from CBD. As an immediate consequence

however we can obtain the following result.

Corollary 2.1. The system of prices p*(u), u < u < u* and land

rents r*(u) given by

(2.8) r*(u) = [c</x*(u)f'/ [p*(u) Dx*(u)]
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sustains the optimal allocation co* as a competitive equilibrium.

Subsequently we shall need the next result.

Corollary 2.2. Let p*(u) be a price system which sustains

<o * as in Theorem 2.1. Let w be another optimal allocation with

final output Q. Then p* also sustains u$ .

Proof: See Appendix.

We will show in the next section that for every Q > 0 there

exists an optimal allocation with final output Q. We can then

define the equilibrium price vector P(Q) = P*(u0 ) at tne CBD

corresponding to the final output Q. We may call P(Q) the

region's supply function. Some of its properties will be studied

in Section 4.

3.1 An optimal allocation. We first display a particular

allocation <a>* = (u*, x*(-), f*(- ), ^*(- )) with final output Q and

then show that it is optimum. The allocation t*> is determined in

two steps. First, in Lemma 3*2, we establish an ordering among

the goods according to the distance from the CBD at which they

are produced. This ordering is independent of Q. Secondly, we

specify the actual activity levels x*, f* and $* such that the

final output is indeed Q.

As a preliminary we need this well-known result.

Lemma 3.1 The following conditions are equivalent:

(i) A is productive

(ii) A' is productive

(iii) For every y€R , y £ 0 there exists x£R , x > 0 such

that Dx = y
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(iv) D is non-singular and D > 0

(v) All principal minors of D are positive.

Proof: See for example Nikaido [1968].

We now give the first step. The ordering of the goods is

given by the next lemma. It should be noted that the proof is

constructive.

Lemma 3.2 There is an integer m < n, m (row) vectors t*0 = (t*

v...,t* ) and ra subsets J. of {1,...,n} such that

(3.1) t = t1 > t2 >. . . > t™ >> 0

(3.2) Jt c J2 . . . cj^ = {1,...,n}

(3-3) tf = t. if and only if j 4 J. A

(3.4) <Vd*

= <1 tK d* if j 6 J. , k c J.
R A, <*•

> o£ t*"d* if j 6 J. , k$ J.
4

Proof: Set t = t and define

J, = { j ! oCH t1 d3 = max °C t1 d*8 }

k=1,... ,n

We now proceed bv induction. Suppose t*v and J. have been con-

structed. Suppose J. / {1,...,n}. By Lemma 3-1 there is a row

vector A" = (£? ,..., &) > 0 such that

(3.5) & > 0 if and only if j 6 J. ,
a a,

(3.6) 4;d* =* if j £ J.

We claim that for A > 0

(3.7) c£1(tl -jU1) d* =*V d*-X if j c- J. ,

(3*8) °*fc^ -Aac ) d is non-decreasing in A for k^ <L .

To see (3.7) we simply substitute from (3.6); for future use we

also note that by (3.4) the right hand side of (3.7) is indepen-

-10-



nt of j for j€ J. . To see (3.8) we observe that ^ = 0 if kde

t J. by (3.5), whereas d- < 0 if k f j; hence ALd < 0 for k4 «£•

Since (3.7) is strictly decreasing in X and (3.8) is non-

decreasing, therefore there exists A. > 0 such that

(3.9) \. = min {A> 0! there exists k ^ *L with

o^W -AAl)dk =cTVdj -A for j€ J^ }
Set

(3.10) t = t - A.a ,

(3.11) J. = (kS c/V41 dfe =°CtUi d* for j € JL }
^1 ' fc 1

We check that t*" , J,_ satisfy (3.1)-(3.4). First of all

since \ >0 and A1 > 0 therefore tl > ttM by (3.10). Secondly,

from (3.9) and (3.11) we know that <I C J.^ ; in fact <L $ J^

so that if m is the smallest integer such that J^ = {1,...,n},

then m < n. Thirdly, t*+ = t. if and only if Ac. = 0, but A) -

0 if and only if \$ J. and so (3.3) is verified by induction.

Fourthly, from (3-9) and (3.11) it follows that *k t*+i d < «/. t*

d* for j€ J k ^ J. , thus (3.4) is verified. To complete the

proof of the lemma it only remains to show that t >> 0 if t >>

0. Now t*+1 = t. > 0 if j i J, , whereas for j 6 J. (in fact

for 4 6 J )
0 A+4A+1

t d* = ^.

where p > 0 by (3.11). By Lemma 3-1 these relations can hold

only if t. > 0 for j £ J . The lemma is proved.

From the proof of the previous lemma we can deduce the next

result.

Corollary 3.1 For i = 1,... ,m

(3.12) P. = *l* t*d* , j € J.
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is independent of j e J, . Furthermore £,,>?,.•••>$*, •

Let Q > 0 be a fixed output vector for the remainder of this

section.

Lemma 3.^ There is a unique set of activity vectors x^ = (x*

,...,x* ) > 0, i = 1, •. •v*isuch that

(3.13) Q = I Dxl

(3.14) x\ =0 if j i J.

Vk • *

(3.15) I d.. x£

*.-1 Y»
.1Q. + I 1 a., xf if j £ J. - J. .

Proof: Immediate from Lemma 3.1.

We now propose an allocation to* which meets final output 0.

The amount of land needed for the activity vector xK is ^'x1 .

By induction we define the distances un < u* < u* <...< u* such

that *

(3.16) 1e(u) du = <*>V
uo

(3.17) j"e(u) du = o^x* for i = 2,...,m

(We are implicitly assuming that £(u) is so large that there is

enough land to produce Q.)

to * = (u», x*(- ), f*(- ), ^»(. )) is given by

(3.18a) u* = u*

(3.18b) x*(u) = 0(u)[^/x;f'1 xl for u6[u* ,u* ]
ri

i = 1,...,m(hence L x*(u)du = X* )
Jtc. .

l

A.-4

(3.18c) f*(u) = Dx*(u) for u6[u ,u* ]

(3.18d) 0*(u) := 0 for ue [uQ ,ti* ]
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In light of (3.13) - (3.18) the proposed allocation can be

described as follows. In the ith ring, [u* ,u* ], there is no

production, gross or net, of goods j £ J. which are produced in

subsequent rings (see (3«14)); there is no net production of goods

j € J. which are produced in preceding rings (see (3.15));
A*" 1

there is net production only of goods j e J. -J. A in such amounts

as to meet the final demand for these goods at the CBD as well as

to meet the demands in preceding rings as intermediate inputs

(see (3.15)). Finally, the sizes of the rings are such as to

provide just enough land to sustain these activities in the re

quisite order (see (3.16),(3.17)). Note that in the proposed

allocation there is no backwards shipment of goods ((3*l8d)).

Theorem 3.1 (Existence of an optimum) Gj* is an optimal alloca

tion with final output Q.

Proof: First of all it is immediate from (3.13)-(3«18) that

w* is indeed an allocation with final output Q i.e., it satisfies

the various feasibility conditions of Definition 2.1. Let s*(u),

tf*(u) be the solutions of (2.1), (2.2) corresponding to 6>*. It is

easy to check that

(3.19) <T*(u) =0 , uQ £ u < u*

(3.20) s- *(u) = 0 for u > u* and j £ J.

We prove optimality of w* by using Theorem 2.1. Define the

price system p*(u) = (p*(u),...,p*(u)), urt < u £ u* as follows:

(3.21) p*(u) =1

"0, if u > u* = u*
7 m

p*(u*) + (u*-u)t , if u £ [u* ,u*],

i = 1,...,m,
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where the vectors t ,...,t are specified in Lemma 3.2. So for u£

1= tj if j i j._,
by (3.3), whereas by (3.20) s* (u) > 0 only if j ^ J. ; hence

(2.7) holds. It only remains to verify (2.4). Define the profit

per unit of land at u made by a producer of good j as

(3.22) r. (u) = <tp«(u) D*
1 4

and let r*(u) = max {^ (u) ,... ,r^ (u)}. From (3.21), Lemma 3.1

and Corollary 3.1 it follows that

(3.23) r*(u) = - e^ for "€[u« ,u« ],

(3.24) r= r. (u) for j € J. , u d [u* ,u*]
r W \ *

l> r (u) for j / J, , u e[u*^ ,uM

Now fix u€[u*_^ , uj] and let x > 0 be any activity vector with

o( x r 0(u). Then p*(u)Dx = I x. p*(u)D* = I oC. x. r. (u) by

(3.22). Hence by (3-24)

(3.25) p*(u)Dx f< 0(u)r*(u) if x. >0 for some j i J.

= 0(u)r*(u) if x. =0 for all j i J. ,

and so, in particular, since x*(u)r0 for j ^ J. by

(3.14),(3.18b), therefore

p*(u)Dx < 0(u)r*(u) = p*(u)Dx*(u) and so (2.4)

is verified. The theorem is proved.

The price system p*(u) defined in (3.21) sustains w* as a

competitive equilibrium. Under this price system producers of

good j make a bid rent offer of r. (u) and the equilibrium rent is

r*(u). From Corollary 3.1 and (3.22) we observe that r*(u) is

decreasing and r*(u) is nondecreasing in u.

-14-



As an example, suppose n = 3 and «L= {1}, J = {1,2}, J? =

(1,2,3). Then the price system and rent functions have the pat

tern shown in Figure 3.1.

(3.26)

(3.27)

1 z 3

Figure 3.1. Equilibrium prices and rents of example.

The next result shows that the optimal allocation to * pro

posed above is essentially unique.

Theorem ^.2. (Uniqueness of the optimum) Let to = (u, x(-), f( - ),0

(• )) be any allocation with final output Q. Then to is optimal if

and only if

U r U^

I x(u) du = J^ x*(u) du = x*- , i = 1,...,

(3.28) f(u) = Dx(u)

(3.29) 0(u) = 0

Proof: The sufficiency is easy to prove since it is readily

verified that whenever to satisfies (3.26)-( 3.29) then to also

satisfies the conditions of Theorem 2.1 with p*(u) given by

(3«21) so that «o is indeed optimal. It remains to prove necessi

ty. Suppose Co is optimal. Then by corollary 2.2 <*) satisfies the

conditions of Theorem 2.1 with p*(u) given by (3.21). Since by

construction p* < 0 therefore by (2.7) there can be no backwards

A-1
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shipment in oo which implies (3.29) and (3.28). Next, the maximum

profit condition (2.4), together with (3.25), implies that for ue

[u* A ,u* ] and j 4 J- we must have x. (u) = 0. Define
3

z
J A.- x(u) du , i = 1,...,m
'U -A

Then zt =0 for j <£ J. and Q = X Dzc since w meets final

demand Q. Finally, if j e J. then by (3.21) p*(u) > -t. and so

by (2.7) good j cannot be shipped and hence there is no net pro

duction of this good in [u* , ,u*. ] i.e. £ d.. zt =0 for j e J- 4

Then, since w meets final demand Q, therefore 1 d.uz! = Q +1 Z a y*

for j € J. - J^H . By Lemma 3.3 z4, = xl and so (3-27) holds.

(3.26) is then immediate. The theorem is proved.

From this result we can see that the only way we can have

two different optimal allocations is when there is more than one

production pattern x(u) which satisfies (3.27). In turn this can

happen only when for some i the set J. - J. A contains at least

two goods, say j and k, so that then r. (u) = r. (u) = r*(u) in

the ring [u* ,u*- ]. Suppose further that production of either

good does not require the other as an intermediate input. Then

it is clearly immaterial how the production of j and k in the

ring is arranged as long as the aggregate production requirement

in the ring, (3.27), is met. Thus except for these "singular"

cases when j^ - j contains two or more goods (equivalently,

when ra < n) the optimal allocation is unique.

In the "regular" case, m = n, we may relabel the goods so

that J^ r {1,...,i}. Then, in the optimum, net production of

good i always occurs in the ith ring. Furthermore, if production

of i requires some (or all) of the goods 1,...,i-1 as inputs then
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these intermediate goods must be produced "locally" i.e., in ring

i, whereas if some of the goods i + 1,...,n are needed as inputs

then.these must be "imported" from the outer rings. Thus as we

move closer to the CBD production is "specialized": in the

outermost ring all inputs are produced locally, in the innermost

ring all the inputs are imported.

In the regular case we can readily see which particular com-

binations of the activities A,...,A are adopted in each ring.

Suppose the activities are relabeled so that «L ={1,...,i}. Lets'
a.

=( yT ) be a n x n nonnegative upper trianglar matrix ( v|/? = 0, i <

j) such that the matrix C = kV is lower triangular (Ct = 0, i >

j), and C£ = +1, all i. Then in the ith ring [u*iM ,u*x ] tech-

niques A ,...,A are adopted in the proportions ^,...,^ , and

the resulting net input-output technique in this ring is given by

the vector C* = (0,...,0,CJ ,...,C£ ). The land used to operate

C*" at a unit level is <H<1^+.. ,+0(.^}'. We see that the matrix C of

net input-output techniques, when its columns are ordered accord

ing to the rings from the CBD in which they are adopted have a

triangular structure. This is possible because there is no indi

visibility in production

(cf. Andersson and Marksjo [1972, p.135]).

Next we investigate the extent to which the price and rent

profiles which sustain an optimal allocation as a competitive

equilibrium are unique.It is easy to see that the price profile

will not in general be unique. For suppose that in the optimum

allocation there is no production or shipment of good j at some

distance u£ [uQ ,u*]. Then the equilibirum price system must be
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such that these three conditions hold: (i) producers find it

unprofitable to supply j at u, (ii) producers find it unprofit

able to demand j at u, and (iii) producers find it unprofitable

to ship j to or from u. Hence at u tne supply and demand curves

cannot intersect at positive quantity levels so they must have a

behavior as portrayed in Figure 3.2. But then (given all other

prices) any price p. of
•3

quantity
of

good j Demand curve

at u

~p>

Supply curve
at u

^ price of j
at u

Figure 3*2. Non-uniqueness of equilibrium prices

good j at u which satisfies p - < p. < p. will satisfy the equili

brium conditions (i) and (ii) above. Of course, not all such

prices are permissible since condition (iii) induces some rela

tions between the equilibrium prices at u and at other locations.

Theorem 3*3 shows that with the exception of the situation dep

icted above the equilibrium price and rent profiles are indeed

unique. The next lemma is preliminary to this result.

Lemma 3.4. Let J = {1,...,n}. Let F, G, H be subsets of J so

that J = Fl/GUH. Let p , f€F, and r be fixed numbers. Let pe

R be a vector such that

(3-30)

(3.3D pD* = * r , g €G

= Pi , f € F
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(3-32) D* = 0 , h€ H and ge G

Then pg , g £G, is uniquely determined by {p, } and r. Moreover,

if FOG is non-empty then r is uniquely determined by {p^}.

Proof: We can find subsets F'c F } H'cH so that F',G,H' are

disjoint and F'u GuH' = J. Corresponding to this partition of

indices we can define the vector pF with components p , f e F; ,

and we can partition the vector p and the matrix D as

p = (pF\ pa , pH' ),

and

By (3.32) D
G,

(3.34)

D =

D? 4
K % <
< % <

= 0 and so by (3.3D

(3.33) PF' D* + p6 D* = o<Gr

where ^ is the subvector of << corresponding to the indices ge G.

From (3.30) and (3*32) we obtain

= [«* r - pF D*, ][D£ ]
-1

so that p4* is determined by {p. } and r. Moreover, if there

exists a j

(3-34) we get

exists a j in FOG so that from (3.30) p. = P; , then from

p. = [ 1* r - pF' D* ]S*

where vis the column of [D£ ] corresponding to index j. It

follows that r is determined by the {p.} and the lemma is proved.

Now let Q = (Q1 ,..., Qn ) > 0 be fixed . Let ^ c J2 .. • CJt

{1,..,n}=J be as before. Let x^ , i = 1,.,m be the vectors de

fined in Lemma 3.1 and let u* £..<u* be as defined in (3.16)

'm
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and (3.17). Define

J? ={j€J!xj>0} , Sf= {j e Jj S.*Cu>>0 ,ttfilu!.,, uk. J}
so that J^ is the set of all activities which are operated in the

ith ring [u*. . ,u*- ], and 5? is the set of all goods which are

shipped through this ring in positive amounts (cf. (3«18c)).

Theorem 3.3 (Uniqueness of equilibrium prices and rents.) Let p(u)

and r(u) = max r.(u), u > u , be non-negative, absolutely con-

tinuous functions, with r. (u) =^"1p(u)D> the bid rent offer of pro

ducers of good j.

(i) Then p and r form equilibrium price and rent profiles which

sustain an optimal allocation with final demand Q if and only if the

following conditions hold for each i=1,...m and each u e [u^M ,u\].

(3.35) p(u)D* =*.r(u) ,j€j!

(3.36) p. (u) = -t, ,J€S?

(3.37) p(u)D* < *.r(u) ,j e J-J?
•> *»

(3.38) p (u) e [-t ,t4 ] ,j e J-S?

(3.39) p(u) =0 ,u ^ uV

(ii) r(u) is uniquely determined for all u, whereas p - (u) is
a

Q (3
unique for j 6 J. u S. and u £ [u*. . , u*. ].

Proof: (i) By Corollary 2,2 p, r form an equilibrium price and

rent system if and only if they sustain the optimal allocation
for

constructed in Theorem 3*1. But this allocation, the conditions

(3.35)-(3.39), corresponds exactly with those given in Theorem

2.1 and so (i) is proved.

(ii) We prove the uniqueness statements by backwards induction

on i. First of all we claim that

(3.40) p.(u), je/u S^andr(u)
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are unique for u e [u* , ,u* ]

To see this note that p(u*r,) =0, hence r(u*m )=0. Fix u e[u*mM ,u*w ]

We use Lemma 3.4 with the following identification: F=S^ , G=j£ ,

H=J-J£, and p=p(u), r=r(u). Since S^ a j£ therefore j = F^GUH

and FHG is non-empty, unless S^and J^are empty in which case

u*™-< =u*>« and (3.40) is trivially satisfied. We now verify the

conditions (3-30), (3.3D, (3-32). If fe F=5* , then by (3*36)

p (u) is uniquely determined, in fact p.(u)= p,(u* ) +t,(u*-u)
t + r t "*

=Mu* -u> =P^ay. If 9eG =j£ ,then by (3-35) p(u)D* =̂ r(u).
Finally, if g€G = J^and h€ H = J-j£ then x£ =0, hence Dj =0.

Hence (3.40) follows from Lemma 3.4. As induction hypothesis we

now suppose that

(3.41) P^(u), j€J°^ U S?H and r(u)
are unique for ac[u». , u*u>t ].

and we shall prove that this also holds for i. We first apply

Lemma 3.4 with the following identification: F = SQ G = J?

H = [J. -Jf ]U[(J -Jf )- S*4 ], p = p(u^ ) and r = r(u*. ). By

(3.41) Ku*^ ) is already determined and so are p (u!), f£F,

hence (3.30) holds; (3.3D follows from (3.35); finally if h £ [J.

J? ] then this good is not produced in ring i and if

h€ [(J - J^ )-SXH ] then this good is not imported from rings

i+1,..,ra into ring i, so that Dj[ =0 for geG, h€ H and hence
(3.32) is verified. By Lemma 3.4 therefore p. (u* ) is uniauelv

determined for jeFUG = s* U J.Ss^UJ.! Next fix u€[u* ,u*. ].

We apply Lemma 3.4 once again but this time with the identifica

tion F = S«, G =jf ,H = [J. -Jf]U [(J-jf) - S«], p= p(u) and
r=r(u). If f€F=S? ,then p^, (u) is uniquely determined, in
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fact p (u) = p {u\ )+ t^(u« -u) by (3.36); if g€ G = J? then
p(u)D3 =^r(u) by (3-35). Finally, if h€H, then just as above D*
= 0. By Lemma 3.4 therefore p. (u), j6 S? u J? is uniquely deter-

mined by {p. (u^ )|j e S?} and r(u). Moreover if S?n jj is non

empty then r(u) is unique also and (3.41) hold for i. But S^ n J?

is empty if and only if J? is empty i.e. u*x-i = u*^ in which case

(3.41) trivially holds for i. Thus (ii) is proved also.

4. The Supply Function. We study some elementary properties of

the supply function of the spatial economy described above.

Definitions 1: For Q > 0 let p = P(Q) be the price vector given

by p=p*(uQ) where p* is defined in (3.21). The function P(Q) is

called the (Mashallian) supply function at the CBD.

Lemma 4.1. Let p(u) be anwprice system which sustains an op

timal allocation with final demand Q. If Q. >0 then p. (u.) = R

(Q).

Proof: If Q. >0 then je sf , hence by Theorem 3.3 Pj (u0 ) is

uniquely determined. In particular p. U) = Pi(Q).
•j- 0 3

Thus the supply function P(Q) is uniquely determined over

the domain {Q>>0} and, for Q:=0, P-.(Q) is defined by continua-

tion. Now when the technology is linear the supply prices are

usually not unique so that the uniqueness result might be

surprising. It can be traced to the fact that because of tran

sport costs our spatial economy, regarded as an aggregate produc

tion unit, exhibits strictly decreasing returns-to-scale. We now

give a formal proof of this fact.

For Q > 0 let x(Q) = (x** (Q) ,.. ,x* (Q)) be the unique solution
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of (3.14), (3.15) i.e.

[Dx*(Q)]. =| 0 , if j€ J^

Q.+ [A(x1(Q)+..+x"-1 (Q))l, if j£J;- J^
1

xJ(Q) =0 } if ji Jx
From these equations it follows that x* is a linear function of

Q, x'v(Q) = C""Q where the matrix Cc = (C* ) satisfies

(4.1) C* >0, C* =0 if j^J. and C^ >0 if j,k£j. -J;.,,
Let V* = <*' c4*. Then since «< >> 0 by assumption we may conclude

from (4.1) that

(4.2) YS^. +Y'* = <</(C'l+...+C* ) >> 0

Let L(Q) = (L1(Q),...,Lry|(Q)) be given by

(4.3) Lx (Q) = «' xMQ),

and u(Q) = (u^(Q),...,um(Q)) be given by

(4.4) j* ,0(u) du = Lx (Q)

Thus S.(Q) is the amount of land in the ith ring and u.(Q) is the
A *•

farthest distance in the ith ring. (ufl(Q) = u , the radius of

the CBD). With this notation the function P(Q) is given by (cf.

(3.21))

(4.5) P(Q) = I (u.(Q) - uL. (Q))t* = 2 u.(Q)(tl-t;M )
where t1"*'1 = 0. Differentiating (4.4) and using (4.3) yields

•~>(Q) e(u.c(Q)) - ^r1(Q) 9U.C, (Q)) = ?i* (Q)=
=[<*' Cl ^ = Yj ,

and since ^i*o = 0, therefore

(4.6) |gi(Q) 0(u.(Q)) = £ [^'C1 ]- > 0,

Moreover, by (4.1), the inequality is strict if j € J. . We sum-
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marize this result as a lemma. A similar result for a residen

tial economy is given in Hartwick, Schweizer and Varaiya [1975].

Lemma 4.2. If Q > Q and Q^ > Q- where j€ J^ , then ufc(Q) ±. ufe(Q)

for k=1,..,i-1 and uk(Q) > ufe(Q) for k = i,..m.

Since t7" >> 0 and since we have shown that — »• > 0 for all i,

therefore from (4.5) we conclude that

(4.7) Hl >0 for all i,j
We shall assume from now on that the land available for produc

tion increases with distance from the CBD i.e.

(4.7) 4i > o

Differentiation of (4.6) leads to

(4.8) 2Jtk =_Yl+-4Vi<<L 2tL = -4± _!_ (Y.,+..+Y.i)(YfcV..+YM

If we regard Y4" as a row vector then using (4.8) we may express

the Hessian of u. as

(4.9) ^4 = - d2 -J (YV..+ Y1 )/(r<+..+ rl)
3fljWk <*u oxcart

Since d£ > 0 therefore this matrix is negative semidefinite so
diu,

that u; (Q) is a concave function of Q. In fact from (4.2) and

(4.9) we can conclude that uw(0) is strictly concave. The next

result follows from this fact and (4.5)

Theorem 4.1. The supply function P, (Q) has a strictly positive

gradient. Moreover if 4l >0, then it is a strictly concave func-

tion of Q.

In the special case where the spatial region is pie-shaped we can

compute the elasticity.
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Theorem 4.2. Suppose e(u) = 9u where e>0 is a constant. Fix 0 =

Q > 0. Then

2f ( AQ ) = 1/2
7(A«) "3*

Proof: From (4.3), (4.4) we easily get

^. ,2[u^( AQ ) - u^ (AQ )] = -X [u.(Q) - uiM (Q)]

which, together with (4.5) yields P(AQ ) = A/2"P(Q). The result

follows upon differentiation.

Of course this last result is obvious. Since the land area

available for production increases with the square of the city

size, therefore an increase in production levels at the margin by

$% increases the city size by 1/2 £ % and since the transportation

cost is linear in distance therefore the marginal cost of produc

tion also increases by 1/2 S %*

5. A remark about imports. Above we have studied the optimal

pattern of production which yields a prespecified bundle of goods

Q at the CBD. We have shown in particular that this pattern can

be sustained as a competitive equilibrium with price P(Q) at the

CBD. Suppose now that a fixed price vector at the CBD is exocjen-

ously specified. Suppose further that producers are free to

export to or import from the CBD at these prices. What will the

equilibrium pattern of production be? Evidently if pelP={P(Q)|Q >

0} then the equilibrium pattern will once again be an optimal

allocation with final demand Q where Q is such that p = p(0).

But if p^(P then it means that some producers close to the CBD

•find! it hiore profitable to import at least ont! i^put ,say j, from
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the CBD rather than from producers of j located further away from

the CBD. It follows that the price of good j will increase with

distance from the CBD so long as local production costs are

larger than importing from the CBD. Secondly, the order in which

producers will be located can no longer be determined a priori

since their profitability, and hence the order, will depend in

part on the CBD prices. Thus both qualitative properties

described in the previous sections are destroyed. Of course once

we go so far from the CBD that it is no longer profitable to

import from the CBD, then these properties again continue to

hold. Goldstein and Moses [1975] have exhaustively investigated

the behavior of the equilibrium for the case of two goods (with a

Leontief technology). When we consider three goods it appears

that the number of special cases that need to be studied becomes

very large and a classification of these seems quite uninforma-

tive. It may be that when there are three or more goods nothing

more interesting can be said than is possible in a general

equilibrium setting. (See e.g. Schweizer, Varaiya and Hartwick

[1974].)

6. Summary: We have studied the spatial structure of production

when there are interdependencies among production units. These

interdependencies have been characterized by a Leontief technolo

gy in which all goods may be intermediate goods.

It has been shown that the optimal production pattern can be

sustained as a competitive equilibrium. This result is, however,

a trivial consequence of a much more general existence theorem

due to Schweizer, Hartwick and Varaiya [1974] where it is shown
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to depend only upon the fact that the technology set is convex.

Less trivial is the result that the optimal pattern and the

equilibrium price and rents are essentially unique.

uf much greater interest and surprise is the result that in

dependent of demand the various goods will be produced in rings

which can be ranked a priori according to the distance from the

market (CBD) at which they are located. Furthermore, in the op

timum goods will be shipped only towards the CBD and never to

wards the periphery. As a consequence, as one moves away from

the CBD each ring will be increasingly "self-sufficient" in the

sense that it will import fewer inputs. The proof of the result

made crucial use of the absence of joint production and lack of

substitute activities of production.
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Appendix.

1. Proof of Theorem 2.1. The necessity of the conditions follow

from known results (see e.g. Hestenes [1966], p.354) and so we

shall only prove the sufficiency. Let u> = (u, x(-), f(*),^(* ))

by any allocation with final output 0, and let s(u) > 0, 6(u) > 0

be the solutions of (2.1), (2.2). We will show that

(A.1) T(u)«) < T(to)

From (2.7) we conclude

-27-



(A.2) p*(u) + t > 0 , [p*(u) + t] s*(u) = 0

(A.3) -P*(u) + t > 0 , [-p*(u) + t]<T*(u) = 0

It follows that

0 = [p*(u) + t] s*(u) + [-p«(u) + t] <r*(u)

< [p*(u) + t] s (u) + [-p*(u) + t]<T(u),

and hence integration gives us

0 =JU p*(u) [s*(u) -O(u)] + T("«)

(A.4) <f p*(u) [s(u) -tf(u)] + T(w)
Jtto

If we evaluate the integrals by parts using the boundary condi

tions of (2.1), (2.2) and (2.6) we get

J p*(u)[s*(u) -<T*(u)]du = -p*(un)Q +L p*(u)[s*(u)-**(u)]du
ao 0

(A.5) = -p*(u. )Q + p*(u) Dx*(u)du,
0 \

and similarly,

(A.6) ]u p*(u)[s(u) -<r(u)] du = -p*(u )Q - p*(u)«(u) +

fU p*(u)Dx(u)du
\

Substitution of (A.5) and (A.6) into (A.4) leads to
A

(A.7) T(w*) i T(w) - p*(u)6(u) -fUp*(u)[Dx*(u)-Dx(u)]du

where u = max (u*,u). Now p*(u) <T(u) > 0 and p*(u)[Dx*(u)-

Dx(u)]>0 by (2.4) and so (A.1) has been proved.

2. Proof of Corollary 2.2. Let to = (u, x( •), f(• ),0(• )) be

another optimal allocation with final output Q. Then of course

we have T(w*)=T(u>) and so we must have equality in (A.7). From

this it follows immediately that Co satisfies (2.4). Retracing

the equality in (A.7) backwards we can also deduce equality in

(A.4) from which we can conclude that w satisfies (2.5). The

assertion is proved.
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