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Abstract

This paper develops an analytic model of a CDC 6400 running under

the CALIDOSCOPE operating system The model's calibration with experi

mental data and its use to predict performance improvements are also

described. The model calculates the mean throughput rate of the system

as a function of the detailed I/O behavior of the jobs being processed.

In particular, the model considers the possibility of each job over

lapping its computations with buffered I/O. Despite the model's rela

tive simplicity, it has proven quite accurate in predicting the through

put rate of a synthetic job stream under several different system I/O

management policies.
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1. Introduction

In spite of the surprisingly fast progress made by analytic model

ing techniques for the evaluation of computer system performance in the

\tery recent past, there are still some aspects of system behavior which

are not easy to model. One of these aspects is buffered I/O, which

allows a program to overlap its computation with the execution of the

I/O operations it has. initiated. This feature, which is found in

several systems and may have a non-trivial influence on their perfor

mance, cannot be easily represented in a queueing model, in which a

customer being served at a service center cannot at the same time be

queued up or receiving service at another center.

This paper describes a simple probabilistic, but not queueing,

model which yields the mean throughput rate of a system with buffered

I/O. The buffered I/O feature is explicitly taken into account. The

use of the model in performance analysis and improvement, and its

calibration and validation with experimental results, are illustrated.

2. The Problem

The purpose of the model developed in our study was to provide us

with the ability to analyze the performance of the CDC 6400 computer

running under the CALID0SC0PE operating system at the Computer Center

of the University of California, Berkeley. This ability was especially

to be exploited in performance improvement investigations in which we

wanted to predict the impact on performance of operating system modifi

cations having to do primarily with disk I/O functions. The following

types of modifications, all characterized by their relatively easy

implementation, were specifically considered: the modifications of the



I/O buffer size, those of the system calling algorithm, and those of

the central-processor reactivation policy. A brief description of the

hardware-software system which was the object of the study is needed

before these modifications, particularly the last two, can be explained

in detail.

The hardware configuration of the system consists of the central

processor (CP); a 64K 60-bit word central memory (CM); a 512K word

extended core storage (ECS); ten peripheral processors (PP's), each

with its own memory of 4K 12-bit words; and 12 I/O data channels which

connect the PP's to the peripheral equipment. The local peripheral

equipment includes 2 disk drives, 5 tape drives, 4 line printers,

1 card reader, and 1 multiplexor.

At any given instant, two hardware registers within the CP confine

CP access to a block of contiguous addresses in CM. Each PP can modify

the contents of these registers by executing an "exchange-jump"

instruction, whose result is the switching of the CP from the processing

of the current job to that of another job loaded in CM. Thus, the CM

is divided at any given time into disjoint blocks, only one of which

is accessible to the CP. These blocks are called control-points. The

number of active control-points reserved for user jobs is the degree of

multiprogramming of the machine. Under CALIDOSCOPE, the maximum number

of user control-points is 7. Three additional control-points are

reserved for the system. The PP's, some of which execute the operating-

system code, have unrestricted access to the CM.

The CP cannot access the I/O channels directly. Communications

with them occur via a circular buffer in CM and through the PP's. The

buffer size must be at least as large as one physical record of the I/O



4

device being used (for disk I/O, at least one disk sector, i.e., 64 words);

however, it may be made arbitrarily larger. In the following description,

we shall for clarity consider output operations only; input operations

are performed in a similar way, except for the obvious modifications.

When the program running on the CP produces data to be output,

it places them into the buffer. When the buffer is "full enough",1 the

GP program may choose to issue a call to the PP program CIO (Circular

Input-Output). This call, like any other system call, is done by writing

the name of the call plus some necessary additional information into the

first word of the CM block where the running program is stored. One of

the PP's scans this word once every millisecond and, if it finds a call

there, dispatches another PP to service it. The decision to issue a

CIO call is made by the CP program according to what was called above

the system calling algorithm.

If the CP program cannot proceed in its execution due to the fact

that the buffer has become full and CIO has not yet begun to empty it,

one of two courses of action is to be taken: the CP program either hangs

in a useless loop waiting for some space to be freed in the buffer, or

relinquishes the control of the CP by issuing an RCL (Recall) system

call. In the latter case, the CP is switched to another job and will

eventually, after an unpredictable amount of time, return to the program

which has relinquished control. To reduce this amount of time to a

minimum, the PP program which actually controls disk transfers may issue

a "reactivate CP" request to the supervisor as soon as the transfer

of a sector is completed. This request causes the CP to be switched

to the control-point which had issued the CIO. Since the provision for
t
This notion will be clarified later.



reactivating the CP did not exist in CALIDOSCOPE when our study was

undertaken, but its implementation was believed to be relatively easy,

we wanted the model to be able to predict the effect of such a change.

Thus, the CP reactivation policy (i.e., the presence or absence of this

provision) was included in the list of the modifiable parameters.

The performance index selected for this study was the mean through

put rate of the system under a specific workload to be defined in

Sections 4, 5, and 6.

3. The I/O Rate Concept

In this section, we discuss the problem of characterizing the I/O

behavior of the system and its users. The amount of I/O performed by

a job is not a satisfactory way to characterize this behavior, since it

neither takes into account the real time nor the CP time consumed in

producing the I/O. Another approach would be to use the CP time between

I/O requests as the parameter of interest. This would be an improvement;

however, as described in Section 2, the I/O on the Berkeley CDC 6400

uses circular buffers and is designed to enable concurrent operation

of the CP and of the I/O devices. Thus, a sample job run twice might

exhibit radically different numbers of I/O requests and CP times

between requests during the two runs. For example, during one run the

job might be able to keep control of the CP during some output operation,

and therefore manage to fill the buffer while the disk is emptying it.

In principle, the duration of such a process could be arbitrarily long.

During another run, the same job might compete with another job for

the CP and not be able to keep up with the disk, so that many more I/O

requests would be required to output the same data.



As described in Section 2, the end goal of our study was to construct

a model capable of predicting the performance of the system with various

buffer sizes, system calling algorithms, and CP reactivation policies;

thus, any I/O characterizing parameter which would be seriously affected

by such changes had to be avoided.

A parameter which is more suitable for our objective is the ratio

of the amount of I/O to CP time. This parameter is likely to be relatively

insensitive to system changes and repeated runs, since eyery job will

perform a specific task such as reading input, computing, and producing

output, independently of what the system is doing. At any given point

in a job, I/O is being consumed/produced at some rate (measured with

respect to CP time) regardless of what machinations the system is per

forming. Thus the parameter chosen was the ratio:

cp

where s is the number of sectors transferred, and t „ is CP time
cp

consumed between consecutive transfers.

This parameter, called the I/O rate, can be measured by tracing

each disk transfer performed by the system during a measurement session.

The number of sectors transferred and the CP time consumed by each job

must be recorded.

Figure 1 illustrates an imaginary job performing output as it

uses CP time (solid line). The job's I/O subroutines call the disk

processor when the buffer is full enough, and, some time later, the

disk empties the buffer at its rate of 1 sector per millisecond (broken

line). The parameter we measure, the average I/O rate for the interval,



is the slope of the dotted line. Clearly, this is not an exact repro

duction of the job's performance, but it is the best we can do with the

information in the trace described above. Note that the output rate is

defined as:

cp,o

where sQ is the number of sectors transferred during the output

operation, and t is the CP time consumed since the previous

output operation.

The same considerations can be repeated for the input rate r..

We must, however, replace index o by index i and define t . as
cp,i

the CP time consumed until the next input operation.

4. The Model

In this section, we derive an analytic model which predicts the

real time necessary to run a given set of jobs under various system

conditions. The model is based on the I/O rate concept illustrated in

Section 3, and is designed to be efficient rather than mathematically

rigorous. That is, where effects are felt to be small, approximations

are made which are designed to simplify the mathematics. Our model is

based on the simplifying assumption of homogeneity: that is, we assume

that each logical or physical device of a certain type (e.g., control-

point, file, disk) is equally utilized. Instances of homogeneity will

be mentioned in the sequel as they are encountered.

We now introduce the symbols to be used in deriving the model.

They all refer to the real time period during which a given set of jobs

is processed.



A - Average processor and mechanical delay per disk access.

A includes the processor delay involved in the system response

to a user CIO call, the average seek time, and the average

latency time. For brevity, we may refer to A simply as

"access time". A does not include queue waits, nor does it

include actual read or write time. It is thus the average

delay between the end of the queue wait (if any) and the

beginning of the transfer.

C. - Total CP time used by all user jobs,
j

C - Total CP time used by the operating system.

3 - Average delay of a disk I/O request caused by queue wait.

D - Number of (single-spindle, single-arm) disk drives,

F - Number of files active at any one time. An active file is a

file which is used by a job being executed. Thus, F is the

number of files which are accessed by those jobs which, at a

given time, are in execution. We assume that F is independent

of time.

M - Mean degree of multiprogramming (in CALIDOSCOPE terminology,

the number of user control-points which are active).

q - Probability that a file is being used by a job. A file is said

to be "used" either during transfers of data belonging to it,

or during processor or mechanical delays associated with accesses

to it. Note that a file is not being used while a request for

it is waiting in the disk queue.

R - Total real time consumed by the execution of the set of jobs

under consideration.



T - Total transfer time consumed by each disk drive. T is assumed

to be the same for each drive, and equally divided among

control-points.

U - Time unavailable to the CP at each user control-point. U is

the total time each user control-point spends in a blocked

state. U is assumed to be the same for each user control-point,

X - Total number of transfers to/from each disk drive. X is

assumed to be the same for each drive.

Let us now focus our attention on one of the M user control-points,

Even though the control-point being considered is assumed to consume

only 1/M of the total user CP time C, it is potentially able to
j

make more use of the CP. In fact, the control-point is ready to use the

CP whenever it is not blocked on a disk request. We use the term "ready"

to mean that a control point is "able to use the CP", whether or not it

actually has the CP. Thus, each user control-point is in a ready state

unless it has issued an RCL request which has not yet been completely

satisfied, i.e., for a fraction of the total real time p=~^..

Under CALIDOSCOPE, the system control-points have higher CP

priorities than the user control-points. CP scheduling of the system

control-points is preemptive, so that, if some system control-point is

ready to run, it does. If two or more system control-points are ready

to run at once, other priority rules are invoked; but,for our purposes,

this is irrelevant, and we only need to know that the system control-

points, which are represented in our model by the whole system CP time

Cg, outrank all of the user control-points.

To simplify our model further, we assume that the system control-

points' ready states are uncorrected in time with the ready states of
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the user control-points. Thus we have that, at any instant, the proba

bility of a system control-point being in a ready state is C /R.

Assuming the user control-points block and become ready independently

of each other, the probability of n user control-points being simul

taneously ready is:

PHn} =n|^;n),p"(1-p)M-n , for 0<n<M. (3)

Some user control-point will execute if at least one is ready and

the system is not ready. The total user CP time C. is thus given by:
j

R-C

C, = R'-d-5-- Pr{n>0}
J K

=R.^--[l-(l-p)M] . (4)

Substituting p with its expression, we have

Cj =(R-Cs)[l -$M] , (5)
or

RM+1-RM(Cs+Cj)-RUM+CsUM =0. (6)

We shall denote the polynomial in (6) by P(R).

If we know C., C , M, and U, we can solve (6) for R, the

real time. We shall now investigate some of the properties of the

solution.

If M = 1 (uniprogramming), solving (6) yields

R=|{(Cs+Cd+U) ±ACs+C..+Ur-4CsUJ . (7)

Since in any real system C., C and U are non-negative, the

radicand in (7) is non-negative. Furthermore, if C. > 0, the radicand

is positive. Thus, the positive sign in (7) is to be chosen to make
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R positive, and a real solution exists in the range:

l(Cs+C. +U) <R<(C +C.+U) . (8)

The lower bound for R can be improved by observing that the

..-tn2
J

we obtain, as could be expected,

radicand is larger than (Cs+C..+U) . Thus, for a uniprogramming system

C +C. < R < C +C.+U . (9)
•* J 5 J

Although equation (6) appears to be difficult to solve in the

general case for arbitrary M, we can show that exactly one solution

exists for R > C +C.
s j

Evaluating the polynomial P(R) at C +C, the first two terms
* J

cancel, leaving:

P(cs+cj) =- (cs+cj)uM +csuM =- ca.uM <0 , (10)

if both C. and U are strictly positive (the only interesting case),
j

However, since the coefficient of R in equation (6) is positive,

we have P(R) > 0 for sufficiently large R. Thus at least one solu

tion exists for R > C +C.
s j

To see that no more than one solution can exist, we evaluate the

second derivative of P(R) and discover that P(R) is concave upward

for R>̂ |(CS+C.); therefore, since P(R) is negative for R=Cs +C,
positive for sufficiently large R, and concave upward, equation (6)

has one and only one solution for R > C +C. (see Figure 2).

A solution based on Newton's method appears attractive. Since

P"(R) > 0 for R > C +C., the first derivative is monotonic increasing.

But we do not know when it becomes positive, since P'(C +C.) = (C +C.)M-U ,
* J s j
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If the Newton's method initial value is at Q (see Figure 2), a wrong

root will be found, since Newton's method uses the slope and function

value at some point to determine the function value at the next iteration.

Note, however, that P'(R) is positive in some half-infinite

neighborhood including the desired solution. Since P"(R) is positive

for R> Cs +C., Newton's method, if started anywhere to the right of

the function minimum (say at the point Q') will converge. Therefore,

it is only necessary to choose an initial point Q' such that:

<T > Cs +C. and P'(Q') >0 . (11)

If conditions (11) are satisfied and the values of C, C , and U

are known, Newton's method will allow us to determine the real time R

needed to execute the given set of jobs. Unfortunately, as we shall see

in Section 5, U cannot be determined without knowing R. However,

an iterative process which first determines R, then U, then repeats,

can be made to converge. This process will be described in the next

section.

5. An Iterative Solution of the Model

In Section 4, we constructed a model which allows us to compute the

total real time needed by the CDC 6400 system to execute a given set of

jobs. To obtain the total real time, equation (6) must be solved. Some

properties of the only acceptable solution have been studied in Section 4

In this section, we show how this solution can be arrived at by an itera

tive method and how the values of parameters U, C and C, which
s j'

appear in (6), can be calculated. We immediately note that the degree

of multiprogramming M is a system parameter and can be assumed to be
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known; also known is the total CP time C. consumed by the given set of
j

jobs, which is a workload characteristic. A method for computing C

in the CALIDOSCOPE system is described in the Appendix. That method,

which requires the knowledge of X, the total number of transfers per

disk to be calculated below, may not be generalizable to other systems.

However, if C « C., an adequate accuracy may be achievable with
^ J

only a rough approximation to C ; in this case, which seems likely to

occur, the lack of a generalizable model is not too serious.

To compute U, we consider a control-point which we arbitrarily

call "ctlpt 1". We shall determine what fraction r of the ready time

at ctlpt 1 will actually be spent computing, and then assume that ctlpt 1

executes continuously while it is ready, at a rate equal to r times

the actual CP rate. The introduction of the effective rate r allows

us to correct for the effects of other control points competing for the CP

To compute rg, we simply take the ratio of the CP time consumed

by ctlpt 1, C./M, to its total ready time:
«j

Ci
re =Wm • (12>

At a certain instant a CIO call is placed by the job executing at

ctlpt 1; we assume that ctlpt 1 only fills its output buffer (or empties

its input buffer) at a rate r times the executing job's output (or

input) rate at that instant. When the buffer becomes full (or empty),

an RCL is issued, and then and only then does ctlpt 1 block. The real

elapsed time until ctlpt 1 once again becomes ready contributes to U.

We note that all I/O algorithms which we use place a system call

to CIO (the PP program which performs I/O) when a certain specified

amount of data, which we shall call C, is in an output buffer, or
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when the same specified amount of free space exists in an input buffer.

In either case, C is the amount of data which is to be transferred.

For the rest of the discussion, we will refer simply to output for

clarity, although the discussion applies equally well to input. Apart

from the initial and final transients of a job, at least the amount of

data C will be transferred per I/O operation. If the job being

executed released the CP at the instant of the CIO call, the amount of

I/O would be exactly C; but it does not: it keeps the CP until or

unless the buffer becomes full. Once the buffer becomes full, control

of the CP is relinquished until the system decides to restart that

control-point. Evidently, if B is the buffer size, we have 0 < C < B

Let us first consider the case in which no "reactivate CP" requests

are made by the disk driver PP program. In that case, once the buffer

is full and the job releases the CP, no further CP action related to

that job will occur until the I/O is complete. We assume that the CP

continues to process at the rate rQ for as much of the queue wait (3)

and access time (A) as it can before the buffer fills. Thus, the real

time between an output request and either the instant the buffer is

full or the instant the transfer begins is

*o =min(F^f-'a+A) <13>
e o

where rQ is the output rate of the job at ctlpt 1 at that time; the

first term is the real time required to fill the buffer; the second

is the average time until the disk transfer begins.

The amount of data in the buffer when the transfer begins will

then be:

C+ VVrQ . (14)
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If t < 3+ A, an RCL will have been issued, so that no further
o

CP action can occur; the amount of data transferred is thus B, the

buffer size.

But if t = 3+A, the transfer begins when the buffer contains

only an amount of data equal to C + t «r *r < B; thus, the CP keeps

executing, adding data to the buffer at the rate r *r as the disk

empties it at its rate r..

If ra#r« < rd» tne buffer will empty at the rate r.-r »r ,
e ° C+t -r «r a e o

requiring atime _°r ?r °- Since data is still being processed
d e o

by the CP, the total amount of data transferred will be:

C + t T. T.

C + t t t + r t • ° e ° . (15)o e o e o r.-r*rn v '
d e o

But if r *r > r., the buffer will fill, an RCL will be issued,

and the CP will not be available until the disk transfer terminates.

Since we know how many sectors are transferred at each rate, we know

how many transfers occur at each rate; their sum is the total number

of disk transfers X. If the job ever issues an RCL, the time until

the disk transfer completes contributes to U.

The flowchart in Figure 3 details this process for any single value

of the I/O rate. If the distributions of input and output rates for

the given set of jobs are known, the resulting values of X and U

for each I/O rate are to be weighted according to their probability

before being summed. This is the task of the final box in the flowchart

in Figure 3. Note that, in this figure, NSECT is the total number of

sectors to be transferred by the jobs, hence a characteristic of the

workload and assumed to be known.

In the case of the reactivate CP feature, we first note that jobs
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with sufficiently high I/O rates will be able to transfer enormous amounts

of data per I/O request: if the rate at which the CP processes data is

higher than the disk transfer rate, and if the "reactivate CP" requests

from the disk driver always activate the CP, then the job can in principle

continue transferring until it terminates. If we partition the I/O rate

histograms into two parts corresponding to the rates lower than the disk

transfer rate and to the rates higher than this rate, we can compute the

probabilities of being in one of these two states and use them to weigh

the resulting values of X and U for these two cases. The computation

of X and U in presence of the "CP reactivate" feature is illustrated

by the flowchart in Figure 4. Note that NMAX is the expected number

of sectors transferred per request when the job is in the high-I/O-rate

state. This is equal to 1/p, where p is the probability of leaving

the high-I/O-rate state. Our measurements showed that about half of the

data was transferred in each state, and that p was about 1.1%. Thus,

the average number of sectors transferred per request in the high-I/O-

rate state was about 90. Note also that, while in the high-I/O-rate

state, a job only uses the CP part of the time. This is because it fills

the buffer faster than the disk can empty it, and hence has to issue an

RCL request. But the moment one more sector has been transferred by

the disk driver, the CP is reactivated for that job. We make the approxi

mation that the CP time consumed during this process is merely whatever

is needed to process the data. The difference between the time used

by the disk and the computed CP ready time will then contribute to U.+

The computation of U requires the knowledge of 3, the mean
t
The CP times thus computed will be lower than the correct ones, since
the computation neglects the CP time required to place the RCL requests
and wait until the system's response.
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waiting time of an I/O request in the disk queue (see Figures 3 and 4).

To derive 3, we use a non-queueing-theoretic approach. In our simple,

approximate model, we assume statistically independent and stationary

accesses to disk files: thus, the probability of a disk file being

accessed by one job is independent of time, and the probability of a

disk being accessed by two jobs at once is merely the product of the

probabilities of single accesses.

Under these assumptions, whose realism clearly decreases as queue

length increases, the total queue wait is the sum:

F

R- I (m-l)Pr{m} , (16)
m=2

where m is the number of simultaneous accesses to the same disk.

We also have:

Pr{m files simultaneously active on any one disk}

- F! _m/1 „\F-m /,,x
"mKF-m)^ (1-°" • (u)

and

X«A +T = E[total seek +latency +transfer time of one disk]

= r. V _£• m(1 xF-m
m^ m!(F-m)P v' M'

Thus,

or

=R-D-0-q)F] . (18)

i-a^F.x^+i,
R (19)

q.l.n.i*tI]l/F. {20)
R

Y J l T

If F= 1, q=-^— as expected; and for any F, if q« 1
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(i.e., (X-A+T) « R), then qsXp^T » also as expected.
The expected value of the total queue wait per disk is

F

E[total queue wait per disk] = £ R-Pr{m files}-(m-1)
m=2

=R[(l-q)F-(l-q-F)] . (21)

Note that, if F = 1, E[total queue wait per disk] = R[(l-q) -(1-q)]

= 0, as expected. Dividing the total delay given by (21) among the

X transfers, we obtain

a=f[(l-q)F-(l-q)F] . (22)

Note that F is assumed to be known; thus, (22) allows us to

compute 3 only if R and q are known.

An iterative procedure based on equations (6), (12), (20) and (22),

and on the algorithms in Figures 3 and 4 can be used to compute R.

Such a procedure is illustrated in Figure 5 and basically consists of

choosing initial values for 3, C , R, U and X, and of applying the

relationships listed above in a relaxation fashion.

The value of q is the most critical value in the whole iterative

process. In some test cases performed on the model, while the iterations

were converging to the final value for R, R was changing by a few

per cent from one iteration to the next, while q was only changing in

the seventh decimal place. Conversely, a small change in q (intro

duced manually) caused the computation for R to oscillate.

Since in these cases the computation of q based on equation (20)
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overcompensates for the errors of the previous iteration, we have achieved

good results by using a damping technique: instead of merely computing

q from equation (20), we used only half of the change in q given by

(20) with respect to its previous value. However, in cases where the

real time is much larger than the CP time, i.e., when R » C. + C
j •*

(by a factor of 2 or more), the solution is near a singularity, and

this damping technique is not sufficient to substantially speed up the

convergence of the iterations. This problem, when it arises, can be

cured by giving an initially large but increasingly smaller increment

to the value of q instead of applying the damping technique described

above.

6. The Experiments and the Results

The performance comparisons needed in improvement studies are

meaningful only if the modified and unmodified systems are compared

under the same workload. Since controlling the production workload is

practically impossible, an executable workload model was constructed,

consisting of a number of synthetic jobs to be produced at every experi

ment by a synthetic job generator [1], The choice of a set of synthetic

jobs was also dictated by the desire to use the workload model in the

experimental calibration and validation of our system model. Thus,

flexibility was an important requirement of the workload model. A further

requirement was that the synthetic jobs should adequately represent the

real jobs in terms of their individual CP-I/0 behavior [2].

To achieve the desired degree of representativeness, a very detailed

trace of almost 8 hours of normal production processing was recorded on

February 23, 1974. The trace was subsequently analyzed and two histograms
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of input rates and output rates (see Section 3) were extracted from it.

The intervals of the values taken by the I/O rates were then subdivided

into ranges, and the relative frequency of each range computed from the

histograms.

Each synthetic job is at any given time of its execution in an

input rate state and in an output rate state corresponding to two of

these ranges, one for input and one for output. The probabilities of

these states are equal to those derived from the trace. Each I/O rate

state is assumed to be statistically independent of all the other I/O

rate states. The synthetic jobs could thus be programmed identically,

using a random number generator to select the states. The only difference

is that each job initializes the random number generator with a different

value. The ratios r^ and rQ (see (1)) corresponding to the various

I/O rate states are reproduced by executing a CP loop whose duration,

added to the time required to generate a random number, equals 1/r.

or l/rQ, and by transferring one sector of data at the proper time.

Each new random number generated is used to select the next I/O rate

state. Input and output are performed by each job simultaneously and

independently, and this cycle is repeated 1,000 times.

A synthetic job stream consisting of 20 of these jobs was used in

all experiments: this number was chosen because it resulted in a total

running time in the range from 5 to 10 minutes. The stream was cali

brated by adjusting the random number generator seed and the degree of

multiprogramming: a degree of 2 was found to provide a good match with

the measured CP utilization, and was adopted for all the runs. Compari

sons of the measured mean 1/0 rate and mean 1/0 request rate with the

corresponding rates generated by our workload model convinced us that
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this model adequately represented a reasonably heavy real workload.

Further details are given in [3], Reproducibility tests demonstrated

the synthetic model to be much more stable than any of the other workload

models used in the same installation: in 6 runs performed under similar

conditions, the total elapsed times ranged from 432 to 468 seconds,

with a mean of 446 seconds and a standard deviation of 13.4 seconds,

i.e., about 3% of the means. Other synthetic workloads had shown 30%

or more variation from run to run.

Once a representative, flexible and reproducible workload model

was available to allow experiments to be performed in a controlled envi

ronment, the predictions of the model described in Sections 4 and 5

could be compared with the actual system's performance under our synthetic

job stream. However, before being used, the model had to be calibrated.

The main calibration parameter was the number D of disk drives.

The disk traffic of the synthetic jobs was designed to correspond

to the observed usage during the production system trace, which was

approximately in the ratio 5:3. We, therefore, ran the model with

D = 1.6 as well as with D = 2, to see if using D = 1.6 would more

accurately predict the results.

Note that the model is based on the assumption that all D disks

are equally utilized. Letting D = 1.6 thus results in a computation

based on 1.6 equally utilized disks, whatever that may mean; and not

on two disks, one transferring .6 times as much as the other. So the

use of D = 1.6 is only an approximation.

In fact, the differences between model predictions using D = 2

and D = 1,6 were very small; however, the agreement with the experi

mental results was better with D = 1.6 than with D = 2. We, therefore,
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used D = 1.6 in all subsequent predictions of synthetic job performance.

The model was used to predict values for the real time (R) and

number of CIO calls (X) for each of several sets of parameters of the

synthetic jobs: with 8 and 16 sector buffers, with and without CP reacti

vation, and with many values of C. The error in the prediction of the

number of CIO calls (X) was not large, being at worst about 20%, and

averaging about 15%. As shown in Figure 6, the error in R was,

however, spectacularly small: in the worst case, it was about 3.5%, and

in all other cases less than 2%.

A large number of predictions were then made using the model.

Many combinations of system calling algorithms (i.e., the amount of

information C in the buffer at which CIO is called) with various buffer

sizes, with and without CP reactivation, and with various degrees of

multiprogramming, were examined in these experiments. Most of the results

are presented in [3]. A sample set of predictions is given in Figure 7.

The main parameters used to initialize the model (see Figure 5) in that

case were: A = 62 ms, C. = 260 s, M = 3, D = 1.6, F = 4 and

NSECT = 40,300. The curves in Figure 7 show that, as is the case for

M = 2 (see Figure 6), when M = 3 the throughput rate is quite sensi

tive to the size of the buffer if there is no reactivation of the CP.

If the CP is reactivated, the impact of buffer size becomes minor, and

R approaches the total user CP time C.. The effects of CP reactivation
j

are especially felt for small buffer sizes, and become smaller as this

size increases. The system calling algorithm is never very important,

and decreases in importance with large buffer sizes.

During our study, a reduction in the permanent disk file usage

caused the average seek time, and hence the access time A, to decrease.
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The values computed for R based on the newly observed access times

were almost always more accurate than predictions based on the previously

used value of 62 milliseconds. This result is pleasing, since an

accurate model must agree more closely with experiment if more accurate

data is used.

We also noted that agreement between experiment and theory is much

better in cases with lower real time R. The reason is evident: in

such cases, the system is close to being CP bound (the sum C +C. is
s j

typically close to 300 seconds for all of our experiments and predictions)

Thus, almost all of the I/O processing is overlapped with CP execution,

and errors in the calculations of I/O times are of little consequence.

But in the cases resulting in high values of R, CP utilization is much

smaller, and errors made in the numerous approximations involved in

predicting I/O times and overlaps are significant.

We might point out that in a model of system performance to be used

for system tuning, the "good" cases from the point of view of the system

analyst (the cases in which R is small) are of more interest and

importance than the "bad" cases (those in which R is large). It is a

virtue of our model that it predicts the good cases accurately; these

are the ones which are most important in operating system adjustment

and tuning.
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Appendix - Computation of C

The method for estimating the system CP time C depends on the

details of the operating system. In the case of CALIDOSCOPE, we con

jecture that Cs varies approximately linearly with the number of CIO

calls X, since each call requires some system CP processing to read

the code for the appropriate PP program from ECS (Extended Core Storage).

While the computation which we present below is thus designed specifi

cally for CALIDOSCOPE, we expect a linear assumption to be reasonable

also for other systems.

In any case, the system CP time will probably be small compared

to C., the CP time consumed by the user jobs. In fact, C was
J s

usually between 15% and 20% of C. in our experiments. Therefore,
j

a rough approximation to Cg is generally sufficient for an adequate

prediction of R.

A linear first-order regression performed on our experimental data

resulted in the equation

C$ = (33.6 +X-.007) seconds , (A.l)

with an RMS error of approximately 5%. Note that equation (A.l) does

not depend on whether the CP reactivate feature is present or not. Also,

the coefficient of X is in perfect agreement with the result of our

measurements, which gave us a processor delay of 7 milliseconds per

CIO call.
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Figure 3« Computation of unavailable C? time (u) and number of disk transfers
(X) without the reactivate CP feature. Subscript 1 refers to
quantities accumulated before transfer begins, subscript 2 to
quantities accumulated during transfer.
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Figure 5. Flow-chart of the iterative procedure
for the computation of R.
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