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ABSTRACT

This paper presents an application of the theory of the degree of a

maP to the study of the existence of solutions and some related problems

for resistive nonlinear networks. Many well-known results in this area

have been generalized to allow coupling among the nonlinear resistors.

The usual hypothesis requiring the nonlinear resistors to be eventually

increasing has been weakened considerably by only requiring the resistors

to be eventually passive. Instead of investigating special cases by

special techniques, we study the network equations from a geometrical point

of view. The concept of homotopy of odd fields provides a unified yet

simple approach for analyzing a large class of practical nonlinear networks.

Many known results belong to this category and are derived as special cases

of our generalized theorems. This approach leads to a much better under

standing of the geometric structure of the vector fields associated with

the network equations. As a result, in so far as the existence of solu

tions is concerned, the concept of eventual passivity is shown to be far

more basic than that of eventual increasingness. The emphasis on the con

cept of eventual passivity also leads naturally to the inclusion of coupling

among the nonlinear resistors.

The homotopy of odd fields also provides some useful techniques for

locating the solutions. Along this line, we also study the bounding region

of solutions and discuss the operating range of nonlinear resistors.

Research sponsored by National Science Foundation Grant ENG72-03783, and
the Naval Electronic Systems Command Contract N00039-76-C-0022.



I. INTRODUCTION

One of the fundamental problems in resistive nonlinear network

analysis is the question of existence and uniqueness of solutions. In

this paper we investigate these problems for a large class of networks

by applying the theory of the degree of a map. A large class of resis

tive nonlinear networks can be described by an equation of the form

f(z) = g(z) + Hz - s = 0, where z = [y,i] denotes the unknown network

variables and g(z) is a nonlinear continuous function from ]Rn into ]Rn.

The function f: 1R -> ]R is then a continuous vector field on ]Rn. Let

D be a bounded open subset of Hn. Roughly speaking,1 the degree of f

relative to 0 6 ln and D, denoted by d(f;0,D), is equal to the algebraic

number of solutions of f(z) = 0 in D. In particular, if d(f;0,D) ^ 0,

then there exists at least one solution of f(z) = 0 in D. Because of

the special structure of many network equations, the function f, when

considered as a vector field on IRn, has the same degree as an odd field

f' relative to 0 and some open symmetric region D. Since an odd field

f1 always satisfies dCf^OjD) = 1 or -1, f has at least one solution in

D- This simple observation not only leads to a deeper insight into the

the structure of network equations but also provides a unified approach

for solving a large class of problems. Many network problems, including

those containing nonlinear coupled resistors, can be solved very efficiently

by this unified yet extremely simple approach.

Since we shall apply it in the proof of almost every theorem in

this paper, we define in Sec. II the degree of a map in ]R and derive

some important properties which are of particular relevance to nonlinear

network analysis. In Sec. Ill we investigate the hybrid analysis of a

The precise meaning of this statement will be given in Sec. II.
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very general class of resistive nonlinear networks via a "black box" n-

port formulation. In particular, as special cases of some more general

theorems, we will show that the vector fields f associated with the class

of networks considered by Sandberg and Willson [7,8,9,13] and Roska and

Klimo [18] are homotopic to odd fields over some sufficiently large re

gions symmetric about the origin and hence these networks possess at least

one solution. In Sec. IV, we derive the hybrid network equations via a

topological formulation. The network equations obtained via this formula

tion are generally different from those derived by the n-port formulation.

The advantage of this formulation is that the constitutive relations of

the nonlinear resistors and their interconnections are easily identified

from the resulting network equations. This in turn leads to more circuit

and graph theoretic hypotheses, rather than mathematical conditions. For

example, the results of Desoer and Wu [11] are proved easily via this

unified approach. Finally, in Sec. V, we present a method for finding a

bounding region which contains the solutions. This is important both from

the computational and from the network design point of view.

In this paper, a two-terminal resistor is characterized by either

i = i(v) or v = v(i), where v and i denote the branch voltage and current

of the resistor respectively, and where v and 1 denote continuous functions

1 1
from 1R into M . If the resistor can be characterized by i = i(v), it

is said to be voltage-controlled (v.c.) and if it can be characterized by

v = v(i) it is said to be current-controlled (c.c). The graph of either
A A.

v or i is called the v-i curve of the resistor.

Let R be a v.c. resistor. R is said to be of type U (Unbounded) if

i ->•«> as v + «> and i -»--«> as v + -«; of type B (Bounded) if |i(v) |_< M < «>

as |v| •* «>; and of type H (Half-bounded) if |i(v)|<M<»asv + » and
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i(v) + -co as v -* -» [11], Similar definitions are defined dually for

c.c. resistors.

A two-terminal resistor is said to be monotone if its v-i curve is

monotone. Let R be a v.c. resistor. R is said to be increasing if i(v)

is an increasing function of v, and strictly increasing if l(v) is a

strictly increasing function of v. Obviously, R is monotone if it is

increasing or strictly increasing. Similar definitions are defined for

c.c. resistors.

A two-terminal resistor is said to be passive if its v-i curve lies

in the first and the third quadrants only. The v-i curve of a passive

resistor always passes through the origin if it is a continuous function.

A resistor is said to be eventually (ultimately) passive if its v-i curve

eventually lies in the first and the third quadrants only.

Resistors with constant v-i curves will be considered as independent

sources. It is easy to see that any monotone v.c. resistor can be re

placed by a parallel combination of an independent current source and a

v.c. resistor which is passive. The same fact applies dually to c.c.

resistors.

Coupled resistors will be considered as resistive m-ports. Let R

be an m-port with port voltage v_ G mm and port current i G 3Rm. R is

said to be passive if y i > 0 for all admissible pairs (v ,i ) of R.
K K r ~R ~R

In general, R can be characterized by an equation of the form y = h(z )
~R ~ -R

where zR denotes the port voltages and/or currents which are "independent

port variables" and yR denotes the "dependent port variables." Obviously

Ris passive if, and only if, zRh(zR) =zRyR =yRiR >0for all ?R G ]Rm.

We say that R is eventually passive (resp., eventually passive with respect

to c) if there exists an M> 0 such that ||z 0>M implies z£h(z_) >0(resp.
(zR-c) h(?R) > 0).
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In these cases we also say that the function h is passive, eventually

passive, eventually passive with respect to c, respectively.

Finally, a few remarks concerning the notations: (1) All vectors and

matrices are typified with a wiggle under the symbol. We use lower-case

letters with subscripts for components of vectors. Thus z = [z-,z„,...,z ]
12 n

G 1R where T denotes transposition. All vectors are defined to be column

vectors. We use upper-case letters for matrices. (2) In order to avoid

confusion, functions are sometimes denoted by "hats," thus v = v(i) means

that the variable v is computed via the function v(*) at i. (3) We use E

and I to denote the sets of indices pertaining to the voltage ports and

current ports respectivley. Thus i , k G E means the current associated

with the "voltage port k." In a similar fashion, we use U, H and B to

denote the sets of indices associated with type U, type H and type B

resistors respectively. (4) Let zG mn . By z we mean the vector [|z |,
T A|z2| ,...,|zj] . Define pz =diag (sgn zfc) where sgn z, =1if z >0and

sgn zfc = -1 if zk <0, then z=pjz. (5) Let AG ]Rnxm, i.e., an nxm real

matrix. We write A > 0 (A> 0) if all its components are positive (non-

negative) . By A > 0 we mean A ^ 0 but A ^ the zero matrix. (6) We use

both the fc^-norm and the &2~norm in. lRn throughout the paper. Thus
1/2

flzll =max{|z |}, and ||zi| =(£ |z I2) . in I -norm, asphere S(0,r)
-J -^ £• . • 1 • 00 •»

An x
= {z G m : llzll = r} centered at Q with radius r becomes the surface of

a"cube" defined by S(0,r) ={z G ]Rn: IzJ <r, i=1,2,...,n; where

equality holds for at least one i}.. (7) We use S and 3S to denote the

closure and the boundary of a set S, respectively. (8) Finally, we denote

the difference between a set A and a set B by A\B; i.e., A\B = {x G A: x £ B}

T
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II. THE DEGREE OF A MAP

In this section we define the degree of a map in IRn and derive some

of its useful properties. In order to make this section self-contained,

we supply short proofs for almost all theorems whenever possible. For

more details, see [l]-[5].

2.1 The Degree of a Map

Let D be a bounded, open subset of IR . Let C(D) be the space of

all continuous functions defined on D into ]Rn with the topology of

uniform convergence.^ Thus, C(D) is a normed linear space with a norm

defined by |f| = sugdlf(z)ll> for all fG C(D). By C1(D) we mean the sub-
zGD

set of C(D) consisting of all functions in C(D) which are continuously

differentiable.

Definition 1: Let pG ]Rn , and fG C(D). Assume that f(z) = p has no

solutions in 3D. The degree of f relative to p and D, denoted by d(f;p,D),

is defined by the following algorithm:

Step 1; Assume f G C (D) and that the Jacobian matrix J.(z) = 3f(z)/3z

is nonsingular at each zG S = {z G D: f(z) = p} ,the degree of f

relative to p and D is defined as the algebraic number of solutions of

f(z) = p in D, that is,

d(f;p,D) =2^ sgn det Jf(z).
zgS

Remarks; 1. Since J (z) is nonsingular at any zG 2 and D is compact, 2

is a finite set. Hence d(f;p,D) is a finite integer.

2. There is a "volume integral" representation of d(f;p,D);

namely,

Ok a

Recall that D = the closure of D and 3D = the boundary of D.

-6-



<U£;p,D) =f</,e(llf(z)-pj)det Jf(z)dz

where e > 0 is a small number and t|> : IR ->- ]R is a continuous "bump" function

satisfying;

(a) </>e(s) = 0 for all s > e, and

(b) f^(llxll)dx =1.

Proof: Let Q={z^z^,... ,z }. Since Jf(z.) is nonsingular for all

i = l,2,...,k, there exists an e > 0 such that f is a homeomorphism from

each ball B(z ,e ) C D centered at z with radius e. onto B(p,e). Then

we obtain

J«P£(||f(z)-p||)det Jf(z)dz =£) L(||f(z)-p||)det Jf(z)dz.
D ±=1 B(z±,ei)

Let x(z) = f(z) - p, then Jf(z) = 9x/3z. Rewriting det J (z) =

ldet tJf(5)|sSn det(jf(?)) and applying the standard change of variable
formula for volume integrals, the above integral becomes

k c
£ J <J>e(l|x(z)||)|det Jf(z.)|sgn detfjf(zi)\dz
1=1 B(V£i} ~ ' "
k k

=£ [J *e( x)dxj sgnfdet Jf(;±)j »£sgn det Jf(z±) =d(f;p,D).
1=1 B(0,G) / i=l

where the last equation follows from conditions (a) and (b); namely,

J*e(||x[|)dx = f <J>£([lxll)dx =1. •
B(0,e) ]Rn

3 A f
3R. = {x G IR: x > 0}.

+ —
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3. The degree d(f;p,D) is acontinuous function of both fand P.

This is an immediate consequence of the integral representation stated

above.

Step_2: Assume fGc\d) and that Jf(z±) is singular at some z± g2.
It follows from Sard's theorem4 that there exists asequence {p }C]Rn

~m '

Pm -> p as m + * such that each solution set 2 = (z G D: f(z) = p \
m - -' K.m

contains only z's at which Jf(z) is nonsingular. Define

d(f;p,D) = lim d(f;p ,D).
m-H»

Remark: Since d(f;pm>D) is continuous in ?m and integer-valued, the above
limit is reached after finitely many steps and is independent of any

particular choice of the sequence {p }.
-m

Step_J: Assume that fG C(D) but f^ C1(D). In this case, since C1(D)
is dense in C(D), there exists a sequence {f }C C1(D), f -> f as m -> «

~m -.m

uniformly on D. Define

d(f;p,D) = lim d(f ,p,D).
"* ~ ~m —

Remark: Since d(fm,p,D) is continuous in f^ and integer-valued, the above

limit is reached after finitely many steps and is independent of any

particular choice of the sequence {f }.
"*m

We now derive a few important properties of the degree.

Property 1; Continuity property. The degree d(f;p,D) of f relative to

p and D is a continuous function of both p and f.

Proof. We have already established this property. *

Srd'*/»xe°rem: Let |: 5*"*n» *G^(D), and let B-{z GD: det Jc(z) =0},
then f(B) is of measure zero. ~ "f ~
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Property 2: Homotopy invariance. A homotopy h(z,X) over D is any

continuous function from D x [0,1] + ]Rn. Let h(z,X) be a homotopy over

D* If *}(?»*) = P nas no solution in 3D for any X G [0,1], then

d(h(z,X); p,Dj is a constant independent of X.

Proof: Since the function a(X) =d(h(z,X); p,d) is well defined on [0,1]
by assumption and is continuous in X, it follows from Property 1 that

d(X) is integer-valued and hence must be a constant independent of X. *

Remark: In this case, h(z,0) and h(z,l) are said to be homotopic to each

other, and we say that h(z,X) connects h(z,0) and h(z,l) homotopically.

Property 3: Boundary Value Dependence. The degree d(f;p,D) is uniquely

determined by the action of f on the boundary 3D.

Proof: Let f and f be two functions from D -* ]Rn such that f(z) = f(z)

for all z G 3D. Define h(z,X) = Xf(z) + (l-X)f(z). Since h(z,X) = f(z) =

f(z) for all zG 3D, h(z,X) = p has no solution in 3D. It follows from

Property 2 that d(f;p,D) = d(|;p,D). •

Since f(z) = p if, and only if, f(z) - p = 0, there is no loss of

generality to consider only d(f;0,D). We then consider f as a vector

field defined on D and any z G D such that f(z) = 0 is called a singular

.point of f. Property 2 can then be restated as follows:

Property 21: Suppose the homotopy h(z,X) ^ 0 for all z G 3D and for all

X£ [0,1], then d(h(z,X);0,d) is aconstant independent of X.

As an application of Property 2\ we have:

Property 4: Let f and f: D + IRn be continuous functions such that f and

f never vanish on 3D. If f and f are never opposite to each other on 3D,

i.e.,

f(z) ,-g(g? r
flf(z)!l f Df(z)B for a11 5G 9°-
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then d(f;0,D) = d(f;0,D).

Proof: Define the homotopy h(z,X) = Xf(z) + (l-X)f(z). By assumption,

h(z,A) ^ 0 on 3D for all X G [0,1]. It follows from Property 2* that

d(f;0,D) = d(f;0,D). *

Property 5: Let f G C(D), where f = f1 + f". The component ff is called

a principal part of f if Of'(z)D > flf"(z)D for all z g 3D. Let f1 be a

principal part of f, then

d(|;0,D) = d(f';0,D).

Proof: Suppose f(z) = -cxff(z) for some a >0 and zG 3D, then (l+a)f'(z)

-f"(z) and we obtain Of'(z)H < Hf"(z)ll, acontradiction. Hence, £and f

are never opposite to each other on 3D. It follows from Property 4 that

d(f;0,D) = d(ff;0,D). «

Property 6: Let f6c(5). Let c€ ]Rn be a constant unit vector. We

say that the field f omits the direction r if

ilf(z)H * ? for a11; e 9D-

If f omits the direction c, d(f;0,D) = 0.

Proof: Define h(z,x) = Xf(z) + (l-X)f(z), A€ [0,1] where f(z) = c for

all zG5. Since fomits the direction c, h(z,X) * 0for all z6 3D and

Xe [0,1]. Since the degree of a constant map is always zero, it follows

from Property 2T that d(f;0,D) = d(f;0,D) =0. *

Property 7: Let fG C(D) where D is symmetric about the origin. If

f(z) = -f(-z) for all z in D, f is called an odd field. If f is an odd

field on D, then d(f;0,D) = an odd integer.

Proof: For simplicity, assume the Jacobian matrix J (z) is nonsingular
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at each z G \> = {z G D: f(z) = 0}. The solutions of f(z) = 0 can be

grouped in pairs (z.,-z.); i = l,2,...,k together with zn = 0. Since f

is an odd field, det Jir(z.) = det J_(-z.). Hence
~f ~i ~f ~i

k

d(f;0,D) = Y, [sgn det J (z )+ sgn det J (-z.)] + sgn det Jf(zn)

= an even integer +1 = an odd integer. •

As an important application of Property 7, we have:

Property 8: Let f G C(D) where D is symmetric about the origin. If

f(z) f(-z)

TT&T *I?0=i)T for a11 ~z e 9D»

i.e., f(z) and f(-z) are both nonzero and do not point in the same

direction, then d(f;0,D) = an odd integer.

Proof: Define h(z,X) = X[f(z) - f(-z)] + (l-X)f(z) = f(z) - Xf(-z);XG[0,1]

By assumption, h(z,X) ^ 0 for all z G 3D and X G [0,1]. By homotopy

invariance, d(f;0,D) =d(h(«,1);0,d). But h(z,l) = f(z) - f(-z) implies

h(«,l) is an odd field, hence according to Property 7, d(f,0,D) = an odd

integer. *

Remark: If d(f;0,D) = an odd integer, then f(z) = 0 has at least one

solution in D. This fact will be applied extensively to network problems

in later sections.

Property 9: Let f G C(D). If d(f;0,D) # 1, then

(i) there exists at least one z G 3D such that f(z) and z are in the

same direction, and

(ii) there exists at least one zf G 3D such that f(z') and z' are in the

opposite directions.

The general case can be proved by invoking (2) and (3) of Def. 1.

-11-



Proof: Observe that if either (i) or (ii) is violated, f will be homotopic

to the identity map on D and hence d(f;0,D) = 1, a contradiction. *

Property 10: (A special case of Hopf theorem.) Let f and f be two

vector fields on B(0,r) = {z G lRn: [Izll <r} such that d(f;0,D) = d(f;0,D).

Then f and f are homotopic over D.

Proof: We will not prove the theorem here. For detailed proof, see [4].

2«2 Index of a Singular Point and Structurally Stable Solutions

Definition 2. Let f G C(D). Let z be a singular point of f in D, i.e.,

f(z) = 0. The singular point z is said to be isolated if there exists a

neighborhood B C D of z such that z is the only singular point of f in B.

The quantity d(f;0,B) is called the index of z.

A singular point z of f in D is said to be structually stable if

for any e > 0, there is a 6 > 0 such that there exists at least one

singular point in the ball B(z,e) for any f 6C(D) such that Uf^-f || < 6.

Property 11: Let f be a vector field on ]Rn with finitely many zeros,

and suppose that the sum of the indices of its zeros is 0. Let B(0,r)

be a ball containing all f (0). Then there exists a continuous vector

field f that has no zeros, yet equal to f on ]Rn\B(0,r).

Proof: We define f in B(0,r) by extending f on 3B(0,r) continuously into

B(0,r) in such a way that f(z) t 0 for all z G B(0,r). The complete

proof is, however, rather involved. For a detailed outline of the proof,

see [5], pp. 146-147. *

Remark: Using a similar method, it is easily shown that if 0 is a singular

point of f with index equal to 0, then we can always find an I such that

?(?) = ?<?)• for a11 z£ mn\B(0,r) and f(z) ^ 0 for all z G B(0,r) where

B(0,r) is a ball in which 0 is the only singular point of f.

Property 12: An isolated singular point is structurally stable if, and

only if, its index is different from zero.

-12-



Proof: (If) This is a direct consequence of the continuity property

of d(f,0,D) in f.

(Only if) Let 0 be an isolated singular point of f such that

d(?»?>B(?>r)) =0where B(0,r) is an open ball in which 0is the only
singular point. Since d(f,0,B(0,r)) =0, we can always find an fsuch

that f(z) = f(z) for all zG ]Rn\B(0,r) and r(z) *0 for all zG B(0,r).

Since fis continuous and r>0can be chosen arbitrarily small, for any

6 >0, there is an f such that Of(z)-f (z)ll < 6 for all zG ]Rn but

f5(z) * 0 for all zG B(0,r(6)) where r(6) >0 depends on 6. Hence 0 is

not structurally stable. *

A structurally stable singular point varies continuously with f. In

view of Property 12, we define:

Definition 3: Let fbe a continuous vector field on ]Rn. A point zG ]Rn

is said to be astructurally stable solution of f(z) =0if, and only if,
the index of z is nonzero.

III. HYBRID ANALYSIS VIA N-PORT FORMULATION

3-1 The Network Equations

In this section we investigate properties of network equations by

hybrid analysis via an n-port formulation. Let J\i be anetwork containing
finitely many nonlinear resistors (coupled or uncoupled to each other),

independent sources and linear dependent sources. Extracting all non

linear resistors and replacing them by ports, the remaining n-port (which

contains only linear resistors, linear controlled sources and independent

sources) is then described by ahybrid n-port representation. This analysis

is particularly suited for networks which contain relatively few nonlinear
elements.
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Theorem 1. [12] A linear n-port N containing only positive linear

resistors and independent sources has a hybrid representation

"-S1 . ("See ?ei! Ye
= S

(where E and I pertain to the voltage ports and current ports, respectively,

and s is a vector accounting for the independent sources) if, and only if,

the voltage ports, together with the internal voltage sources do not form

any loops and the current ports, together with the internal current sources

do not form any cut sets.

Assuming the nonlinear resistor voltages and currents across the ports

are related by associated reference directions, the following properties

?=Lhtr httJof the hybrid matrix H =| |can be easily verified [12].
-IE -II

[PI]. H and H are symmetric, positive semidefinite or positive defi

nite. Nullity of H__ (resp. H__) is equal to the number of independent

cut sets (resp.loops) consisting of voltage and/or current ports only.

tP2l- «EI=-?IE-
[P3]. Elements in H__ and H__, are bounded by 1 in magnitude.

~i£l "LiL

[P4]. It follows from [PI] that H is at least positive semidefinite. It

is positive definite, if, and only if, both H__ and H__ are positive
-EE ~II

definite. In particular, H is positive definite and hence nonsingular if

the ports do not form any loops or cut sets. Otherwise, it may be singular.

Let the constitutive relations of the nonlinear resistors across the

ports be represented by

h= y^E'Vand Yi =Yi^y

Combining these equations with the above hybrid representation, we obtain
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the network equation:

at • \ A

Lyi<ye.!i>J -UiJ - -
a)

In the general case where the n-port N contains also linear controlled

sources, the hybrid n-port representation defined by Eq. (1) can be generated

efficiently in-most cases by topological methods [12-15]. The hybrid

matrix H, however, may or may not satisfy [P1]-[P4].

Example 1: Consider the simple transistor circuit shown in Fig. 1(a).

Replace the transistor by its Ebers-Moll model as shown in Fig. 1(b).

Extracting the diodes as voltage ports and imbedding the linear con

trolled sources within the 2-port N as shown in Fig. 1(c), we obtain a

hybrid representation:

f(v1,v2) =
r •1010xl0"2 -. 9901 -'"~3

-6
-.1980x10 xl°- 1M -xlO JLvJ.1980

.1198x10"

_-. 1369x10"

v /V
In this case, the nonlinear functions :L = i (v ) = I (e -1)

where IQ and VT are constants for k = 1.2 are nonlinear diagonal maps,

i.e., i is a function of v, only.

Example 2: Consider the same circuit in Example 1. Extract each "diode-

controlled source combination" as a voltage port as shown in Fig. 1(d).

The hybrid representation is then given by

-In

15X10"3"1

20*10~3J

= 0.

?(VV =
"VvVl I" i-01*10"3 l.oxio"3*]^") ri.
-VvV-l +L-i-o^o"3 i.oxio""3JLv J"L-i.

= 0,

where i^v^) =i^) -o^v,) and £2(v v>=£(v )_a1( }
ir/\T C K 1A .V'VT

i(v) - IQ(e -1). In this case, the ports are "coupled resistors" and
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the nonlinear functions y.) are no longer diagonal. However, the
hybrid matrix H satisfies all [P1]-[P4],

It is well-known that the nonlinear function [l^-),^')]1 in this
example of transistor models is passive. That is, if i = i (v v )

k k 1 2

then fv1,v2][i1,i2]T >0for all [v^] G1R2.
The preceiding examples show that the extraction of elements as

ports is not unique. For example, consider the subnetworkJU' shown in

Fig. 2(a). We can extract the nonlinear resistor R as a current port.

The characteristic of R as shown in Fig. 2(b) is a c.c. type B two-terminal

resistor. On the other hand, we can consider JU as a 3-terminal element

and pull out terminals 1-3 and 2-3 as two voltage ports. We then replace

J\\ with apair of ports which are "coupled" as shown in Fig. 2(c). In
this particular example, we shall see in Theorem 5 that the constitutive

relations of the ports satisfy an interesting property.

To simplify notations, we frequently do not differentiate the voltage

port variables and the current port variables and simply write z = [v ,i ]T
~E ~I

e ]R . Equation (1) then becomes

f(z) = g(z) + Hz - s = 0 (2)

where g(.) = [i_(.),v_(.)]T.

As is implied by Theorem 1, there exist networks which do not possess

the hybrid representation defined by Eq. (2). A more general representa

tion is given by [8]:

f(z) = H g(z) + Hz - s - 0,
i~ •" ~^~ (3)

where ^ and H2 are constant nxn matrices and z and g(z) are defined as

in Eq. (2).
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3.2 The Existence of Solutions

We now present some useful theorems on the existence of solutions

of Eqs. (1), (2) and (3). As we have remarked in Sec. I, the theory of

the degree of a map will play an important role in the proofs. We will

show that the vector field f is homotopic to an odd field over a symmetric

region D and hence d(f;0,D) is an odd integer. It then follows from

Property 7 in Sec. II that f(z) =0 possesses at least one solution in

D. Furthermore, if the Jacobian matrix J is nonsingular at each solution

then there is an odd number of solutions. All of these solutions are

structurally stable because their indices are either 1 or -1. Thus,

suppose we have already found two solutions z and z? and J (z ) and J (z9)

are both nonsingular, then there is at least one more solution which is

also structurally stable.

Solutions which are not structurally stable are not continuously

dependent of f. A slight perturbation of f may preclude its existence

immediately. For example, consider the tunnel diode circuit shown in

Fig. 3. The network equation is given by

f(v) =i(v) +|-|= 0,

where i(v) is the characteristic of the tunnel diode shown in Fig. 3(b).

Number of solutions of this circuit depends on the values of E and R. For

example, for (E,R) = (E.^) as shown in Fig. 3(c), there are three solu

tions V;L, v2 and v3 with indices 1, -1 and 1 respectively. The degree

d(f,0,[-E1,E1]) = 1 and all solutions are structurally stable. On the

other hand, for (E,R) = (E,^) as shown in Fig. 3(d), there are only

two solutions vj and v^. Solution v^ is not structurally stable because

the index of v^ is zero. The degree d(f ,0,[-E^]) =1, but in this

•17-



case there is only one solution vj which continuously varies with E and

R.

The preceding example and Property 11 of Sec. II show that a solu

tion which is not structurally stable is pathological. Consequently, our

emphasis throughout this paper will be focused on predicting the existence

of one or more structurally stable solutions.

Theorem 2. Let lAJ be a network described by Eq. (2). Assume that

(i) g(#) is eventually passive, and

(ii) the hybrid matrix H is positive definite.

Then Uv has at least one solution. Furthermore, if the Jacobian

matrix is nonsingular at each solution, then there is an odd number of

solutions all of which are structurally stable.

Proof: Define h(z,x) = Xf(z) + (l-X)z, X G [0,1].

T
Premultiplying h(z,X) by z , we obtain

zTh(z,x) = XzTf(z) + (1-X) llzll2 = XzTg(z) + XzTHz - XzTs + (1-X) llzll2 .

Since g(.) is eventually passive, there exists an r- > 0 such that

llzll >r1 implies zg(z) _> 0. Since His positive definite, zTHz _> yNzll2
T T

for some y > 0. Therefore, there is an r > 0 such that z Hz - z s •> 0

for all z, llzll >r2. Let r•= maxfr.. ,r?}, then we have

z h(z,X) > 0 for all z G S(0,r) and X G [0,1].

Hence f is homotopic to the identity map over B(0,r) = {z GlRn;[|z[|< r}.

This implies that d(f;0,B(0,r)) =1and the conclusion follows. *

Corollary 1. Let lA) be a network containing only two-terminal resistors.

If all nonlinear resistors are eventually passive and never form any loops

or cut sets, then the conclusion of Theorem 2 is true.
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Proof: Extract the nonlinear resistors as ports and derive the hybrid

equation Eq. (2). Since the nonlinear resistors do not form any loops

or cut sets, H exists and is positive definite. *

Corollary 2. Let oM be a network containing diodes, transistors, positive

linear resistors and independent voltage and/or current sources. Replace

each transistor by its "passive" Ebers-Moll model [161. Extract all

diodes and each "diode-controlled source combination", as ports as in

Example 2 of Sec. 3.1. If the ports do not form any loops or cut sets,

then the conclusion of Theorem 2 is true.

Proof: By assumption, the hybrid matrix H exists and is positive definite.

On the other hand, since the extracted diodes and transistors are passive,

so is the function g('). "

Example. Consider the flip-flop circuit shown in Fig. (4), where the

transistors are represented by a passive Ebers-Moll circuit model. Upon

open circuiting the capacitors, we obtain a resistive circuit satisfying

the hypotheses of the Corollary. It follows that except for some exact

combination of element values, this circuit must have an odd number of

solutions. Indeed, it is well known that depending on the values of the

resistances, this circuit can have either one or three solutions.

Theorem 3. Let lAI be anetwork described bv Eq. (2). Assume that

(i) g(') is bounded in ]RnT and

(ii) the hybrid matrix H is nonsingular.

Then Jvl has at least one solution. Furthermore, if the Jacobian

matrix_Jj. is nonsingular at each solution, then there is an odd number of

solutions all of which are structurally stable.

Proof: Consider the vector field on ]Rn :
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f(z) = g(z) + Hz - s.

Premultiply f(z) by (Hz)T, we obtain

zTHTf(z) = zTHTg(z) + zTHTHz - zTHTs

T TSince H is nonsingular, there exists a Y > 0 such that z H Hz >_
o

yllzll . Since g(») is bounded in ]R there is an r > 0 such that

zTHTf(z) >0 for all zG S(0,r).

Hence, on the sphere S(0,r), f(z) and f(-z) are both nonzero and do not

point in the same direction. Hence the conclusion follows from Property

8 of Sec. II. •

Remarks. 1. Condition (i) is true if all nonlinear resistors are two-

terminal type B resistors, i.e., the v-i curves saturate and become

bounded both from above and below.

2. Even if the nonlinear resistors are not of type B, we can

often invoke the no-gain property for the nonlinear element [13] and

replace each type U or each type H resistor by a type B resistor such

that their v-i curves coincide within a bounded region which contains the

solutions. This region is obtained by considering the no-gain properties

and the magnitudes of the independent sources. Then as long as H is non-

singular, cAJ has at least one solution. (See Sec. V for an application

to transistor circuits.)

Theorem 4. Let<_AJbe a network described by Eq. (1). Assume that the

nonlinear resistors across the ports are not coupled and that the dc

conductances of all v.c. resistors and the dc resistances of all c.c.

resistors tend to infinity, i.e.,

-20-



lim i (v. )/v, =
I,. I k k k

k G E , and

lim v (i )/i =
Ii 1-k. * * *
1 r

I G I.

Then <Jv has at least one solution. Furthermore, if the Jacobilan

matrix is nonsingular at each solution, then there is an odd number of

solutions all of which are structurally stable.

Proof: First, there exists a y > 0 such that •en -m By

*KIassumption, for any y1 > y there is an r > 0 such that L > r implies

||r£ '-- - -- l,L^11

[j

?E
Furthermore, there exists an r? > r. such that

L*i<-*i>-
are both nonzero and do not point in the

satisfying
•^e"1 rv„n

~Esame direction for all

is arbitrary, the first term in Eq. (1) eventually dominates the remaining
LXU H

_> r . Moreover, since y'

terms. Hence is the principal part of f on S(0,r ). Therefore f

is homotopic to an odd field and the conclusion follows from Property 7

of Sec. II. *

Remarks: 1. This theorem represents a slight generalization of an

existence theorem first proved by Roska and Klimo [18].

2. This theorem obviously remains valid when the limit -h» in

the hypotheses is changed to -<».

Theorem 5. Let Jv be a network described by Eq. (2). Assume that

(i) each component g (z ,z ,...,z ) of g satisfies
J i J. n ~

lim g. (z ,z , ...,z ) = +oo f respectively,
z.->+oo J ± * n

3 -

(ii) there exists an M > 0 and a B > 0 such that
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Iz I>M => zg (z ,... ,z ) >0 1=12 n

and

lzJ <M«* |g.(z ,...,z )| <B
J J J- n

(iii) for each diagonal matrix D = diag (d.) in which d. = 1 or -1 for

eachj., there exists a p6 1n, p>0 such that pTDHD > 0. Then <Jl has

at least one solution. Furthermore, if the Jacobian matrix J is non-

singular at each solution, then there is an odd number of solutions all

of which are structurally stable.

Proof: There are 2n distinct diagonal matrices Dfc in (iii) and we have
to consider at most 2" distinct corresponding p 's. Pick these Pl 's

~Jc „k

and fix them. Let zG ]Rn, ££Dzwhere D =diag (sgn z.) and z =
"Z" -z n

i i i T

UziI»Iz21»•*•»12nI] • Let pz be the corresponding vector such that
T

?z?z??z = °* Consider the quantity

♦<z) =p*D g(z) - |pTD si ,
~Z~Z~ ~ ~z~z~'

since (PzPz)jZj >0for all z *0, j=1,2,...,n, by assumptions (i) and

(ii)' ?z?z?(?) is bounded from below for all zG ]Rn. Since there are

only finitely many distinct p and D ,it follows from assumption (i)

that there exists an r > 0 such that

<Kz) > 0 for all z G S(0,r).

Now consider the vector field

f(z) = g(z) + Hz - s.

Premultiply f(z) by p D , we obtain
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p Df(z) = p^D g(z) + pTD HD z - pTD s > pTD g(z) - pTD s by (iii)
„z~z~ - ~z z~ - ~z~z~~z~ ~z~z ~z~z* ~ Cz~z~

>_ <{>(z) > 0 for all z G S(0,r)

T
Similarly, -p D f(-z) > <J>(-z) > 0, for all z G S(0,r). Therefore, f(z)

and f(-z) are both nonzero and do not point in the same direction for all

zG S(0,r). Hence, the conclusion follows from Property 8 in Sec. II. *

Remarks: 1. Conditions (i) and (ii) are satisfied by many practical

circuit. For example, consider the two-port shown in Fig. 2(c). Since

by KVL

v.-tanh(i.+il)

ii=^ r ,] [1 J° 1.2
j

where i' = i2 if j = 1 and i' =±1 if j = 2, it is easy to see that

lim ^-;(vi»vo) = +f° respectively, and
v ->-+» J x z
J -

'Vj' >1^Vjij(vl,V2) >°' and

Ivjl £1=> lij^.v^l <^- j=1,2.

2- Both positive semi-definite matrices and diagonally dominant

matrices satisfy condition (iii). [6,9].

Example. Let Jvl be a network containing only two-terminal nonlinear and

positive linear resistors and independent sources. Let all nonlinear

resistors be grounded and let lAI be described by aconductance representation

f(v) = g(v) + Gv - s = 0, where g(v) is the constitutive relation of all

nonlinear resistors considered as voltage ports and G is the conductance

matrix. If all nonlinear resistors are of type U, then the conclusion

of Theorem 5 is true. Notice that in this case G is diagonally dominant.
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Before we present the next theorem, let us first introduce a special

class of matrices.

Definition 4. An nxn matrix A is said to belong to "the class P " if A

satisfies one of the following equivalent conditions:

(i) All principal minors of A are nonnegative.

(ii) To each xG m , x$ 0; there exists an index k such that x^ f 0

3X16 \^\ 2. °* (In Particular, a±i >0, i=1,2,... ,n.)

(iii) To each x G 3R , x t 0; there exists a diagonal matrix D > 0 such
~ " n ~x -

that <x,D x> > 0 and <Ax,D x) > 0, where <x,y> = £x.y..
~x ~ - - ~x~ "* - . i j i

j=l
(iv) Every real eigenvalue of A and of each principal submatrix of A is

nonnegative.

(v) For each diagonal matrix D > 0, det(A+D) ^ 0.

Properties of PQ matrices have been discussed in detail in [6] and [7]

Theorem 6. Let J\j be a network described by Eq. (2). Assume that (i) for

eacn k > 0, there exists a constant (which may depend on K) M > 0 such that

lzj I>M °* ^gj (z) >0and |g (z) |>Kfor all j=1,2,... ,n.
(ii) the hybrid matrix H G p

ThenyJV)has at least one solution. Furthermore, if the Jacobian

matrix Jc is nonsingular at each solution, then there is an odd number of

solutions all of which are structurally stable.

Proof: As in the previous theorem, we prove that on a sphere S(0,r) with

r sufficiently large, f(z) f 0 and f(z) and f(-z) do not point in the same

direction. To simplify the notation, we will prove the theorem for the

case n=2 and 3. The same procedure applies, mutatis mutandis, for the

general case. Consider first n=2 and consider the vector field associated

with Eq. (2):

•g1(z1,z2)-|

!<zrz2} =
L^l'V-

"hll h12~

Lh21 h22J

zi

-V

-

"si~

Ls2J
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(k)
Define the constants M; , j = 1,2; k =1,2 as follows:

(1) According to assumption (i), for each j = 1,2, there exists a con

stant M. > 0 such that
3

z.g.(z) >0 and |g.(z)| > Is. I for all Iz.l >M?1* '.

(2) Since H G P , h.. _> 0. For each j = 1,2, there exists a constant

M:2) >M^ such that

(1)|gj(z)+hjjZj|- |h |.Mj"

(2)for all |z.I > M:

Let r =max{M^', j= 1,2}. Consider f(z) on the sphere S(0,r)

Since H G PQ, by (ii) of Def. 4, there exists at least one component of

zG S(0,r), say z2» z2 # 0 and z (Hz) _> 0. There are two possibilities:
(1)(a) |z2| _> M2 . In this case, by (1)

|g2(z) + (Hz)2| > |g2(z)| > |s2|.

Hence, f(z) and f(-z) are both nonzero and do not point in the same

direction since their second components are nonzero and assume opposite

signs.

(b) |z2| <M^ '. In this case |z |=r>M^2). By (2)

r(2) ,

> |s. |, where SL £ j

(1)
81(?} + hllZl + h12Z2l ^ ISl(z) + hll2ll " lhl2l#M2 > s ll-

Hence, f(z) and f(-z) are both nonzero and do not point in the same

direction since now their first components are nonzero and assume opposite

signs. In any case, f(z) # 0, f(z) and f(-z) never point in the same

direction on S(0,r).
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We now present the proof for the case n=3 in greater detail because

the same procedure can be readily extended to the general case. Define
(k)the constant Mj \ j=1,2,3 and k=1,2,3 successively as follows:

(1) By assumption (i), for each j = 1,2,3, there exists a constant M(1) > 0
j

such that

zg (z) >0 and |g (z)| > |s.|, for all |z I>M(1) .
JJ J "* 1 3 3

(2) By assumptions (i) and (ii), for each j = 1,2,3, there exists

stant M:2) >M^ such that
3 ~ J

a con

|g.(z)| >[|s |+max|h l-M^nfor all Iz.l >M(2) .J 3 ^j 3* * •j1 - j

(3) Similarly, for each j = 1,2,3, there exists a constant M(3) >M(2)
3 ~ 3

such that

l8j<?>l >fKI + £ K.|-mJ2)], for all Iz.l >M<3) .
J oWi 3 3 ' ~ 3

Now consider f(z) on the sphere S(0,r) where r =maxCMp^j = 1,2,3},

Since HG PQ, there is at least one component of z, say z ^ 0 and

Z3(9Z)3 .> 0. There are two possibilities:

(a) |z3| >M^1^ Then, by (1) we obtain

|g3(z) + (Hz)3| > |g3(z)| > |s3|.

Hence f3(z)f3(-z) < 0.

(b) |z3| <M3 . Then consider the subsystem:

Let zf =[z1,z2]T and H' =[hn h12J .
21 "22
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Again, since the submatrix H1 of H is also in P , there is at least one

component of z', say z + 0 and z^H'z'^ >• 0. Again there are two cases:

(*') |z2| >M22>- ^ <2> >

|g2(z') +(H'z')2l >|g2(z,)| >US2I +lh23l*4)3^ [IS2I +I^N^U

Hence f„(z)f„(-z) < 0.

(b*) |z |<M2 . Then |z |=r>MJ3). Consider the subsystem

fx(z) = g]L(z) + hnZl + (h12z2+h13z3-Sl)

By (3), we obtain

|g;L(z) +h^zj > |gl(zJ | >[|Sl| +£ I^J-Mf>]
&^1

Hence f (z)f (-z) < 0. Therefore, the conclusion is true for n=3.

(k) (k+1) (k)
Now, for the general case, define M; > 0, M. >_ M. ; j = 1,2,

...,n, k = l,2,...,n as follows:

k-1

IzJ >M(k) => |g (z)| >[|s |+max £ |h |-M^""J
J J J J m=l J m m

£ G{l,2,..,n}

m V

where it is understood that there is no summation sign for k-1. By the

same procedure we can prove that f(z) f 0 and f(z) and f(-z) do not point

in the same direction for all z G S(0,r), where r = max{M. }. •

As a special case of Theorem 6, we have

Corollary 3. Let (JVI be a network described by Eq. (2). Assume that

(i) g(*) is diagonal and each component g,(z.) oi_ g is of type U, and
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(ii) HG PQ.

Then the conclusion of Theorem 6 is true.

To illustrate the application of the preceding results, we now

present two well-known results in the form of examples and give a new

and simple proof for each.

Example 1. Let lAJ be a network containing strictly increasing, type U,

uncoupled resistors and independent sources. Pick a treeXJ and the cor

responding co-tree iSi. Then the fundamental loop matrix6 B=[lyy»B,/f]
and the network equation is given by

ir,Wi) I Iu -4*

U7

where [j,e] is the source vector and the nonlinear functions !,*(•) and

Yu»(*) are type U diagonal maps. Hence condition (i) of the corollary

is satisfied. On the other hand, since a skew-symmetric matrix is always

positive semidefinite and hence belongs to P , condition (ii) of the pre

ceding corollary is also satisfied. It follows from the uniqueness

property of monotone networks (Theorem 10) that there exists exactly one

solution and this solution is structurally stable.

Example 2. Suppose now that the resistors are strictly increasing but are

not necessarily of type U. Let each nonlinear resistor R, be defined within

a"box" |vj _< Vfc and |ifc| <_ Ifc, where V and I, are any pre-specified

maximum voltage and current bounds. If the resistors are passive and if

each independent current (resp. voltage) source is connected in c_AI via

soldering-iron (resp. pliers) entry, then as long as the magnitudes of

the sources are small enough, lA) has at least one structurally stable

We number the branches in ^l first. 1^ denotes an identity matrix.
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solution.

Proof: Since all current sources are connected via soldering-iron entries,

we can apply the i-shift and the nonlinear Norton's theorems to transform

the current sources into equivalent voltage sources in series with passive

nonlinear resistors [19] as long as their magnitudes are small enough.

For example, a current source I in parallel with a resistor R character

ized by v = v (i ), as shown in Fig. 5(a) is equivalent to a voltage

source E = v (I) in series with a passive nonlinear resistor R^ charac

terized by iE =iE(vE) = {v (vg+Vjd)) - 1} as long as |l| is small enough

so that there exists a nontrivial range for v in which v (v_,+v (I)) is

well-defined. It is easy to see that !„(•) is passive and strictly
E

increasing. Hence, there is no loss of generality in our assuming that

all sources are independent voltage sources. Since the resistors are

passive, the no-gain property holds. Hence there exists a constant C.

such that as long as the sum of the magnitudes of the voltage sources

is less than C , the solution (if it exists) of each resistor R, will

fall within its range |v,| <_ V, . Similarly, there exists a constant C?

such that as long as the sum of the magnitudes of the current sources is

less than C„, the solution (if it exists) of each resistor R, will fall

within its range |i,| <_ I, . Assume the sources satisfy these conditions.

Now, if we extend the characteristic of each resistor beyond the box

'vkJ — Vk* '"St' — *k kv a strictly increasing type U function, we have

not perturbed any solution (if it exists). But by example 1 the new

circuit has at least one structurally stable solution. Therefore, so

does lAJ. *

For an alternative proof of example 2, see [13]. The bounds we

obtained, however, are more flexible.
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Remark: Condition (iii) in Theorem 5 defines a subclass of P matrices

by the following lemma.

Lemma 1. Let HG ]Rnxn. If for each D = diag (d ), d = +1, there
3 j -

exists apG]Rn, p>0such that pTDHD ^ 0, then HGP.

Proof: We prove that for any diagonal matrix E > 0, det(H+E) ^ 0. Then

by (v) of Def. 3, HG PQ. Suppose H£PQ. Let Ef >0be adiagonal

matrix such that det(H+E') = 0. Hence there exists a z G ]Rn, z^O

such that (H+E*)z = 0. Since z = D z, we have HD z + E'D z = 0. By
~ ~ ~ ~z~ „„z.. „ „z,. ... j

assumption, there is a p >0 such that pTD HD >0. Hence we obtain
- ~z~~z =

pD HD i+ pDE'Dz = 0. But pTD HD z >0and pTD E'D z= pTE'z >0.
„ ~^~~^~ ~ ~z~ ~z~ - ~z~~z~ — *• ~Z" "Z~ c ~ ~

Hence, we have a contradiction and det(H+E) ^ 0. *

Remark: The class of matrices A such that there exists an x ^ 0, x # 0

for which Ax ^ 0 is called SQ [6]. If AG S and no submatrix of A

obtained by omitting at least one column belongs to S0, then A is said

to be in class M. It can be shown that any matrix in the set Pn H M

satisfies condition (iii) of Theorem 5. For example, any matrix — also

known as an M-matrix — having non-positive off-diagonal elements and

whose inverse matrix has only non-negative elements belongs to the class

P0 nM [2].

In case the network contains also type H and type B nonlinar

resistors, the following theorem is a generalization of Theorem 3 and a

special case of Theorem 5.

Definition 5: Let g: 1R -*- ]Rn be a nonlinear diagonal map. The set^R(g)

is defined as ^(g) = {z G mn: ||g(nz)|| _< M <« as n-*• °°}. It is evident
n

thatcB(g)= nI is a product of intervals where I. = {0} for all kG U,
k=l K k

Ik = [0,») for all kG H and Ifc = (-«,«) for all kG B.

Theorem 7. Let Uv be a network described by Eq. (2). Assume that
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(i) g(#) is diagonal and all components g.(z.) of g are eventually

passive,

(ii) for each D = diag (d.) where d. = +1 or -1, there exists a p G 1R ,

T
p > 0 such that p DHD >. 0, and

(iii)^B(g) n o\|(H) = 0, where (A1(H) is the null space of H; i.e., the

zero vector is the only point in common.

Then Q\\ has at least one solution. Furthermore, if the Jacobian

matrix J_ is nonsingular at each solution, then there is an odd number

of solutions all of which are structurally stable.

Proof: Consider the vector field

f(z) = g(z) +Hz-s = g(z) + HD z - s.
~- ~~ ...... „ _ -.~z~

For each zG lRn, let pz >e=[2,2,...,2]T be avector in Hn such that
T
PZ?2?PZ L °» Since p is determined only by D , there are finitely many

Pz's we have to consider. Choose these p fs and fix them. Premultiply
T

f(z) by p D , we obtain
- ~ ..Z..Z

pD f(z) = pTD g(z) + pTD HD z - pTD s.
.vZ-z.. ~ ~z.z° ^ ~z~z—z~ Tz^z-

Since all g.(')'s are eventually passive, by an argument similar to that

used in the proof of Theorem 5, there exists an r > 0 such that

Pzpzf(z) >0 for all zgQI (4)

where ^U = {z G ]R : there exists at least one component z., Iz.l > r

for some jGUor z. <-t± for some jGH}.7 Evidently Ql O^R(g) =<}».

Here H means type H (half-bounded) resistors, not the hybrid matrix H.
See Fig. 6 for a geometrical interpretation of the set QJ.
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It follows from 33(g) nJ(H) =0and the fact that CR(g) = nI and

^\|(H) is a subspace of IRn that there is an r > 0 such that ||z|| > r

and zeJ(H) => ze^|. (See Appendix (1) for adetailed proof.) Let

r3 >max{rlfr2}, then JVI(H) nS(0,r3) CQj. Let^ {z G]Rn: ẑ } be
the complement of QJ. Then there is ay>0such that zTHTHz > y II zll2

for all zgQ( nS(0,r3). The quantity udepends on r^ Since _Af(H) is
a subspace of ]Rn, y= u(r ) is an increasing function of r with

J 3

lim H=" =inf{zTHTHz: zGCB(g) OS(0,1)}. (See Appendix (2).) The
r3^ -
sets -((, -U, 45(§) andc_AI(H) are shown in Fig. 6 for the two dimensional

case where gx is of type U and g is of type H.

Now let M = inf{z H g(z)}, clearly M > - «,. Consider the vector

field f(z) on-M, premultiplying f(z) by zTHT, we obtain

zTHTf(z) = zTHTg(z) + zTHTHz - zTHTs.

T T
Since z H g(z) >_ M > - «>, there exists an r, > r0 such that

- - - - 4—3

mm —

z? f(z) >0 for all zG Qi O S(0,r ). (5)

Claim: There is an r > 0 such that f(z) jt 0 and f(z) and f(-z) do not

point in the same direction for all z G S(0,r).

Proof: Let r >_ r^, consider f(z) on S(0,r). There are three cases:

(i) zgQA and -z£^( : By Eq. (4), both pTD f(z) >0and -pTD f(-z) >0
~z~z~ ~ ~z~z~ -

and hence the claim is true.

(ii) zgQJ and -z gQJ: By Eq. (5), both zTHTf(z) >0and -zTHTf(-z) >0
and hence the claim is true.

(iii) zgQJ and -zgQJ: In this case, consider
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LllzXH

mm m

m z H + p D
in " t.z~z

1 T„T 1 T„T,
?(z) =TF ??§(z) +PzDzg(z) +~TT" 2??z

"? ? H ~ " llz H II

and

+?z?z??z? -7TT- ?V- -p^V
z H II ~z~z~

1 T T T
~¥T~ z ? + P7P
I? H || z~z

f(-z) =
T T

lz H I

T T

-5 Hg(-z) -PzDzg(-z)

1 T T T
+ —t~t~ ? H Hz + p D HD z + — zTHTs + nTn q (i\

ll*THTn "" -z~z~~z~ „ T T z ~ - P7^s* (7'«z ? H z H || ~z z

1 T„T

(6)

In Eq. (6), since every term on the right-hand side is bounded except
(l/llzTHT[|)zTHTHz >ullzll and p^HDj >0, there exists an r5 >r^ such
that llzll >r5 implies [(l/llzTHT||)zTHT +p^]f(5) >0. In Eq. (7), since

4 TPz >5- [2,2,...,2) and the components of gare eventually passive,
there is an r^ >r,_ such that llzll >rg implies

-?,?.«<-«> >7TY- f|-zY§(-z)| +|zTHTs|}+ |pTD s|.||z H || I- - - - ' ') Ifz-z-l

This inequality is true because the last two terms on the right-hand

side are bounded by aconstant, and the coefficient of each component
of g(-2) in the first term is less than one in magnitude. Hence, we
have

-[ 1 T T T
T T z H + p D
•LuAn ~ ~ ~z~z H z-z

f(-z) > 0.

Hence, let r= r$ and the claim is true. Therefore, the conclusion of
Theorem 7 follows from Property 8 in Sec. II. «

Theorem^: Let JV be anetwork described by Eq. (2). Assume that
(i) the function g(z) =[g^),^), g^)]* satisfies
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(a) there exists an M > 0 and a B > 0 such that

Izj| >M=*z g (Zy) >0,

lzj| ^M => IgjCz^l <B,

and

lim g (z ) = + oo respectively, for all j G U.
Z.-h+oo J ~u
J -

(b) #H^~H^ is diagonal and eventually passive and each component

g^(z.) is of type H.
-3 -3

(c) gTJ(z_) is bounded in ]Rn and eventually passive.
-ii ~ti :—•—— — . . »

(ii) conditions (ii) and (iii) of Theorem 7 are satisfied.

Then ^JVI has at least one solution. Furthermore, if the Jacobian

matrix Jf is nonsingular at each solution, then there is an odd number

of solutions all of which are structurally stable.

Proof: Similar to that given for Theorem 7.

Theorem 8 can be further generalized to the case described by Eq. (3);

namely, networks described by equations of the form H.g(z) + Hz - s = 0.

Theorem 9: Let Uvl be a network described by Eq. (3). Assume that

(i) condition (i) of Theorem 8 is satisfied.

(^ for each ? = diag(d ) where d. = +1, there exists a pG IRn, p _> 0,

such that pTDH D >, 0, p DH D^ 0 and pTD(H +H )D > 0.

(iii) ^R(g) nJU(H2) =0.

Then the conclusion for Theorem 8 holds.

Proof: This proof requires only a minor modification of that given for

Theorem 7 and is therefore omitted.

Remarks: 1. As a special case of practical interest, a pair of matrices
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m

(Q1»92^ is called a passive pair if H x = H y => x y > 0. A passive

pair (H1?H2) satisfies condition (ii) of Theorem 9 [7]. Passive pairs

occur in many practical situations. For example, consider the network

equation f(y) = H^y) + H2y -s= 0. Setting s=0 by nullifying all

independent sources, we obtain H^y) =IJ2(-y). The pair (H ,H )being
Ta passive pair then implies £ (y)y < 0. Since the reference current

direction is assumed leaving the ports, the "sourceless" n-port cannot

deliver positive power to the external nonlinear resistors connected

across the ports.

2. Let us partition z=[z^z^Zg] and g=[g^g^gg] as in

Theorem 8. Partition the columns of any compatible matrix A accordingly,
U H B

i.e., A = [A ,A ,A ]. The following lemma is an obvious observation:

LemmaJZ: Consider anetwork Jll described by Eq. (3). Assume gsatisfies

condition (i) of Theorem 8. Then o\l has at least one solution for any_

s G ]R only if the column vectors of the augmented rectangular matrix
U H

^?1*?1*?2^ sPans the space lRn. i.e.,

spang£,h^,h2) =mn.

Proof: Suppose SPAN(H^,H^,H2) ^]Rn. Let sG]Rn, s*0such that
—T U H
? [Hj^.iy = 0. Then for any s= ns, nG ]R, we obtain sT[H g(z) +

—T B 2—T—

?2? ~ ?^ = n? ?i§b^B^ ~ n??* Since gB is bounded, there is
an M < oo such that

—T B

|s ^ggCZg)! <M for all z•.

Therefore there is an nQ such that
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for all s= ns, |n| > n0- That is, Eq. (3) does not have asolution for

any s= ns, |n| > nQ. *

This observation provides a simple check for the necessary conditions

for the existence of solutions.

(iii) In view of Theorems 7,8,9 and Lemma 2, we conclude that if (H ,H )

is apassive pair and if 33(g) nJ^H )=0, then SPAN(H?,H*H„) =]Rn.
Let us prove this fact in the following lemma.8

Lemma_J3: Consider Eq. (3). If (H^iy is apassive pair and if

^R(g) huW(H2) =0, then SPAN (H^hJ,^) =]Rn.
Proof: First, since [0,0,zB]T G^g) for any zR and since^B(g) ncAI(H^)
- 0, it follows that the columns of H2 are linearly independent. Let

T T T

x= [xu,XH,9J >y= txU>XH'VB] where ^'^h^ * 9' then ?y>°- since
Q?l»l?2* ls a Passive Palr, H x + H y ^ 0. Thus,

(Bl+H^^U +Oi+?2)5h +?2?B *?'

for any [x^] *0. If [x^] =0, then since H^ is of full rank,

?2?B ^ - for any ?B ^ ? and the above inequality is still true. This

proves that (H^ +h", h" +h!J, H*} is aset of linearly independent
vectors. Hence SPAN(hJ+H^,H^,H^) =]Rn=> SPAN(h",H^,H2) =]Rn. •
Remark: The following observations follow directly from Lemma 3 and can

be used to check whether the conditioning) n u\f(H ) can be satisfied.

1. If H2 is not of full rank, then 33(g) nJv(H0) t 0.
,U „H2. If SPAN(HvUvn2) t 1R but (H^H.,) is a passive pair then

^(g) nJll(H2) * Q.
Example: Consider the simple circuit shown in Fig. 7. Assume R and R

—

We prove this fact since it helps us to understand the structure of
33(g) H^H ).
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are c.c. but R2 is v.c. The network equation is given by

1 0
—^

1

0 1 0

0 1 0^.

w

Lv3(i3)J

0 0 0"
r— —<

h
r— —\

E

0 0 0
V2

- -I

J-l o 1_ Li3J _o_

= 0.

If the circuit has at least one solution for any input, then it follows

from Lemma 2 and Remark 1 that R cannot be a type B resistor, and R
^ 1

and R3 cannot both be type B. It follows also from Remark 2 that the

two resistors belonging to either {Rj^} or {R ,1^} cannot both be

type B.

3.3 The Uniqueness of Solutions

A resistive network is said to be monotone if all its resistors

are monotone (necessarily 2-terminal, by definition) resistors. Many

monotone networks have unique solutions. As we remarked in Sec. I, any

monotone resistor can be replaced by a combination of an independent

source and a passive resistor.

9

Theorem 10: [8] Consider a network described by Eq. (2). If (i) g

is diagonal and each component g.(z.) is strictly increasing, and (ii)

«e V

then f(z) = 0 can have at most one solution

Proof: Suppose there are two solutions z* and z". Then we have

g(z') - g(z") = IKz'^z') .

Since HG PQ, there exists an index j such that (z"-z'). # 0 and that

(H(z"-z'))j and (z"-zt)i are of the same sign. But then g.(zV) - g.(z!)
g * -~— — "3 ~3 "3 ~3
Theorems 10 and 11 are proved by Sandberg and Willson. We give here a
simpler proof using the ideas developed in the preceding sections.
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and Zj ~ Z\ would be of °PP°site sign, contradicting the fact that g.

is strictly increasing. *

Theorem 11: [8] Consider a network described by Eq. (3). Assume that

(i) § is diagonal and each component g.(z.) is strictly increasing,

(ii) For each D = diag(d ), d = +1, there exists a p G ]Rn, p>0 such

that pDHjD ^0, pDiy) >0and pTD(H1+H2)D >0. Then iA( can have at most
one solution.

Proof: Let zf and z" be solutions. Then we have

H1(g(zl)-g(zn)) + H0(z'-z") =0.

Without loss of generality, assume all nonlinear resistors are passive,

we obtain H D(g(z,)-g(z")) + HJKz'-z") = 0, where D = diag(sgn(z!-z7))
j. \~ -. ~ ~ / ~z- ~~ - ~ \ 3 3'

and the bar denotes taking the absolute value of each component of the

vector indicated. By (ii), there exists ap>0such that pTDH D^0,
T TP P52p ^ 0 and p DOLj+H^D > 0. But this contradicts the identity

pipH1p(g(z,)-g(z")) +piDH2D(z,-z") =0. «

The following theorems are due to Sandberg and Willson [8,9].

Theorem 12: Let lA) be a network described by Eq. (2). Assume that g

is diagonal and each component of g is strictly increasing and of type

U_. Then lAI has aunique solution for any gand sif, and only if, HG Pn,

Proof: (If) Implied by Corollary 3, Theorem 6 and Theorem 10.

(Only If) By constructing counterexamples, see [9]. *

Theorem 13: Let lAI be a network described by Eq. (3). Assume that

(i) g is diagonal and each component of g is strictly increasing,

(ii) For each D = diag(d.), d = +1, there exists a pG 3Rn, p _> 0

such that pTDH-D >. 0, p^H-D >. 0 and pTD(H.+H0)D > 0.
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Then Uv has a unique solution for any g and s if, and only if,

33(g) nJU(H2) =0.

Proof: (If) Implied by Theorem 9 and Theorem 11.

(Only If) By constructing counterexamples, see [8]. •

3.4 Boundedness and Continuous Dependence of Solutions

All solutions discussed in Sec. 3.2 and 3.3 are bounded because

in the proofs we actually constructed the "bounding spheres" S(0,r).

As to the continuous dependence of the solution on the parameters of

the network, we have:

Theorem 14: The solutions discussed in Theorems 12 and 13 depend con

tinuously on the function f (and hence the parameters of the network).

Proof: Since the solutions are unique, their indices are equal to 1.

By Property 11 of Sec. II, they are continuous functions of f. *

IV. THE HYBRID ANALYSIS BY TOPOLOGICAL FORMULATION

4.1 The Network Equations

In this section we derive the network equations by topological

formulation. For simplicity, let us first assume that there are no

controlled sources. Each branch in o\l is considered as a composite

branch as shown in Fig. 8. A composite branch is said to be v.c. (or

c.c.) if the resistor is v.c. (or c.c). Let us choose a special tree

~J by picking first a subtree rj C uTcontaining as many v.c. resistors

as possible. The remaining set §L of v.c. resistors then necessarily

form loops with branches in TjL and must therefore form a part of the

cotree y.. The c.c. resistors are partitioned into 9J and ^ such

that rj^ U u2 =rj and i^L U y>2 = ^L. Any tree constructed by this

algorithm will henceforth be referred to as a hybrid tree. The fundamental
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loop matrix B with respect to this hybrid tree can then be partitioned

as follows:

Wi "^1*2 ~*tfl
B =

~£i01^2

*"T2 Tl ^2J2

a2 gr, a

where B^ g ~ Qy ff because each branch in S£, forms a fundamental loop
1 2 VI 1

with branches in ^ only. If follows from this property that each

branch in rJ2 forms afundamental cut set with branches in St

Let the resistors be characterized by

i<5f = iy(vv) and vv = v^(i^)

VVV and ^"W1

only.

where the i and y are diagonal maps. Substituting the branch character

istics into the KCL and KVL constraints, we obtain

^"'ViV*1 and V54J2H +l2-
and the network equation:

'l 2

uVl

T

2 1

0

T

Vi
\j (-V-r v-/+e )

0 B

*V2J L ^2 2 2 2

r-

r-in

\ +
2

W e

-40-
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k k
where j and e , k = 1,2 are related to sources and are defined by

i1 ""^+ -\^+ ?ViH and ~2 =̂ 2 ~^iK
1 , « ,2

*1 Vl Jl 4 XT*!3! ~4J2~J2

The above equation can be generalized to allow couplings between

the nonlinear resistors belonging to ^ and 9L, and between the non
linear resistors belonging to Sl and (31; namely,

VH(y^' and y*2 •Vv4^

•^"-^W and H" ^v^ty-

The corresponding network equation now takes the form

0 -B* .

_ ^2Jl

-&^> a 0

'*ft
0 B

eCnVr

r 1 1

yJi
+

3

y

LKj
e

1— —

= 0 .

1 -T

Remarks: 1. Note that since v a = -B-;£ ?X^ Y'f + e » lf we multiply
T T

^yi 1 ^l ^2 1
, we obtain

T „T 1,T^

WftS-V -[\ - ]Vw-

-41-
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Similarly> H^2%2<^.%2>= l%' nV^-V
2. By definition, [iy (0,yw (•)] is eventually passive with

respect to [e ,j2] if

lxT .2,T.[(v^-ex)\ (ij-j >]
"iy (v^ ,1* )

1 ~n. "J2
> 0

whenever ||[v^ ,ij ]f| >K for some K<». it is easy to see that if |
1 2 *"*n

and y^ are diagonal maps, then eventual passivity implies eventual
. . i o

passivity with respect to any [e ,j ].

4.2 The Existence of Solutions

Theorem 15: Let ^Al be anetwork described by Eq. (8). Assume that

(i)

i< (v^ ,iy)~JX -J± ~*2
T T

limfv,/ ,iy ]
p-xx, ~JX ~*2 Yy (Y^ »iy)

u ^2 Jl *2

= «, where p = || [v^ ,iy>]!l.
-J1 -^

(ii) fiy »Y/r ] is eventually passive with respect to [e ,j2].

Then Jyl has at least one solution. Furthermore, if the Jacobian matrix

^f is nonsingular at each solution, then there is an odd number of solutions

all of which are structurally stable.

Proof: Define the homotopy h(v ,i^> ,X) by

*4J
5?(Yf »i^ »*) = Af(v . ,i^) + (1-A)

Jl <*2 ~ ^l V*2

T ,TPremultiply h(v ,iy ,A) by [V/i ,i£ ], we obtain
Jl ~*2 ~^1 "^2

1\%]*\>%>X) =A(s1+s2+s3) +(1-A)

-42-

[0,1]

^



u A r T .T ,
where s- = [v^ ,l^; J

rl/f -i

•i

i" ^W li
<~2

s2= *(~y ~~ * ' (% "~ ^ ^

T .Tand s3 = [y^ ,0 ]
.1

2
Le J

^1(V/^2)
V^ (Vy ,1^ ) j
~\>2 ~^1 "^2

1 .2Now since [iy? ,Vw ] is eventually passive with respect to [e ,j ],

there exists an M > -«• such that s„ > M for all [y^ jiy?]* Bv Schwarz

12inequality, |s | <_ ell [y^ »i/M where c = || [j ,e ][|. Let K1 > c be a

given constant, then there is an r1 > 0 such that || [v^ ,iy ]|| > r' =*•

KMI[v. ,i^ ]ll > M + c|| [v^ ,0]||. According to (i), there exists an
"°1 ~*2 ^1 ~*2

r > r1 such that II [v^ ,i^]ll > r => s1 > K1. Consider h(v^ ,iy,,A) on
i - ~JX ~^2

the sphere S(0,r), we then have

[vj ,i£ My^ ,i^, ,A) =x£Sj +(1-A)
12 1 2 3=1

> A K'

-4

-M-c
^

l+U-A)
%

1 2

l%\

> 0 , for all A G [0,1].

Therefore f(vw ,i/) ^ 0 and is homotopic to the identity map on
" ~J1 ~*2

S(0,r). Hence the conclusion follows. *

Corollary: Let Jv be a network described by Eq. (8). Assume that

(i) All resistors are uncoupled and eventually passive, and

(ii) the resistors in ^J and ^U are of type U.

Then lAJ has at least one solution for any set of independent sources
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Furthermore, if the Jacobian matrix is nonsingular at each solution,

then there is an odd number of solutions all of which are structurally

stable.

Remark: Condition (ii) of the corollary is satisfied if there exists

a tree (resp. cotree) consisting of v.c. (resp. c.c.) type U resistors

only. For in this case, we simply choose \J (resp. Sl.) to be the

empty set.

We now consider a more complicated case where both type H and type

B resistors are present. For simplicity, let us assume first that all

resistors are two-terminal, uncoupled resistors. Let us recast the

network equation in the

where

f°™ !^.^) -§<Y^> +̂ ] +|X]
*4

§y ^ Yrr (By /r j j +1 )
*2^2J L J2 2*2 *2 "

A
g =

Yy (iy )
<*2 <*2 .

r T

"?Vi 9
0

is the nonlinear part of f and

.0 -B/ h '
"rri

A =

V*A 9

is a skew-symmetric matrix. Furthermore, let us define

2 T

Definition 5: The set ^(g) is defined by ^(g) - {[v. ,iy ] :
~°1 ~*2

DgCnCvw ,iy ))ll < m < oo as n •* »}. The set^B(gf) is defined in a
Jl *2

similar fashion.

In general, ^(g) ^^(g1)- However, we can state:

Lemma 4: If all resistors in oM are eventually passive, then ^B(g) =^B(g')
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Proof:Itisclearthat^B(g')c^(g).Toprovethat33(g)C^(g1),

supposethecontrary.Thenthereexistsav^suchthat

11iy("By/(nyw)+el(l+«,but[J-By>i/(-B,^(nv^)+e)[|<M<oo

asn•*°°.R.ecallingRemark1,premultiply-By,/i.,(-Bjst(nv/rHe1)
T^l^l~*1^1*Vl-

byv^,andnotethat-By*^y^=y/-e,weobtain

asn-*•°°.

Sinceallresistorsareeventuallypassive,eachterminthe

summationwillbenonnegativewhennissufficientlylarge.Butby
ii"11

assumption,IIiy(n(Vy-e)+e)B->»asn->«>,andtheabovesummation
*1*1~~

cannotbeboundedbyanyconstant.Hencewehaveacontradiction.*

Let[yj,i^]=z=[z^z^,...,zn]TGlRn,thentheset^g1)=
12n

B1OB2nB3.ThesetB±=II1^whereIfc={0}forallkGU,I=[0,»)
K—1

forallkGH,andIfc=(-«,«,)forallkGB.ThesetBrepresentsan

intersectionofhyperplanesdefinedbylinearequations,forexample;

("vf4\~Cf=°where(~j{\isatypeUresistor.1:LThesetB
representstheintersectionofhalfspacesdefinedbylinearinequalities,

for--T
example:(B^^m-al-°where%^misatypeHresistor-

Theorem16:LetJv)beanetworkdescribedbyEq.(8).Assumethat

(i)allresistorsareuncoupledandeventuallypassive,and

(ii)^B(g)rv^M(A)=0,where(Al(A)isthenullspaceofA.Then

Orifthereexistsaniy,thenweconsiderv4(B^^i-+j2)
11,xA~**~J2-*T>1-*1" (~?^m)=the£-throwof-B.,v.

<*1^1I"^/l
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J\\ has at least one solution for any independent sources. Furthermore,

if the Jacobian matrix Jf is nonsingular at each solution, then there

is an odd number of solutions all of which are structurally stable.

Proof: Consider the vector field f(y^ >iy). Premultiply f by
m «p 1 z

[y i , iy ], we obtain

+/• .ZN1* /j \ i T .1 , .T 2(i^ -3 ) v. (i^ ) + v ^ j + iye
V2 ~ ~v2 ~\/2 - C -j ~ -<^o ^

T .T T ,1 . .T 2
Y-r ,:Ly ls(vw- ,iy) + v^ j + iye .

Since all resistors are uncoupled and eventually passive (i.e., each

T 1 T 2term above is bounded from below, except v-y i and iye ), for any
1 2~

[yj »i/] ^4?(g); n[yj ,i-£]f[n(y^ »iy)] >0and can be arbitrarily
large whenever n > 0 is sufficiently large. Now consider the set ^fi(g).

Let e>0be afixed constant, define ^6 (g) - {z G lRn: d(z,^B(g)) <_ e}

where d(z£R(g)) = inf{||z-zf [|: z1 G^g)}. Because of the structure of

^(g) =(:B(g,) and the fact that ^B(g) nv_Af(A) = 0, by a similar proof

as that in Theorem 7, it can be shown that there exists an r > 0 such

that CfJ (g) n S(0,r) and ^l(A) n S(0,r) are disjoint for any r > r..
e ~ ~ — 1

Let [yj ,iy] G^e(g) nS(0,r), r >r^ premultiply f by ^[y^ ,iy ]AT,
where p ^ (| [v^ ,iy ]H? we obtain

•VIT1
."Xo.

. 1, T .1 .T 2.
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Since^£(g)nS(0,r)isdisjointfromu\|(A)nS(0,r),there

existsau>0suchthat^|aMiI>J~^l||forall[v,iy]G
rUy-JIIHi^J|~$1~*2

*22~*2

^o£(g)nS(0,r).Furthermore,uisanincreasingfunctionofr.(The

proofissimilartothatgiveninAppendix2.)Noticethatsince

g(v^,iy)isbounded.byaconstantforall[vY,i</>]e^B(g)»thereisan
-"Jj."<^212e~

r2-r!suchthatr>r2implies^[yj,i£]ATf(v^,iy)>0forall
p12~^1"A2

[Yj'*/]Gv"Tt(?)ns(?»r)-Ontheotherhand,sincen[y^.j]>]J[n(yw>iy)]

canbearibtrarilylargebyincreasingnforany[V//,iy]$^T>(g),there

existsanr3>r2suchthat[vj^]f>0forall[yj,iy]GS(0,r)\]^.(g)
foranyr>_r.

Claim:Thereexistsanrfl>_rsuchthatf(v^,iy)40andf(v^,i^)
--ox~*2-^^

andf(_(yj'^VdonotPointinthesamedirectionforall

I^1'^les(-°'ro)-
Proof:Letr>_r3andconsiderf(y^,iy)onS(0,r).Therearethree
cases:

(1)[^'-/]̂S(?,r)XQ^tfand"tyj>*/1eS(0,r)\Cg£(g)
Inthiscase,both[yj,i£]f(y^fO)>0and-[yj,iL]f(-(y^,1^-))>0.

(ii)[yJ'~X]es(?,r)nC^e(l)and-^4/]eS(0,r)n^£(g).
Inthiscase,both£[y^,i£lATf(y^,i^)>0and-I[vJ,ij^(-(yj,iy)) XZ.J.^/

>0.Hencetheclaimistrue.

(iii)[y^,iy]GS(0,r)\Cg£(g)and-K/,iy]GS(0,r)n^g).
Premultiplyf(v,i^)by[vjj,i^]+£[yt,i£]AT,weobtain

T.T,_,_lrTT,T

-8(-x,v2)+fMl2+^(^1^/> •V2-2
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T .TNotice that [y:j ,it> ]A

obtain

= 0 because A is skew symmetric. Since

1 T T T
all resistors are eventually passive and since —[vrv»iy]A is bounded

P ~Ji ~*S ~^ J- *-m m

(p = II [yu ,iy ]ll), there exists an r, >_ r_ such that {[vy,iy] +

p[yj »iy ]AT) f(y^ ,i^) >0for all [y^ ,iy] GS(0,r)\^(g), r >r4-
/ f T T 1 T T T lSimilarly, premultiply f(-(v^ ,iy )) by -Uyw ,i^] +^"[y^ >i£lA Kwe

-HfiV+i[yV^1**}f("(^i^))

_ £±1
P

[T .1 T 2

^5J-

Since the resistors are

is bounded from below and since

T T / \eventually passive, -[yx ,iy]gf-(y^ >iyOj

g(-(vx »iy)) is bounded for

all -[v^ ,i/ ]G S(0,r) fl^R (g), there exists an r_ >_ r. such that
~Jl ~<A2 e ~ 3 4

-|[vj ,iy]+£[yj ,i£ ]AT|f(-(y^ ,iy )) >0for all -[yj ,i^] GS(0,r) n
^o(g), r _> r,.. Hence, the claim is proved upon choosing rn = r_. The

conclusion follows from Property 8 of Sec. II. •

Since there are no controlled sources, condition (ii) of Theorem 16

can be checked by the following topological conditions [10]:

Lemma 5: Let Jv be a network satisfying the following conditions:

(i) Every loop of c.c. resistors either contains a type U resistor

or else it contains at least two type H resistors which are not similarly

directed.

12
Two type H resistors are similarly directed if their reference direc

tions both agree or disagree with the orientation of the loop.
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(ii) Eyery cut set of v.c. resistors either contains a type U resistor

or else it contains at least two type H resistors which are not similarly

directed.

Then^R(g') nJU(A) = 0.

Proof: This important observation is proved in [10] by Desoer and Wu.

Remark: Recall that ^R(g) =^R(gf) if all resistors are uncoupled and

eventually passive.

Theorem 16 can be generalized to networks containing coupled

resistors:

Corollary 4: Let U\\ be a network described by Eq. (8) and let y(z) =

[yu(?u}' ^H^B^1-
(i) Let z = [y^ ,iy ]and y = [f^ >y/]. Let the function y satisfy

following equations:

(a) there exists an M > 0 and a B > 0 such that

|2j| >M^y^) >0, |z |<M=> |y^ (Zy)|<B, and

lim y (z ) = + oo respectively, for all j G U.
z.-*-f°° **

3 ~

(b) ^(^jj) is diagonal and eventually passive, each component

y.(z ) is of type H.

(c) yR(zR) is bounded and eventually passive.

(ii) Let z' = [vy ,ix ] and y* = [lyr,V// ]. Assume that there exi
~*1 "J2 ~ ~*1 "J2

M* > 0 and B* > 0 such that each component y! of y' satisfies the

condition

|z'| > M' => z'y'(z!) > 0 and |z!| <_ M* =• |y!(z')| < B'.
J J J J 3 ~

exist
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Then the conclusion of Theorem 16 holds.

Proof: Same as the proof for Theorem 16. Notice that condition (ii)

insures ^B(g) =(:B(gf). *

4.3 The Uniqueness of Solutions

It is well known that many monotone networks have unique solutions,

The following lemma can be proved by Tellegen's theorem. [11]

Lemma_6: Let lAI be anetwork described by Eq. (8). Assume that all

resistors are strictly increasing. Then if uM has a solution, it is

unique.

The following theorem is due to Desoer and Wu [11]:

Theorem 17: Let uW be a network described by Eq. (8). Assume that

(i) All resistors are uncoupled and strictly increasing,

(ii) The topological conditions in Lemma 5 are satisfied.

ThemJl) has a unique solution for any independent sources.

Proof: (If) Implied by Theorem 16, Lemma 5 and Lemma 6.

(Only if) By constructing counterexamples, see [11].

4.4 Boundedness and Continuous Dependence of Solutions

All solutions predicted from the preceding theorems and lemmas are

bounded since we actually constructed the bounding spheres S(0,r). As

to the continuous dependence of the solution on the parameters of the

network, we have

Theorem 18: The solution of Eq. (8) in Theorem 17 depends continuously

on the function f (and hence the parameters of the network).

Proof: See the proof of Theorem 14.
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V. THE BOUNDING REGION OF SOLUTIONS

5.1 The Bounds on the Solutions

It is often pointed out that most iterative methods, e.g., the

Newton-Raphson method, for finding the solutions of nonlinear algebraic

equations converge only when the initial guess is sufficiently close to

the solution. The hybrid analysis via n-port formulation suggests a

natural and easy way to find a region which contains the solutions.

This method is best illustrated by the following example.

Example: Consider the simple transistor circuit and its Ebers-Moll

model shown in Fig. 1(c). The equations obtained via an n-port formula

tion of the circuit are given by

ao" 5,

=10 5,!(iri2) =

v1(i1)'| Tl.OxlO3 5.0xl04l pL,! T-5
-WJ + I1-05'10 5.1xl0AJ [i, J [ 7
v./V,
j' 'T ,, ., - t-1

= 0

where i.(v.) = In(e J -1) and v. = i. . It follows from Corollary 2
J J 0 3 3

of Theorem 2 and Theorem 10 that this circuit has a unique solution.

Let us now find a region which contains the solution. The Ebers-Moll

model represents a no-gain element [12]. Hence |v, | _< 5 + 12 = 17 v,

and |ifc| <(5/105) +(12/103) =1.21 x10_2A, k=1,2. Thus the solution
*

[i4J must be in the set D as shown in Fig. 9(a).

On the other hand, if we redefine v, (i, ) as shown in Fig. 9(b), the

new circuit will have the same solution. Retaining the same notation

for v,, let us rewrite the network equation in the form

few -
Ly2(il'i2)j

+ 1.04,i2) = 0

where
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i(il'12) =

3 _...„4,.. . _5
1.0x10 5.0x10

ii ii

+t1.0x10 5.1X104, .* 7

is the affine part and the v fs are redefined functions. The image of

Tany [i.^,^] under f is the image L(i ,i2) superimposed by the image of
A. T

[v-,v9] . Let us consider first the action of the affine map L(i1,i„).
x i. - 1 2

Consider the set of points lying on the straight line y = 17 in the

y.-y9 plane. The inverse image of this line under L, denoted by L (y =17)

is also a straight line in the i-,-i2 plane. That is, any [i ,i ]G

L (y1=17) will be mapped into the y-,-y2 plane with y = 17. Similarly,

we find L~ (y^-17), L"1(y2=17) and L"1(y2=-17). Thus we have found a
parallelogram D2 bounded by L~ (y1=+17) and L""1(y2=+17) in the ij-^ plane

A 2which is mapped by L into a square Q = {y G ]R : [|y|| = 17} in the y,-y~

plane. Now let us consider the whole function f on the boundary of D?.

To be specific, consider i(±l9±2) on L~ (y1=17). The function £has
-i

two parts: the affine part L maps L (y1=17) into the line y. = 17 and

the nonlinear part [v..,v«] which maps L (y =17) into a curve superimposed on

top of the line y± = 17. However, since |v |_< 17, the total image

?V~ (y1=17)j will be a curve which never crosses the y_ =0 axis.

Similarly, |(l (y^-17)) and f(if (y2=+17)) will be curves which never
.cross y2 = 0 and y1 = 0 axes, respectively. In other words, f maps the

boundary of D2 into a closed curve in the y;,-y2 plane which contains the

origin. See Fig. 9(c). That is, the parallelogram D contains the

solution [i^i^ . But D^ also contains the solution. Consequently,

the intersection Dx O D2 will give us a less conservative region which

contains the solution. Observe that D O D as shown in Fig. 9(d) is

much smaller than either D_ or D., and any point within this region
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will provide a fairly good initial guess for the solution of the

circuit.

Knowing that the solution is contained in D- H D« we can proceed

further to modify the characteristics of the nonlinear resistors

according to the new constraints imposed by D C\ D . In this example,

however, this step is unnecessary since for [i.,i2] GD. O D2 the con

straints remain the same, i.e., |v.(i.)| _< 17, j = 1,2.

For the general cases, the following algorithm can be used to find

a point close to the solutions:

Let the network equation be given by

f(z) =

g1(z1)

g2(z2) + L(z) = 0

*n'(zn>

where L denotes an affine map.

Step 1: Find bounds for each variable z, with the help of the no-gain

property [13] or other techniques. Hence z^ < z, £ z, .
I u

Step 2: Modify the characteristics g, (z, ) as in the preceding example

in accordance with the bounds on z. , thus we obtain
k

(i)
kM^k Xv '~' -L • ^ • • * • • n

The set D n D is then described by

h(D < T * w .(1)

z(1) < z < z(1) k - 1 9\ 1 zk 2. \ k - l,z,...,n,
i u

where L, is the k-th component of L,
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(2) (2)Step 3: Find "improved" bounds z^ and z^ on the components of all
I U

z in D. fl D. by solving the following associated linear programming

problem [19]:

Find max z, and min z,

subject to -b\ _< L, ,(z) <^ b, , , z.t < z.,_< z, , ; kf = l,2,...,n;

for all k = l,2,...,n.

Step 4: Modify the characteristics g, (z, ) in accordance with the bounds

(2) (2)z^ and z^ on z, , thus we obtain
I u

|gk(zk)| lb^2) , k=l,2,...,n.

Set M = 0.

Step 5: For each k, if b£2) <b^, set M=1. Set b^ =\ >
z<X) =zf>and ^ =z<2), k=l,2,...,n.
kn k0 k k
* * u u

Step 6: If M = 1, go to Step 3, else, go to Step 7.

Step 7: Solve the following associated linear programming problem:

Final a feasible solution z

subject to -b^1) <Lk(z) <b^, z^ <zfc <z*1*; k=l,2,...,n.
If there is no feasible solution, the network U\\ does not have a

solution.

The feasible solution z/ ' will provide a good initial guess for

some iterative method for finding the exact solutions.

5.2 The Operating Range

The maximum power rating of all devices imposes a physical con

straint on the maximum permissible range of their operating branch

voltages or currents. Let lAI be a network containing two-terminal

resistors and independent sources. Assume that each resistor R in lAI
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is characterized by v. = v.(i.) with a maximum operating current

li.l < M. < oo, or i. = i.(v.) with a maximum operating voltage
1 J1 J 3 3 3

|v. | < M, < °°; j = l,2,...,b, where b is the number of branches in J\j.

The Cartesian product of the operating ranges of the resistors, e.g.,

II B. will henceforth be referred to as the operating range of cjvl. It
j=l J
is an important design problem to determine a region S in the space of

independent sources so that the solutions of lA) corresponding to any

set of points in S will fall within the operating range of Uv). In [13]

Wu presented a method for finding bounds on the independent sources

but the estimate is usually too conservative to be useful. In this

final section, we will present a different approach based upon the

proof of Theorem 6 in Sec. III. We will use the following two examples

to illustrate our method.

Example 1: Consider the linear circuit shown in Fig. 10(a). Assume

R = 4K, R = IK. Determine a region S in the E-I plane so that

(E,I) €= s ensures that the solution falls within the operating range

defined by |i. |_< 10~3A, j= 1,2.

Since the circuit is linear, superposition is valid. By considering

E and I separately, we obtain

= £ I + ^ E| <1 and |ij = |4 I-tE| <1

where E is in volts and I in mA. The above inequalities then define a

region S shown in Fig. 10(b). In the linear case, the set S is the

"maximal set" in the sense that any (E,I) ^ S will force the solution

to fall outside of the operating range of J\k The generalization of

the above technique to more complicated linear circuits is obvious.

For nonlinear circuits, however, the maximal set S is extremely
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difficult (if not impossible) to determine, and only a subset of the

maximal region can usually be found. Since a nonlinear function is

generally not odd symmetric (f(z) $ -f(-z)), we must fix both the

locations and the polarities of the independent sources before

investigating the operating range.

Example 2: Consider the nonlinear circuit shown in Fig. 11(a). Find a

region S in the E-I plane such that any (E,I) G S insures that the

solution satisfies the following constraint:

-3v1| < .6V. and |i2| <1xio"JA.

The network equation of the circuit is given by

-I

f(vri2) =
Ri„ : :if -E

rW
Ri,

+ Hz +
-E

= 0

(9)

where z = [v-»L„] . Notice that H is skew-symmetric and hence H G Pft.

The operating ranges of the resistors define a rectangle D in the z-plane,

Considering f as a vector field defined on D, let us find a region S so

that (E,I) G S implies that f(z) ^ 0 and f(z) and f(-z) will not point

in the same direction for all z G 3D. This then insures that f(z) = 0

has a solution in D. We shall show that either f-(z)f-(-z) < 0 or

f2(z)f2(-z) < 0 for all z G 3D.

(i) Since H G P , there exists a z,, say z. = z- = v-, z, f 0 and

13
(Hz) z >_ 0. It is easily seen from Eq. (9) that f,(z)fA-z) < 0 if

13
That is, i (v.) -1^0 and has the same sign as v-.
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(v )[i (v ) - I] > 0. Thus we obtain the condition

v± <0 or v1 >i^U) =M*X) (10)

(ii) Similarly, if z, = z = i then f_(z)f-(-z) < 0 if

i2 <0 or i2 >|=M<2) . (11)

(iii) Now, suppose (i) is true but (10) does not hold. Consider f«(z)

(1)= Ri - v- - E, 0 <v < M^ . In order to have f (z)f2(-z) <0 we

require i«f« > 0. This then implies:

BHL(1)
i« < 0 or i„ >
"2 2 R

Thus, |i2| >-jj =* f2(z)f2(-z) <0. By assumption, |i |<1x10 JA,

Therefore we obtain the inequality

E+",(1)
p < 1 x 10

or

E+i^(I) <1. (12)

(iv) Suppose (ii) is true but Eq. (11) does not hold. Consider f (z)

(1)= ii(v0+ i2 - I, 0 < i < M2 . In order to have f. (z)f (-z) < 0, we

require v f > 0. This is satisfied if:

Pi^i
Lno mo

Mv,) <I-M<1} if I-M^1} <0
(1)

more restriction if I - M. < 0.

(13)

--1 (1)or, v± > 0 =*v±> ±1 (I) = M^ ' (same as (10).)

Since ^(v^ >10*"12A for V;L >.6V, we obtain, from (13), that I-M*1*
>-10"12 and M;[1) <.6, or
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I-I>-10 12 and I"1(I) <.6 (14)

Inequalities (12) and (14) then define a region S in the E-I plane

as shown in Fig. 11(b). The solution of the circuit corresponding to

any "input" (E,I) G S will fall within the operating range of the cir

cuit. Any point not in S may or may not give rise to a (v ,i«) in the
JL, M

operating range. For example, p = (.7,.15) £ S makes |v | > .6V.

This technique can be applied to more complicated circuits. The

degree of success, however, usually depends upon the individual problems.

VI. CONCLUDING REMARKS

In this paper we have applied the degree theory to the analysis of

a large class of resistive nonlinear networks. In particular, we study

the structure of the network equations by homotopy of odd fields. The

form of network equations (both via the n-port and topological formula

tions), together with some circuit-theoretic conditions, such as eventual

passivity, forma network function which is homotopic to an odd field.

This is a natural consequence of the fact that both KCL and KVL are

linear constraints and that eventual passivity is implied by odd functions.

Thus the degree theory provides a fairly general and unified approach

for analyzing a large class of practical networks. All theorems in this

paper, although applying to different cases, deal with the homotopy classes

of odd fields. Even though most known results can be proved easily by

this unified approach we only mentioned a few in the paper because many

other results are rather special cases from this point of view.

We would like to point out that insofar as the existence of solutions

is concerned, the concept of eventual passivity is much more basic than

the so-called eventual increasingness. Many known results, such as those
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by Sandberg and Willson [7,8,9,13] and Desoer and Wu [11], deal with

strictly monotone increasing nonlinear elements first and then extend

to cases including eventually strictly increasing nonlinearities. The

lengthy proofs of these theorems are basically analytical in nature and

therefore do not reveal a clear picture of the geometric structure of

the vector fields associated with the network equations. As a result,

most of these theorems are confined to eventually increasing networks

and cannot be extended easily to networks containing nonlinear coupled

elements.

Since most theorems on the existence of solutions are sufficient

conditions, it is important to realize the great flexibility in formulating

the network equation. For example, consider the Ebers-Moll model of a

transistor. We can either extract the diodes in the model to obtain two

type H, uncoupled nonlinear resistors, or treat the whole transistor as

a passive three-terminal element. In many cases, a proper choice of

the ports and the network variables enables us to assert the existence

of solutions immediately by inspection.

Some applications to the problem of finding bounding regions of

solutions are also discussed in this paper. The method presented in

Sec. 5.1 is particularly suited for practical transistor circuits where

each transistor is either forward or reverse biased. Standard techniques

from linear programming, such as parametric programming and sensitivity

analysis [20], can thus be readily adopted to the design of nonlinear

networks.

-59-



APPENDIX

(1) (Proof for the existence of r .) Let us partition z= [z ,z ,z ]
~ ~U "H ~B

where each component Zj of z^ corresponds to type Xresistors for

X=U, Hand B. Partition the columns of H= [HU,HH,HB] accordingly.

Thus J|(H) =(z G]Rn:n\ +*\ +HB?B =0}. Let z-[0,zR,zB] *0
with zR > 0, then zG^R(g). Since ^R(g) n<_AI(H) = 0, Hz * 0. Hence,

we have HHzR +HBzfi *0for all [zR,zB] *0, zR >0. Therefore, there
exists an a>0such that ||HHzR +HBzB[| >ct|)[zR,zB] [| for all [z^] *0,
zR >0. Let C± =supdlH11^ +HHzR|| :O^.z^ll <r^, obviously c <«>.
Now, let z=[Zy,^,^] gQI, write zR =zRt +zR„ where ?Rt <0,
llzHi 0J$ r and z > 0. Consider

H 1 ~H" ~

fl?5« ="9% +HH,zRt +HH"zR„ +HBzbII >|all[zH,zB]|| - CjJ .

Let r2>max{C1/a,r }, then for any z GQJ, ||z|| >r9 => (l[zu,z 1|| >r =>
<t ~H **B 2

HHzll ^ 0. That is, z£lAI(H). *

(2) (Property of u.) The quantity ucan be defined as y(r.) =Qj

inf{zTHTHz :zGCP(r3)}where ^(r^ =the radial projection of
-U nS(0,r3) onto the unit sphere S(0,1). Since the boundary of Qj

consists of hyperplanes with constant coordinates +r , the set ^(r ) is

a decreasing function of r , i.e., ^(r!) C ^(r") if rl > r". On the
J J 3 3 3

other hand, it is easy to see that lim ^(r )=^(g) n S(0,1). Hence
r -*» "
3

y(r3) increases with r3 and lim y(r3) =uQ =inf{zTHTHz :zG^R(g) OS(0,1)}. *
r -h»
3
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FIGURE CAPTIONS

Fig. 1 An example illustrating the extraction of nonlinear resistors

as ports.

Fig. 2 An example illustrating the various techniques for creating

an appropriate set of external ports.

Fig. 3 An example showing the structurally stable and unstable solutions

Fig. 4 A flip-flop circuit.

Fig. 5 Equivalence between voltage and current sources.

Fig. 6 A geometrical interpretation of the sets ^U (hatched region),

CU (unhatched region), ando\f(H) in the two-dimensional case.

The function g^ is of type U and the function g2 is of type H.

Fig. 7 A nonlinear network.

Fig. 8 A composite branch.

Fig. 9 The bounding region of solutions.

(a) The set D obtained by the no-gain property.

(b) Modification of g..

(c) The affine map L.

(d) The set D n D .

Fig. 10 An example for illustrating the operating range of a linear

network, (a) The linear circuit, (b) The operating range for

the circuit in (a) with |i. | _< 1mA, j = 1,2.

Fig. 11 An example for illustrating the operating range of a nonlinear

network.

(a) The nonlinear circuit, (b) The operting range for the circuit

in (a) with |v1| <0.6V and |i |<1 mA.
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