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ABSTRACT

The paper proposes an abstract model for the problem of optimal

control of systems subject to random perturbations, for which the principle

of optimality takes on an appealing form. This model is specialized to

the case where the state of the controlled system is realized as a jump

process. The additional structure permits operationally useful optimality

conditions. Some illustrative examples are solved.

Research supported in part by the Joint Services Electronics Program
Contract F44620-71-C-0087 and the National Science Foundation Grant
GK-43024X and for R. Boel, by an ESRO-NASA International Fellowship.

Part of this paper was completed when one of the authors (P. V.) was
visitlag the Department of Electrical Engineering at M.I.T.



1. INTRODUCTION

This paper addresses the problem of the optimal control of dynamical

systems subject to random perturbations. It does so in the following way.

First, in Section 3, an abstract mathematical model is proposed in which the

choice of controller is modelled as choosing a probability measure over the

measurable space of state trajectories. This idea was first developed by

Benes [1,2] and Duncan and Varaiya [11] in order to prove existence of an

optimal control when the perturbations form a Brownian motion. Second, in

Section 4, we derive optimality conditions for the abstract model using

dynamic programming and elements of martingale theory in the way developed

by Davis and Varaiya [9] for the Brownian motion case. Their approach in

turn was motivated by the work of Rishel [20]; it also has some resemblance

to earlier work by Kushner [16], and Stratonovich [26]. Some of the extensions

of their results as given in Section 4 are special cases of recent results of

Striebel [25]. While the abstract model does serve to unify previous results,

further comprehension of the scope of the model can be gained and an evalua

tion of its practical import can be made only by working through with more

specialized problems with additional structure. Hence, in Sections 5 and 6,

the case where the random perturbations constitute a jump process is discussed

in detail. Related results using different methods have been reported by

Rishel [21] and Stone.I [2A] and we shall compare them later. We note that

there are control problems with jump disturbances which must be modelled quite

differently from the model of Sections 5 and 6. As examples of these we

mention the work of Rishel [22] and Sworder [27].
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2. CONVENTIONS AND NOTATIONS

Let (n,£f) be a measurable space. Let I = [0,T] or [0,») be a

fixed time interval with the corresponding final time denoted T. A

stochastic process is always a triple (z fj ,(?), t£ I, where (r is a

probability measure on (fi,a), (Gr ) is an increasing family of sub-a-

fields of £7 and (z ) is a family of(Oj-adapted random variables with

values in some unspecified measurable space. When the context makes it

clear we write the stochastic process z= (z ,\j 9(j), t£ I, as (zt)

or (z y*\$ )or(z,{p) orz; z, without the parentheses, usually

denotes the random variable at time t instead of the process.

All probability spaces are assumed complete, and every increasing

family of a-fields, (^ ), is assumed right-continuous i.e., £f = H £f .
t t s

s>t

An (G£.»C^)-martingale is a uniformly integrable martingale (m ,£f ,(p),

t €: I, with m. = 0 a.s. The collection of all such martingales is denoted

1 2 1
A (t?t.<P). In asimilar way, we define -A <0£,<P), ALoc<<^t»(?) >

2

-^f-i (^T >(P)> the classes of (£f. ,(?)- uniformly square integrable,

locally integrable, locally square integrable martingales, and it will

be assumed that a version of these processes is chosen such that it has

right-continuous sample paths with left-hand limits.

-A (Qft,(p) is the class of all processes (a ,£f ,(P), t€1which

vanish at 0, aQ = 0 a.s., with right-continuous, non-decreasing sample

paths, and which are uniformly integrable, sup Ea <«. J^i^f ,(P) =

^(Ot'fP) - .A (Qrt,(r) is then the class of processes with integrable

variation. The classes ^loc,ALoc are defined in the usual way.
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Afamily (zt) of (J^)-adapted functions and taking values i

metric space is said to be (Jr)-predictable if there is a sequence of such

families (zt), n=l,2,..., with left-continuous sample paths such that

11m zn(a)) =z (a,) for all (t,u)) E Ixfi.
n-i-oo *»

in a

n-*»
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3. ABSTRACT MODEL OF THE CONTROL PROBLEM

The model proposed below is similar to the one presented and inves

tigated in [25]. It consists of.three interconnected parts: a description

of the dynamical system i.e., the way in which it is affected by the

control action, a description of the set of allowable control laws, and

a description of the cost associated with each control law. The assumptions

imposed are given next.

We suppose given measurable spaces (Z, 2), the state space, and (fl,3f),

the trajectory or sample space. Also given is a function x (w) : I x ft ->- z

which is measurable with respect to ft x%. Let ^ = o{x |s<t} and without
i t s —

losing generality we assume that X= oCxJt e I}. We now assume

S^ The behavior of the system under the action of any (admissible)

control law u is completely described by the specification of a probability

measure fiu on (fi,X) •

Thus for each control law u, xU =(xt, >/, (|3U), tS I, is awell-defined

stochastic process. We are evidently modelling the system as a controlled

probability space rather than as a controlled set of trajectories which is

more customary. Of course in the deterministic context the latter model is

the more natural one. We now describe the set of control laws.

We suppose given ameasurable space (1/, & ), the control space, where

U. is a metric space. Also given is an increasing family of a-fields, (U.)

called the family of observations, such that %L C ^ , tG I. a collection

^X of functions ut(u)): Ixft + 7/ is acollection of (admissible) control
laws if the following holds:

-2 ^ (ut* iS <Vt)-adaPted *nd <ut>3*t» fU) >t€Iis ameasurable
process.

(ii) 6(is closed under concatenation i.e., if u, v6 Li then so
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does (u,v,t) where (u,v,t) (s) = u(s) for s<_ t, = v(s) for s>t.

(iii) For each u£ K and A £ ^\ , (P (A) depends only on u , s<_ t i.e.,
L " S

if v€ U is such that u =v ,s<t, then /pU(A) = £>V(k)\ for each uG 2/,
S S ,l

A€^Eu(lJ^) does not explicitly depend on u ,s<t i.e., if v£ 7/ such

that us =vs, s>t, then EU(1A| ^.) =EV(lA|^t).
In the above, (iii) is a version of a causality condition and also

expresses the notion that the past trajectory x , s<t serves as a state at t

whereas (ii) is essential for dynamic programming. In (i) the requirement

that u is 11.-measurable indicates that U is the a-field of observations

available up to t.

We can now describe the cost of control. Associated with each

u€ °U»is a unique cost J(u) given by

J(u) =Eu[ Jr£ c(t,u(t))dAU(t) +r* JT] (3.1)
I

where EU denotes expectation with respect to ffU, T denotes the final time

of I, and the other terms are described below.

C The instantaneous cost c:I*Uxfl-*Risa non-negative function

which is jointly measurable with respect to C0^ xO^ x^ (&^%S)^ are

the Borel sets of I,U), continuous with respect to u for fixed t,u> and

measurable with respect to 'X. for fixed t,u.

C The time rate Au : I * ft •* R, defined for each u € IA> is adapted

to the family (At) and, for each w, the sample path t -*• Au(t,w) is right-

continuous and increasing. Furthermore, dA ' ' (s) = dAu(s) for s<t,

=dA (s) for s>t. (See S2 above for a definition of (u,v,t)).

Since A can have discontinuous sample paths, the indefinite

(Stieltjes) integral J r® c(s,u(s))dAu(s) can be discontinuous. The
most useful examples of time rates are
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a) Au(t) et; whenever the sample paths are absolutely continuous
with respect to Lebesgue measure on Ithis case obtains.

b) Au(t,M) =• £l{t2Ti(M)} which counts the number of (^-stopping
times x±, 1=1,2,..., which occur before t.

c) Au is the predictable increasing process associated with the
counting process in b), and which can replace the latter in (1) whenever
c<t.«<t» is afcj-predictable process, since the values of the integrals .
coincide (see [19]).

% The discount!^ rat, r>), i~s aTon^negative function defined for
fl6 V,^ *'̂ 81t' F°r ""* 8» <M iS <Tfe>—*-. Jointly
<0T xtf measurable, and uniformly integrable. Furthermore, for each u

rtx "rtx rt2 "-8. <P° for tx <t2 <t3

rt = 1 a-s. v for all t

C, The terminal cost J, :ft +Rls anon-negativeX -measurable function.
JT is the cost incurred at or after the final time T. When T=- it
will be assumed that J =0.

T

05 PoralluGH, J(u)

The problem of optimal control is to find u* €U such that

J(u*) = inf J(u)
ue^C

Such u* is called an optimal control^-

Remark 3a (1) The flxed ttoe **«*1 I can be replaced by a random
interval [0,x] CI where t is aft^stopping time. This can be achieved
by setting c(t.».«) =0 for t >x(u) or by making Au constant after t.
If t does not_depend_onji one can set r!j(o>) =0 t >t(u).
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(ii) The discounting rate r^(oj) is not allowed to depend explicitly on u.
In an economic context this implies that the controller cannot directly

influence the interest rate. Of course, since the distribution of r* is
s

dependent upon (?U there is apossibility of introducing indirect control,

(iii) Except for the special results with complete information (i.e.,

TJt E t^ or Martovian assumptions, the final cost J can depend explicitly

on the control law u. Again, except for these special cases, c(t,u,w)

can be made to depend upon the past u , s£t of the control. These

generalizations are not made here since the notational burdens become

intolerable.
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4. OPTIMALITY RESULTS FOR THE ABSTRACT MODEL

Since the proofs of the results are simple modifications of proofs

published in [9 ]we have been content with citing the correspondence. The

assumptions made in Section 3 are enforced throughout.

4.1 Principle of Optimality

Let u, v e 7/ and te i. We define

Evidently, from the assumptions made above,

<Ku.v,t) glV,](, pu)

The random variable *<utv,t) is the conditional expectation given the

observation T£ of the future cost beyond time t, evaluated at t, when uis
adopted on [0,t] and v is adopted beyond t. To evaluate these costs at

time 0it is only necessary to multiply *(u,v,t) by r*j. Since L1 is a
complete lattice under the natural partial ordering for real-valued functions
the following infimum exists,

w(u,t) = A2/(u'V't) ^Vtf)

Note that W(u,0) =J* =̂ J(u) is the infimum of the acheivable costs.
The process (W(u,t), <!£, f) is caiied the value function corresponding

to u. The next definition was introduced by Rishel [20]. It was used in [9].

Definition 4.1 U is said to be relatively complete with respect to W if for
each uG?/, tGI, e>0 there exists ve 2/such that

<Ku,v,t) <.W(u,t) + e a.s. fu
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Lemma 4.1 M.is relatively complete with respect to W.

Proof Identical with that of [9, Lemma 3.1] Q

Theorem 4.1 For t-<t2 in I and u€ U. we have

WCu.^) <EUg2rStiC(s,us)dA^|yti] +EU[r^W(u,t2)|^tJ, (4.1)
\

W(u,T) -EU|jT|U] (4.2)

Furthermore, u is optimal if and only if equality holds in (4.1).

Proof The proof depends on Lemma 4.1 and follows the same lines as that of

[9, Theorem 3.1]. •

Corollary 4.1 For u £ U, the process

t

fj| =r^W(u.t) +Euj"f r£c(s,us)dAU(s)| U]

is a (^/-t» P ) sub-martingale, u is optimal if and only if this process is

a martingale.

Proof Immediate from Theorem 4.1 LJ

Since the process

(E"[poc(s,us)dA«+rToJTiyt])e/l1(j/,p"j,

therefore the process (w(u,t)) is a {/L»¥ )-supermartingale, where

T

w(u,t) =EU^r^c(s,us)dA- +rJjT| ^J -r^W(u,t)

=rQ^(u,u,t) -W(u,t)j
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Corollary 4.2 For uGl/, the process (w(u,t), jV, pu) is apotential,
u is optimal if and only if w(u,t) = 0.

Remark 4.1 (i) The model proposed above is a special case of the one

presented by striebel [25] and the results obtained above can be obtained

from hers. In particular Corollary 4.1 is a version of [25, Theorem 3] .-

The additional structure that we have imposed will be used to obtain the

more detailed results given below. It is possible to replace the "relative

completeness" property by the slightly weaker "e-lattice" property introduced

by Striebel.

(ii) Following Samuelson [23] we can give a heuristic interpretation of the

submartingale (Jt). Its value is the expected cost evaluated at t, using

the observation C\L9 given that u is adopted up to t and an optimal control

is adopted beyond t. This expected value will increase if the non-optimal

control is used for a longer time, accounting for the sub-martingale property.

If u is optimal, however, then the expected cost remains constant,

(iii) Theorem 4.1 can be rederived from Corollary 4.1. Hence the Optional

Sampling Theorem implies that in (4.1) we may replace the deterministic times

t1 and t2 by any ((7)-stopping times t^t- with values in I. This observation
is often useful.

(iv) Sometimes, as in [2,9,11], there exists a probability measure J on

(G, A) such that (PU«(r for all uGU. One can then introduce L(u) = d(PU

and

T

<Ku,v,t) =E|L(u,v,t) ["( V(s,vg)dAv +r*jj|u\

V(u,t) = A (j>(u,v,t).
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The previous results can be restated in terms of the unnormalized value

function. While in an optimal filtering context working with such unnormalized

quantities has certain advantages (see e.g. [6]), we are unable to observe

similar advantages in the optimal control context.

(iv) The random variable w(u,t) expresses the loss incurred by using u

beyond t as compared with an optimal control.

From the definition of (w(u,t), ^(P") we can verify directly
that it is a potential of class (D). Hence by Meyer's decomposition

theorem [18], there is aunique predictable process (A^w(u)) G^(2/- ,(fU)
and amartingale (mw(u,t)) GJ^ilk,(RU) such that

decomposition theorem [18], there is a unique predictable process (Atw(u)) G

d?{(ft>(?n) and amartingale (mW(u,t)) ^M}{Uy fu) such that

w(u,t) =J(u) -Ajw(u) -mW(u,t)

where J(u) =w(u,0) =J(u) -J*. We know, furthermore, that the following
weak limit (in the sense of the a(L^L*)-topology) exists (see [18]).

t

Ajw(u) =weaklim I£Eu w(u,s) -w(u,s+h)|U ds
h-0 .Q

weak lim

h-K)

"\£EU[r0W<u's> -r0+h W(u,s+h)|^sjdsJ (4.3)

Now it is easy to see that there exists a predictable process (y(u)) G

J^^Vt'P^ such that

-11-



Y(u) = weak lim

h-X)

t s+h

w S

ds

From (4.3), (4.4) we may conclude that there exists a predictable process

(A^W(u)) Gjf(^,^) vi2. A^w(u) =y(u) _aJw(u), such that

AIW(u) = weak lim
h->0

t

(^EU[r0W(u's) "̂+hW(u,s+h)|^sldS

This is sufficient to apply Meyer's decomposition theorem to the process

(rQW(u,t)) and we may conclude that

r£w(u,t) =r°W(u,0) -A^W(u) +mW(u,t)

=J* -A?W(u) + mW(u,t),

(4.4)

(4.5)

where (mW(u,t)) eJt(^t>^?u). Furthermore, since (W(u,t)) is evidently
of class (D), the decomposition in (4.5) is unique.

In terms of this decomposition we can rewrite (4.1), after multiplying

both sides by rn, as

1A02 W<u> -*^<»>IJt] 1*" [J 2r^c(s,us)dAsU| ^Ja.s.P", (4.6)

and we have equality if and only if u is optimal. With these results in hand

we can proceed as in the proof of [9, Theorem 4.1] to establish the next

proposition.

Theorem 4.2 There exists a constant J and for every u G 1/ there exists a

predictable process (a£(u)) Ej4(Vtpu) such that
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eua;(u) =j*-ev5v.

and such that for (T/)-stopping times t^St, with values in I,

T2

°[- \2(u) +(V(s.VdAsl%1i°a-8- ^" (*•»)

A control law u = u is optimal if and only if equality holds in (4.8) for

deterministic times t <_ t y and then, furthermore,

J(u ) = J ,

:0V,t)=EVt(u*)+r;JT|yt],s. ^
Remark 4.2 This result is a considerable improvement over [9, Theorem 4.1]

since there the inequality (4.6) and hence (4.7) is established only for

those u which are "value decreasing" i.e., for which (W(u,t)) is a super-

martingale. The same shortcoming can be noticed in [20]. Of course, if u

is value decreasing, then in (4.5) (A^W(u)) is an increasing process.
4.2 Local Optimality Conditions

One can divide both sides in (4.8) by t -t and take limits as t^-t -K).

The basic idea is to express AQ(u) as an integral with respect to Au. It

appears necessary however to restrict attention to value decreasing controls.

So let uG%be such that (W(u,t)) is asupermartingale. Then (A^W(u))
is an increasing process and (4.6) can be refined as

0£E"[a^(u)IftJ<E^V^s.u^l J^J a.s. &*
fcl
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For any nonnegative, well-measurable process (6t> %,(pU) we must therefore
have

OlEUfesdA^W(u) <Eu fesr^c(s,us)dA^
4) -'o

so that whenever the second integral vanishes so does the first. By the

Radon-Nikodym theorem there exists a nonnegative process (a (u), 1JL ,(Pu)
so that

A0
'0

Using this representation we can restate Theorem 4.2 in a "local" version.

Theorem 4.3 There exists a constant J and for every value decreasing uGQj[

there exists anonnegative process (a (u), ^>/pU) such that

JjW(u) =1 as(u)dA^

T

i ru^dAu = .t* - fu<s M A
"Of

iULt(u)dA^E-l o(u)dA- =J* -Eu(r^J_), and (4.9)

-ot(u)(«) +Eu[r£c(t,ut) l^l(co) >0 (4.10)

for almost all (t,w) with respect to dAU x dr measure. A control law

u = u is optimal if and only if equality holds in (4.10) and then, further

more,

T
*>u*,t) -E-[J«-(„*)dA» +r^] .... p»\

4.3 Complete Information

Suppose U =2^t so that at each time tthe controller has complete
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information about the past. Then

T

K ....t).I<-^[j«-te(..V.«:+.Jjt|^_
't

T

= E

t

V[jr8tc(s,v8)dA' +r^|^]

= !|>(v,V,t)

by assumption S«(iii). Hence W(u,t) does not depend on u, and the

preceding results are simpler. Nevertheless the process AIW(u) still

depends upon past values of the control law u. Its "derivative"

a (u) however will often be independent of values of u before to as

seen in [9] and in the following sections.
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5. OPTIMALITY RESULTS FOR JUMP PROCESSES

In this section the abstract model of Section 3 is specialized to

the case of a dynamical system whose state process is a (fundamental)

jump process as studied in [5,6]. The additional structure gives more

content to the formal results established earlier. For a review of the

definitions and properties of jump processes see [ 69§2].

5.1 The model and its limitations

The state space (Z,^J) is now also a Blackwell space, ft consists of

all functions w : I -*• Z which are piecewise constant, right-continuous and

have only a finite number of jumps in a finite time interval, x (oj) : I x ft -*- z

is just the evaluation function, x (u>) = u)(t). S\f 9~)(^ are defined as before.

The observations (J^-) are obtained as follows. We suppose given a

Blackwell space (Y,^0 and a measurable map y: Z -»• ^f . Let y = y(x ) and

1/t= a{ysls-t}*
With (x ) and (y ) we can now associate the following discrete random

measures.

P U.wvw, . , -w ,v , ,.^ -, (5b1)(B,t)(a)) =2Lj 1{x w ¥x m Gb}
s<t s- s

- number of jumps of x(oj) which occur before t and end in

BG^;

Py(C,t)(w) =X, 1, . N, . .
„ ., .-, . , .-, C} (5.2)

s<t "s- rfs

number of jumps of y(io) which occur before t and end in

Note that PX(B,t) is .^-measurable and Py(C,t) is Vl-measurable,
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We can now define the collection of admissible control laws U and the

probability measures £>u, uG%(. Let (2/,^) be the control space, where
U is a metric space. U is the collection of all functions u (w) : ixfl+li

which are (7^.)-predictable. It is supposed that for each, uGZ/ there is
given aprobability measure (pu on (ft,X) such that the stochastic process

-K a (xt»At»/T )» tG I, is ajump process in the sense of [5,6]. (It is

evident that S2(i), S2(ii) are satisfied by these assumptions.) Now from

the results of [5,6] or [15] we know that to say that x is a jump process

it is equivalent to say that there exist continuous processes (PX(B,t)) G
~"—————- UN

t/4 loc(^t»^U) for each BG^such that

(QX(B,t)) =(PX(B,t) -PX(B,t)) ^^ioc(^t,/pU) (5.3)

Thus the action of uG%±s completely described by specfying the correspondence

u-{(P>,t),Yt,(pu)|BG^}

To guarantee assumption S2(iii) and to simplify some notation later on we

suppose that for uG ^ and BG ~Z ?X(B,t) (u) is given by

Pu(B,t)(aj) = 11 f(z,s,us(u>),u>)y(dz,ds,u,(u)),a)) (5.4)
B 0

where the integral is an ordinary Stieltjes integral and the prespecified

functions f and y satisfy these conditions:

(i) f(z,s,u) =f(z,s,u,oj): ZxIx7/ xft -• r+ ±s jointly measurable,
continuous in u for fixed z, s, u and for fixed z, u, (f(z,t,u,w)) is CK )-

predictable.
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(ii) y(B,t,u,w) = y(B,t,u): *3- x I x 6/xft + Ris jointly measurable and

for each fixed B, u, (y(B,t,u)) is (Zf)-predictable, continuous and

increasing. (In practice y is usually a deterministic process.)

Finally the cost J(u) incurred by u G Li is supposed given by

:u) =E»[J*{
Z I

where c satisfies the same conditions as f does, and r , J_, satisfy the

conditions imposed in Section 3. It is assumed that J(u) < °° for all u.

This completes the description of the mathematical model.

Before turning to the analysis of the model we discuss its limits in

terms of which empirical control problems can and which cannot be adequately

reflected in the model. First of all, as far as the behavior of the state

trajectories is concerned the most serious limitation is the requirement

that (P (B,t)) have continuous sample paths. It is known (see e.g. [5])

that this restriction is equivalent to saying that the stopping times at

which the state jumps i.e. the times of discontinuity of (x (u)), are

totally inaccessible. In intuitive terms this means that if the controller

observes the first n jumps, then the probability with which it can predict

the (n+l)st jump exactly is zero, for each n=0,l,2...(see [5, Lemma 2.4]).

Now most problems of queueing, inventory control, machine failures etc.

indeed have this property. But there are some problems which do not. For

example suppose that in an inventory control problem there is a fixed

(deterministic) delay between the time an order is placed and the time that

the corresponding delivery is made; evidently the total inventory jumps

when the delivery is made and this time of jump can be predicted exactly,

and so the model proposed here is inadequate for this example. Now the

J(u) =E"| ||r^c(z,s,ug)PX(dz,ds) +rJjT (5.5)
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only reason why we have insisted on the total inaccessibility of the jump

times is so that we can use the martingale representation theorems derived

in [5]. More recently, such theorems have been obtained without the

restriction on the jump times (see [7,8,13,15]) and therefore the results

announced below should be extendable to arbitrary jump processes. •

The second limitation of the model appears to the requirement that

controls have to be predictable processes. One reason for this is based on

empirical considerations. Since, the time when the state jumps cannot be

anticipated with positive probability, and since in empirical situations

there is an infinitesimal delay before the controller can observe and react

to achange in state, therefore the predictability requirement seems appropriate

to us. In any event since yis continuous in t, therefore Px defined by (5.4)

is always continuous in teven if u is measurable and not predictable. Hence

the results below remain unchanged whether we permit u to be any measurable

process so long as we always take the predictable projection of f (as well as

of cin (5.5)), or whether one insists at the outset that ube predictable.

Finally, the cost functional (5.5) may appear too limiting since in

many situations one may wish to have the cost increase only when ajump

occurs. Thus one would prefer to have as cost the amount

SU[JJrOc(2'S'Us)Pu(dz'ds> +rSJT
Z I

'IsG^ rOc(V8'us> +r0\
X ^x
s- s

»x ~x

But since P -P is amartingale and since the integrand above is predictable

the quantity above is equal to J(u) given by (5.3) and so there is no loss
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in generality. (This equality does not obtain if u is not predictable.)
5.2 Preliminary Analysis

To simplify notation we write 1Q(Z) =i{^ £c}. Then> from (5-2)f

Py(C,t) =Jj lc(z)Px(dz,ds)
Z 0

We calculate the unique processes 0V(C9t)9^/ ,(pu) so that

<qj<c.t» =(py(c,t) -F(c,t)) e7fioc(^)(pu) (5.7)

For an arbitrary process (g^ let ,t -Eu<gt|%.) (the appropriate uwill
always be clear from the context.) Then from (5.4) and (5.6)

>^,t) -JJC,t> "JJ V^'^V P(dz,ds,us)
Z 0

a 1 (z)[Px(dz,ds) - f(z,s,u )]y(dz,ds,u )

JJ ^cW^^s.V ~lcf(z'S»Us)] y(dz,ds,us)
Z 0

which is evidently amember ofj\ ioc(?X,(pU). Hence

?u(C>t) m)) lc<«>*(*.8,u8) y(dz,ds,us) (5.8)
Z 0

A calculation similar to that of P* above gives us the expected value,

given 7^., of the increment of the instantaneous cost on the right hand
side of (4.6). In terms of the cost functional (5.5),
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EU[lj rOC(Z'8'Us)f>»d8>l^tJ
z tl

" EU Lj\ r0C(Z»8»U8)£(Z,8»U8)y(dZ»d8»U8)l% j

=EUlJ) V^^'V^'^'V y(dz,ds,us)|^ J
Z t, " 1

so that, by (4.6),

0<Eu[- AtVu) +jj ^liZZ^f^ZT) P(dz,ds,us) |U1

which means that the process

it »-A^W(u) +II r8c(z,s,u
Z 0

)f(z,s,u ) y(dz,ds,u )
£» S S

(5.9)

1S a(%»^U)-submartin8ale. It is evidently of class (D) and so by Meyer's
decomposition theorem there is aunique predictable process (b )GJ+(2£ j£)u)
and (mt) GJf-(fll,§>u) so that

at = bt + mt

But from (5.9) we know that (at) is also (Ur^-predictable. Hence (m )
is a predictable process with integrable variation. It must therefore

vanish so that at = bt. Hence at itself is increasing so that (5.9) can be

expressed as
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<-a^Vu) +Jj2 r* (z,s,u^)f(z,s,u^)y(dz,ds,u^) a.s. G-^ (5.10)

1

for every admissible control u. Furthermore we have equality if and only

if u is optimal.

5.3 Optimality Condition for Partial Information

Recall the following definition from [5]. A measurable function

3:Y xIx«•> R is said to be in L1^7) if for fixed y, 3(y,0 is a

(^J-P^^ct*016 Process> and EU JJ|3(y»s)|py(dy,ds) <«>. 3is said to
1 ~y ll Z U

be ±n Lloc^u^ lf there is a sequence of (1^.)-stopping times T +T a.s. fflU
such that (31{t<T }) GI/^F) for each k.

We have the following version of Theorem 4.2.

Theorem 5.1 There exists a constant J and for every u G CL there exist

a

so that

predictable process (AQ(u)) G^-^A 6^ »(PU) and a process 3° G L- (Py

aJ(u) -jj 3U(y,s)Py(dy,ds) =J* -EU[r5jT|U,], (5.11)
Y 0

-A.2(u) +jj [3U(y(z),s) +r8c(z,s,us)]f(z,s,us)y(dz,ds,us) >0 (5.12)

a.s. (j* for (Ul)-stopping times T- <_ x« with values in I. A control law
*

u = u is optimal if and only if equality holds in (5.11) for deterministic

times t. £ t„, and then, furthermore,

it *

J(U ) = J ,

r£w(u\t) =J* -Aq(u*) +jj 3U (y,s)Py(dy,ds) (5.13)
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Proof (Necessity) Let uGV. We have the representation (4.5),

r^(u,t) =J* -a^W(u) +mW(u,t)

where A^(u) satisfies (5.10),
Ll

01-AA(u) +Jj r8c(z,s,us)f(Z,s,us)y(dz,ds,u )
Ztl

with equality holding for u*. By the martingale representation theorem
[5, Theorem 3.4] there exists 3U GL] (P7) such that

loc

Au,t) «jj 3U(y,s)Qy(dy,
Y 0

ds)

=))eU(y,s)py(dy>ds) .f[3U(y,s)F(dy,
Y 0 Y0Y 0

•t

ds)

(5.14)

(5.15)

=j) 3U(y,s)P7(dy,ds) -ff A^sT^^ }
Y 0 Vo

by (5.8). Define

[0(u) "̂ W +J) ^W^^ )
z o s

Substitution for mW(u,t) and aJw(u) from (5.16), (5.17) into (5.14)
(5.15) yields (5.11), (5.12) and (5.13).

(Sufficienty) Now suppose (5.11), (5.12) holds. If „e define mW(u,t) and
A>(u) via (5.16) and (5.17), then (5.14) and (5.15) hold and the optimality

D
of u follows from Theorem 4.2.
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Remark 5.1 (i) If we define AU(t) = y(Z,ds,u ) then there exists a

kernel n(dz,t,ut) such that y(dz,dt,ut) =n(dz,t,ut)Au(dt). Then Au can

act as a time rate and so exactly as in Section 4.2 we can derive a local

version of condition (5.12).

(ii) In many applications it is reasonable to suppose the existence of a

probability measure <P on (fi,^) such that Pu« f for all u. Then Pu can

be described by specifying (P and L(u) =E[ j^- \X]. Suppose further
that (xt>P) is ajump process with compensating processes (Px(B,t),P),
BG^ given by

XB,t) =It f(z,s)y(dz,ds)PX

BO

where f(z,-) is Q(J-predictable for each zand (y(B,t)) is a(2^)-
predictable increasing process. It can be shown then (see [6]) that for

each u there is a process <j>u: Zxixfi + R such that

is given by

Lt(u) = n [1 +(J)U(x ,s)]exp[- II <()U(z,s)f(z,s)y(dz,ds)]
x ^x D J J
s- s z 0

s<t

As a model (which satisfies the various assumptions of Section 2) we can

propose that the effect of a control u is determined by the process (L (u))

above in which

<|> (z,t,oj) = *(z,t,u ,(D)
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where «: Zxix U x fl + r ls a fixed function. The processes

(Pu(B,t),^t,|pu) are then given by (see [6])

PX(B,t) =Jj [1 +*(z,s,us)]Px(dz,<,ds)
B'O

The function *can be interpreted as the change in the rate at which jumps

occur for<Pu as compared with (P. In terms of this special model condition
(5.12) reads as

-\\u)+ JJ [6u(Y(z),s) +r*c(z,s,us)][l +♦<«,a,u )]f(z,s)u(dz,ds)> 0
2 Tl

5.4 Complete Information

We assume that y = x . Then, as observed in Section 4.3,

W(u,t) = W(t) does not depend on u. However, it may appear that in the

representation for W(u,t) obtained in (5.13), (5.16) and (5.17), the

processes AQ(u) and 3 still depend on u. To see that this is not the

case, consider any two controls u,v. Then

r* W(t) =J* -AJj(u) +J J3U(z,s) Px(dz,ds)
Z 0

-AJj(v) +I I3V(z,s) Px(dz,ds)= J*
0"'

Z 0

Now (J* - AQ(u)) and (J* - AQ(v)) are (X.)-predictable processes whereas

the integrals in the equations above are piecewise constant with dis

continuities at the jump times of the (x ) process. It follows that

J I3U(z,s) Px(dz,ds) =1 J3V(z,s) Px(dz,ds), (5.19)
Z 0 Z 0

Aq(u) - Aq(v), (5.20)
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and so we have a considerably simpler version of Theorem 5.1.
it

Theorem 5.2 Suppose y = xfc. Then u is optimal if and only if there

exist a constant J, apredictable process (A*) €J?{(^ ,(j*U )and aprocess

3e LLc(fX*) so that
u

^O-JJ 3(z,
•T

$fz.s}PXMz_rfs,> = J - T w ,
0 T!

Z 0

h

2

A" - 11 3(z,s)PX(dz,ds) =J* - r^JT, (5.21)

<4 s
[3(z,s) + r c(z,s,u )]f(z,s,u )y(dz,ds,u ) > 0 (5.22)

US o S """"

Z t.

a.s. p for all u G U with equality holding for u = u . Then, furthermore,

it ^

J = J(u ),

r£w(t) =J* - Aq +JJ 3(z,s)Px(dz,ds) (5.23)

Z 0

Suppose henceforth (see Remark 5.1) that Px(dz,ds) has the form
~x

Pu(dz,ds) « n(dz,s,u )A(ds) for some kernel n and continuous increasing

process A(t) independent of u. Then, as shown in Section 4.2, we can represent

5-j••A0 =\ <* A(ds) (5.24)

for some Cft)-predictable (o ). The local version of (5.21) now becomes

-ot +j[3(z, tt) + r0c(z,t,ut)]n(dz,t,ut) ^ 0 (5.25)

for all (t,w) with respect to dA x d(Tu measure, with equality when u = u .
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This gives us a version of the Dynamic Programming Programming equation,

-a +Min l[3(z,t) +r!jc(z,t,u) ]n(dz,t,u) =0, (5.26)
uGu {

it

and the minimum is achieved at u (t,u>) for almost all (t,w) with respect
*

to dA x du measure.

We shall now use (5.23) and (5.24) to directly relate A (or

equivalently a and 3) to the process (rIW(t)). The basic idea is to note

that AQ on the right hand side in (5.23) is continuous whereas the integral

term is piecewise constant with discontinuities occuring only at the jump

times of the (x ) process. Thus the discontinuous changes in rW account

for 3 and the continuous changes account for a. To identify these changes

we need a more detailed representation of rW. Set T = 0 and let T < T. <•••

be the jump times of x defined by

Tk+l(a° = inf{t > Tk<u)lxt(w) * Vw>}» k = 0,1»--
k

It is shown in [5] that^ =a(xT At>Tk; 0<k«»), ^ =% =0(2^ ,T ;
k n+ n k

0<k<n). Since (r^W(t)) is adapted to C^), therefore there exist functions

Wk^t,t0,Z0'* " ,tk,zk^' measu*able in their arguments, so that

r|jw(t) =2-^ 1/T <t<T iW (t,T ,* ,..,T ,3^ ) (5.27)
U k>0 lik- Xk+1^ K U lQ k Tk

The discontinuities of rW, which occur only at the T, fs, can now be

identified as

T, T, -

Ok 0 k-1

(5.28)
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Hence the function 3 can be related to rW by

3(z,t) -2^1{T <t<T i\(z,t) (5.29)
k>0 llk - k+l' R

where, from (5.28),

bfc_l<«'t> •"k(t«T0'V,T*-l,*I, ,,t,8) "Wk-l(t'T0,XT '••••Tk-1'XT1 >
0 k-1 0 k-1

(5.30)

To obtain the relation between a and W recall that we have supposed
~x

Pu(dz,ds) = n(dz,s,ug)A(ds) where A(t) is increasing and continuous. Now

suppose further that A is absolutely continuous i.e.,

A(ds) = A(s)ds (5.31)

for some non-negative process A. Then, using [18, VI Theorem 21],

a(t)A(t) can be identified by

^£[rW] =-«(t)A(t) +J3(z,t)n(dz,t,ut) (5.32)

where,

^. lim =weak lim ±{Eu[rJ+hW(t+h) |^] -r*W(t)} (5.33)
h-*0

(Here weak lim means limit in the a(L1,L°°) topology). Now, by (5.27),
(5.23) we get

££ Xit<Tk+l}Wk<t,T°''*'V =J* "*0 +J] B(^.s)PX(^,<is),

and since the integral term jumps only at the {T }whereas a' is absolutely
R 0
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continuous by (5.24) and (5.31), therefore wfe Is absolutely continuous in
t. We can now obtain aformula for^[rW] as follows. We observe that in
the stochastic interval T <t<T

Eu[rJ+hW(t+h) |^t] -r£,(t)

= [wk(t+h,T0,...^ )-wk(t,T0,...Xj )]
fc k

x^PU[x does not jump in [t^+h]^ ,T >t]

+jj i-sW-l(t+a,T0"-»*T •t+s»z> " wk<t'T0,-'»Tk»*T >}
Z 0 k k

X̂ U[Tk+l-Tk e ds'*T. €<>*IX ,IHI>t] +o(h)k+i -T •1kU*cJ ••• °W (5.34)

Now,

lim ^U[X does not jump in [t.t+h]^ ,Tk+l>t] =u (5>35)>
K.

^UITim.i-^ G ds,v GdzlV T >tl - Fk(dZ>d8)k+1 k '*r ^I^T 'Tk+l>t] -" u » (5.36)
k+1 k 1"P|J(Z,t-Tk)

where, by definition,

»£CB.t> =FtWt^ GB|V]
k+l V (5'37)

Finally, as shown first in [7], and subsequently in [8] and [15],

PU(B,t) -jj n(dz,s,us) A ds
s

B'O
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T -T
k-lrji+l i ^u,,, , v 1 t-T,^[f1+1 i Fj(B,d3) 1 fk Fk(B,ds)

*1* [J 1-F±(Z..)J+J l-Fk(Z,s) for V-1t<Tk+l (5,38)
i=0fc0

From (5.33) - (5.38) we obtain

o 3w r

XtCrW] =IF <ttT0»,",*r >+\[wk+l(tjT0,-*,xT ,t,z)
k J kk Z

- wk(t,TQ,..,xT )]n(dz,t,ut)At for Tk<t<Tfc+1 (5.39)
k

Substituting from (5.32) and (5.39) into (5.26) gives the next result.

Theorem 5.3 Suppose y = x and suppose that for u G (j(

PX(dz,ds) = n(dz,s,u )A ds ' (5.40)
u s s

*

Then u is optimal if and only if there exist measurable functions w,

(t,tQ,..jt^jZj), which are absolutely continuous in t, so that

9w-
k •t )i«j-j- (t,T0,..,^) +J^\ JIwfcfl<t'T0'--'xTk»t'z) "w^t.T,,,..,^ )

+ rgC(z,t,u)]n(dz,t,u) = 0, for Tki.t<Tk+1» (5.41)

wk(T,T0,..>Xt ) = J for Tfc<T<T (5.42)
k

*

and the minimum in (5.40) is achieved at u = u (t,w) a.s. (P u . Then,

furthermore

r^W(t) =2L-^ 1it <t<T >Vt»To"'"»*T >• (5'43)
u k>0 ^k- ^k+l' K u \
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We are now in aposition to compare our results with those of Rishel

[21]. First of all his model of the dynamics of the jump processes is a
special case of the one used in Theorem 5.3. Secondly, the observation

a-fields, yt, that he permits are much more general even than those of
Theorem 5.1. For he only requires that (fa be "locally increasing" i.e.,
for each tthere is n>0 so that ^ Cft for .6[t>t+n]. ^^ ^ '
structure of the cost functional is the same as the one used here. For an

admissible control ulet J^ =E{cost incurred in [t.T] using uR^.
The process (J,.(u).^.p) can be expressed as

as in (5.27). Rishel derives differential equations for the J» similar to
our equation (5.39). Finally he compares Jt(„*>, for an optimal control

u* with Jt(v) where vis acontrol obtained from u* by alocal perturbation.
The necessary condition K[Jt(„*) -Jt(v)|^] <0is translated into a
necessary condition on the ju (see [21], Theorem 6). Since u* is compared
with controls obtained by alocal perturbation, therefore these necessary
conditions are fairly weak as compared say with Theorem 5.3 above.
5.5 Markovian Case

To simplify the discussion in this section we suppose T<- and rE1.
Now suppose yt =X(_ and suppose as in (5.40) that

"X

Pu(dz,ds) = n(dz,s,u)A ds,
& s

where n and A have the form

n(dz,s,u,u)) =n(dz,s,u,xs_(o))), (5
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A(s,w) = A(s,xs_(o))) (5>45)

Similarly, suppose that in the cost functional (5.5) we have

c(z,s,u,a>) = c(z,s,u,xg_(u))), (5.46)

JT<«> = JT(xT((u)) (5#47)

Next, call u^U a Markovian control if u is of the form u (to) =
• £ t

ut(xt<_(oO). Let IX be the set of Markovian controls. We assume M

M

M. If u G% ,then (x^'X^P'1) is aMarkov process.

With these assumptions it is reasonable to expect that a Markovian control

is optimal in the class Ii i.e.,

u^J(U)=uk/J(U)* (5-48>

and it will then follow that the (complete information) value function

W(t) has a representation W(t,a)) = w(t,x (oi)).

To prove this assertion we begin by defining the Markovian value function.

For u, v in %{ , as before let

u u,v,t) =E(u'v't>f[(c(z,s,vs)PX(dz,ds) +JT|?X1
Z t J

=Ev| j j c(z,s,vs)PX(dz,ds) +JT|xt|by M,
Z t J

= n(v,t,xt) say, (5#49)
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V(t,xt) = A n(v,t,x )

To show that V(t,xt) =W(t) it is enough, as we will see, to prove a
version of the optimality principle, Theorem 4.1, for the function Vand
uSU\ it is here that we face adifficulty because the proof of Theorem
4.1 relies on Lemma 4.1 and in the proof of the latter critical use is made
of the fact that u£ can depend arbitrarily on^ and that these are
increasing; whereas here »t can depend arbitrarily only on o^J and these
are certainly not increasing.

We shall circumvent this difficulty by assuming that it is possible to
approximate the time-continuous optimal control problem by atime-discrete
problem. Since for the latter an optimality principle is available, we
will be able to obtain such aresult for the original problem.

For each t€Iand integer Nlet t=^ <t, <•••< tN=Tbe equally
spaced instances of time and let1<» be the set of all (u'), s>tof the
form

us« =u.fc^C)) for tk<s<tk+1

We impose the following assumption of approximation.
4 For all e>0, t€I, u<= «H* there exists Rsuch ^ ^ ^ ^
there exists v£1^ with n(v,t,xt) <n(u,t,xt) +e
A2 For all e>0, t£Ithere exists Ksuch that for all N>K, v€UN
there exists u6U* with n(u,t,xt) <n(v,t,xt) +e.

Tbm°tmi 5A SUPP°8e (5-44> "<5-"> and Mhold. Then for t<t, in Iand
d/M 1~~ 2

u <= tA we have
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V(tl§V 1"U[jJ^2'8'V*>>*s> \ j+EU[v(t2,xt2) |xtJ,
v(t>Xt) =jt(^)

If equality holds in (5.50) for u-u* then u* is optimal in W. Flnally
" Ar A2 hold, then this condition is necessary for optimality.
Proof. For uG ^M we have

(5.50)

(5.51)

V(VV ^ J)2c(Z,s,us)Px(dz,ds)|xt 1+ A EuLv,t2,x )|x
Lz t± U ^ip L c2 h

with equality if and only if „is optimum. Since obv±ously

A

vG'U'MEf(v'Vxt^

therefore the sufficiency part of the assertion follows. Now suppose
4, A2 hold. To prove the final assertion it is enough to show that the
reverse inequality holds in (5.52). Fix e>0. We must show that there

so thatveU*

T^vvKji^^'VV'X + e

Choose Kso large that the inequality in A2 holds for N>Kand for fand
t2. Then, using A^ choose N> Kso that

LvG^
A n(v,t x )|x < E* A n(v,t ,x )\x +!
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Next, we apply discrete backwards dynamic programming to obtain v' G#N
so that 2

n(V,t2,x )< A n(v,t )+|
1 vGF 2

C2

Finally, using A ,we may find vGUM so that

n(v,t ,x ) <_r\(^\t k ) +f-
2 c2 J (5.56)

From (5.54) - (5.56) we see that v satisfies (5.53). The assertion is

proved.

Now let Vt =V(t,xt). Fix uG%* and consider the process (V ,X ,(P).
Then, using the same argument which led to (4.5), we obtain the representation

Vt =JM-A0(u) +mVt), (5<57)

where JM - inf{J(u)|u G<^M}, mV(u) G^^*), and for ^ <̂
t /*^2

A2=weak lim \ \ EU[V - V A~Y ]ds
Cl H J h 8 s+h'4sJUb

h

By M̂ [V^V^I^] =Eu[Vs-Vs+h|x ]so that A^2 is measurable with respect
y 2 ito ^ - a(xs; txl s£ t2). (This implies also that m(u,tj -m(u,tj is

t

•^-measurable i.e., m(u) is an additive functional of the Markov process
(xt'Tt'^ >•> We therefore obtain the following version of Theorem 4.2.
1:11601:6111 5'5 Suppose (5.44) - (5.47) and M hold. There exists a constant

JM and for every u£?(M there exists apredictable process (At(u)) G
J4'(^,(PU) such that
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*X™ =JM "E\>

and such that for t < t A 2(u) is X 2-measurable and
1 zl

Z t.

c(z,s,ug)Px(dz,ds)|xt > 0 a.s. Pu

(5.58)

(5.59)

Suppose equality holds in (5.59) for some u=u* in^M. Then u* is optimal
„ *MM *
in Li , J(u ) = J and

M

Vt =EU*[a£(u*) +JT|xtj a.s. (P»
Finally if k^ and A2 hold, then this condition is necessary for optmality,

We return to the representation (5.57). Since mV(u) is an additive

functional it can be represented as

mV(u,t) = II 3U(z,s)
Z 0

lPX(dz,ds) -Px(dz

where gu G L* (Px) is of the form
loc u

3U(z,s,w) = 3U(z,s,x (w)).
s-

As before (cf.(5.17)) let

A^(u) =Aj(u) +Jj 3U(z,s)PX(dz,ds)
Z 0

•Aq(u) + j1 3U(z,s)n(dz,s,ug)
Z 0
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and we may conclude again (see (5.19), (5.20)) that for u, vin^

AQ(u) = AQ(v) = Aq say

Jj 3U(z,s)Px(dz,ds) = Jj 3V(z,s)Px(dz,ds)
Z 0 Z 0

Furthermore there exists a predictable process (a ) such that

t

:o •J aArt = I a X ds
j s s
0

-C2 V2
But A is y( -measurable and X.(ui) = X(t,xfc (w)) by (5.45). Hence a

c! tx t t- t

is of the form at(oo) = a(t,x (w)). The local version of (5.59) now

becomes (cf. (5.26))

- <x(t,x (w)) + Min 1 [3(z,t) + c(z,t,u) ]n(dz,t,u) = 0 (5.61)
uGU I

it

and the minimum is achieved at u (t,x (u>)) for almost all (t,to) with
* t-

respect to dA x d^PU measure. But from (5.61) it is evident that u is

now an optimal control in the class u( of all controls and not just

Markovian controls. It follows then that V(t,x ) = W(t). Theorem 5.3

simplifies as follows.

Theorem 5.6 Suppose (5.44) - (5.47) and M hold. Suppose there exist u G ^M

and a measurable function V(t,x) which is absolutely continuous in t, so that

M

3V 1
-r- (t,3^ ) + Min A(t,x,^ ) l[V(t,z) - V(t,x_ ) + c(t,z,u) ]n(dz,t,u) = 0,

\ uGll V J Tk

for Tk < t < Tk+1, (5.62)
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VCT.Xj. )=JT(xT(a))), for Tk <T<Tfc+1, (5.63)
k

* *and the minimum is achieved at u (t,xt_(w)) a.s. with respect to (Pu

measure. Then u is optimal in the class of all control laws, and further

more V(t,xt) =W(t). Finally if ^ and A2 hold, then this condition is

also necessary for optimality.

We can compare the result above with the main result"of Stone [24,

Theorem 4.5]. Essentially our result is a special case of his result since

the latter applies to semi-Markov processes and not just to Markov processes

as we have insisted. Of course it is possible to obtain his result from

ours by imbedding the semi-Markov process into a Markov process (see

[24, Theorem 2.1]>. One difference may be worth noting. Stone only considers

controls which give rise to Markov processes with stationary transition

probabilities; he is then able to use the infinitesimal generator of the

process as the main tool of analysis. The martingale theoretic approach

followed here permits us to dispense with the stationarity restriction.
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6. EXAMPLES

We use the results derived above to solve some simple optimal control

problems.

6.1 Queues

(i) The simplest case imaginable is that of controlling the rate of a

counting process over the interval I = [0,T], T < «. Z is then the set of

non-negative integers. Let U « [a,b] where b>a>0. Let PX(t)(u)) = number

of jumps of xs(u)) in the interval [0,t]. Suppose yt =xt, and for uG7/ iet

PX = u
u t

so that the controller can vary the rate of the process (x ) to any desired

value in [a,b]. Suppose r£ =1and c(t) =c(t,ut>xt_), JT =J^J. Then
the optimal control must be Markovian. The optimality criterion becomes

3W

°" m±\{ d^ (t'z) + tw(t.a+l) -W(t,z) + c(t,z,u)]u}, z=0,l,.. (6.1)
a<u<b

with the boundary condition

W(T,z) = J(z) (6>2)

One possible problem of this type, suggested by Professor D. Snyder,

related to minimizing the damage to a sample in electron microscopy, is to

seek u to maximize /pU(xT =k) where k is afixed integer. Since
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PVT =k) =EU(1 ),

and since we are maximizing the optimality criterion can be rewritten

(setting W = -W) as

0 = max {— (t,z) + [W(t,z+1) - W(t,z)]u} (6.3)
a<u<b 9t

W(T,z) = 1 (6.4)
{z=k}

(6.3) gives the optimal Markovian control,

u*(t,z) = b if W(t,z+1) - W(t,z) > 0,

= a if W(t,z+1) - W(t,z) < 0,

which upon substitution in (6.3) yields,

0--§* (t,z) +bmax [W(t,z+1) -W(t,z), 0]

+ a min [W(t,z+1) - W(t,z), 0]

for 0 £ t <_ T, and z = 0,1,2,..., and which can be solved recursively.

Remark 6.1. Suppose there were a second, independent Poisson process

(N ) and suppose the objective was to maximize

(P11^ +NT =k)

Suppose (N ) cannot be observed or controlled, whereas (x ) can,

just as before. This is now a problem with partial information.

Nevertheless, it is easy to see the optimality equation (6.3) is still
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valid here, with the boundary condition (6.4) replaced by

-T Tk_iW(T,z) = e ,, .x , for z = i, i = 0,.,...,k

= 0 for z > k

This follows from the fact that

k

(PU(x. +N =k) =£ (PU(X|. =i) <p(N =k-i).
t t i=0 t t

(ii) Consider the simplest problem of controlling a queue length by

varying the service rate (or number of servers). The (x ) process is

now the queue length (Q ) defined as follows. Let (A ), (D ) respectively

represent the arrivals and departures. Then Q is defined by

!t =At-J 1 dD_,
'0 {V>0}

where the integrand manifests the fact that no departure can occur when

the queue is empty. Now suppose that the arrival rate is a constant X

which cannot be controlled, but that the departure rate can be set to any

u G u = {0,1,...,N}. Then, in the notation of Section 5.5,

PX(dz,dt,Qf. ) = 1 Xdt + 1 1 u dt
u t- {Q +lGdz} {Q -lGdz} (Q >0}

where the first term on the right corresponds to a jump of +1 in Q

and the second term corresponds to a jump of -1.

Suppose the cost function is of the form
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J(u) -EU[J c(s,us,QsJds +f(QTJ]
0

Then there is aMarkovian optimal control and the value function W(t,Q)
satisfies

r3W

0 = min {lt (t,Q) + c<t»u»Q) + fw(t,o+i) - w(t,Q)]X +
uGu

+ [W(t,Q-l) - W(t,Q)] 1 u}, (6.5)
{Q>0}

with boundary condition

W(T,Q) = f(Q) (6 6)

Next, suppose that the cost is a linear function of the total waiting

time and the total service time, i.e.,

c(t,u,Q) = au + Q, f = 0

where a>0is aconstant. Hence from (6.5) the optimal control is "bang-
band11. It can be exactly specified as

u*(t,Q ) = N 1 for tG [0,T-a]
{Qt_>0}

= ° for t G [T-a,T]

This follows because in the interval [T-a,T]

W(t,Q) =(T-t)Q +-| (T-t)2

so that

W(t,Q-l) - W(t,Q) = -(T-t)

< a, for t G (T-a,T)
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and the fact that W(t,Q-l) - W(t,Q) must increase with t.

(iii) A somewhat more complicated problem is that in which only one of

two queues can be served at any given time (e.g. traffic light at an inter-
•I r\

section). Each of the two queues, Qt, Qt say, are described as above, and

the possible values of the pair of service rates u= (u^u2) Gu= {(0,1), (1,0)}

0-Min {c^uV.QV) +f (t,QV) +
u*=U dt

+ [WCt.Q^l.Q2) -W(t,Q1,Q2)]X1

+ Mt.Q^+l) -W(t,Q1,Q2)]X2

+ [WCt.Q^l.Q2) -WCt.Q1^2)] 1 u1
{Q1>0}

+ Wt^.Q2-!) -WCt.QV)] 1 , u2}
{Q2>0> U' (6'7)

with the boundary condition

w(t,qV) -=o (6<8)
We are unable to derive an explicit form for the optimal control.

6.2 Investment. An example of a jump process with an infinite number

of sizes of jump is the following. Assume that there are N stocks

with ir^t) as the price of the i-th stock. The i-th price changes at

random times with a rate X and at these times the price changes from

Tr±(t-) to ir±(t) =ir±(t-) +a±(t) ir^t-) where a±(t) >-1 is arandom

variable with distribution function n^da^t). Then an investor, with

wealth K(t), who has invested a fraction k (t) in the stock i, faces

the accounting equation
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£ drr, (t) N
dK.- «,ki(t) V TJ^) ' 2- \(t) =1 (6.9)

1=1 i i=l

(Kt) is therefore a jump process which has jumps of size

k± Ka± occuring at rates X±. Here, as before, the probability measure

of the "state" process (K ) depends on the "control" (k (t))

i= 1,...N. In a simpler setting it has been shown [30] that the problem

of choosing k={(k±(t))} to maximize Ek(J(*,,)), where J is the
utility of wealth, can be reduced to a static optimization problem. We

solve here a more general problem. Suppose the investor also has a

wage income yfcdt in [t,t+dt], beyond his control, and can consume

an amount cfcdt of his wealth in the interval [t,t+dt], where c > 0

can be chosen freely and is therefore an additional control. Then (6.9)

is replaced by

N
V* dir (t)<*t =<yt -ct)dt +2j k±(t) Kt_ ^T

(6.10)

The investor's objective is to maximize

T

EU[J J(t,ct)dt +̂ (y] (6.11)

where u={(k^t)), ..., (k^t)), (c(t))} is the control, J denotes utility

from consumption and JT denotes utility from terminal wealth. In this

formulation (Kfc) is no longer a jump process, because of the first

term in the right-hand side of (6.10). Nevertheless, if we assume that

the rate process (X±(t)) and the distributions (n.) depend only upon

Kt_ then (Kt>F ) is still aMarkov process for aMarkov control u

and the infinitesimal generator £u[w] of the value function
T

W(t,Kt) -sup EU[j J(t,ct)dt +J^)]
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is, from (6.10)

w.lim f {EU[W(t+h,K ) | Kj - W(t,K.)}
h + 0 h t+h ' t t

- f^+lK^ (?t-ct>
N

+ 2-,Mt,Kj I [W(t,[l + a^Ct)]^)
-•1

- W(t,Kt)]ni(dai,t,Kt) (6.12)

(We could have permitted a Brownian motion component in (6.10) as

studied in [17]).

The optimality criterion is

Z>l(t.Kt) /

3W 3W0=max {J(t,ct) +-|j (t,K) + (yt - cfc) "^ (t,K)
uGU N

2 X.(t,K) f
i=l * X

[W(t,[l + o^lK)
-1

- W(t,K)] n^dc^.t.K)} (6.13)

with the boundary condition

W(T,K) =JT(K) (6.14)

We can solve (6.13), (6.14) for the following special case. Assume
Y Yyt =0, J(t,c) =~, JT(K) =a^-, where a>0 and 0<y<1 are

constants, and X ,n independent of K and t. Then (6.13), (6.14)

have the following solution

/\ Y

W(t,K) = f(t) y- , 0<t<T, K > 0,

where,
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-i- 1-y
f(t) =[(^ +a1_Y) •exp(-A •££) +^]

The constant A and the optimal control are given by

K

c* =

* fCt)1'1^'

(k*(t)) are optimal solutions of the static problem

N

>Y - 1] n (da±)} =AMax {£ X. J [(1 +^)
^lO.Zk »1 i-1 x^

Remark 6.2. As the referee has pointed out to us it is possible to

regard the process K of this example as a jump process by taking Z to

be a space of functions. The value between two successive jump times

would then be the trajectory of K during these two instants of time.
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