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ABSTRACT

This paper presents an adaptive precision method based on cubic splines and

a new scalarization procedure, which constructs approximations to the surface of

noninferior points. It is particularly well suited for the two or three criteria

optimization problems, but it can also be used to some extent for high dimensional

problems. An important aspect of this method is that it is quite efficient, since

it computes no more points than necessary to ensure a prescribed level of precision

of approximation.

I. INTRODUCTION

In the past few years, a new scalarization method for computing noninferior

points for a multiple criteria decision problem has been presented independently by

several researchers [9], [19J, [13J. Unlike the earlier characterizations which were

based on convex combinations of the criteria, see for example [5], [1], this method

does not depend on convexity. However, while a major obstacle has thus been removed,

the cost of computing a single noninferior point is still quite high, since it

requires that an associated constrained optimization problem be solved. Conse

quently, we cannot entertain the idea of computing very large numbers of noninferior

points, but must, somehow, make do with a relatively small number. In this paper,

we present an algorithm (derived from the one in [13]) which constructs an economical

grid of noninferior points to be used in conjunction with an interpolation scheme in

the value space. The algorithm is specifically designed for the bicriteria case,

but it can also be used in higher dimensional situations.

II. CHARACTERIZATION OF NONINFERIOR POINTS

The algorithm we shall present in Sec. Ill is specialized to the two and three

criteria case, with equality and inequality type constraints. Nevertheless it is

useful to first consider the multicriteria optimization problem in greater gener

ality. Thus, we assume that we are given a closed constraint set ft C It , a



continuously differentiable vector criterion function f:mn- RB, and a partial

order in IRm. defined by y± <y2 if (componentwise) yj <y*. i-1,2,...,m. When
yl = y2 but yl * y2 we 8ha11 denote this fact by y <y . Now, let

v={y e mm|y e f(x), xen}, (1)

be the set of possible values, and for any y € ]Rm let

N(y) - (y'lx'i y> (2)

be the "negative cone at y."

Then, the multicriteria decision problem consists of constructing the following two
t

sets: (i) the set of noninferior (Pareto optimal) values

VN ° {y € v|N(y) O V= {y}} . (3)

and the set of noninferior (Pareto optimal) points

f^ = {xG fl|f(x) € VN> (4)

Now, let f :]Rn -»• TB?'1 be defined by

f(x) &(f1(x),f2(x),...,fm"1(x))T (5)

where the f , i «= 1,2,...,m-1, are the first m-1 components of the vector criterion

function f, and let

Y- {y G It*"1 |Q O {x|f(x) <y} t <{,} (6)

We now define the sensitivity function s : Y -*• TR by

s(y) = min{fm(x)|x G «,f(x) < y} (7)

Note that this sensitivity function is quite similar the one defined by Geoffrion

[7]. We shall denote the graph of s by r, i.e.

r«{yeira|y= (y\ym),y e Y,ym = s(y)} (8)

Our algorithm is based on the following properties of T.
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Proposition 1; The set of noninferior values, V , is contained in T, the graph of

a<*>.

Proof: First, note that an alternative characterization of s(') is

s(y) » min{y,m|y' G V,y'< y) (9)

Now suppose that y» (y,ym) GVN> but y£r(i.e. ym 4 s(y)). Then from (9), there
exists a y» = (y' ,y,m) GV such that y' <yand y,m » s(y) <y\ But this implies

that y* ± y, which contradicts our assumption that yG VN« Hence, VN C T. n

Theorem 1: A point y » (y,ym) G T is a noninferior value if and only if yG V and y

is a strong global minimizer for (9), i.e.

V - r k {y o (y,ym) e rnV|ym - s(y) < y,m Vy» G Vn N(y) }
N 0

(10)

Proof; => First, recall that by Proposition 1, VN C TO V. Now suppose that yG VN,

but y $ r . Then there exists a y1 G V n N(y) such that y' < y . Since this

contradicts our assumption that yGV ,we conclude that V^ is contained in rQ.

*» Now suppose that yG Tfl, but y£V . Then there must exist a y' G V such that

17* <y. But by definition of rQ, ym <y'° for all y' GVHN(y) and hence we have

ja contradiction. Consequently, T is contained in V„. a

Corollary; A point x G fi is noninferior if and only if it is a global minimizer of

(7), for y- f(x), satisfying f^x) < fm(x') for all x' G a such that f(x') < f(x). n

The following result is obvious.

Proposition 2; The sensitivity function s(«) is monotonically decreasing, i.e.

y1 >y implies that s(y') _< s(y). n

We can now extract a more specialized characterization of points in V^, as

follows.

Theorem 2; Suppose that s(*) is piecewise continuously differentiable. If y G V is

such that yG V and Vs(y) < 0, then yGV^ n

In words, theorem 2 states that V„ contains all the points of T where the slope
N

is strictly negative. In fact, it is not difficult to see that the difference

between V and the subset of T of nonzero slope points is a set of zero measure,
N

when s(») is piecewise continuously differentiable.
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The following result, stated without proof, follows directly from the properties

of differentiable manifolds and from the standard results on sensitivity to para- •

meters (see Luenberger [10, p. 236]).

Theorem 3; Suppose that the criterion function f(.) is twice continuously differ

entiable, that

fl - {x G ]Rn |g(x) » 0, h(x) < 0}
(ID

with g ; m11-*- m*, h : Rn-»- mP twice continuously differentiable, and that for all

y G Y, the set

^ »{x GIRn |g(x) »0, h(x) < 0, f(x) <y} (12)

satisfies the Kuhn-Tucker constraint qualification [3]. Furthermore, let x(y)e Q-

be such that s(y) = fm(x(y)). Then s(«) is differentiable at every point y where

x(-) is differentiable and Vs(y) = -A(y), where X(y) >0isa Kuhn-Tucker multiplier,

i.e., it satisfies

-*m(x(y)) +̂ ^Uv) +̂ ^-\G) +̂ ^ *<?> -0 (13)

<X(y),f(y) >- 0 . (14)

for some ^(y)Gm£, y(y)>0in3Rp, with ^(y),h(x(y))> 0. n

We can expect x(y) to be differentiable at points y where the minimizer x(y) is

unique. Thus, at such a point, when we compute s(y), not only do we compute a point

on T, but we also get the slope of T, provided we use a minimization algorithm which

produces the multiplier A(y) as well as x(y) and s(y). Thus, we need to use an

algorithm of the penalty function type [6], or a dual method of feasible directions,

such as [13, which automatically compute the required multiplier.

An indication of when x(y) is a unique minimizer can be deduced from Theorem 1

as follows.

Corollary 1; Suppose that y= (y,ym) G VN and for any two
x',xM G {x G fl|f(x) » y} fm(x') * Ax"), then the minimizer x(y) of (7) is unique.

Proof; By assumption, for all x'G <x Gfl|f(x) »y}, fm(x') *fm(x(y)), hence fm(x')
> fm(x(y)). Next, by Theorem 1, for any x« G Q such that f(x') < y, we must have
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a(y) = fm(x(y)) < f^x'). Hence x(y) is unique. a

In fact, it can be shown that s(«) is piecewise continuously differentiable under

fairly weak assumptions, though it is not simple to do it since it is a highly non-

trivial exercise in differential geometry. The interested reader is referred to [20],

[21]t for a presentation of available results. In this paper, we shall simply assume

that s(») is several times piecewise continuously differentiable.

Now, when computing s(y) by solving (7), we may, in fact, find a local minimum

and not a global one. We must therefore establish the relation of local minimizers

of (7) to the Pareto optimal set. For this purpose we define a point yG V to be a

locally noninferior value if there exists a neighborhood B of y such that N(y) H BO

V = {y}. Next, we define a point xG fl to be a locally noninferior point if f(x) is

a locally noninferior value.

The following result can be proved in an analogous manner to theorem 1 and its

corollary.

Theorem 4; A point y G V is a locally noninferior value if and only if it is a

strong local minimizer for (9). Furthermore, a point x G fl is locally noninferior

if and only if it is a local minimizer.for (7), with y= f(x), and f^x) <f (x') for

all x* G B n fl such that f(x') < f(x), where B is some neighborhood of x. n

Thu8,when we solve (7) for any y G Y and get an x which is a local or global
* *minimizer, we are sure that x is at least locally noninferior if f(x ) « y and second

order sufficiency conditions of optimality are satisfied at x .

III. INTERPOLATION OF Y

Let us now restrict ourselves to the case with $2 as in (11) and all functions at

least five times differentiable. Also we assume that the assumptions in [21] are
12 1

satisfied, where m = 2, i.e. to the bicriteria case. Then y - (y ,y ), so that y « y

and r is a piecewise continuously differentiable curve. As we have already explained,

when we compute two points on r,(yj,s(y*)), (y^.sfr*)),we also obtain the derivatives
s(y*) and s(yj) in the process. Therefore, it is natural to interpolate such points

by means of Hermite cubic polynomials [8]. Thus, given vj»vk in Y» ^t*1 sj c s*yj*»

s ° s(yh , s* « a' (yb, s' =sMy1), the Hermite interpolating cubic is defined
k k j j k k

by
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H^Ny1)
/ X Xv .

<y -yk) 2(y-yt)
1 1

( 1 l>
(yj - V

t 1 1%2(y -y^)

+8k «W
, 1 lw 1 1.2
(y -y,)(y -y.)

8' 1 1.2(yryk) + 8k

<y* - A' j
l -

,11,1 1x2(y yk)(y -y.,)
/ i 1x2(yryk)

(15)

Assuming that s(-) is four times continuously differentiable on [yj.yj], the inter-
J k

polation error is bounded [see [8]),

|8(yl) "Hj,k(yl)l^ dAs(n)
d(y')4

(y^yV^yVl^l^
3 |d(y'r (yj"yk)4 (16)

for some nG [y.,ykJ.

To make use of formula (16) so as to determine whether H. .(•) is a sufficiently
J »k

good approximation to s(.) over the interval [y.,y. ], we need to know the number
a J k

d s(n)

\(yh
j- , or at least to have a reasonable estimate of it. To compute such an

estimate, we propose the following simple scheme which should be adequate for our

purpose. Given three points y < y ,. < y ., we shall assume that for all y G

r 1 ! i
rn"n+2

^U*l8<yn+i> "Va^^Vf*2^^
d(yx)

(17)

If we now interpolate between the points y , y ,«, we can expect that (see (16)) for
n n*rZ

allyle[yn1'ynV23'

l8(yl) " Hn,n+2<y L, , 1 1 1 , A*l8(yn+1) -"n^Wl 1, 1 1,4)l <e(yn'yn+ryn+2) =71—1,2,1 1 ,2 i^n-KrV
(yn+ryn} ^"W

1x4
l8^Vl>--Hn.n+2<yn+l>l<yn+2-yn>

A(yn+ryi)2(yn+2-yi+l)2
(18)

1 1Note that if we now interpolate by means of H .(•) on [y ,y ..] and H +2^*^

on [y_4.i»y +2^» the error will be substantially smaller than e(y ,y +i»yn+2^* In
1 1, 1. 1

2(yn+W
be seen from (16). Thus, if we assume that

1* .. , I. ,11max 1s u
L-. 1 1 .

y

1_
16

max ^ Isfr1) - H^^Or1)! <e^.y^.y^
rn+l"n+2
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"ax IsCyS-H^^y1)! <e(y^1(y;+2) (19b)

ve are being conservative.

The interpolation algorithm which we shall present in the next section con

structs an economical grid y.,y_,...,y in Y such that e(y »y^.-i»y +2) <. E» where E

is the desired precision for the interpolation of T, by means of Hermite cubics, and

such that H' Ay ) <_ 0 for all y G[y ,y .], n = 1,2,...,N, since, as we have

shown in the preceding section, s'(y ) £ 0 for almost all y G Y.

IV. AN ALGORITHM FOR THE TWO CRITERIA CASE

The algorithm below requires two pieces of data: E, the desired precision for

interpolation , and 6 G (0,1] which serves as a fudge factor for deciding the

tentative step length Ay , as follows. First, suppose that the points y^yo***^

are equispaced, i.e., y . - y « Ay n ° 1,2,...,N-1. Then, by (18) and (16) for

some K > 0

e0 ke<WW^> " *l8<4l> " H„,*«(Vl>l - K<^>' »»
If we now change the spacing between points to Ay., then the corresponding error

bound

ex «= K(AyJ)4, (21)

assuming that we are still using the same bound as on the fourth derivative of s(*)*

Hence, if we want to choose an economical step size Ay., we should make e. = E, so

that

/ 1\4
(22)

eo eo Wi/iyG

which leads to

Ay1 =AyJ =AyJ(E/e0)1/4 (23)

Since our spacing is not uniform and since the fourth derivative will vary, further

tests to ensure the desired level of precision are necessary. These are incorporated
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in the algorithm below, laid out in terms of five blocks: Initialization, Error

check, Monotonicity check, Grid refinement, Grid continuation.

1 2
Interpolation Algorithm: (Two criteria f , f )

Data; E, 0 < 6 < 1, 0 < Ay . < Ay . '•
— 'min ymax

(Initialization)

Step 1; Compute

ymin "ninf^OOl* S0}, (24)

x G arg min{f2(x) xG «} (25)

ymm =mln{fl(x)lxen} 'ymax °fl(x*> (26)

Y- [y\ .y1 ]. (27)
l,,min,"'maxJ

Step 2; Set y* =y^ +(J-DAymin» Ja i*2*3- Set n=1, k-3.
Comment: k is the number of points at which evaluations have been performed and is

an index used to avoid duplication of computations when the grid is refined.

Step 3: Compute s(yb, s*(yh and x(y*) Garg min{f2(x)|x G ft, f(x) <. y^} for
j - 2,3.

(Error check)

Step 4: If y , - y < Ay . , go to step 11; else, compute the error bound
*•• n+1 n — min

e - efv1 y1 .y1 ) <28>

for the intervals [yj.y^l. £yn+i'yn+2]*
Step 5: If e <_ E, go to step 6; else go to step 8.

(Monotonicity check)

Step 6; Compute the coefficients a,b,c of

q(yx) 4 Hn,n+i(yl) =a(yl)2 +b(yl) +c
Comment; Note that by construction q(yj) =s'(y*) <. 0for j=n,n+l. Hence
afr1) < 0 for y1 G [y1,y1J.,] if any one of the following three conditions holds:
iw / — j •'j^ n+1

(i) a*0, v* <-b/2a <y*+1, q(-b/2a) <0 (29a)
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(ii) at o, -b/2a $[y^y1^] <29b>

(ii$ a = 0 (29c)

Step 7: If (29a) or (29b) or (29c) are satisfied, go to step 11; else, go to step 8.

(Grid Refinement)

Step 8: If yn+2 -yn+1 >y^+1 -y*. set 5-I^^n+l'' COmpute s(°' 8'(°* x(°'
and go to step 9; else set £=W +l+yn^' comPute s(5 >» s'(0» x(C)» and go to step 10.

Step 9: Renumber as follows: (y^x^1)^1)^1 (y^)) +(yj+1»x(yj+i) »s(yj+i)'sf (yj+l})
for j= n+2,...,k, set yn+2 = €and go to step 4.

Step 10: Renumber as follows: (yJ.xCy^.sCy^.s1 (yj)) -»- (yj+1»x(yj+2>,s(yj+1) ,s'(yj+1))
for j«= n+l,...,k, set y*+1 =5, and go to step 4.
(Grid Continuation)

Step 11: Set n a n + 1.

Step 12: If k > n + 2, go to step 4; else go to step 13.

Step 13: If yn+1 =y^ -Ay1^, compute the polynomials H^^Cy1) from the stored
values of yj, s(y1), s'CyJ), j-1,2,....k, and go to step 18; else, go to step 14.

3 3 3 1.1k
Step 14: Set Ay1 =(y^+i-y^efE/e] .
Step 15: Set Ay1 =maxUy1^, min{Ay" .Ay^}}.

1ULW If yn+l"yLx -*W 8et yn+2"W 8<yn+2> "<V>- ^f '°̂
go to step 17; else set y1^ =min{yj;+1 +Ay1, y^ -Ay1^}, compute x(yn+2),

•^if2)» 8,(yif2)> set k=k+xand 8°to 8tep 17*
Step 17: If s(y1+1) =s(y1), go to step 11; else go to step 4.

IkStep 18: Plot T, print {x(y.)>;Jt3l and stop.
Thus, in the two criteria case, the situation is quite straightforward: we

present our results, the curve r. as aplot on asheet of paper. The three criteria
case is obviously more difficult, since there is no particularly convenient way for

displaying asurface in three dimensional space. One approach, for the case m=3,
y-(y1,y2,y3). is to plot aset of parametrized curves, which are sections through
T. For this purpose, we fix y1 at aprescribed set of values, say y^,... ,yH, and

plot the graphs r of the functions

8i(y2) »min{f3(x)|x Gn,f2(x) <y2,f1(x)'< yj) (30)
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which form a family of curves in the plane. The selection of the grid size for y1 is

now, probably, best fixed in advance, at a fairly large step size. It can later

always be refined if it is deemed necessary to insert an extra piece of graph between

two existing ones, so as to locally refine the picture.

As a final note, it should be pointed out that the approximation theory described

in Sec. 1.3 of Appendix A of [14] can be utilized to decide on rules for economically

truncating the infinite computation which, in principle, is required to solve a non

linear programming problem and hence to obtain a point on V
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