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Introduction

A shortcoming of Newton's method is that when applied to

unconstrained minimization problems it may converge to a saddle or

inflection point when started from a set of nonzero measure of initial

points. This shortcoming in also inherited by the various "stabilized"

or "globalized" versions of Newton's method, such as that due to

Goldstein [1], Huang [3], Polak-Teodoru [9] or Polak [8]. This short

coming becomes particularly important when any one of these methods is

applied to the minimization of a modified lagrangian constructed in

multiplier methods such as [2], [10]. The reason for this is that the

saddle points of the modified lagrangian can be local maxima of the

original minimization problem which one is trying to solve by minimizing,

unconstrained, the modified lagrangian. Thus, there is a need, answered

by the algorithm in this paper, for a quadratically converging,

unconstrained minimization algorithm which "avoids" saddle and inflection

points. The construction of this algorithm was facilitated by the

existence of a constrained minimization algorithm, with similar properties,

due to McCorraick [6].

The algorithm in this paper uses either a part of McCormick*s

descent direction finding scheme or an alternate one, which may be

preferable for large scale problems. It uses a substantially more

efficient step size procedure and also a somewhat simpler scheme for

ensuring global converge than the ones used by McCormick.

It is shown that, under certain conditions, (i) all the accumulation

points constructed by the new algorithm satisfy second order necessary

conditions of optimality and (ii) that it converges quadratically when

it converges to a strong local minimum point. Computationally we have
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found the method to perform quite well, particularly so, on problems

with saddle and inflection points.
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2. Preliminaries

We shall consider the optimization problem

min{f(x)|x G IRn } (1)

where f is a twice continuously differentiable function. To simplify

notation, we shall denote by g the gradient and by H the Hessian of

f, i.e.,

g(x)A3|MT , „(x)Al!f|*L (2)
8x

Furthermore, H(x) >, 0, H(x) > 0 will be used to indicate that H(x) is

positive semidefinite or positive definite, respectively. The symbol

II •II denotes the Euclidean norm and <•, •>denotes the Euclidean scalar

product.

Definition 1: We shall say that x £ ]Rn is desirable if it satisfies

both first and second order necessary conditions of optimality for (I)

(see [ 5]), i.e., if g(x) = 0 and H(x) >, 0. We shall denote by A the

set of desirable points. n

Let <f>: ]Rn + TR1 be defined by

<Kx) =min{| <e,H(x)e> |<g(x),e> <0, Hell <1}+ <3>

Noting that the following equality is valid,

<Kx) =min{-| <e,H(x)e> |Hell <1} (4)

f
When an eigenvector subroutine is not available, |e.| _< 1 for

i = l,2,..,n, may be substituted for Hell < 1 in (3) to utilize a linear
program subroutine without affecting the truth of the propositions and
theorems to follow.
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We obtain (see B.3.20 in [ 7]) the following

Proposition 1: (a) The function <|> (•) is continuous and (b) a point

x G m is desirable if and only if g(x) = 0 and <j>(x) = 0. n

Consequently, we obtain the following alternative characterization

of the set A:

A = {x € ]Rn |g(x) = 0, <Kx) = 0> (5)

Since g(«) and <£(•) are both continuous, it is clear that A is

closed.

3. The Algorithm: Statement and Convergence

The algorithm uses three parameters a, 3 and e_ and requires an

initial guess x . In the absence of experience with a problem, one

could start with a=0.5, 3=0.5, and eQ =minUo"20, 10_3|det H(x )|},
assuming, of course, that det H(x ) $ 0.

Algorithm

Data: aG (0,1), 3G (0,1), 0< eQ « 1, xQ G ]Rn .

Step 0: Set i = 0.

Step 1: Compute $(x.) and an

e. G {e € ]Rn |<g(x±),e> <0, Hell <M(x±) -^< e,H(x±)e>} (6)

Comment: When H(x±) j> 0, e± = 0, otherwise e. is an eigenvector of H(x.)

corresponding to the smallest eigenvalue.

Step 2: If (j)^) < 0, go to step 6; else go to step 3.

Step 3: If g(x±) = 0, stop; else go to step 4.

Step_4: If |det H(x±)| < eQ, go to step 6; else go to step 5.
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Step 5: Compute h± =-H(xi)"1g(xi), set XQ =1and go to step 8.
Step 6: Compute h. = - g(x ) + e .

_Step_7: If <hi,H(xi)h±> _< 0, set XQ =1and go to step 8; else set
^i

Aq = 3 where k _> 0 is the smallest integer satisfying

ki& 1 ~<g(x±) ,h±>/< hi,H(xi)hi> (7)

Step 8: Compute the smallest nonnegative integer I satisfying

*i £i 1 £i 9f(x±+A03 h±) -f(x±) <a[AQ3 1<g(x.),hi> +|(XQ3 *) (h^H^h.) ]

(8)

Comment: When h = - H(x )" g(x ), as in step 5, the right hand side
I. - I

of (8) simplifies to a3 \ g(xi),hi>[l --^3 ].
*iStep 9: Set x±+1 = x± + XQ3 h±, set i = i+ 1 and go to step 1. «

To facilitate our convergence analysis, we introduce the following

notation:

B(x,e) = {y G ]Rn |||y - x|| _< e} (9a)

£.(x) ={e G]Rn |(g(x),e> <0, 0eD <l,<f>(x) =|<e,H(x)e>}+ (9b)

9= {x G]Rn |(J)(x) =0, |det H(x)|>eQ} (9c)

Q(x) =(-g(x) +e|e G 8(x)} (9d)

Y^(x) =f{-H(x)"1g(x)} if xG9'
(9e)

Q(x) if x£9'

t

C (x) may contain more than one point when H(x) has repeated eigenvalues.
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Let lAI =((x,h) |x G]Rn, hG]Rn, <g(x) ,h> <0}. We define XQ: cAf +3R1,
9:(i) x 1 -> ]R and X: (_AI + 1R as follows:

XQ(x,h) = [1 if <h,H(x)h> < 0
(9f)

3 otherwise

where k > 0 is the smallest integer satisfying

3k <- <g(x),h>/<h,H(x)h>, (9g)

6(x,h,X) =X<g(x),h> +|x2<h,H(x)h> (9h)

X(x,h) =X0(x,h)3£ (91)

where Jl j^ 0 is the smallest integer satisfying

f(x+XQ(x,h)3£h) -f(x) <_ a8(x,h,X0(x,h)3i!') (9j)

* n
Lemma 1: Let x G ]R . (i) If g(x*) $ 0, then there exist an e* > 0

and a 6* > 0 such that

<g(x),h> < -6* < 0, Vx G B(x*,e*), ¥h G ^(x) (10)

(ii) If g(x*) = 0, and H(x*) ± 0, then there exist an e* > 0 and a

6* > 0 such that

Y<h,H(x)h> <-6* <0, ¥x€ B(x*,e*), Vh e £W(x) (11)

Proof: Case (i) Suppose x* G ]Rn is such that g(x*) ^ 0. Hence there
2 1 2exists an e > 0 such that llg(x) II _> yllgfr*) U >0 for all x G B(x*,e )

Therefore, for all h G Q(x)
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<g(x),h>= -llg(x)ll2+<g(x),e> <-llg(x)ll2 <-|llg<x*)02 (12)

where e = h + g(x) G fi(x).
t

Now suppose that x* £ 9J. Then, since?} is open, there exists

an e* G (O.e^ such that B(x*,e*) C^c and hence^(x) = Q(x) for
all x G B(x*,e*). It now follows from (12) that (10) holds for this

case.

Next, suppose that x* G xJ. Then H(x*) > 0 and there exists an

e* G (0,e]L] such that <g(x),H(x)"1g(x)> >|(g(x*) ,H(x*)"1g(x*)> >0for
all xGB(x*,e*). Now, let 6* =-| min{llg(x*)||2,< g(x*) ,H(x*)"1g(x*)> }.
Then, for all xG B(x*,e*), hG Q(x) or h=-H(x)_1g(x) and hence (10)
holds for this case.

Case (ii): Suppose x* G ]Rn is such that g(x*) = 0, H(x*) >, 0. In this

case <J>(x*) < 0 and hence x* G Yt . Since X? is open, there exists an

e2 >0such that B(x*,e2) C^C and hence 95W(x) =Q(x) for all xGB(x*,e2).
Also, there exists an M <« such that for all xG B(x*,e ) and eG P(x),

l2<g(x)»H(x)g(x)> -<g(x),H(x)e> | <_ M||g(x)[| . (13)

Next, making use of (13), since g(x*) = 0 and <j>(x*) < 0, there exists an

e* £ (°»e2-' such that for a11 xG B(x*,e*), for all eG <?(x),

2<g(x),H(x)g(x)> -(g(x),H(x)e:> +|<e,H(x)e> <M||g(x)[| +*(x) <. |<Kx*)
(14)

Therefore, for all xGB(x*, e*) and for all hG^(x) =Q(x),
h = -g(x) + e, with e G o(x) and hence

|<h,H(x)h> =!<g(x),H(x)g(x)> -<g(x),H(x)e> +-|<e,H(x)e>
t
We denote the complement of a set by a superscript c.
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<| <|>(x*) =-6* <0 (15)

which conpletes our proof. n

Lemma 2: Forany x* G A there exists a X* <= (0,1] and an e* > 0 such

that XQ(x,h) _> X* >0for all xGB(x*,e*), for all hG^(x).

Proof: .Case (i): Suppose that x* G A° is such that g(x*) ?* 0. Then,

by Lemma 1 (i), there exists an e* > 0 and a 6* > 0 such that

<g(x),h> <. -6*, Vx G B(x*,e*), Vh G \U(x*) (16)

Also, there exists an M > 0, such that

|<h,H(x)h>| <M Vx G B(x*,e*), ¥h G \U(x) (17)

Let X* = min{g-3,1}, where 3G(0,1) is as in the Algorithm Data; then

X* <. 1. Now suppose that for some x G B(x*,e*)> and some h G ryj(x),

<h,H(x)h> > 0. Then

-<g(x),b>/<h,H(x)b> > 6*/M , (18)

hence from (9f,g) and (18), XQ(x,h) =3k >. 36*/M >^ X*. The case
<h,H(x)h> £ 0 is trivial. Hence Lemma 2 holds for the case when g(x*)

= 0. Case (ii): Suppose that x* G A° is such that g(x*) = 0. Then

we must have H(x*) £ 0 and then it follows from Lemma 1 (ii) that there

exist an e* > 0 and a 6* > 0 such that (ii) holds for all x G B(x*,e*).

Consequently, XQ(x,h) =1for all xG B(x*,e*) for all hG^(x). Setting
X* = 1, we conclude our proof. °

Lemma 3: Suppose that xGA° and hG ^(x). The (i) for any XG(0, XQ(x,h)],

8(x,h,X) <-|x<g(x),h> <0 (19)
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(ii) For any A-,A2 such that 0 < X- < X2 5 XQ(x,h),

0(x,h,X2) < ©(x.h^) < 0 (20)

Proof: First, suppose that x G A° is such that g(x) $ 0, and let

hG y^(x). Then by Lemma 1 (i), <g(x),h> < 0. If <h,H(x)h> < 0, then,

clearly, both (19) and (20) hold. If <h,H(x)h> > 0 then XQ(x,h) <

-<g(x),h>/<h,H(x)h> and hence for any XG (0,XQ(x,h)]

0(x,h,X) =X<g(x),h>(l +| <g(x)^hV) -X<8(x>>h> <° <21>
Since in this case 0(x,h,X) is monotonically decreasing in X for X G

[0,XQ(x,h)], (20) obviously holds.

Next, suppose that x G a is such that g(x) = 0, and H(x) £ 0. Since

in this case <j>(x) < 0, x G tjTc and hence we have

0(x,h,X) =-k2<h,H(x)h> =X2(J)(x) <0, Vh G £W(x), VX >0 (22)

Consequently, (since g(x) = 0) (19) is satisfied, and so is (20), by

inspection of (22). This completes our proof. n

Lemma 4: In any x* G a there exist a X* G 0, a 6* > 0 and an e* > 0

such that 0(x,h,X) <. -^6*X2 for all xGB(x*,e*), for all hG^(x),
for all X G [0,X*].

Proof: Suppose that x* G a°. Then, by Lemma 2, there exist a X* G (0,1]

and an e, > 0 such that XQ(x,h) >_ X* >0, for all xG B(x*,e-), for all

h£ J^j(x). Now, suppose that g(x*) ^ 0. Then by Lemma 1 (i), there

exist an e* G (0,e ] and a 6* > 0 such that <g(x),h> < - 6* for all

G B(x*,e*), for all hG ^(x). Hence, by Lemma 3 (see (19)),x

0(x,h,X) <|x< g(x),h> <_ --|6*X <-y<S*A2 (23a)
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Next suppose that g(x*) = 0 and H(x*) £ 0. It then follows from Lemma

1 (ii) that there exist an e* G (O.e-] and a 6* > 0 such that

•|<h,H(x)h> _< -6* <0for all xGB(x*,e*) for all hG^(x). Further
more, we deduce from Lemma 1 (i) that for any x G ]R such that g(x) ^ 0,

<g(x),h) < 0 for all h G T>j(x). Consequently, we conclude that for

all xG B(x*,e*), for all hG ^(x), for all AG [0,A*],

0(x,h,A) =A<g(x),h> +|x2<h,H(x)h> <|x2<h,H(x)h> <-|<S*X2, (23b)

which completes our proof. n

Lemma 5: For any x* G AC, there exists a X* > 0 and an e* > 0 such that

X(x,h) > X* > 0 for all xG B(x*,e*), for all h G 9^(x).

Proof: Let x* G A°. Then it follows from Lemmas 2 and 4 that there

exist X^^ G (0,1], an e* > 0 and a 6* > 0 such that for all x G B(x*,e*),

for all hGT?^(x), XQ(x,h) >X1 and, in addition, for all XG[0,A ],
1 20(x,h,x) _< - -j^A • Clearly, there exists an M G (0,») such that llhll _< M

for allh G ^(x), xG B(x*,e*). Now, since the function <h,H(x)h> of

(x,h) is uniformly continuous on the compact set B(x*,e*) x B(0,M), there

exists a A2 G (0,A 1 such that

|<h,[H(x+tAh) - H(x)]h> |< (l-a)6*/2, (24)

for all AG [O.A^, for all t G [0,1] and (x,h) GB(x*,X*) x B(0,M),

where a G (0,1) is as in the Algorithm Data. Hence, for any xG B(x*, e*)

and any h G lU(x),and any XG [0, ;l], we obtain
1

f(x+Xh) -f(x) -a0(x,h,X) =X<g(x),h> +j(l-t)X2<h,H(x+tXh)h>dt
"0

-a0(x,h,X) =(l-a)0(x,h,X) +I(l-t)X2<h, [H(x+tXh) -H(x)]h>dt

•U-



1-|(l-a)6*X2 +^(l-a)6*X2 =-|(l-a)«*A2 <0 (25)
*

Let X* = 3 where jl* _> 0 is an integer such that 3 < ^ < 3 . Con

sequently, since (25) is satisfied for X = X*, we must have that X(x,h)

k i,
> X*,(since X(x,h) is of the form (3 3) and k + &is the smallest integer

k+£ k+&
satisfying f(x+3 h) - f(x) - a0(x,h,3 ) _< 0), which completes our

proof. n

Theorem 1: Either the Algorithm stops at an x. G A, or it constructs an

infinite sequence, any accumulation point of which is in A.

Proof: The first part of the theorem is obvious. Next, given anx,^ A ,

it follows from Lemma 2 that k. is finite and from Lemma 5 that I, is
i i

finite. Hence the Algorithm is well defined, i.e. it does not jam up.

Now, for the sake of contradiction, suppose that x* G A is an accumula-

00

tion point of {x.}.=0. Let {x.}._r be a subsequence converging to x*.

Then by Lemmas 4 and 5, there exists an i. _> 0, a 6* > 0 and a X* G (0,1]

1 2such that 0(x ,h.,X*) _< - 2"6*X* and X(x,,h ) >_ X* for all i G I and i± ±Q,

Hence, making use of Lemmas 3, 4 and 5, we conclude that for all i G I,

^ V

f(x±+1) - f(x±) < a0(xi,hi,X(xi,hi))

<a0(xi,hjL,X*) <-|a«5*X*2 <0 (26)

since {f(x.) }. n is a monotonically decreasing sequence and f is con

tinuous, f(x.) -> f(x*) as i •>», but this is contradicted by (26) and

hence we cannot have x* G A . This completes our proof. H

4. Rate of Convergence

We recall that a point x G ]R is said to be a strong
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local minimum point for (1) if g(x) =0 and H(x) > 0. We shall now

investigate the rate of convergence of the Algorithms when (1) has

strong local minimum points.

Lemma 6: Suppose that x* is a strong local minimum point for (1) and

that |det H(x*) |_> Ye0 for some y > 1> wittl gq as in the Data of the

Algorithm. Then there exists an e* > 0 such that for any x ^ B(x*,e*)

the Algorithm constructs an x. - according to the formula

Xi+1 =Xi "H^t)"^^) (27)

and x - G B(x*, e*).

Proof: Since by assumption H(x*) >0 and |det H(x*) | >_ yeQ9 with y > 1,

there exists an e >0 such that for all xGB(x*,e;L), |det H(x)| _> eQ, and
for some 0 <m< M, mllyll2 <<y,H(x)"1y> <. Mllyll2 for all y GIRn. Hence,

if x. GB(x*,£l), then x. G^ and consequently the Algorithm sets h± =
- H(xi)"1g(xi) and X^x^tu) =1. Now,

f(x±+hi) - f(x±) - a0(xi,hi,l) = (l-a)0(xi,hi,l)

1

+ fu-t^h^tH^+ttu) - H(xi)]hi>dt
*{)

_< - |(l-a) <g(xi),H(xi)"1g(xi)>

^M2/sup llH(x.+th.) - H(x.)0 ) Hg(x,)H2
+T\tG[o,i] V1 ± I

<hgfr.) H2f-m(l-a)4M2 sup IlH(x.+th, )-H(x ) \\) (28)
2 x V tG[0,l] x X /

Hence, since H(0 and H(»)~ g(") are uniformly continuous on B(x*,e1),

there exists an e2 G (0,e ] such that for any x± GB(x*,e1),

f(x±+h ) - f(x±) - a0(xi,hi,l) _< 0 (29)
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so that x(x.,h ) = 1, It now follows from the Kantorovich theorem [4]

that there exists an e* G (0,e2] such that for all x G B(x*,e*) and

x. . constructed according to (27), x. . G B(x*,e*), which completes

our proof. B

Our final result is a direct consequence of Lemma 6 and the

Kantorovich theorem, and hence we state it without proof.

Theorem 2: Suppose that there is aY>1such that |det H(x*)| >yeQ

for all strong local minimum points of (1) in the level set {x|f(x) _< f(x )},

and that the Algorithm has constructed an infinite sequence {x.}. 0»
00

Then, either no accumulation point of ix.}._ft is a strong local minimum point

or x -*- x* as i -*• «>, where x* is a strong local minimum point, with

II x. . - x*|j

Hx. -x*ll +0*si— (30)
l

Furthermore, if H(») is Lipschitz continuous at x*, then there exists an

M* G (0,«>) and an i. such that

Hxi+1-x*II <M*0xi -x*U2 for all i>. i. (31)

-14-
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