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ABSTRACT

This paper presents an application of the theory of the degree of a
map to the study of the existence of solutions and some related problems
for resistive nonlinear networks. Many well-known results in this area
have been generalized to allow coupling among the nonlinear resistors.
The usual hypothesis requiring the nonlinear resistors to be eventually

increasing has been weakened considerably by only requiring the resistors

to be eventually passive. Instead of investigating special cases by

special techniques, we study the network equations from a geometrical point

of view. The concept of homotopy of odd fields provides a unified yet

simple approach for analyzing a large class of practical nonlinear networks.
Many known results belong to this category and are derived as special cases
of our generalized theorems. This approach leads to a much better under—
standing of the geometric structure of the vector fields associated with
the network equations. As a result, in so far as the existence of solu-
tions is concerned, the concept of eventual passivity is shown to be far
more basic than that of eventual increasingness. The emphasis on the con-
cept of eventual passivity also leads naturally to the inclusion of coupling
among the nonlinear resistors.

The homotopy of odd fields also provides some useful techniques for
locating the solutions. Along this line, we also study the bounding region

of solutions and discuss the operating range of nonlinear resistors.

Research sponsored by National Science Foundation Grant ENG72-03783, and
the Naval Electronic Systems Command Contract NO0039~76~C-0022.



I. INTRODUCTION
One of the fundamental problems in resistive nonlinear network
analysis is the question of existence and uniqueness of solutions. 1In
this paper we investigate these problems for a large class of networks

by applying the theory of the degree of a map. A large class of resis-

tive nonlinear networks can be described by an equation of the form
£(z) = g(z) + Hz - s = 0, where z = [v,i] denotes the unknown network
variables and g(z) is a nonlinear continuous function from R® into R".

. n n . . . n
The function f: R > R is then a continuous vector field on R . Let

D be a bounded open subset of R". Roughly speaking,1 the degree of f
relative to 0 € i and D, denoted by d(£;0,D), is equal to the algebraic
number of solutions of £(z) = 0 in D. 1In particular, if d(£;0,D) # O,
then there exists at least one solution of f(g) = 0 in D. Because of

the special structure of many network equations, the function f, when
considered as a vector field on Hfﬂ has the same degree as an odd field
f' relative to 0 and some open symmetric region D. Since an odd field

f' always satisfies d(g';Q,D) =1 or -1, £ has at least one solution in

D. This simple observation not only leads to a deeper insight into the

the structure of network equations but also provides a unified approach

for solving a large class of problems. Many network problems, including

those containing nonlinear coupled resistors, can be solved very efficiently

by this unified yet extremely simple approach.

Since we shall apply it in the proof of almost every theorem in
this paper, we define in Sec. II the degree of a map in R" and derive
some important properties which are of particular relevance to nonlinear

network analysis. 1In Sec. III we investigate the hybrid analysis of a

l‘I‘he precise meaning of this statement will be given in Sec. II.



very general class of resistive nonlinear networks via a "black box" n-

port formulation. In particular, as special cases of some more general

theorems, we will show that the vector fields f associated with the class
of networks considered by Sandberg and Willson [7,8,9,13] and Roska and
Klimo [18] are homotopic to odd fields over some sufficiently large re-
gions symmetric about the origin and hence these networks possess at least
one solution. In Sec. IV, we derive the hybrid network equations via a

topological formulation. The network equations obtained via this formula-

tion are generally different from those derived by the n-port formulation.
The advantage of this formulation is that the constitutive relations of
the nonlinear resistors and their interconnections are easily identified
from the resulting network equations. This in turn leads to more circuit
and graph theoretic hypotheses, rather than mathematical conditioms. For
example, the results of Desoer and Wu [11] are proved easily via this
unified approach. Finally, in Sec. V, we present a method for finding a
bounding region which contains the solutions. This is important both from
the computational and from the network design point of view.

In this paper, a two-terminal resistor is characterized by either
i= i(v) or v = G(i), where v and i denote the branch voltage and current
of the resistor respectively, and where ¥ and i denote pontinuous functions
from Eg' into ]Rl. If the resistor can be characterized by i = i(v), it
is said to be voltage-controlled (v.c.) and if it can be characterized by
v = V(i) it is said to be current-controlled (c.c.). The graph of either
v or i is called the v-i curve of the resistor.

Let R be a v.c. resistor. R is said to be of type U (Unbounded) if

i+wasv>eand i *-was v +-=; of type B (Bounded) if |f(v)|.§ M<ow

as |v| » »; and of type H (Half-bounded) if [f(v)| < M < » as v + = and
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iv) » = as v + —o [11]. Similar definitions are defined dually for

c.c. resistors.

A two-terminal resistor is said to be monotone if its v-1i curve is
monotone. Let R be a v.c. resistor. R is said to be increasing if i(v)
is an increasing function of v, and strictly increasing if i(v) is a
strictly increasing function of v. Obviously, R is monotone if it is
increasing or strictly increasing. Similar definitions are defined for
c.c. resistors.

A two-terminal resistor is said to be passive if its v-i curve lies
in the first and the third quadrants only. The v-i curve of a passive
resistor always passes through the origin if it is a continuous function.
A resistor is said to be eventually (ultimately) passive if its v-i curve
eventually lies in the first and the third quadrants only.

Resistors with constant v-i curves will be considered as independent
sources. It is easy to see that any monotone v.c. resistor can be re—
pPlaced by a parallel combination of an independent current source and a
v.c. resistor which is passive. The same fact applies dually to c.c.
resistors.

Coupled resistors will be considered as resistive m-ports. Let R

be an m-port with port voltage yk.E R" and port current ;R'e R". R is

said to be passive if Ygin-l 0 for all admissible pairs (yR,;R) of R.

In general, R can be characterized by an equation of the form Yg = P(ER)

where Zp denotes the port voltages and/or currents which are "independent
port variables" and R denotes the "dependent port variables." Obviously
;YR = YiéR'Z 0 for all zp € Rr".

We say that R is eventually passive (resp., eventually passive with respect

R is passive if, and only if, giy(gR) =z

to c) if there exists an M > 0 such that H§Rﬂ > M implies 5£§(§R)_3 0 (resp.

(2-0) h(zp) > 0).
—4—



In these cases we also say that the function h is passive, eventually
passive, eventually passive with respect to ¢, respectively.

Finally, a few remarks concerning the notations: (1) All vectors and
matrices are typified with a wiggle under the symbol. 4We use lower-case
letters with subscripts for components of vectors. Thus z = [zl,zz,...,zn]T
€ R® where T denotes traﬁsposition. All vectors are defined to be column
vectors. We use upper-case letters for matrices. (2) In order to avoid
confusion, functions are sometimes denoted by "hats," thus v = v(i) means
that the variable v is computed via the function v(*) at i. (3) We use E

and I to denote the sets of indices pertaining to the voltage ports and

current ports respectivley. Thus ik’ k € E means the current associated
with the "voltage port k." 1In a similar fashion, we use U, H and B to
denote the sets of indices associated with type U, type H and type B

resistors respectively. (4) Let z € R, By g we mean the vector []z

1l
T . A _
IZZI""’Ian] - Define D_ = diag (sgn z,) vhere sgn z,=1if z > 0 and
sgn z; = -1 if 2, < 0, then z = Pzg (5) Let A EA]Rnxm, i.e., an nxm real

matrix. We write A > 0 (é;O) if all its components are positive (non-
negative). By A > 0 we mean A > 0 but A # the zero matrix. (6) We use
both the % -norm and the Ez—norm in R" throughout the paper. Thus

A A 2 1/2
lzll = m§x{]zi|}, and llgll2 = (Zi ]zil ) . In g -norm, a sphere S(0,r)

ne>

{z € R™: Izl = r} centered at Q0 with radius r becomes the surface of

a "cube" defined by S(Q,r) = {z € Rr": |zi| <r, i=1,2,...,n; where
equality holds for at least one i}. (7) We use S and 3S to denote the
closure and the boundary of a set S, respectively. (8) Finally, we denote

the difference between a set A and a set B by A\B; i.e., A\B = {x € A: x & B}.



II. THE DEGREE OF A MAP
In this section we define the degree of a map in R" and derive some
of its useful properties. In order to make this section self-contained,
we supply short proofs for almost all theorems whenever possible. For
more details, see [1]-[5].

2.1 The Degree of a Map

Let D be a bounded, open subset of R™. Let C(D) be the space of
all continuous functions defined on D into R® with the topology of
uniform convergence.2 Thus, C(D) is a normed linear space with a norm
defined by ]f| = sug{ﬂf(g)ﬂ} for all f € C(ﬁ). By Cl(ﬁ) we mean the sub-
set of C(D) consigfgng of all functions in C(D) which are continuously

differentiable.

Definition 1: Let p € ]fl, and f € C(ﬁ). Assume that f£(z) = p has no

solutions in 3D. The degree of f relative to P and D, denoted by d(f;p,D),
is defined by the following algorithm:

Step 1: Assume f € Cl(ﬁ) and that the Jacobian matrix J:(2) s 3f(z)/3z

is nonsingular at each z (S 9 £ {z € D: f(z) = p} , the degree of f

relative to p and D is defined as the algebraic number of solutions of

-~

f(z) = p in D, that is,

d(f;p,D) =Z sgn det Jf(z).
~ o~ ﬁ p ~

Remarks: 1. Since gf(z) is nonsingular at any z € S}and D is compact,fg
is a finite set. Hence d(g;E,D) is a finite integer.

2. There is a "volume integral"” representation of d(£;p,D);

namely,

- A
2Recall that D 4 the closure of D and 9D = the boundary of D.



d(£;p,D) =f;p€(ll§(§)—gﬂ)det 1, (2)dg
D

where € > 0 is a small number and wez ﬂ{k+ R is a continuous "bump' function
. . .3
satisfying:

(a) ¢ (s) = 0 for all s > €, and
® [ v dxbax - 1.
n
Proof: Let S} = {51’§2""’§k}' Since {f(fi) is nonsingular for all

i=1,2,...,k, there exists an € > 0 such that g is a homeomorphism from

each ball B(z »€ ) C D centered at z, with radius e onto B(p,e). Then

‘i
we obtain
k
Iwe(llf(g)-gll)det J(2)dz = 3 ﬁ» (1£(2)-pl)det J (2)dz.
T =1
D B(7i’€i)

Let x(2z) = f(z) - p» then gf(g) = aglag. Rewriting det gf(z) =
ldet gf(g)lsgn det(gf(g)) and applying the standard change of variable

formula forvolume integrals, the above integral becomes

):, fw (Ix(z) 1) [det J (g)lsgn det(J (z ))dz

B(z ,6 )
k k
= Z [IIIJ (x )dx] (det J (z ) ngn det Jf(z ) = d(f;p,D).
i=1 B(0, €) i=1

where the last equation follows from conditions (a) and (b); namely,

f‘p ("X[l)dx = f 14 (ﬂx")dx =1, |
B(O €)

3E§_ = {x € R: k_z 0}.



3. The degree d(g;E,D) is a continuous function of both f and p.

This is an immediate consequence of the integral representation stated
above.

Step 2: Assume fe Cl(ﬁ) and that gf(gi) is singular at some z, € £L
It follows from Sard's theoremé that there exists a sequence {gm} C R,
P. > P @8 m +> « such that each solution set ng = {z €D: f(z) = p_}

~m ~M

contains only g's at which Jf(z) is nonsingular. Define

d(£5p,D) = lim d(£;p ,D).
me W

Remark: Since d(g;gm,D) is continuous in Py and integer-valued, the above
limit is reached after finitely many steps and is independent of any
particular choice of the sequence {Em}.

Step 3: Assume that fe c(D) but fé Cl(ﬁ). In this case, since Cl(ﬁ)

is dense in C(D), there exists a sequence {fm} C Cl(ﬁ), fm +fasm>e
uniformly on D. Define

d(f;p,D) = lim d(fm,p,D)-
P o em’E

Remark: Since d(fm,g,D) is continuous in fm and integer-valued, the above
limit is reached after finitely many steps and is independent of any
particular choice of the sequence {fm}.

We now derive a few important properties of the degree.

Property 1: Continuity property. The degree d(g;P,D) of g relative to

P and D is a continuous function of both p and £.

-~

Proof. We have already established this property. x

“sara's theorem: Let f: D+ R", f € Cl(D),.and let'B = {z € D: det J.(2) = 0},
then f£(B) is of measure zero.



Property 2: Homotopy invariance. A homotopy g(g,l) over D is any
continuous function from D x [0,1] » R". Let g(g,k) be a homotopy over
D. If Q(g,x) = p has no solution in 3D for any A € [0,1], then

d(h(g,x); E’D) is a constant independent of A.

Proof: Since the function d4(}\) 4 d(b(g,l); E’D) is well defined on [0,1]
by assumption and is continuous in A, it follows from Property 1 that
d(1) is integer-valued and hence must be a constant independent of A. X
Remark: 1In this case, h(z,0) and h(z,1) are said to be homotopic to each

other, and we say that h(z,)\) connects h(z,0) and h(z,1) homotopically.

Property 3: Boundary Value Dependence. The degree d(§5B’D) is uniquely
determined by the action of f on the boundary dD.
Proof: Let f and f be two functions from D » R™ such that £(z) = £(2)
for all z € 9D. Define h(z,)) = A(z) + (1-M)£(z). Since h(z,1) = £(z)
f(g) for all z € 3D, h(z,)) = p has no solution in 9D. It follows from
Property 2 that d(f;p,D) = d(f;p,D). X

Since f(g) = p if, and only if, f(z) - p = 0, there is no loss of
generality to consider only d(f;?,D). We then consider f as a vector
field defined on D and any z € D such that.f(g) = 9 is called a singular
point of f. Property 2 can then be restated as follows:
Property 2': Suppose the homotopy h(z, 1) # 0 for all z € 3D and for all
A € [0,1], then d(g(g,x);Q,D) is a constant independent of A.

As an application of Property 2', we have:
Property 4: Let f and f: D + R® be continuous functions such that f and

f never vanish on 3D. If f and f are never opposite to each other on 3D,

i.e.,

£(z) , —E@)
TE()T ? TEHT for all z € a.



then d(f;0,D) = d(¥;0,D).
Proof: Define the homotopy h(z,\) = Af(g) + (1-2)E(z). By assumption,
h(z,)) # 0 on 3D for all A € [0,1]. It follows from Property 2' that

d(£;0,D)

d(f;0,D). ™
Property 5: Let f € C(D), where f = f' + £". The component f' is called

a principal part of f if lf'(z)ll > I1£"(2)] for all z € 3D. Let f' be a

principal part of f, then
d(f;0,D) = d(£f';0,D).

Proof: Suppose f(g) = -af'(z) for some a > 0 and z € 3D, then (1+a)§'(§) =
~£f"(z) and we obtain "g'(g)ﬂ < lg"(2)l, a contradiction. Hence, f and £'
are never opposite to each other on oaD. It follows from Property 4 that
d(£;0,D) = d(£';0,D). ™

Property 6: Let f € ¢(D). Let c € R® pe a constant unit vector. We

say that the field f omits the direction c if

£(2)

Te@T # ¢ for all z € aD.
If f omits the direction ¢, d(£;0,D) = 0.
Proof: Define h(z,)) = Af(z) + (l-l)f(g), A € [0,1] where £(z) = ¢ for
all z € D. Since f omits the direction ¢, h(z,A) # 0 for all z € 9D and
A € [0,1]. Since the degree of a constant map is always zero, it follows
from Property 2' that d(£;0,D) = d(£;0,D) = 0.
Propertx 7: Let £ € C(D) where D is symmetric about the origin. If
f(z) = -g(-g) for all z in D, f is called an odd field. If f is an odd
field on D, then d(f;Q,D) = an odd integer.

Proof: For simplicity, assume the Jacobian matrix {f(g) is nonsingular

-10-



9}.5 The solutions of f(g) = 9 can be

at each z GQQ {z € D: £(2)

grouped in pairs (gi,—gi); i=1,2,...,k together with zg = 0. Since £

is an odd field, det gf(gi) = det gf(-gi). Hence
k

Eéi[sgn det gf(gi) + sgn det gf(-gi)] + sgn det gf(EO

d(£;0,D)

~ -~

)

an even integer +1 = an odd integer. n
As an important application of Property 7, we have:
Property 8: Let f € c(D) where D is symmetric about the origin. If

£@) £z
TE@T T TEC]

for all z € 3D,

i.e., £(z) and f(-z) are both nonzero and do not point in the same
direction, then d(f;g,D) = an odd integer.
Proof: Define h(z,)) = Alf(2) - £(-2)] + (1-2)f(2) = £(2) - A f(-2);A€[0,1].
By assumption, y(g,k) # 0 for all z € 9D and A € [0,1]. By homotopy
invariance, d(f;g,D) = d(P(°,1);9,D). But y(g,l) = f(g) - f(-g) implies
h(-,1) is an odd field, hence according to Property 7, d(f,Q,D) = an odd
integer. x
Remark: If d(f;0,D) = an odd integer, then f(z) = 9 has at least one
solution in D. This fact will be applied extensively to network problems
in later sections.
Property 9: Let fe c(d). If d(f;g,D) # 1, then

(1) there exists at least one z € 3D such that f(g) and z are in the
same direction, and

(ii) there exists at least one z' € 3D such that f(g;) and z' are in the

opposite directions.

SThe general case can be proved by invoking (2) and (3) of Def. 1.

-11-



Proof: Observe that if either (i) or (ii) is violated, f will be homotopic

to the identity map on D and hence d(f;0,D) = 1, a contradiction. x

Property 10: (A special case of Hopf theorem.) Let f and f'be two

vector fields on B(Q,r) £ {f e R™: “E" < r} such that d({;Q,D) = d(?;Q,D).
Then £ and § are homotopic over D.

Proof: We will not prove the theorem here. For detailed proof, see [4].

2.2 Index of a Singular Point and Structurally Stable Solutions

Definition 2. Let f € C(ﬁ). Let z be a singular point of g in D, i.e.,
£(z) = 0. The singular point z is said to be isolated if there exists a

neighborhood B C D of z such that z is the only singular point of f in B.

The quantity d(f;g,B) is called the index of z.

A singular point z of f in D is said to be structually stable if

for any € > 0, there is a 6§ > 0 such that there exists at least one
singular point in the ball B(z,€) for any §6 € C(D) such that I£s-£1 < 6.
Property 11: Let { be a vector field on R" with finitely many zeros,
and suppose that the sum of the indices of its zeros is 0. Let B(0,r)

1(0). Then there exists a continuous vector

~

be a ball containing all §—
field £ that has no zeros, yet equal to f onimp\B(Q,r}

Proof: We define f in B(0,r) by extending f on 9B(0,r) continuously into

B(0,r) in such a way that g(f) # 9 for all z € B(g,r). The complete

proof 1s, however, rather involved. For a detailed outline of the proof,
see [5], pp. 146-147. m

Remark: Using a similar method, it is easily shown that if Q is a singular
point of f with index equal to 0, then we can always find an § such that
%(g) = £(z) for all z € ]Rn\B(Q,r) and ﬁ(g) # 0 for all z € B(0,r) where
B(0,r) is a ball in which 0 is the only singular point of £.

Property 12: An isolated singular point is structurally stable if, and

only if, its index is different from zero.

-12-



Proof: (If) This is a direct consequence of the continuity property

of d(£,0,D) in f.
(Only if) Let 0 be an isolated singular point of f such that
d(@,Q,B(Q,r)) = 0 where B(Q,r) is an open ball in which 0 is the only
singular point. Since d(g,Q,B(Q,r)) = 0, we can always find an f such
that f(f) = f(f) for all z E‘RP\B(er) and f(f) # 0 for all z € B(0,r).
Since f is continuous and r > 0 can be chosen arbitrarily small, for any
6§ > 0, there is an £¢» such that ﬂf(g)—gé(g)“ < 6 for all z € R" but
ga(g) # 9 for all z € B(Q,r(é)) where r(8) > 0 depends on §. Hence Q is
not structurally stable. x

A structurally stable singular point varies continuously with f. In
view of Property 12, we define:

Definition 3: Let f be a continuous vector field on R". A point z e r®

is said to be a structurally stable solution of f(z) = 0 if, and only if,

the index of z is nonzero.

III. HYBRID ANALYSIS VIA N-PORT FORMULATION

3.1 The Network Equations

In this section we investigate properties of network equations by
hybrid analysis via an n~port formulation. LetLJU be a network containing
finitely many nonlinear resistors (coupled or uncoupled to each other),
independent sources and linear dependent sources. Extracting all non-
linear resistors and replacing them by ports, the remaining n-port (which
contains only linear resistors, linear controlled sources and independent
sources) is then described by a hybrid n-port representation. This analysis

is particularly suited for networks which contain relatively few nonlinear

elements,

-13-



Theorem 1. [12] A linear n-port N containing only positive linear

resistors and independent sources has a hybrid representation
[}E] N [EEE I:-IEI] [YE]
vel o U BppJli

(where E and I pertain to the voltage ports and current ports, respectively,

M

and g is a vector accounting for the independent sources) if, and only if,

the voltage ports, together with the internal voltage sources do not form

any loops and the current ports, together with the internal current sources

do not form any cut sets.

Assuming the nonlinear resistor voltages and currents across the ports

are related by associated reference directions, the following properties

e EI

of the hybrid matrix H é[ ] can be easily verified [12].

Bre Brr
[P1]. H__ and H__ are symmetric, positive semidefinite or positive defi-

~EE -IT1
nite. Nullity of gEE (resp. EII) is equal to the number of independent

cut sets (resp.loops) consisting of voltage and/or current ports only.

[P2]. Hpp = 'ng‘

[P3]. Elements in EEI and EI are bounded by 1 in magnitude.

E
[P4]. It follows from [Pl] that H is at least positive semidefinite. It

is positive definite, if, and only if, both EEE and H I are positive

I
definite. In particular, H is positive definite and hence nonsingular if
the ports do not form any loops or cut sets. Otherwise, it may be singular.

Let the constitutive relations of the nonlinear resistors across the

ports be represented by
g = 1g(vp»iy) and vy = v (vg,1p)

~E x

Combining these equations with the above hybrid representation, we obtain

~14-



the network equation:

1(vpip) v
f(yE,;LI)é[E E I]+u[.E]—§=9. (1

Vi (YE’:!-'I) -

In the general case where the n-port N contains also linear controlled
sources, the hybrid n-port representation defined by Eq. (1) can be generated
efficiently in-most cases by topological methods [12-15]. The hybrid
matrix H, however, may or may not satisfy [P1]-[P4].

Example 1: Consider the simple transistor circuit shown in Fig. 1(a).
Replace the transistor by its Ebers-Moll model as shown in Fig. 1(b).
Extracting the diodes as voltage ports and imbedding the linear con-
trolled sources within the 2-port N as shown in Fig. 1(c), we obtain a

hybrid representation:

1. (v.) .1010x10"2  -.9901x10" 3 [v .1198x10717 _
F(v.,v.) = |1 1 |+ -6 I 3=
flvysv, i,v,) ] *|-.1980x10 .1980x10™* v, -.1369x10

ViV

In this case, the nonlinear functions ik = ik(vk) = Io(e -1)

where IO and VT are constants for k = 1.2 are nonlinear diagonal maps,

i.e., ik is a function of vk only.

Example 2: Consider the same circuit in Example 1. Extract each "diode-

controlled source combination" as a voltage port as shown in Fig. 1(d).

The hybrid representation is then given by

. -3 -3 -3
il(vl,vz)J +[ 1.01x10 ° 1.0x10 ][vl] ) [ 1.15x10 }= 0,

£(vyovy) =[f.2(vl,v2) -1.0x107°  1.0x107 3|y ~1.20x107>

2

where i, (v,,v,) = i(vy) - %i(v,) and iz(vl,vz) =i(v

) - ai(v ),
v/v 2' R 1

T

N A
i(v) = Io(e -1). In this case, the ports are "coupled resistors" and

~15-



the nonlinear functions ik(°) are no longer diagonal. However, the
hybrid matrix § satisfies all [P1]-[P4].

It is well-known that the nonlinear function [il('),iz(°)]T in this
example of transistor models is passive. That is, if ik = ik(vl,vz),
then [vl,VZ][il,ile > 0 for all [vl,v2] € ]R2.

The Preceiding examples show that the extraction of elements as
ports is not unique. For example, consider the subnetworkg)U' shown in
Fig. 2(a). We can extract the nonlinear resistor R as a current port.

The characteristic of R as shown in Fig. 2(b) is a c.c. type B two-terminal
resistor. On the other hand, we can consider<¢AV as a 3-terminal element
and pull out terminals 1-3 and 2-3 as two voltage ports. We then replace
LA‘.With a pair of ports which are "coupled" as shown in Fig. 2(c). 1In
this particular example, we shall see in Theorem 5 that the constitutive
relations of the ports satisfy an interesting property.

To simplify notations, we frequently do not differentiate the voltage
T

A
port variables and the current port variables and simply write z = [YE,{I]

€ r", Equation (1) then becomes

£ 8 5@ +8z- 5= 0 @)

~

~ ~ T
where g(.) = [%E(-),Y )1
As is implied by Theorem 1, there exist networks which do not possess
the hybrid representation defined by Eq. (2). A more general representa-

tion is given by [8]:

£(z) = Hyg(z) + K,z - 5 = 0, (3

~

where gl and EZ are constant nxn matrices and z and g(z) are defined as

in Eq. (2).
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3.2 The Existence of Solutions

We now present some useful theorems on the existence of solutions
of Eqs. (1), (2) and (3). As we have remarked in Sec. I, the theory of
the degree of a map will play an important role in the pfoofs. We will
show that the vector field f is homotopic to an odd field over a symmetric
region D and hence d(g;Q,D) is an odd integer. It then follows from
Property 7 in Sec. II that g(g) = Q possesses at least one solution in

D. Furthermore, if the Jacobian matrix { is nonsingular at each solution

£

then there is an odd number of solutions. All of these solutions are

structurally stable because their indices are either 1 or -1. Thus,

suppose we have already found two solutions z, and z, and J

1 2 Je(zy

are both nonsingular, then there is at least one more solution which is

) and J.(z,)
also structurally stable.

Solutions which are not structurally stable are not continuously
dependent of f. A slight perturbation of f may preclude its existence
immediately. For example, consider the tunnel diode circuit shown in

Fig. 3. The network equation is given by

A

£(v) = i(v) + 3 -

= |t

=0,

where {(v) is the characteristic of the tunnel diode shown in Fig. 3(b).
Number of solutions of this circuit depends on the values of E and R. For
example, for (E,R) = (El,Rl) as shown in Fig. 3(c), there are three solu-
tions Vi Y, and vq with indices 1, -1 and 1 respectively. The degree
d(f,O,[-El,EI]) = 1 and all solutions are structurally stable. On the
other hand, for (E,R) = (EZ’RZ) as shown in Fig. 3(d), there are only

two solutions vi And vé. Solution v) is not structurally stable because

2

the index of vé is zero. The degree d(f,O,[—EZ,EZI) = 1, but in this
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case there is only one solution vi which continuously varies with E and
R.

The preceding example and Property 11 of Sec. II show that a solu-
tion which is not structurally stable is pathological. Consequently, our
emphasis throughout this paper will be focused on predicting the existence
of one or more structurally stable solutions. .

Theorem 2. LetLJU be a network described by Eq. (2). Assume that

(1) g(-) is eventually passive, and

(ii) the hybrid matrix H is positive definite.

Thencah'has at least one solution. Furthermore, if the Jacobian

matrix is nonsingular at each solution, then there is an odd number of

solutions all of which are structurally stable.

Proof: Define h(z,)) A Af(z) + (1-))z, » € [0,1].

Premultiplying h(z,}) by gT, we obtain
2
2 h(z,)) = Az £(z) + (1-2) 1212 = 2z"g(2) + azTHiz - Az's + (1-2) Izl

Since g(+) is eventually passive, there exists an r, > 0 such that
2
lzll > r; implies ETg(E)-Z 0. Since H is positive definite, ngg > ylzl

T

T
for some y > 0. Therefore, there is an r, > O such that z Hz -z s > 0

2

for all z, [zl > r,. Letrs= max{rl,rz}, then we have

ET@(E,X) >0 for all z € S(0,r) and A € [0,1].
A
Hence f is homotopic to the identity map over B(0,r) = {gean;ilglk r}.
This implies that d(f;g,B(Q,r)) = 1 and the conclusion follows. n

Corollary 1. Let LAlbe a network containing only two—-terminal resistors.

If all nonlinear resistors are eventually passive and never form any loops

or cut sets, then the conclusion of Theorem 2 is true.
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Proof: Extract the nonlinear resistors as ports and derive the hybrid
equation Eq. (2). Since the nonlinear resistors do not form any loops
or cut sets, H exists and is positive definite. N

Corollary 2. Let(,&lbe a network containing diodes, transistors, positive

linear resistors and independent voltage and/or current sources. Replace

each transistor by its "passive” Ebers-Moll model [16]. Extract all

diodes and each "diode-controlled source combination". as ports as in

Example 2 of Sec. 3.1. 1If the ports do not form any loops or cut sets,

then the conclusion of Theorem 2 is true.

Proof: By assumption, the hybrid matrix g exists and is positive definite.
On the other hand, since the extracted diodes and transistors are passive,
so is the function g(-). x

Example. Consider the flip-flop circuit shown in Fig. (4), where the
transistors are represented by a passive Ebers-Moll circuit model. Upon
open circuiting the capacitors, we obtain a resistive circuit satisfying
the hypotheses of the Corollary. It follows that except for some exact
combination of element values, this circuit must have an odd number of
solutions. Indeed, it is well known that depending on the values of the
resistances, this circuit can have either one or three solutions.

Theorem 3. Let ;Ajbe a network described by Eq. (2). Assume that

(1) g(*) is bounded in lfz and

(ii) the hybrid matrix H is nonsingular.

Then<,AJhas at least ome solution. Furthermore, if the Jacobian

matrixggffis nonsingular at each solution, then there is _an odd number of

solutions all of which are structurally stable.

Proof: Consider the vector field on ﬂflz
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£(2) = g(z) + Hz - 5.

Premultiply f(g) by (Hz)T, we obtain

T, T T
ZHE(Z) =z Hg(z) + 2z HEz - 2'H's

Since H is nonsingular, there exists a Y > 0 such that zTHTHz >

~ o~ e

Yﬂgﬂz. Since g(+) is bounded in R" there is an r > 0 such that
T T :
z’Hf(z) >0 for all z € S(Q,r).

Hence, on the sphere S(Q,r), f(g) and f('f) are both nonzero and do not
point in the same direction. Hence the conclusion follows from Property
8 of Sec. II. X
Remarks. 1. Condition (i) is true if all nonlinear resistors are two-
terminal type B resistors, i.e., the v-i curves saturate and become
bounded both from above and below.

2. Even if the nonlinear resistors are not of type B, we can

often invoke the no-gain property for the nonlinear element [13] and

replace each type U or each type H resistor by a type B resistor such
that their v-i curves coincide within‘a bounded region which contains the
solutions. This region is obtained by considering the no-gain properties
and the magnitudes of the independent sources. Then as long as H is non-
singular,(,Alhas at least one solution. (See Sec. V for an application
to transistor circuits.)

Theorem 4. Let<,A]be a network described by Eq. (1). Assume that the
nonlinear resistors across the ports are not coupled and that the dc
conductances of all v.c. resistors and the dc resistances of all c.c.

resistors tend to infinity, i.e.,
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k € E, and

I
8

1im i v)/Iv
IV |+w k' 'k k

|3

=

1]
8

lim v (1)/1
[ [+ [ A M)
2

Then<JK[has at least one solution. Furthermore, if the Jacobian

matrix is nonsingular at each solution, then there is an odd number of

V. v
Ij[iE] [1E]" - By
*T ~T

v
assumption, for any y' > y there is an r, > 0 such that "[Ij

i
Lpvp) E
vy iy

_iE(YE) iE(-YE)
AL, and ~ . are both nonzero and do not point in the
Ly (3)), i)

v
same direction for all |, ] satisfying [?E]
1 1

is arbitrary, the first term in Eq. (1) eventually dominates the remaining
1.(.)

terms. Hence [G (.)J is the principal part of f on S(O,rz).. Therefore £
Vi ~ < ~

is homotopic to an odd field and the conclusion follows from Property 7

solutions all of which are structurally stable.

Proof: First, there exists a y > 0 such that <y

> r implies

! > r, such that

Furthermore, there exists an r 1

>Y 2

> r,. Moreover, since Y'

\ of Sec. II. X
Remarks: 1. This theorem represents a slight generalization of an
existence theorem first proved by Roska and Klimo [18].

2. This theorem obviously remains valid when the limit 4w in
the hypotheses is changed to -w.

Theorem 5. Let\vkjbe a network described by Eq. (2). Assume that

(i) each component gj(zl’ZZ""’zn) of g satisfies

lim gj(zl’22’°"’zn) = +» , respectively,

(ii) there exists an M > 0 and a B > 0 such that
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lzjl > M =>zjgj(zl,...,zn) >0 j=12,...,n,

and

]zjl <M =»|gj(z1,...,zn)| <B

(iii) for each diagonal matrix D = diag (dj) in which dj =1 or -1 for

each j, there exists a p € Ifu P > 0 such that prgg > 0. Then(;A‘has

~

at least one solution. Furthermore, if the Jacobian matrix Jf is non-

singular at each solution, then there is an odd number of solutions all

of which are structurally stable.

Proof: There are 2" distinct diagonal matrices Pk in (iii) and we have

to consider at most Zn—l distinct corresponding Pk's. Pick these Pk's

A

and fix them. Let z € Egﬂ = Dzi where Dz = diag (sgn zj) and z =

tNT

[[zlf,'zzl,...,[znllT. Let p  be the corresponding vector such that

p:DzHDz > 0. Consider the quantity

AT T
*(z) = ?szg(f) 'Ezgz§l ?

since (E:Pz)jzj > 0 for all zj #0, j =1,2,...,n, by assumptions (i) and
(ii), P:yzg(g) is bounded from below for all z € R™. Since there are

only finitely many distinct pz and Dz’ it follows from assumption (i)

~

that there exists an r > 0 such that
$(z) > 0 for all z € S(0,r).
Now consider the vector field
[z =e@ +nz -5,

Premultiply f(g) by B:gz’ we obtain

-22-
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T T - T T T e
= - D - Ds b iii
Ezgzg(g«) + I.:fzgz@zE I.).z]*)'z§ 2 Bz~zg(§) Ez~z~ y ( )

o

Hh

~

~
1

|v

¢(z) > 0 for all z € s(0,r)

Similarly, -E:Pzg(—g) > ¢(-z) > 0, for all z € S(Q,r). Therefore, £(z)
and»g(-E) are both nonzero and do not point in the same direction for all
z € S(0,r). Hence, the conclusion follows from Property 8 in Sec. II. x
Remarks: 1. Conditions (i) and (ii) are satisfied by many practical
circuit. For example, consider the two-port shown in Fig. 2(c). Since
by KVL

v_—tanh(i.+i%)
1J.=J RjJ j=1,2

where 15 = i2 if j =1 and 13 =ij.if j = 2, it is easy to see that

lim i.(vl,vz) = 4o respectively, and

v . >t J
j =

|v.| > 1 =°'\rji-_i(vl,vz) > 0, and
2 .2 .
1= llj(vl,vz)] <3 j=1,2.
k|

2. Both positive semi-definite matrices and diagonally dominant

matrices satisfy condition (iii). [6,9].

Example. Let‘vA‘be a network containing only two-terminal nonlinear and

positive linear resistors and independent sources. Let all nonlinear

resistors be grounded and let(,A‘bedescribedbyaaconductance representation
f(y) = g(y) + Gv - s = 0Q,where g(g) is the constitutive relation of all
nonlinear resistors considered as voltage ports and G is the conductance
matrix. If all nonlinear resistors are of type U, then the conclusion

of Theorem 5 is true. Notice that in this case G is diagonally dominant.
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Before we present the next theorem, let us first introduce a special
class of matrices.

" ifé

Definition 4. An nxn matrix A is said to belong to "the class P0

satisfies one of the following equivalent conditions:
(1) All principal minors of A are nonnegative.
(ii) To each x € nfﬂ x # 0; there exists an index k such that X, £0

and xk(é§)k > 0. (In particular, a 1-3 0, i=1,2,...,n.)

i

(iii) To each x € nfﬂ x # 0; there exists a diagonal matrix DX_Z 0 such

iy ),
that (x,D_x) > 0 and { Ax,D x) > 0, where (x,y) £ Ex,y..

~ X~ vt X T i=1 13
(iv) Every real eigenvalue of A and of each principal submatrix of A is
nonnegative.
(v) For each diagonal matrix D > 0, det(A+D) # 0.

?roperties of P0 matrices have been discussed in detail in [6] and [7].

Theorem 6. Let<,A’be a network described by Eq. (2). Assume that (i) for

each k > 0, there exists a constant (which may depend on K) M > 0 such that

|zj| > M =>zjgj(§) > 0 and |gj(§)| >K for all j = 1,2,...,n.

(ii) the hybrid matrix HEP

0.
Then;jUhas at least one solution. Furthermore, if the Jacobian

matrix Jf is nonsingular at each solution, then there is an odd number of

solutions all of which are structurally stable.

Proof: As in the previous theorem, we prove that on a sphere S$(0,r) with
r sufficiently large, g(g) # 0 and £(z) and f(-z) do not point in the same
direction. To simplify the notation, we will prove the theorem for the

case n=2 and 3. The same procedure applies, mutatis mutandis, for the

general case. Consider first n=2 and consider the vector field associated
with Eq. (2):

8 (z152)) by Mol (7 51
f(zl,zz) = : + ‘ -

2(29225) hy; Bhyyd Lz, Sy

-24—
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(k)

Define the constants Mj » J=1,2; k =1,2 as follows:

(1) According to aésumption (i), for each j = 1,2, there exists a con-

stant Mgl)

J

> 0 such that

1)
Z . M, .
ngj(é) > 0 and Igj(g)l > |sj| for all |7J|.3 ;

(2) Since H €P_, h,, > 0. For each j = 1,2, there exists a constant

0” 3]
Mgz) > Mgl) such that
lg.(z) + h, .z | - |n, B S |s. |, where 2 # j
J - N jL L 3
for all |z:] > M(Z).
jt= 3
Let r = max{M§2), j = 1,2}. Consider g(g) on the sphere S(0,r).

Since H € PO, by (ii) of Def. 4, there exists at least one component of

z € S(0,r), say z
(1)
2

2 %y # 0 and zz(ﬂg)z_z 0. There are two possibilities:

(a) |z2|.3 M;"’. In this case, by (1)
g, (2) + (H2),| > |g,(2)] > |52|'

Hence, £(z) and g(-g) are both nonzero and do not point in the same

direction since their second components are nonzero and assume opposite

signs.
(b) |22| < Mél). In this case |z1| =r > Miz). By (2)
1
(8,(2) + hyyz) +hypz| > |lg (2) + hyyz | - Ihm"“é | sy 1

Hence, f(g) and f(—g) are both nonzero and do not point in the same
direction since now their first components are nonzero and assume opposite
signs. In any case, £(z) # 0, £(z) and f(-z) never point in the same

direction on S(0,r).
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We now present the proof for the case n=3 in greater detail because
the same procedure can be readily extended to the general case. Define
the constant M;k), j=1,2,3 and k = 1,2,3 successively as follows:

(1) By assumption (i), for each j =1,2,3, there exists a constant M;1)>- 0

such that
z.,8:(z) > 0 and |g (2)| > |s,|, for all |z | > ul)
373 - i h b R |

(2) By assumptions (i) and (ii), for each j = 1,2,3, there exists a con-

stant M§2) 3,M§l) such that

-Mgl)],for all lzjllg M§2) .

;@] > []s,] + l::}clhjz

(3) Similarly, for each j =1,2,3, there exists a constant M§3)_3 M§2)

such that

Mm(2) (3)
'gj(g)l > [Isjl + ;;% ]hj2 M;7"], for all |zj|.2 Mj .

Now consider £(z) on the sphere S(0,r) where r = max{M§3),j =1,2,3}.

Since H € PO’ there is at least one component of z, say Zq # 0 and

§3(§§)3 > 0. There are two possibilities:

(1)

(a) |z3| > M3

Then, by (1) we obtain
l85(2) + (Hz),| > leg ()] > ENE

Hence f3(§)f3(-§) < 0.
(b) |z3| < Mgl). Then consider the subsystem:
g,(z) h h z h s
f'(g)=[1~]+[u 12][1]+ [13 Z3_[1
8,(2) By By tz, hy3 Sy
h11 hlZ]
h h :

Let z' = [zl,zz]T and @' = [
21 22

-26~
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Again, since the submatrix H' of H is also in PO’ there is at least one

component of z', say z, # 0 and zz(g'g')z > 0. Again there are two cases:

@) |z,| 2 MP . By (@),
le,(z") + @'z"),| 2 |8, (2] > [s,| + |h23I-M§)lz [s,] + Ihysl-lz4]]

Hence fz(g)fz(-g) < 0.

(") |z2|<<M§2). Then |z1| =r 3_M£3). Consider the subsystem
£12) = g1 (@) + hyp2z) + (hyy2ythy4257sy)

By (3), we obtain
()
lgg @) + hyy2) | > gy @] > L5y + E;i LTI

> [|s +Zh
|5l & [Py

'lzzll'

Hence fl(g)fl(—g) < 0. Therefore, the conclusion is true for n=3.

Now, for the general case, define Mgk) > 0, M§k+l) Z_Mék); j=1,2,

eseyny, k=1,2,...,n as follows:

k-1
(k) (k-1)
| > b . |+ h,, |-M
251 > M7 = g, @) > [[s;] + max 35& By |Mg 77
%;E{l,Z,..,n}
2 43
m

where it is understood that there is no summation sign for k=1. By the
same procedure we can prove that £(z) # 0 and f(z) and £(-z) do not point
in the same direction for all z € S(0,r), where r = max{Mgn)}. x

1<j<n

As a special case of Theorem 6, we have

Corollary 3. LetiJAIbe a network described by Eq. (2). Assume that

(1) g(¢) is diagonal and each component gj(zj) of g is of tybe U, and
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(ii) H e PO.

Then the conclusion of Theorem 6 is true.

To illustrate the application of the preceding results, we now
present two well-known results in the form of examples and give a new
and simple proof for each.

Example 1. Let ijbe a network containing strictly increasing, type U,
uncoupled resistors and independent sources. Pick a tree%j’and the cor-
responding co-tree Sf. Then the fundamental loop matrix6 B 4 [%ﬂﬁ’gﬂf]

and the network equation is given by

£(v,,i,) = [%"’(Y")] + [O —g‘%ﬂ[yj]- [2] =0

T U] LBy 0 Ui Le]
where [j,e] is the source vector and the nonlinear functions ig(-) and
2{(°) are type U diagonal maps. Hence condition (i) of the corollary
is satisfied. On the othér hand, since a skew-symmetric matrix is always
positive semidefinite and hence belongs to PO’ condition (ii) of the pre-
ceding corollary is also satisfied. It follows from the uniqueness
property of monotone networks (Theorem 10) that there exists exactly one
solution and this solution is structurally stable.
Example 2. Suppose now that the resistors are strictly increasing but are
not necessarily of type U. Let each nonlinear resistor Rk be_defined within
a "box" |vk|_5 Vk and Iikl_g Ik’ where Vk and I, are any pre-specified
maximum voltage and current bounds. If the resistors are passive and if
each independent current (resp. voltage) source is connected in.LA’via

soldering~iron (resp. pliers) entry, then as long as the magnitudes of

the sources are small enough,(JAlhas at least one structurally stable

6We number the branches in éf first. £&g denotes an identity matrix.
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solution.

Proof: Since all current sources are connected via soldering-iron entries,
we can apply the i-shift and the nonlinear Norton's theorems to transform
the current sources into equivalent voltage sources in series with passive
nonlinear resistors [19] as long as their magnitudes are small enough.

For example, a current source I in parallel with a resistor RI character-
ized by vy = GI(iI), as shown in Fig. 5(a) is equivalent to a voltage
source E = GI(I) in series with a passive monlinear resistor RE charac-
terized by iE = {E(VE) = {G;I(VE+GI(I»- I} as long as |I| is small enough
so that there exists a nontrivial range for £ in which G;I(VE+GI(I)) is
well-defined. It is easy to see that iE(-) is passive and strictly
increasing. Hence, there is no loss of generality in our assuming that
all sources are independent voltage sources. Since the resistors are
passive, the no-gain property holds. Hence there exists a constant Cl
such that as long as the sum of the magnitudes of the voltage sources
is less than Cl’ the solution (if it exists) of each resistor Rk will

fall within its range |vk| <V Similarly, there exists a constant C

k’ 2
such that as long as the sum of the magnitudes of the current sources is

less than C the solution (if it exists) of each resistor Rk will fall

2’

within its range |ik| <I Assume the sources satisfy these conditionms.

k'
Now, if we extend the characteristic of each resistor beyond the box
|vk| ﬁ,Vk, Iikl < Ik by a strictly increasing type U function, we have
not perturbed any solution (if it exists). But by example 1 the new
circuit has at least one structurally stable solution. Therefore, so
does<,AL )

For an alternative proof of example 2, see [13]. The bounds we

obtained, however, are more flexible.
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Remark: Condition (iii} in Theorem 5 defines a subclass of P matrices

0
by the following lemma.
Lemma 1. Let He RY™  If for each D = diag (dj), dj = 41, there

exists a P € IRn, P > 0 such that pTDHD >0, then HeE P

~ o

0
Proof: We prove that for any diagonal matrix E > 0, det(H+E) # 0. Then

by (v) of Def. 3, H € PO. Suppose H & Po. Let E' > 0 be a diagonal

matrix such that det(H+E') = 0. Hence there exists a z € ]Rn, z#0

~

~ ~

such that (lj-!-E')g = 0. Since z 4 Qz%, we have Ijlgz% + E'D-z% = 0. By

assumption, there is a P > 0 such that pTDzHJ)z > 0. Hence we obtain
T - T ] - - T - T ] - _ T [y
P ]gztllgzg +p 132113 ng = 0. But p l}zI;llgzg >0 and p Qzlj. D,z=pE'z>0.

Hence, we have a contradiction and det(H+E) # 0. X
Remark: The class of matrices A such that there exists an X 2 0, x £0

for which Ax > 0 is called S0 [6]. If A€ S0 and no submatrix of A

obtained by omitting at least one column belongs to S., then A is said

0
to be in class M. It can be shown that any matrix in the set LN NnM
satisfies condition (iii) of Theorem 5. For example, any matrix -- also

known as an M-matrix -- having non-positive off-diagonal elements and
whose inverse matrix has only non-negative elements belongs to the class
n .
PO M [2]
In case the network contains also type H and type B nonlinar
resistors, the following theorem is a generalization of Theorem 3 and a

special case of Theorem 5.

Definition 5: Let g: R > R" be a nonlinear diagonal map. The set@(g)

A
is defined as CR(%) = {z € RrR": lg(nz)ll <M < » as n>»} It is evident
n
that CP,(g) = I Ik is a product of intervals where I
N k=1
Ik = [0,») for all k € H and I

. {0} for all k € U,

= (-=,®) for all k € B.

Theorem 7. Let J\I be a network described by Eq. (2). Assume that
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(1) g(+) is diagonal and all components gj(zj) of g are eventually

passive,

n
(ii) for each D = diag (dj) where dj = 41 or -1, there exists a P €ER,

p > 0 such that pTDHD > 0, and

< ~ o~~~

111)B(g) N N@) = 0, where N(H) is the null space of H; i.e., the

zero vector is the only point in common.

Then(JA,has at least one solution. Furthermore, if the Jacobian

matrix Jf is nonsingular at each solution, then there is an odd number

of solutions all of which are structurally stable.

Proof: Consider the vector field

£(z) = g(z) +iz-s = g(z) + HD_z - s.

(=3

For each z € Ign let p, > e= [2,2,...,2]T be a vector in R" such that
pZQZEQz:; 0. Since P, is determined only by Dz’ there are finitely many

p.'s we have to consider. Choose these pz's and fix them. Premultiply

f£(z) by p:Dz, we obtain

T T - T
p,D,f(z) =p, P g(z) +p,DHD z - p D s.

Since all gj(-)'s are eventually passive, by an argument similar to that

used in the proof of Theorem 5, there exists an r; > 0 such that

Pszg(g) > 0 for all z EIQl (4)

where (1‘ {z € R": there exists at least one component zj, |zj|-> r,

for some j € U or zj < for some j € H}.7 Evidentlycllrw(12(g) =

7
Here H means type H (half-bounded) resistors, not the hybrid matrix H.
See Fig. 6 for a geometrical interpretation of the set -



n

It follows from CR(g) OLN(H) = 0 and the fact that CB'(g) = Ik and
N - - - k=1

d\‘(lj) is a subspace of R" that there is an r, > 0 such that izl > ry

and z ¢ A(H) = z el. (See Appendix (1) for a detailed proof.) Let
ry > max{rl,rz}, then xN(H) n S(g,r3) Cq_l. Letq-lé {z € R": z $/U} be
fhe complement of Al. Then there is a p > 0 such that §T§T§§ > u Ugﬂz
for all ¢z Eq—l N S(Q,r3). The quantity p depends on r,. Since ,N(El) is
a subspace of IRn, U= u(r3) is an increasing functiop of r, with
lim u = 1!0 4 inf{ngng: z e@(g) N S(g,l)}. (See Appendix (2).) The
r. >
sets Cu, q-l, CR(g) and LN(I}) are shown in Fig. 6 for the two dimensional
case where 8y is of type U and g, is of type H.

Now let M a inf{ng;ITg(E)}, clearly M > - », Consider the vector

field £(z) on Cu, premultiplying £(z) by gTIjT, we obtain

%TETf (z) = ET Ts(z) + ETL*TEIZ- - ETET.%-

T

Since z HTg(z) 2 M > - =, there exists an r, > r_ such that

4 3

ngTg(g) >0 for all z € CU N S(Q,ra). (5)

Claim: There is an r > 0 such that f(g) # 9 and f(g) and f(—g) do not
point in the same direction for all z € S(g,r).

Proof: Let r > T, consider £(z) on S(0,r). There are three cases:

(i) z GC“ and -z Efu : By Eq. (4), both g:‘?zg(g) > 0 and -EZPZf(-g) >0
and hence the claim ié true.

(ii) z Eq“ and -z EQ]: By Eq. (5), both §T~T§(§) > 0 and -ETny(-f) >0

and hence the claim is true.

(iii) 2z GCU and -z ECU: In this case, consider
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T T.T
[ % T %THT + PzDsz(Z) = —-%—5- ZTHTg(Z) +p,D g(z) + T 2 HHz
Iz vl R lz H B E
T T.T T
+ ?zgz§? z - T.T, 2 H :- ?z?z? : (6)
Iz v
and
1 T.T, T _ 1 T, T _
_'[ T ¢8 * szg]f(-z) - T.T [ z H §( g)] * [ pZ”Zg( E)]
flz H| lz H |
+ L zTHTHz + pTD HD z + *‘l;-“‘ZTHTS + pTD s. (7)
T,T, ~ = %7 P0,00,2 TT ~ =~ =7 Ppp8
Iz H| lz H™|

In Eq. (6), since every term on the right-hand side is bounded except

(l/HzTHTH)zTHTHz > ullz]] and pTD HD z > 0, there exists an r. > r such
DT ~ ~z~z~~z~ = 5= 74

that llzll > ro implies [(1/H§T§TH)ZTHT + p:pz]g(g) > 0. 1In Eq. (7), since

~ o~

p,> ¢ & [2,2,...,2)T and the components of g are eventually passive,

there is an r, > Ty such that [z| 2 ro implies

6 —
T 1 T, T T T T
"P,2,8(2) s {l‘% Hgt2)| + |z'H §I} *1BD,sl-

This inequality is true because the last two terms on the right-hand
side are bounded by a constant, and the coefficient of each component
of g(-z) in the first term is less than one in magnitude. Hence, we

have
T
lz"H™]l AT R

Hence, let r = r6 and the claim is true. Therefore, the conclusion of
Theorem 7 follows from Property 8 in Sec. II. X
Theorem 8: LethA‘be a network described by Eq. (2). Assume that

. . _ T . e
(i) the function g(g) = [§U(§U)’§H(EH)’ §B(§B)] satisfies
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(a) there exists an M > 0 and a B > 0 such that

|zj| >M =2z gj(§U) > 0,

3
lzjl <M= Igj(gu)l < B,

and

lim g.(gU) = + » respectively, for all j € U.
ijiw

(b) gH(gﬂ) is diagonal and eventually passive and each component

.(z.) is of t H.
gJ(ﬂ) s of type

(c) gB(z ) is bounded in R® and eventually passive,

(ii) conditions (ii) and (iii) of Theorem 7 are satisfied.

Then;¢A‘has at least one solution. Furthermore, if the Jacobian

matrix Jf is nonsingular at each solution, then there is an odd number

of solutions all of which are structurally stable.

Proof: Similar to that given for Theorem 7.
Theorem 8 can be further generalized to the case described by Eq. (3);

namely, networks described by equations of the form glg(g) +Hyz-s-= 0.

Theorem 9: LetLjU be a network described by Eq. (3). Assume that

(i) condition (i) of Theorem 8 is satisfied.

(ii) for each D = diag(dj) where dj = 41, there exists a pPE ﬂ§x p>0,
such that pTDHIQ:; o, pTQEZQ:; 0 and BTQ(g1+§2)Q > 0.

i) Beg) N Na,) = 0.

Then the conclusion for Theorem 8 holds.

Proof: This proof requires only a minor modification of that given for
Theorem 7 and is therefore omitted.

Remarks: 1. As a special case of practical interest, a pair of matrices
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Ty > 0. A passive

1]

(ﬂl,ﬂz) is called a passive pair if Hx = iy =
pair (ﬂl,ﬂz) satisfies condition (ii) of Theorem 9 [7]. Passive pairs
occur in many practical situations. TFor example, consider the network

equation f(v) = gli(g) +H,v -s=0. Setting s = 0 by nullifying all

2 ~
independent sources, we obtain gli(g) = gz(-g). The pair (gl,gz) being
a passive pair then implies iT(y)y.S 0. Since the reference current
direction is assumed leaving the ports, the "sourceless" n-port cannot
deliver positive power to the external nonlinear resistors connected
across the ports.

2. Let us partition z = [EU’EH’EB] and g = [§U’§H’§B] as in
Theorem 8. Partition the columns of any compatible matrix A accordingly,
i.e., A= [éu,éu,éB]. The following lemma is an obvious observation:
Lemma 2: Consider a network<,Aldescribed by Eq. (3). Assume 8 satisfies
condition (i) of Theorem 8. Then(JU has at least one solution for any

s € R" only if the column vectors of the augmented rectangular matrix

(?E,@?,gz) spans the space fo i.e.,

U _H S 1
SPAN@].’ILI]_’E{Z) =R,

Proof: Suppose SPAN(HH HH gz) # R, Let s € Bfﬂ s # 0 such that

~1°21°
=T U _H - T
s [gl,gl,gz) = 0. Then for any s = ng, n € R, we obtain s [ng(z) +

_ =T B 2-T- . . .
ﬂ z §] = ns glgB(gB) - nss. Since gB is bounded, there is

an M < o such that

-T B
|s Hgp(zg)| <M for all zge

Therefore there is an o such that

§T[Elg(§) + §2§ -s]l<0
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for all s = né, lnl 20, That is, Eq. (3) does not have a solution for
any s = ns, |n| 2 Nge .

This observation provides a simple check for the necessary conditions

for the existence of solutions.

(iii) In view of Theorems 7,8,9 and Lemma 2, we conclude that if (yl,gz)
is a passive pair and if CI;(g) ngJU(yz) = 0, then SPAN(yE,g?,yz) = r".
Let us prove this fact in the following lemma.8

Lemma 3: Consider Eq. (3). 1If (gl,gz) is a passive pair and if

H

CP)(g) hu\l(sz) = 0, then SPAN (g‘ll,g H,) = r".

1°~
Proof: First, since [Q,Q,gB]T ECJQ(g) for any Zg and sinceCI;(g)fﬁg}U(ﬂz)
= 0, it follows that the columns of ﬂg are linearly independent. Let

T T T .
x = [§U,§H,9] s ¥y = [gU,gn,yB] where [§U,§H] # 0, then x'y > 0. Since

(gl,gz) is a passive pair, Hx+ Hy # 0. Thus,
u,.U H H . B
WH)xy + EyE, + By # 0,

- B
for any [§U,§H] # 0. If [§U,§H] = 0, then since gz is of full rank,

ygyB # 0 for any YB # 0 and the above inequality is still true. This

g + gg, g? + Eg, gg} is a set of linearly independent

vectors. Hence SPAN(H Hiy,H.+Ho,Ho) = R"= spaN(HY,u! Hy) = R".

2°~1 ~2’§2) ~1°-1°<

Remark: The following observations follow directly from Lemma 3 and can

proves that {H

be used to check whether the condition‘ﬂ?(g) r\bAkgz) can be satisfied.

1. 1If ﬂg is not of full rank, then‘ﬂ%(g) n(JAkHZ) + 0.
2. If SPAN(EE,QT,QZ) # R® but (§1,§2) is a passive pair then

B n N, # o.

Example: Consider the simple circuit shown in Fig. 7. Assume R1 and R3

awe prove this fact since it helps us to understand the structure of
Bg) nNaw,).
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are c.c. but R, is v.c. The network equation is given by

2
1 0 1 vl(il) 0 0 O i, E
01 0 12(v2) +/ 0 0 O vy - -I | =0.
0 1 0 v3(13) -1 0 1 13 0

If the circuit has at least one solution for any input, then it follows
from Lemma 2 and Remark 1 that R2 cannot be a type B resistor, and Rl
and R3 cannot both be type B. It follows also from Remark 2 that the
two resistors belonging to either {Rl’RZ} or {Rl’R3} cannot both be
type B.

3.3 The Uniqueness of Solutions

A resistive network is said to be monotone if all its resistors
are monotone (necessarily 2-terminal, by definition) resistors. Many
monotone networks have unique solutions. As we remarked in Sec. I, any
monotone resistor can be replaced by a combination of an independent
source and a passive resistor.

Theorem 10: [8]9 Consider a network described by Eq. (2). If (1) 8

is diagonal and each component gj(zj) is strictly increasing, and (ii)

HE P,

then f£(z) = 0 can have at most one solution

Proof: Suppose there are two solutions z' and z". Then we have
g(z') - g(2") = H(z"-2") .

Since H € Py, there exists an index j such that (g"—g')j # 0 and that

(H(Z"‘%'))j and (Z"‘Z')j are of the same sign. But then gj(gg) - gj(gﬁ)

9Theorems 10 and 11 are proved by Sandberg and Willson. We give here a
simpler proof using the ideas developed in the preceding sections.
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and zg - 25 would be of opposite sign, contradicting the fact that gj

is strictly increasing. n

Theorem 11: [8] Consider a network described by Eq. (3). Assume that

(i) g is diagonal and each component gj(zj) is strictly increasing.

(ii) For each D = diag(dj), dj = #1, there exists a p € Rr", p > 0 such
T T

that Bnglg 20, pDHD > 0 and p Q(§1+§2)p > 0. Then‘vAjcan have at most

one solution.

Proof: Let g' and z" be solutions. Then we have
] —
B (2(z)-g(") + B,z = 0 .

Without loss of generality, assume all nonlinear resistors are passive,

Ty _ 1 vty _ = A4 1__n
we obtain 319(§(E ) §(f »-+ gzg(g z") = 0, where D dlag(sgn(zj zj))
and the bar denotes taking the absolute value of each component of the
vector indicated. By (ii), there exists a p > 0 such that pTDH D >0,

pngzg > 0 and pTD(Hl+H2)D > 0. But this contradicts the identity

-~ ~eolda

ETPﬁlP(g(E')-g(g")) + ET9§29(%"§") =0, N

The following theorems are due to Sandberg and Willson [8,9].

Theorem 12: Let(¢A’be a network described by Eq. (2). Assume that g

~

is diagonal and each component of g is_strictly increasing and of type

u. Then(,kihas a unique solution for any g and s if, and only if, HE PO.

Proof: (If) Implied by Corollary 3, Theorem 6 and Theorem 10.
(Only If) By constructing counterexamples, see [9]. x
Theorem 13: Letz,A[be a network described by Eq. (3). Assume that

(i) g 1s diagonal and each component of g is strictly increasing.

(ii) For each D

3
such that ETDH D ;:O,Etpgzp > 0 and ETP(§1+§2)P > 0.

~e |~

= +1, there exists a p € R°, p>0

diag(dj), d
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ThenquJhas a unique solution for any g and s if, and only if,
B nNa,) = o.
Proof: (If) Implied by Theorem 9 and Theorem 11.
(Only If) By constructing counterexamples, see [8]. ™

3.4 Boundedness and Continuous Dependence of Solutions

All solutions discussed in Sec. 3.2 and 3.3 are bounded because
in the proofs we actually constructed the "bounding spheres" S(0,r).
As to the continuous dependence of the solution on the parameters of
the network, we have:

Theorem 14: The solutions discussed in Theorems 12 and 13 depend con-

tinuously on the function f (and hence the parameters of the network).
Proof: Since the solutions are unique, their indices are equal to 1.

By Property 11 of Sec. II, they are continuous functions of f. n

IV. THE HYBRID ANALYSIS BY TOPOLOGICAL FORMULATION

4.1 The Network Equations

In this section we derive the network equations by topological
formulation. For simplicity, let us first assume that there are no
controlled sources. Each branch in LA’is considered as a composite
branch as shown in Fig. 8. A composite branch is said to be v.c. (or
c.c.) if the resistor is v.c. (or c.c.). Let us choose a special tree
g],by picking first a subtree‘;I;CIgj’containing as many v.c. resistors
as possible. The remaining set Efl of v.c. resistors then necessarily
form loops with branches in Ejl and must therefore form a part of the
cotree %f. The c.c. resistors are partitioned into %]; and %fz such
that ?}1 U %J; =<;Tand S£1 LJS£2 = g£. Any tree constructed by this

algorithm will henceforth be referred to as a hybrid tree. The fundamental
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loop matrix B with respect to this hybrid tree can then be partitioned

as follows:

1 0 B 0
ALy 4%y Ty w0 }331

0 1 B B
"xzii ~;52;62 ~"gz:f 1 ~"{’252 }9’92
;{)l Fez (J;. qz

where deg =0 because each branch in gf forms a fundamental loop
d, 49, 1

with branches in %]; only. If follows from this property that each

branch in g]; forms a fundamental cut set with branches in %f only.

2
Let the resistors be characterized by

A 1

o =i, (e) and v, =5,
] B 0,

where the i and § are diagonal maps. Substituting the branch character-
istics into the KCL and KVL constraints, we obtain

1

v = ~B v + e
”xl ~"5131 31

T .2
and i, =B i, + 3.
L HhE

and the network equation:

- T A 1
1g (vy) -B 0 ||ig By v te)
E(v i) A 9 9 + 5171 "{1 x’ljl ‘71
-0 ~% . T 2
vy (iyp) 0 B v, (B ig+37)
~"[2 “"{; N ”'{z“ ~jz ”""2‘72 ’{2 ~
T 1
0 -B v 3
+ del Hi+ | =0
B 0 1 e
*42‘71 ~,,fz e
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where jk and gk, k = 1,2 are related to sources and are defined by

T T 2 T
i© =-j., +Byqi, + By, ] d =3, By rj
: 9 SCURTEC LA W, 9%

e =e;€'+B deU and e?'=—~ - B j»e-j_B eq -
G T TU i % KN 40,

The above equation can be generalized to allow couplings between
the nonlinear resistors belonging to Cj and 9.2, and between the non-

linear resistors belonging to S.’l and 23 namely,

igl = igl (le,i-xz) and yxz = sz(yjl,ixz)
vy =V, (vy,iy) and iy, =1, (v i ).
~72 ~Ty ~"(1 ~“72 ~‘(1 ~'z1 ~"{l -7,

The corresponding network equation now takes the form

£(y
3,74

A . T
A }51(‘”’71’}"{5) -gxljl ° 1"{ ¢ %7- 1+e ’ij lxﬂ )
= +
b, (v, ,ip) 0 B ¢, (-B + ,BT i +'2)
7,0+, N %, £, 49,707 2A,0)7 K
T [ 1
0 -B v 3
REIEAR

2| =0 ®)

s
AN ARG

~

Remarks:” 1. Note that since v’{l = -~)¢_’ld YJ + gl, if we multiply

T . T
-B i, (vy siq ) by v, we obtain
K0G8,

-VT BT i ( >1 ) = -
~jl~xlj1%xil. Y%l ~52 [Yx.l e ] (Yxl,l
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- T A 2.Ta
Similarly, }xg v (Y yig) = [.:!- — 3l vy (vyp,isg).
2"{2‘72 ‘72 551 Jz ‘72 =, "”fl 7,
2. By definition, [%xi(-),ﬁcé(o)] is eventually passive with
1.2 .
respect to [e »371 if
i (v,,ir)
T . .2 T "(i 951’72
[rp-eD"s (=19 20
1 2 \23 (Y sig)
2 *? 2
whenever "[Y}f’ij']" > K for some K < », It is easy to see that if i
20, 4
and ch are diagonal maps, then eventual passivity implies eventual
passivity with respect to any [gl,jzl.

4.2 The Existence of Solutions

Theorem 15: LetiaA‘be a network described by Eq. (8). Assume that

(1)

i, v »ig)
lim[y§ ,;} ] wdl ~j1 2 = o, where p = ll[yj si1l.
P-ro0 1 2 1 A;

\:'xz (le ’ ~xz)

(ii) [%X7’%7 ] is eventually passive with respect to [gl,jZ].
1 J2 ~

Then\JA|has at least one solution. Furthermore, if the Jacobian matrix

gf is nonsingular at each solution, then there is an odd number of solutions

all of which are structurally stable.

Proof: Define the homotopy b(%j si, 1) by
— 1%

B(v, »ig -0 2 Af(v, ,i,) + (1-1) [Ydl , A€ [0,1]
A ~jl ...5(’2 L ...:/ -

2 i;(;

Premultiply h(y 1 sA) by [¥; ,i; ], we obtain
7% 1 %

2
[vT iT by, si/,2) = A(s,+s.+s_) + (1-2) in
RO e 17273 i
1
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i
T .T
1 [Ygl’3,,£zl[ }

where s, = 3 !
YXZ .
i (V ,i )
A Lt o |4
R AL A A P
1 XJE Zzi’ijé

)
=)
(=%
]
i

.1
N, K R [
3 [leyile [ez] .

Now since [i
%
there exists an M > -» such that s, > M for all [yj ,%2?]. By Schwarz
2 L g1 %
inequality, |s3|.5 cﬂ[ij,};(]ﬂ where ¢ = [[[j7,e"]l. Let K' > c be a
1 "2 '

- . . . 1.2
,v\7 ] is eventually passive with respect to [e ,j" ],
-J, <

given constant, then there is an r' > 0 such that || [Y[j ,j.'{ Ms>rc' =
1 2
d| [YJl,j.xZ]ll > M+ ¢ [yjl,iaglll. According to (i), there exists an

r > r' such that (v, ,i 1l > r = s, > K'. Consider h(v, ,i,,A) on
0% 1 A

the sphere S(0,r), we then have 2
v
[VT ﬁ{-; ]t‘(Yj 9?:-;( »A) = AZB: s. + (1-2) Jl
0y % 1 A2 o d i
J— "'Xz
v v v 2
0y -9 V1
> ALK’ -M-c +(1-1)

>0 , for all A€ [0,1].

Therefore £ (yJ ’ .:Lx) # 0 and is homotopic to the identity map on
1 "2

S(0,r). Hence the conclusion follows. L}

Corollary: Let (A' be a network described by Eq. (8). Assume that

(i) All resistors are uncoupled and eventually passive, and

(ii) the resistors in %jl and gfz are of type U.

Then(,A]has at least one solution for any set of independent sources.
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Furthermore, if the Jacobian matrix is nonsingular at each solution,

then there is an odd number of solutions all of which are structurally

stable.
Remark: Condition (ii) of the corollary is satisfied if there exists
a tree (resp. cotree) consisting of v.c. (resp. c.c.) type U resistors
only. For in this case, we simply choose %j; (resp. %fl) to be the
empty set.

We now consider é more complicated case where both type H and type

B resistors are present. For simplicity, let us assume first that all

resistors are two-terminal, uncoupled resistors. Let us recast the

V4 1
network equation in the form f(v‘7 ’iX') a g(vJ yi ) + A[wji +-[§2]
ST I I "L, e
where g;
T -
(v ) -B 0 (-B v +e )
g & J1 < + 49 ‘941 ”{14 "%
2 xz(}xz) 0 §x2d2 VJ (vi\'] X’2+] )

is the nonlinear part of f and

T
° &
B 0
2 KZ jl ~

>
il

is a skew-symmetric matrix. Furthermore, let us define

] _ 2T
g (yj ,10.() = liy (vjl ’VX (1£), ’{1( X—Z’l +e b, ij ;ez"'! |

Definition 5: The set(jg(g) is defined by CEkg) a {[zjl,§xa] :
H%(n(vjl,iza))ﬂ <m<»asn -+ »}, The setCI;(g') is defined in a
similar fashion.

In general,‘qg(g) #532(5‘). However, we can state:

Lemma 4: If all resistors in N are eventually passive, then<1;(g) =

44—

{g").



_S‘Q]-

Trly 3 IpTp
b % 3O M0 Y-y 3yl 7 (p}aﬁ-)

1T
~ O Cplp. T .
'(z[."-g-z;(]: p?{q) A I3PTSU0D oM udy) ‘ZX'; Ue S3ISTXD 3Iayl JTr 10

01
USUL 'V 3O ooeds (inu su3 ST (V)[\ " 3IeuA <0 =NV @G D

pue ‘aATssed AT{enjusAs pue paldnooun aie SI03STS9a1 TT® (1)

Jeyl sunssy -*(g) °bay £q paq]:.msap jIiomiau B 3q ]r 397 9T waaoayJ
*103STS91 H °d4) B ST ( fA) a19ym g < 6‘d]: (z[Z{ﬁ) :97duexa 103

‘ser3rTeEnbour 1eOUIT £q psurjep sooeds jTey JoO UOT303sI2uT 9yl sjuasaadaa

T T T-T
CE{ I9s 9y .[.['103515391 N 2df3 © sT z(xi) 2I9YM = L\Rx( pxﬁ_)

‘oTdwexa 103 ‘suorjenbs aesury 4q paurjep soauerdiadiy jo uoyjoasiajur

ue sjuosaadaa zg‘ 398 Yy g DN ITE 10] (o‘w-) = )l]: Pue ‘H 5 3 e 103
=3

(=0} = "I ‘n 5% T® 203 {0} = "L saeum My = Tg 395 oyz fg U %g U g

u ¢, I
¢ U eoiaecl, el -7 T E‘"
(‘3)83 319s ay3l usayl " =) .I.[ z 2¢°z] = 2 5 [}a;‘ A] 397
X ‘UOTIOTPBIJUOD ' IABY dM 90USH °3Juelsuod Lue £q papunoq a2q Jouued
‘ T
UOTIBUNINS DAOQE 9Y] PUB ‘w « U SB o« < ||(15+(_[5- XI{)U) 73 | ‘uoridunsse
£q Ing -981eT ATIULTOTIINS ST U uaym aATlIe8suuou 9q TTIM UOTJIEUMNS

9yl ur wral yoes ‘aATssed AT[ENJUSAD 3IB SI0ISTSOI TIB 9IUTS

‘o «- U SB

T
~_1
T T T I, 1 Y T T
¥~ ¥~ "F~ ¥~ ( ¥~ z,,) ~ ~ e T~ ~ ~
w© >(Ia+(_[a- A)Ll) I\ 5- R ¢ (_[a+(Ta- %) u) )"EL(Ta- XA)

T I~ T
uTeIqo oM ¢ 3 - Ai - L\ DTQF - J'Y3l 930U pue ¢ FA £q

Lo T
( a+( pAU) fg...) f ﬁ}f - LA1draTnwaad ‘T yaewey ﬂu-t'[reaaa ‘o « U se

1
° > > | a.|..( L\QU) p%q—).% FBP -] INq o +"(_[a+( EAU) L\fg_ ;'["

T
Otneqn yons DR B SISTX? 319yl uayj -Kiexjuod ayl asoddns

‘(‘é)&b ) (é)a: Jeya aaoad of °(§)8) D (‘f:’)a) jeyl iea[d ST 3] :jooagd



J\’ has at least one solution for any independent sources. Furthermore,

if the Jacobian matrix ‘~If is nonsingular at each solution, then there

is an odd number of solutions all of which are structurally stable.

Proof: Consider the vector field f(vj ,1@) Premultiply f by

[VJ 4], we obtain
T T T » T . 1.T.,
[v,1 I =viip(vy) +ipv,{1y) + (vy-e )1, (v,)
”jl ~"(2 h "Jl*”q ~11 "’{2""{1 ~?§ ~ai N ~'{1 ~"‘/1

T .1 2
i i)+ it 4+ ile
“‘7 (‘72) : 12 Ly

]

T .T T .1 T 2
[vysiylg(v, ,i ) + i+ iyge” .
YJI ~¢\’é S le ,.0‘(2 le.. 4%.,

Since all resistors are uncoupled and eventually passive (i.e., each
term above is bounded from below, except Vj 1 and 1xe ), for any
[V D.é] ¢@(g), "[Vj ,15\/élf[n(v ,1;()] > 0 and can be arbitrarily
1arge whenever n > 0 is sufficiently large. Now consider the set CR(g).
Let € > 0 be a fixed constant, define CQE(;E) A {z € Rr": d(g,@(g)) < e}
where g(g,@(g)) = inf{llz-z"f: 2’ Ece(g)}. Because of the structure of
Cg(g) = @(g') and the fact that CE(g) n'\N(Q) = (~), by a similar proof
as that in Theorem 7, it can be shown that there exists an rl > 0 such
that CRg(g) N S(0,r) and JU({\) N S(g,r) are disjoint for any r > r-
Let [le,}é] GCRe(g) N $(0,r), r > r,, premultiply f by %[Y\%l’i'%]é'r’

where p 4 [|[Y7 »i s 1ll, we obtain

’

i T .T T . i,.r .T,.,T 1

= sip JATE( sig ) = S5[v 331- ]é g(y o1 ) + =fA
p Ydl "Cé ~ Ydl "Xz p "'dl % ~ \71 Xz P~ X
22

+ (y?, jl+i§ée2 ).
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Notice that [xg ,iﬁ;]@ = 0 because A is skew symmetric. Since

i
~ d{?_

all resistors are eventually passive and since —[er,laQ]A is bounded
T
= H[v aé]ﬂ), there exists an T, > T4 such that {[VC7 5§] +

—[v7 %]A } iy ,1(.4) > 0 for all [y, ,1%] € s(0, r)\CR (g), r>r,.

Similarly, premultiply f( (v ;g)) by {[‘7 ;g] + p[v,j ’%%élA }; we

obtain
{[V‘jlalx:l + —[V'B % } (VJ %)
- 2
{5 o [le'éxz]ér} (¢ )+5 ;,g
2

Since the resistors are eventually passive, -[y} ,3}]g(—(y\4 i ))
1 2" 1 ;6
is bounded from below and since g(—(vjv,%gg)) is bounded for
11 - i
a [le,%xal c S(Q,r) n<12€(§), there exists an rs.i r, such that
-{[y?; ,é;r(] + %[yg ,3} ]éT}g(-(yj ’”"(z)) > 0 for all -[v;,1,] € 8(0,r) N
1 72 1 72 1 1772
‘ Kg), r > Tg- Hence, the claim is proved upon choosing T, = P The
conclusion follows from Property 8 of Sec. II. =
Since there are no controlled sources, condition (ii) of Theorem 16
can be checked by the following topological conditions [10]:
Lemma 5: Let ijbe a network satisfying the following conditions:
(1) Every loop of c.c. resistors either contains a type U resistor
or else it contains at least two type H resistors which are not similarly
directed.12

12TWO type H resistors are similarly directed if their reference direc-
tions both agree or disagree with the orientation of the loop.
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(ii) Every cut set of v.c. resistors either contains a type U resistor
or else it contains at least two type H resistors which are not similarly
directed.

Then CP>(§') nNa@) = 0.
Proof: This important observation is proved in [10] by Desoer and Wu.
Remark: Recall that CFkg) = Crkg') if all resistors are uncoupled and
eventually passive.

Theorem 16 can be generalized to networks containing coupled
resistors:

Corollary 4: Letsjalbe a network described by Eq. (8) and let y(z) =

(i) Let z = [YJ ,33;] and y = [£j ’§%§]' Let the function y satisfy
1 1 .

following equations:

(a) there exists an M > 0 and a B > 0 such that

23] > M=z, (zy) > 0, |25] <M= |y, (z)] < B, and

lim y.(gU) = + o respectively, for all j € U.
Z >t J )

(b) YH(fH) is diagonal and eventually passive, each éomponent

yj(zj) is of type H.

(c) yB(zB) is bounded and eventually passive.

(ii) Let g' 4 lfbf’éj'] and y' = [gaf,§j']. Assume that there exist
1 2 1 Y2
M' > 0 and B' > O such that each component y5 of y' satisfies the

condition

|z5| > M =>z:']y3(z') >0 and |z§| <M = Iy:',l(g')l < B'.
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Then the conclusion of Theorem 16 holds.

Proof: Same as the proof for Theorem 16. Notice that condition (ii)

insures CB(g) =CB(g'). x

4.3 The Uniqueness of Solutions

It is well known that many monotone networks have unique solutions.
The following lemma can be proved by Tellegen's theorem. [11]
Lemma 6: Let{¢&|be a network described by Eq. (8). Assume that all
resistors are strictly increasing. Then if;JU has a solution, it is
unique.

The'following theorem is due to Desoer and Wu [11]:

Theorem 17: Let<,k[be a network described by Eq. (8). Aséume that

(i) All resistors are uncoupled and strictly increasing.

(ii) The topological conditions in Lemma 5 are satisfied.

Thenkzkfhas a unique solution for any independent sources.

Proof: (If) 1Implied by Theorem 16, Lemma 5 and Lemma 6.
(Only if) By constructing counterexamples, see [11].

4.4 Boundedness and Continuous Dependence of Solutions

All solutions predicted from the preceding theorems and lemmas are
bounded since we actually constructed the bounding spheres S(g,r). As
to the continuous dependence of the solution on the parameters of the
network, we have

Theorem 18: The solution of Eq. (8) in Theorem 17 depends continuously

on the function f_(and hence the parameters of the network).

Proof: See the proof of Theorem 14.
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V. THE BOUNDING REGION OF SOLUTIONS

5.1 The Bounds on the Solutions

It is often pointed out that most iterative methods, e.g., the
Newton-Raphson method, for finding the solutions of nonlinear algebraic
equations converge only when the initial guess is sufficiently close to
the solution. The hybrid analysis via n-port formulation suggests a
natural and easy way to find a region which contains the solutions.

This method is best illustrated by the following example.
Example: Consider the simple transistor circuit and its Ebers-Moll
model shown in Fig. 1(c). The equations obtained via an n—-port formula-

tion of the circuit are given by

Gl(il) 1.0x103  5.0x10" i -5
£(i.,i) = |. + 4 + =9
PR T e, @) 1.0x10  5.1x10" ) |4 7 )
2 72 2
) v./VT . 1

where ij(vj)= Io(e 3 *-1) and vj = ij . It follows from Corollary 2
of Theorem 2 and Theorem 10 that this circuit has a unique solution.
Let us now find a region which contains the solution. The Ebers-Moll
model represents a no-gain element [12]. Hence |vk| <5+12=17 v,
and Iikl.i (5/105) + (12/103) = 1.21 x 10-2A, k = 1,2. Thus the solution

*
[ifiZ] must be in the set D, as shown in Fig. 9(a).

1
On the other hand, if we redefine Gk(ik) as shown in Fig. 9(b), the
"new circuit will have the same solution. Retaining the same notation
for Gk’ let us rewrite the network equation in the form

f(il,lz) = = R + E'(il’iz) = 9
v, (i)

where
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1.0X10 5.0x10 -5
ot | -0

1.0x10 5. 1x10
is the affine part and the Gk's are redefined functions. The image of
any [il,iz]T under £ is the image g(il,iz) superimposed by the‘image of
[Gl,GZ]T. Let us consider first the action of the affine map g(il,iz).
Consider the set of points lying on the straight line vy = 17 in the
Y17, plane. The inverse image of this line under L, denoted by }_l(yl=l7)
is also a straight line in the 11-12 plane. That is, any [11,12] S
g-l(yl=l7) will be mapped into the ¥17Y, plane with v, = 17. Similarly,
we find E—l(yl=—l7), g'l(y2=,17) and 17} (y,=-17). Thus we have found a
parallelogram D2 bounded by }-l(yl=+l7) and L-l(yzéi17) in the il—i2 plane
which is mapped by L into a square Q = {y € ]R2 Iyl = 17} in the Y17V,
plane. Now let us consider the whole function f on the boundary of D2.
To be specific, consider f(il,iz) on g-l(yl=17). The function f has

two parts: the affine part L maps L~l(yl=17) into the line Y1 17 and

the nonlinear part [61,02] which maps L_l(y1=l7) into a curve superimposed on

top of the line y1 = 17. However, since lvlllj 17, the total image
g(g~l(yl=1?)) will be a curve which never crosses the Yy = 0 axis.
Similarly, g(g'l(y1=-17)) and Q(L—l(y2=ii7)) will be curves which never
cross y, = 0 and y; = 0 axes, respectively. In other words, f maps the
boundary of D2 into a closed curve in the Y17, plane which contains the
origin. See Fig. 9(c). That is, the parallelogram D2 contains the
solution [11’12]*' But D1 also contains the solution. Consequently,
the intersection D1 F\D2 will give us a less conservative region which
contains the solution. Observe that Dl n D2 as shown in Fig. 9(d) is

much smaller than either D1 or DZ’ and any point within this region
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will provide a fairly good initial guess for the solution of the

circuit.

Knowing that the solution is contained in Dllﬂ D2 we can proceed
further to modify the characteristics of the nonlinear resistors
according to the new constraints imposed by leﬁ D2. In this example,
however, this step is unnecessary since for [il,iz] (S leﬁ D2 the con-
straints remain the same, i.e., lvj(ij)|-5 17, j = 1,2.

For the general cases, the following algorithm can be used to find
a point close to the solutions:

Let the network equation be given by
[ i
£(z) = | 8,(z)) | +L(2) =0

where L denotes an affine map.

Step 1: Find bounds for each variable z) with the help of the no-gain

151) 2= zl(clz

Step 2: Modify the characteristics gk(zk) as in the preceding example

property [13] or other techniques. Hence z

in accordance with the bounds on zk, thus we obtain

g, (20| < blﬁl) k=1,2,...,n
The set leﬁ D2 is then described by
L@ (1)
b " 2L (@ < by
Zél) 2z < 2151) k=1,2,...,n,
2 u

where Lk is the k-th component of L.
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Step 3: Find "improved" bounds zéz) and zéz) on the compbnents of all
L ) u
z in D1 F\DZ by solving the following associated linear programming

problem [19]:

Find max zk and min zk

( ) 1) (1) (1)

< Lk.(z).s bk' > 2y Zv < 200 k' =1,2,...,n;
2

subject to —b

for all k = 1,2,...,n.

Step 4: Modify the characteristics gk(zk) in accordance with the bounds

zéz) and zéz) on Zk’ thus we obtain
L
2
ng(zk)l < blg ) k=1,2,...,n.
Set M = 0.
Step 5: For each k, if béz) < bél), set M = 1. Set bél) = béz),
(l) (2) (1) 2
kz kz and 2 é )’ k=1,2,...,n.
u

Step 6: If M = 1, go to Step 3, else, go to Step 7.

Step 7: Solve the following associated linear programming problem:

(0)

Final a feasible solution z

(1)

subject to —bk < L (2) < b(l) (l) < zk_g zél); k=1,2,...,n.

2 u
If there is no feasible solution, the network.LA’does not have a

solution.

The feasible solution g(o)

will provide a good initial guess for
some iterative method for finding the exact solutions.

5.2 The Operating Range

The maximum power rating of all devices imposes a physical con-
straint on the maximum permissible range of their operating branch
voltages or currents. Let ;A‘be a network containing two-terminal

resistors and independent sources. Assume that each resistor Rj in(JM
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is characterized by vj = Gj(ij) with a maximum operating current

Iijl <M, ¢ o, or i, = {,(v,) with a maximum operating voltage

k| | i3
Ivjl < Mj <o j=1,2,...,b, where b is the number of branches in‘,AL

The Cartesian product of the operating ranges of the resistors, e.g.,
b

il Bj will henceforth be referred to as the operating range of(JAL It
j=1 ; :
is an important design problem to determine a region S in the space of

independent sources so that the solutions of LAJcorresponding to any
set of points in S will fall within the operating range of<,AL In [13]
Wu presented a method for finding bounds on the independent sources
but the estimate is usually too conservative to be useful. In this
final section, we will present a different approach based upon the
proof of Theorem 6 in Sec. III. We will use the following two examples
to illustrate our method.

Example 1: Consider the linear circuit shown in Fig. 10(a). Assume
R1 = 4K, R2 = 1K. Determine a region S in the E-I plane so that
(E,I) € S ensures tﬁat the solution falls within the operating range
defined by |1 < 10734, § = 1,2.

Since the circuit is linear, superposition is valid. By considering

E and T separately, we obtain

lﬁ-l - % E|] <1

|4 :

}% I+ -% E| <1 and |i

e | =

where E is in volts and I in mA. The above inequalities then define a
region S shown in Fig. 10(b). 1In the linear case, the set S is the
"maximal set" in the sense that any (E,I) ¢ S will force the solution
to fall outside of the operating range of ;AL The generalization of
the above technique to more complicated linear circuits is obvious.

For nonlinear circuits, however, the maximal set S is extremely
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difficult (if not impossible) to determine, and only a subset of the
maximal region can usually be found. Since a nonlinéar function is
generally not odd symmetric (f(g) # -f(-g)), we must fix both the
locations and the polarities of the independent sources before
investigating the operating range.

Example 2: Consider the nonlinear circuit shown in Fig. 11(a). Find a
region S in the E-I plane such that any (E,I) € S insures that the

solution satisfies the following constraint:

Ivll < .6V. and |12| <1 x 1034,

The network equation of the circuit is given by

(1. (v,)] o0 111[v -1
fv i) =) 1t +[ ] 1] +[ ] 9
Ri, | -1 o)l -E
A 1, (vy) -1 ]
“Irt tHz 4] o =0
L1 . J

where z = [vliZ]T. Notice that H is skew-symmetric and hence H € Po.
The operating ranges of the resistors define a rectangle D in the z-plane.
Considering f as a vector field defined on D, let us find a region S so
that (E,I) € S implies that f(z) # 0 and f(z) and f(-z) will not point

in the same direction for all z € 3D. This then insures that f(z) = 0
has a solution in D. We shall show that either fl(g)fl(-g) < 0 or
fz(g)fz(-g) < 0 for all z € a3D.

= 2

(i) Since H € PO’ there exists a zs Say 2z # 0 and

S
13 .
£,(2)f,¢z) < 0 if

k
(§§)121~1 0. It is easily seen from Eq. (9) that

13That_is, il(vl) - I # 0 and has the same sign as vy
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(vl)[fl(vl) - 1] > 0. Thus we obtain the condition

v, <0 or v °-1(I) A Mil) (10)

1 17N

(ii) Similarly, if z, =2z, =1, then fz(g)fz(—g) < 0 if

. . E _ ,(2)
i, < 0 or i, > R M2 . (11)

(iii) Now, suppose (i) is true but (10) does not hold. Consider fz(z)

~

e o ) _
= R12 vy E, 0 < v, < M1 . In order to have fz(g)fz( z) <0 we
require izf2 > 0. This then implies:
E+M{1)
C < .
i, 0 or i, > R
E+M{l) -3

Thus, |izl > X ='f2(§)f2(—§) < 0. By assumption, |12| <1 x 10 "A.

Therefore we obtain the inequality

(1)

-+
EMl

3

<1x10

or
.~1
E + i, (1) <1. (12)

(iv) Suppose (ii) is true but Eq. (11) does not hold. Consider fl(g)

- 3 — . 1) _
1l(vf + i, I, 0<1i, < M2 . In order to have fl(g)fl( g) < 0, we

2
require vlf1 > 0. This is satisfied if:
i.(v,) <1I- M(l) if T - M(l) <0
1''1 2 2 -
v, < 0 (1) (13)
no more restriction if I - M2 < 0.
or, v, > 0 =>vi > i;l(I) = Mil) (same as (10).)
nce 1, vl) > 10 "TA for vy 2 .6V, we obtain, from (13), that I - M2

2 —10-'12 and M;l) < .6, or
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I —-g_z —10_12

~=1
R and il (1) < .6 (14)

Inequalities (12) and (14) then define a region S in the E-I plane
as shown in Fig. 11(b). The solution of the circuit corresponding to
any "input" (E,I) € S will fall within the operating range of the cir-
cuit. Any point not in S may or may not give rise to a (vl,iz) in the
operating range. For example, p = (.7,.15) ¢ S makes Ivll > .6V.

This technique can be applied to more complicated circuits. The

degree of success, however, usually depends upon the individual problems.

VI. CONCLUDING REMARKS

In this paper we have applied the degree theory to the analysis of
a large class of resistive nonlinear networks. In particular, we study
the structure of the network equations by homotopy of odd fields. The
form of network equations (both via the n-port and topological formula-
tions), together with some circuit-theoretic conditions, such as eventual
passivity, forma network function which is homotopic to an odd field.
This is a natural consequence of the fact that both KCL and KVL are
linear constraints and that eventual passivity is implied by odd functions.
Thus the degree theory provides a fairly general and unified approach
for analyzing a large class of practical networks. All theorems in this
paper, although applying to different cases, deal with the homotopy classes
of odd fields. Even though most known results can be proved easily by
this unified approach we only mentioned a few in the paper because many
other results are rather special cases from this point of view.

We would like to point out that insofar as the existence of solutions

is concerned, the concept of eventual passivity is much more basic than

the so-called eventual increasingness. Many known results, such as those
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by Sandberg and Willson [7,8,9,13] and Desoer and Wu [11], deal with
strictly monotone increasing nonlinear elements first and then extend

to cases including eventually strictly increasing nonlinearities. The

lengthy proofs of these theorems are basically analytical in nature and
therefore do not reveal a clear picture of the geometric structure of
the vector fields associated with the network equations. As a result,
most of these theorems are confined to eventually increasing networks
and cannot be extended easily to networks containing nonlinear coupled
elements.

Since most theorems on the existence of solutions aré sufficient
conditions, it is important to realize the great flexibility in formulating
the network equation. For example, consider the Ebers-Moll model of a
transistor. We can either extract the diodes in the model to obtain two
type H, uncoupled nonlinear resistors, or treat the whole transistor as
a passive three-terminal element. In many cases, a proper choice of
the ports and the network variables enables us to assert the existence
of solutions immediately by inspection.

Some applications to the problem of finding bounding regions of
solutions are also discussed in this paper. The method presented in
Sec. 5.1 is particularly suited for practical transistor circuits where
each transistor is either forward or reverse biased. Standard techniques
from linear programming, such as parametric programming and sensitivity
analysis [20], can thus be readily adopted to the design of nonlinear

networks.
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APPENDIX

(1) (Proof for the existence of r2.) Let us partition z 4 [zU,z ,zB]

where each component Zj of zy corresponds to type X resistors for

X =U, H and B. Partition the columns of H = 4 [HU HH H'] accordingly.

Thus J\J(Ij) = {z € R : ljUgU + !}HzH + lngB = 0}. Let z = [C_),gH,gB] #0

with 2y 2 0, then z ECP(F.) Since Cg(g) ﬂu\i(lj) = 0, Hz # 0. Hence,
we have ILIHEH + lj zg # 0 for all [gH,gB] # 0, zy > 0. Therefore, there

exists an o > 0 such that llfng + IngBII > a[l[zH,zB]H for all [EH,gB] # 0,

H ~
z. >0. Let C £ Sup{IIHUz + HHz i :0lz,»2,01 < r.}, obviously C, < .
2 17w ey + Byl gzl < 7)), X
Now, let z = [?-U’gH’gB] E(-u, write 2y = Zy + Zgn where Zy <0,

“?-H' I < r, and gH" > 0. Consider

U Hl HII

_ B
Vel = I8 + ' gy + B 20 + 820 > |al[z,2,00 - |

-~

Let r2>max{cl/a,rl}, then for any z eCu, lzll > r, = H[gH,gB]ll 2r,=

IBzl # 0. That is, z ¢ N@m). =

(2) (Property of u.) The quantity u can be defined as u(r3) =CU
inf{z H Hz : z € Cp(r )} where Cp(r ) = the radial projection of
/U N s(0,r ) onto the unit sphere $(0,1). Since the boundary of QI

consists of hyperplanes with constant coordinates +r_, the set Cp(r3) is

1
a decreasing function of r;, i.e., Cp(r') C Cp(r") if r:',’ > rg. On the
other hand, it is easy to see that lim Cp(r ) = CQ(g) N S(O 1). Hence
3 T T
u(r3) increases with T, and lim u(r3) =¥y = inf{z H'Hz : z e@(g) N s(0,1)}. ™
r.—ro
3
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

FIGURE CAPTIONS

An example illustrating the extraction of nonlinear resistors
as ports.
An example illustrating the various techniques for creating

an appropriate set of external ports.

An example showing the structurally stable and unstable solutions.

A flip~flop circuit.

Equivalence between voltage and current sources.

A geometrical interpretation of the sets Cl‘ (hatched region),
Cil(unhatched region), and(,kkg) in the two-dimensional case.
The function gl is of type U and the function % is of type H.
A nonlinear network.

A composite branch.

The bounding region of solutions.

(a) The set Dl obtained by the no-gain property.

(b) Modification of gj.

(c) The affine map L.

(d) The set Dl N D2.

An example for illustrating the operating range of a linear
network. (a) The linear circuit, (b) The operating range for
the circuit in (a) with [ijl_g 1mA, j = 1,2.

An example for illustrating the operating range of a nonlinear

network.

(a) The nonlinear circuit, (b) The operting range for the circuit

in (a) with |v,| < 0.6V and [i,] <1 ma.
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